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Summary: 
 
During the grant period 2005-2008, we accomplished the key milestones of the project, 
which were to realize (i) high quality InGaP/GaAs two junction ‘top cells’ on Ge/Si 
templates, (ii) InGaAs/InP ‘bottom cells’, (iii) direct bond series interconnection of 
tandem junction solar cells and (iv) modeling of bonded three and four junction solar cell 
device performance.  During the grant period, two graduate students (Katsuaki Tanabe 
and Melissa Archer) progressed toward their PhD. theses, and both graduated with Ph.D. 
degrees in 2008.  Results from the project were presented at technical meetings (IEEE 
PVSC, WCPEC, MRS) and disseminated in technical publications.  Significant aspects of 
the project included close industrial collaboration with Spectrolab, Aonex Corporation 
and Emcore Photovoltaics. 
 
Technical Accomplishments: 
 
GaInP/GaAs Dual Junction Solar Cells on Ge/Si Epitaxial Templates 
 
The Caltech/Spectrolab team achieved a major milestone by demonstrating large area, 
crack-free GaInP/GaAs double junction solar cells grown by metal organic chemical 
vapor deposition on Ge/Si templates fabricated using wafer bonding and ion implantation 
induced layer transfer.  The photovoltaic performance of these devices was comparable to 
those grown on bulk epi-ready Ge, demonstrating the feasibility of alternative substrates 
fabricated via wafer bonding and layer transfer for growth of active devices on lattice-
mismatched substrates. 

One of the key milestones of our wafer bonded 4-junction solar cell 
(GaInP/GaAs/InGaAsP/InGaAs with 1.9eV/1.42eV/1.05eV/0.72eV bandgaps) was the 
demonstration of layer transfer and wafer bonding to realize GaInP/GaAs dual junction 
grown on a GaAs or Ge template suitable for integration InGaAsP/InGaAs grown on an 
InP/Si template.  For this structure to be viable, we must have ohmic contacts at the 
bonded interfaces and good quality epitaxial growth on the bonded templates.   

 
Figure 1.  Optical micrographs of a full 50mm Ge/Si 
template made with layer transfer and wafer bonding (left), 
and GaInP/GaAs solar cells grown on a Ge/Si template 
(right). 

The first step in 
fabrication of these 
epitaxial templates was 
to implant a Ge wafer 
with H+ at 180keV and a 
dose of 1x1017 cm-2.  
Next, wet chemical 
cleaning removed 
organic and particulate 
contaminants from both 
the oxidized Si and Ge 
wafers.  We employed a 
SiO2 bonding layer for 
thermal stability of the 
transferred film.  Just 
before initiating the 

 1



bond, both substrates were plasma activated.  A Suss Microtech SB-6e bonder initiated 
the bond at a temperature of 200°C.  The bonded pair was then annealed at 250-350°C 
under >1 MPa pressure to induce exfoliation and strengthen the bond between the two 
wafers.  The Ge layer transferred to the Si substrate is approximately 1.4μm thick.  Thus 
far, we have shown up to full 2” wafer layer transfer of Ge on Si as shown in Figure 1. 

 
Figure 2. Cross-sectional transmission electron microscopy images of Ge homoepitaxy 
on a Ge/Si template without damage removal (left) and with damage removal (right).  
The white line is at the interface of the substrate and the homoepitaxy. 

 
Figure 3.  Schematic cross-section of 
the dual junction solar cell grown and 
processed by Spectrolab.  The 
bonded interface is shown by a 
dashed line. 
 

The RMS roughness of these films after layer transfer was approximately 25nm 
and the ion implantation induced damaged layer extends approximately 200nm into the 
film.  Removal of the damaged material and abatement of the surface roughness are 
crucial to enabling high quality epitaxial growth on these substrates.  A dilute CP-4 
(HF:HNO3:CH3COOH) wet etch removed the damaged layer.  Touch-polishing with a 
Logitech PM5 chemical mechanical polisher minimized the surface roughness further.  
Final RMS roughness of the Ge/Si templates is ~0.5nm.  Figure 2 shows cross-sectional 

transmission electron microscopy (X-TEM) 
images of Ge homoepitaxy on Ge/Si templates 
with and without damage removal.  Removal of 
the ion implantation induced lattice damage 
produced substrates that are viable for high 
quality epitaxial growth. 
 To examine the potential of these 
substrates for use in heteroepitaxy of high 
quality III-V materials, dual junction 
GaInP/GaAs solar cells were grown using 
Ge/Si epitaxial templates.  Figure 3 shows a 
schematic of the structure.  Spectrolab 
performed all cell growth and processing.  
Light I-V (current-voltage) performance was 
measured under AM1.5D illumination (Fig. 4).  
It should be noted that no anti-reflective 
coatings were used in these devices.  The light 
I-V data show comparable short circuit current 
between the control device grown on a bulk Ge 
substrate and the device grown on a Ge/Si 
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template.  However, open circuit voltage is slightly lower (1.97-2.08V vs. 2.16V) in the 
devices grown on the Ge/Si template.  Overall, the device performance is comparable to 
the control with no loss in fill factor (FF) compared with the control (FF=0.79). 
 Spectral response measurements (Fig. 4 inset) indicated the GaInP cell band gap 
has shifted approximately 60meV  from ~1.74eV to ~1.8eV.  This shift in the band gap is 
attributed to the observed slight change in GaInP composition.  The Ge substrate used for 
the control sample in these growths was (100) oriented with a miscut of 6° toward the 
<011> orientation, whereas the Ge wafer used to make the Ge/Si template was (100) 
oriented with a miscut of 9° toward the <011> orientation.  Higher miscut substrates have 
lower In composition for the same growth conditions.10  Shown in Figure 5 is the HR-
XRD data for the control sample and the Ge/Si template sample.  The scan on the control 
sample shows the top cell to be compressively strained -691 seconds, which corresponds 
to an indium composition of about 53% indium, assuming it’s 100% strained.  On the 
other hand, the Ge/Si sample is lattice matched, which corresponds to an indium 
composition of 49.5%.  Increasing indium composition by 3.5% decreased the band gap 
by ~64 meV11, which correlates well with spectral response measurements. 
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Figure 4.  Photovoltaic I-V curves for the GaInP/GaAs solar cells grown on Ge/Si epitaxial 

templates and on a bulk epi-ready Ge substrate 
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Figure 5. High-resolution X-ray diffraction rocking curves for the GaInP/GaAs solar 

cells grown on Ge/Si epitaxial templates and on a bulk epi-ready Ge substrate. 

Initial Work on Bonding, Double Heterostructures 
Early in the project , in 2005-early 2006, effort focused on fabrication of GaAs 

and GaInP double heterostructures on Ge/Si substrates. After achieving promising results 
on the GaInP DHs we decided to try to make preliminary solar cells.  Spectral response 
measurements were taken on the GaInP top cell and converted to external quantum 
efficiency (see Fig. 6).  The Ge/Si template shows about the same overall quantum 
efficiency as the donor wafer giving us further proof that the surface preparation is 
dominating the performance of these devices, not the CTE-mismatch induced strain.  
However, there is some red response loss in the template sample denoting a lower 
diffusion length in the template sample.  Initial light IV data shows promise for the 
template samples as the short circuit current is similar to the donor wafer sample (see Fig. 
4). 
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Figure 6.  External quantum efficiency and Light IV data for the first GaInP solar cell grown  

on Ge/Si templates. 
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Since the surface preparation was dominating the performance of our devices, we 
investigated chemical-mechanical polishing (CMP) processes for these templates, which 
ultimately was a key factor that led to the successful top cell process described above.  
We purchased a CMP system, and work with chemical mechanical polishing with 1cm2 
Ge donor wafers showed that the roughness of can be drastically reduced by polishing 
with a silica slurry.  The RMS roughness of the samples tested dropped from ~20nm to 
<1nm.  This was a great improvement over the wet chemical etch process we had been 
using earlier.  In addition, there were no etch artifacts left behind in these samples as 
there were with the wet etch (Fig 7-8).   
 

 
Figure 7.  Representative AFM scans of the Ge surface after exfoliation 

 
Figure 8.  Representative AFM scans of the Ge surface after CMP 
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InGaAs/InP/Si Bottom Subcells 
We fabricated InP/Si epitaxial templates through wafer bonding and helium-induced 

exfoliation of InP and in collaboration with Aonex, and Emcore fabricated and tested 
InGaAs solar cells on those templates.  The devices are depicted schematically in Fig. 9. 
The cell consisted of a 1 um thick InP buffer layer that functions as a current spreading 
layer for lateral back side contact.  The backside contact is InGaAs heavily doped n-type.  
A tunnel-junction structure was used to switch the material doping at the back contact 
from p-type to n-type, so that the front and back contacts could be fabricated with a 
single lithographic process.  The remainder of the structure was typical of a single-
junction InGaAs cell, as shown in Fig. 9.  On top of this structure a conventional InP 
window layer followed by and InGaAs contact layer for making top contacts was grown.   
 

The basic process for fabrication 
of InP/Si engineered epitaxial 
templates begins with the ion 
implantation of a (001) InP wafer.  
Next, the InP wafer is bonded to a 
(001) Si wafer with a grown silicon 
dioxide (SiO2) film, which improves 
thermal stability relative to structures 
fabricated with a direct 
semiconductor-semiconductor bond 
after cleaning and surface 
preparation in a clean environment.  
The two substrates are then annealed 
under pressure.  This anneal has two 
purposes.  First, it enables covalent bonds to form between the InP and Si substrates.  
Second, it causes the implanted ions to coalesce in the InP wafer, until a thin layer of InP 
separates from bulk substrate and is transferred to the Si substrate.  The remaining InP 
can be processed and used to create another template layer.  Finally the InP/Si template is 
annealed again during subsequent epitaxial growth, further facilitating covalent bond 
formation at the bonded interface.   

 
Figure 9. Schematic of InGaAs/InP/SiO2/Si cell 

A typical image of an InP/Si epitaxial template 
fabricated by transferring a thin InP film to a 
deposited SiO2 film on Si is shown in Fig. 10.  The 
film was transferred from an InP substrate 
implanted with He+ to a dose of 1x 1017 cm-2 at an 
energy of 180 keV.  The transferred InP film 
thickness was ~900 nm.  

 
Figure 10.  Photographic image of 
InP/Si film after transfer. 

An unavoidable consequence of the use of high 
ion implantation doses to induce film exfoliation is 
that crystallographic defects are introduced in the 
near surface region of the transferred film with the 
peak of that damage roughly coinciding with the 
depth at which exfoliation occurs.  Thus, in the 
final InP/Si structure there is a distribution of 
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lattice defects with a peak at the surface of 
the transferred film decreasing to a 
minimum defect density in the material 
adjacent to the bonded interface.  Fig. 11 
shows a representative cross-sectional 
transmission electron microscopy (XTEM) 
micrograph of a film transferred from InP 
implanted with 115 keV He+ to a dose of 
1.0x 1017 cm-2.  The inset selected area 
diffraction (SAD) pattern shows that the 
InP adjacent to the bonded interface is 
predominantly single-crystalline.  Close 
inspection of the defect structure using 
high-resolution XTEM imaging shows that 
the strain contrast apparent in Fig. 8 is 
caused by a both extended defects that can 
be directly imaged and point defects such 
as vacancies and interstitials.  It is 
essential that the damage in the as-
transferred InP thin film in InP/Si 
engineered epitaxial templates be 
minimized prior to epitaxial growth of III-
V materials, especially extended defects 
that intersect the growth surface.  The 
damaged surface region of the as-
transferred InP film was removed using a 
combination of inductively-coupled 
plasma reactive ion etching (ICP-RIE) for 

damage removal and wet chemical etch for surface smoothing etching process to leave a 
film of ~400 nm with a roughness of ~10 nm-rms, as measured by contact mode atomic 
force microscopy (AFM).   

 
Figure 11. Cross-sectional transmission 
electron microscope image of an InP/Si 
epitaxial template fabricated using InP 
implanted with 115 keV He+ to a dose of 
1.0x 1017 cm-2 showing the strain contrast 
caused by defects caused during ion 
implantation and (inset) selected-area 
diffraction image indicating that the InP 
adjacent to the bonded interface (within 
~200 nm) is crystalline.  

To test the performance of III-V compound active photovoltaic device layers grown on 
the InP/Si epitaxial templates in functional solar cell structures, single-junction InGaAs 
solar cells were grown on both the InP/Si templates and commercial bulk epi-ready (001) 
InP substrates by metalorganic chemical vapor deposition (MOCVD).  Each of the solar 
cells had an n-type InGaAs emitter and a p-type InGaAs base with bandgap energy of 
0.74 eV, nominally lattice-matched to (001) InP.  The cells were designed to enable 
convenient and low-resistance contact to both base and emitter through the top surface of 
the cell. Photovoltaic current-voltage (I-V) characteristics of the 4 mm2 InGaAs cells 
grown on the InP/Si templates and on bulk (001) InP substrates were measured under a 
spectral portion truncated at 850 nm by a long-pass filter, considering use as subcells 
under GaAs, from 1-sun AM1.5 Global solar spectrum.  The photovoltaic I-V 
characteristics of the InGaAs solar cells grown on the InP/Si epitaxial templates and a 
bulk InP substrate are shown in Fig. 12.  The device parameters for the InGaAs cell 
grown on the wafer-bonded InP/Si epitaxial template were Jsc = 24.9 mA cm-2, Voc = 0.30 
V and FF = 0.66, where Jsc, Voc and FF are short-circuit current, open-circuit voltage and 
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Figure 12. Photovoltaic I-V curves and (inset) spectral 
responses for the InGaAs solar cells grown on the 
InP/Si epitaxial templates and on a commercial bulk 
epi-ready InP substrate.  The I-V measurements were 
under a spectral portion truncated at 850 nm from 1-
sun AM1.5G spectrum.

fill factor, respectively.  This performance was comparable to that of the InGaAs cells 
grown on bulk (001) InP substrates, Jsc = 21.5 mA cm-2, Voc = 0.31 V and FF = 0.70.  

Fig. 12 (inset) shows the 
spectral responses for the 
InGaAs solar cells grown on 
the InP/Si epitaxial templates 
and a bulk InP substrate.  The 
larger Jsc and the higher 
quantum efficiency for the 
cell grown on the InP/Si 
template are attributed to the 
high reflectivity by the 
InP/SiO2/Si heterostructure, 
estimated to be ~0.45 at 
maximum in the IR range for 
normal incidence from the 
basic electromagnetic theory 
while the reflectivity at the 
InGaAs/InP interface is less 
than 0.005, due to the large 
refractive index differences at 
the InP/SiO2 and SiO2/Si 
interfaces.  No significant 
bandgap shift was caused by 
the InP/Si epitaxial template 

structure as certified by the spectral response result.  These photovoltaic I-V 
characteristic and spectral response results indicate that the fabricated InP/Si epitaxial 
templates are promising alternative 
substrates to InP bulk wafers for 
InGaAs solar cell production.  The 
obtained Jsc of 24.9 mA cm-2 for the 
InGaAs cell on the InP template is 
large enough to current match the 
state-of-art InGaP/GaAs two-
junction cells. This InGaAs cell is 
therefore a strong candidate for the 
bottom cell of an ultrahigh efficiency 
three-junction cell with its 
significantly higher Voc than the 
conventional Ge bottom cell. 
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Modeling 

This year, further work was 
carried out on our implementation of 
a device physics based model for 
multijunction solar cells.  Initially, 
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we are focusing on the four junction structure proposed in this project.  Primary design 
considerations for the model include: flux filtering from the tunnel junctions and subcells 
above; series resistance at bonded interfaces and in tunnel junctions; temperature and 
doping effects; filtering from window layers; shunt resistance; electrical connection 
options; flexible variation of Eg and subcell thickness; spectral shifts throughout the day 
and year; and optimization for the maximum power over the entire day or year. 
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Figure 14. Overall cell efficiency as a function of the diffusion length in all four subcells for 3 
different electrical connections. 

In constructing the model, the standard electron transport equations were used 
including diffusion/drift, continuity, and Gauss’ Law.  Shockley-Read-Hall 
recombination was used.  To simplify the equations, the following assumptions were 
made: abrupt p-n junction, 1-D carrier transport only, depletion approximation, depletion 
region recombination due to single trap level at mid-gap, following Sah, Noyce and 
Shockley model.  In an effort to incorporate more of the realistic behaviors of III-V 
materials, an empirical model for mobility as a function of temperature and doping 
concentration was used as well as a Drude model for free carrier absorption.  We are 
working on incorporating a better model for free carrier absorption that includes inter- 
and intra-valley transitions. 

One of the first things that became obvious when we started to run the model is 
the importance of optimizing the cell thicknesses when current-matching was enforced.  
Figure 13 shows the overall efficiency of the four junction device as a function of subcell 
thickness evaluated by varying one cell thickness while keeping all the others constant. 

An interesting parameter we can vary with this model (along with material 
parameters) is the type of electrical connection used in the device.  Figure 14 shows a 
schematic of the 3 different types of connections we evaluated as well as the overall 
efficiency of the four junction cell as a function of the diffusion length in all four 
subcells.  Each data point is representative of the optimized device at those conditions.  
As the material quality improves, the gain achieved through independent connections 
increases.  At the highest quality evaluated, the difference between the series connected 
device and the completely independently connected device is ~3.5%.  Interestingly, the 2 
independent connection scheme gives us 80% of the total gain and is much more feasible. 

In addition, we used reference flux data from Keith Emery for the “sunny hot 
day” to investigate the effects of the changing flux throughout the day.  The subcell 
thicknesses were optimized for the peak flux of the day for each of the three electrical 
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connections and then the power out at each hour was calculated for each of the 3 
multijunction solar cells.  Figure 15 shows the power out as a function of time in the day 
as well as the overall efficiency at each time in the day.  The efficiency plots make the 
advantages of independent connections very clear.  The most interesting result of this 
calculation is that ~70% of the gain achieved by total independent connection can be 
achieved with just 2 independent connections. 
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three different electrical connections. 
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