
LLNL-TR-408094

Report of the IMFIT Advisory Committee
from the Meeting of 9/16/08 at General
Atomics

R.H. Cohen, J. Cary, W. Houlberg, D. McCune

October 23, 2008

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Report of the IMFIT Advisory Committee from the meeting of 9/16/08 at General Atomics

Committee: Ronald Cohen (chair), John Cary, Wayne Houlberg, Douglas McCune

The Committee commends and thanks the presenters and GA for providing clear and informative
presentations. We present below our responses to the questions raised in the Charge, as well as
additional comments that may be useful for the project.

1. The IMFIT framework is based on PYTHON and CCA; can IMFIT meet its long-term goals
with this choice of language for framework?

Our first recommendation is to change the terminology; it appears that the project is not really
utilizing CCA (Common Component Architecture). The project is really about using Python to
organize workflow among components that are spawned as processes via pipes from Python.
We suggest that in describing the project, the team drop the designation "CCA" and simply state
that the IMFIT framework is based on using Python to control workflow among components.

Concerning the specific question: we understand the principal goal of the project to be the
development of an easy-to-use tool that efficiently integrates different physics modules to
support experimental data analysis and modeling. Yes, Python and the workflow-based
framework are appropriate choices for meeting this objective.

The Committee, in examining the goal, discussed whether the IMFIT project was duplicative of
other projects; there are several others in the U.S. and elsewhere with integrated modeling goals.
In particular in the U.S., SWIM, PTRANSP, and the proto-FSP’s. However this project occupies
a reasonably unique niche through its emphases on integrating experimental data, use of existing
components, its near-term focus, and the extent to which is targeted at experimentalist users.

2. Will IMFIT benefit from the additional use of an interoperability language for framework
such as BABEL?

No, IMFIT is not really doing inter-language communication. In particular this will be the case
as long as inter-component communication is via files -- and that's OK so long as you aren't
doing lots of short steps with communication at each step.

3. IMFIT GUI is based on the public PyGTK toolkit; will IMFIT benefit from the additional use
of other public Python graphic toolkits such as wxPython that is a cross-platform wrapper, or
PyQt, or a commercial package such as IDL ?

PyGTK seems adequate for now. The team needs to decide if it needs more capability.
Avoid licensed software that interferes with portability and the open-source goal (and thus in
particular avoid IDL).

4. Will IMFIT benefit from using a XML-RPC as alternative to sending files thru sockets?

IMFIT could benefit by adopting some kind of self-describing format, such as XML or HDF5,
but data can still be sent over sockets. This is part of a broader question: "Should IMFIT adopt

some kind of standard for communicating data between components?" To do anything other
than what is done now requires modification of individual components (or convertors/wrappers).
But moving to a self-describing standard is a good idea, which should be considered. You don’t
need to impose a standard, but you could decide on one and move toward it gradually, as the
architecture doesn't impose a standard. But whether you adopt a standard and the pace of
moving toward it is up to you.

5. Will IMFIT benefit from any other available computational tool?

(a) IMFIT would benefit from fuller use of an already incorporated tool -- python language in the
task execution specification, to enable desired features like branching.
(b) If there is a high degree of data hierarchy, IMFIT should explore HDF5 as well as NETCDF
and compare.
(c) IMFIT would benefit from moving toward common data standards
(d) It would be useful for the IMFIT team to monitor developments in related projects such as
the proto-FSP's and PTRANSP to ascertain if there are potentially useful tools.

Other questions/suggestions:

We still don't understand why there are three separate functions (init, step, final), if all three are
always called together and only once in execution of a task. However, one could make genuine
use of a repeated "step" as part of a python script-driven procedure.

It seems that there are two separate functions for task files – specification of data and control of
the execution of tasks. Right now execution of tasks is all based on dependency analysis; one
could shift to procedural scripts based on Python. This would make it easy to incorporate
conditional branching and other control features that the team notes is desirable. One could
adopt a hybrid approach with high-level script that exploits the existing IMFIT dependency
analysis.

It was not clear to some of us that there is an advantage (in terms of simplicity) to the data
specification format used in IMFIT versus direct assignment via the Python language.

Error handling needs to be better addressed-- perhaps by components passing their error
flags/messages through their interface, and then using Python's error handling to centralize
reporting of error messages.

IMFIT needs a reset method: if a step fails, one needs to be able to back up and do something
else (e.g. change the timestep, change a code setting, and then retake the step); for long running,
IMFIT will likely need a capability for state capture/saving.

Security issues: for local use, there isn't much of an issue. To seriously address security is
probably too burdensome a task for the available staff.

It would be good to implement journaling/streaming of log files. It is desirable to be able to
save the history of a simulation. Provenance should include version numbers of all components.

This report was prepared under the auspices of the U.S. Department of Energy, in part by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA2734.

