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Abstract

To analyze the risks due to cyber attack against control systems used in the United States electri-
cal infrastructure, new algorithms are needed to determine the possible impacts. This research is
studying the Reliability Impact of Cyber Attack (RICA) in a two-pronged approach. First, malevo-
lent cyber actions are analyzed in terms of reduced grid reliability. Second, power system impacts
are investigated using an abstraction of the grid’s dynamic model. This second year of research
extends the work done during the first year.
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Executive Summary

The National SCADA Test Bed (NSTB) program is an effort funded by the U.S. Department of
Energy (DOE) to address cyber security problems in U.S. energy infrastructure. During 2008, as
part of the NSTB program, Sandia continued for the second year to investigate the electric power
grid impacts that could be caused by cyber attack against grid control systems. The first year
introduced the cyber-to-physical (C2P) bridge, which links cyber attack vectors to resulting events
in the electric power grid (EPG), and leveraged the C2P bridge into two analysis approaches to
determine grid impacts. Both approaches have been extended in this second year of work.

The first approach is Reliability Impacts from Cyber Attack (RICA). RICA combines simu-
lation of cyber attack and a system failure/reliability model to estimate the degradation in grid
performance that can be attributed to cyber attacks. The results are the estimated reduction in sys-
tem availability attributable to cyber attack as measured by several indices. Our recent work has
added several cyber attack scenarios and illustrated the potential for parametric analysis. Since
RICA measures the performance of the grid in providing power, cyber security measures can be
assessed by comparing the change in grid performance before and after the cyber security improve-
ments. The successful operation of this framework, of which several examples are shown, allows
the benefits of cyber security to be quantitatively determined as improvements in power availabil-
ity. Future work will address modeling and quantifying improved system behavior brought about
by cyber security measures. We are also exploring enhancing our attacker model to better rep-
resent observed behavior. Cyber attack is currently modeled in RICA as unexpected component
outage at a given probabilistic rate. Although this accurately represents attacks by a class of ad-
versary, researchers in cyber attack modeling have pointed out that it cannot accurately represent
all adversaries.

The second approach to determining EPG impacts is based on the development of a finite
state abstraction (FSA) of the infrastructure and its control systems that preserves the dynamic
behavior of the system. This research continues development of the FSA analysis begun last year
and has resulted in a model for a two-bus power system showing all possible discrete states and
the transitions between them. The FSA research reduces the effectively infinite set of possible
power grid states to a relatively tractable finite state set. The possible end states of the finite-state
model, in particular the failure states, are identical to those of the effectively infinite-state dynamic
power grid model. This is valuable because it enables the end states of an infinite-state grid to be
determined, in theory for a grid of any size. A benefit of this work is that undesirable yet reachable
grid states (e.g., widespread failure) can be found that might otherwise be seen only when and if
they occur in the actual power grid. Reducing this demonstrated theory to practice for a grid of
relevant size constitutes the direction of this approach.
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Chapter 1

Introduction

The impacts analysis (IA) program in the National SCADA Test Bed (NSTB) program at Sandia
National Laboratories was founded in 2007 as a research approach to determine the results of
cyber intrusion into electric power grid (EPG) control systems. The program continued in FY08,
building on the FY07 work [1] presented at the NSTB workshop Cyber Attacks on Control Systems:
Evaluating the Real Risk1 and the 2008 NSTB Peer Review2.

1.1 Research Goals

This project has explored two complementary approaches to characterizing grid impacts. In the
first approach, the goal is the capability to estimate the degradation in grid reliability caused by cy-
ber attacks. This approach is termed reliability impacts from cyber attack (RICA). RICA estimates
how cyber attacks affect reliability by computing values for several reliability indices for a large
power system model whose operation in simulated in two environments, one with cyber attack
and one without. The difference in reliability between these two cases is the grid impact of cyber
attack. The current goals of this work are to produce simulation results for the Western Electricity
Coordinating Council (WECC) region and place these into a database so events of interest can be
found by query. We are also examining the possibility of including more-accurate cyber attack
models.

The second approach is development of power grid finite-state abstraction (FSA) models that
preserve the dynamic behavior of the modeled systems. The resulting FSA is then analyzed to
reveal all possible steady states that the system can achieve. We are particularly interested in
failures attributable to cyber attack. This approach yields two benefits: First, it produces a provably
complete set of failures states; second, it reveals failure modes that are difficult or impossible to
discover within either the infinity of states of the actual system or the extremely large number of
states of a dynamic model of the system. As this report is being written, FSA techniques have
been demonstrated on systems of only a few elements; the current goal is to increase the size of
the system to which FSA analysis applies.

1Held at the Albuquerque Hyatt and facilitated by Energetics, Inc. June 24, 2008. http://www.sandia.gov/
scada/workshop.htm

2Held at the L’Enfant Plaza Hotel in Washington, DC and facilitated by Energetics, Inc. October 21-22, 2008.
http://www.controlsystemsroadmap.net/08nstb_peerreview.aspx
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1.2 Project Deliverables

The budget for the IA project in FY08 was $152k, and four deliverables were prescribed:

• Improved RICA analysis
• Improved FSA analysis
• Published results
• Final 2008 report

All have been accomplished; this document is the final report for 2008.
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Chapter 2

Grid Reliability Impacts from Cyber Attack

2.1 Introduction

This introduction is an abridged description of the approach used to assess the reliability impacts
from cyber attack (RICA). Full details are available in the 2007 project report [1].

Given a grid—an electric power system comprising transmission lines, breakers and other
switches, generators, and loads—reliability is defined as the efficacy of the grid in delivering power
to the loads. In the RICA approach, the average effectiveness of the power grid in meeting load
demand is determined as follows: Models of individual power equipment elements are integrated
into a model of the grid of interest and the load-satisfying behavior of this grid model is observed
over several thousand simulated years using probabilistically determined outages for each indi-
vidual power system component and empirical demand patterns. Any additional outages (e.g.,
line tripping due to overload), load flow, and unserved load are computed at each time step. The
amount of unserved load is accumulated [2, 3] and, generally, averaged over time and reported per
unit time. This approach is termed Monte-Carlo (MC) reliability analysis [4].

Several metrics based on unserved load and outage characteristics are computed. Overall, sys-
tem reliability is measured using indices, including frequency of interruption (FOI) (in occurrences
per year), Loss of Load Expectancy (LOLE) (in hours per year), loss of energy expectation (LOEE)
(in MW·hr per year), duration of interruption (DOI) (in hours per interruption), energy not served
per interruption (ENSI) (in MW·hr per occurrence), load curtailed per interruption (LCI) (in MW
per occurrence), and energy index of reliability (EIR) (the ratio of energy served to yearly demand).

During MC simulation, unserved load is calculated once per simulated unit of time (every hour,
in RICA; all times discussed in the remainder of the introduction refer to the simulation clock, not
actual time). For each such calculation, each system element is independently determined to be in
or out of service as follows: At the beginning of the simulation1, for each piece of equipment, the
time interval until its next failure is determined by scaling a sample from an exponential distribu-
tion by the relevant mean time to failure (MTTF). This interval is added to the current simulation
time to give the item’s “failure time”, i.e., the time at which it will fail. All active items whose
failure time is less than or equal to the current time (i.e., whose failure time has passed) are marked
”Failed” and do not contribute to generation or transmission. Failed equipment returns to service

1Technically, outages are determined with respect to a system-wide long sample interval [5], a detail that need not
be further considered for the purposes of this discussion.

13



after an idle period (during which it is ostensibly being repaired) determined by a similar sample
scaled by the equipment’s mean time to recover (MTTR). Each type of equipment has its own
MTTF and MTTR.

Once it’s been determined which elements are functioning, load flow is calculated based on
the remaining transmission lines and their capacities, the structure of the remaining network (i.e.,
what’s still connected to what), the capacities and setpoints of the remaining generators, and the
loads to be served at that moment. Load magnitudes are based on empirical demand statistics. [6]
calls the generation/transmission system, also referred to as the bulk power system, the “Hierar-
chical Level II (HL-II)”; HL-III includes distribution. Distribution is not included in the RICA
model because aggregation of load at the substation level2 provides sufficient resolution to develop
an informative load picture at the regional and national levels.

The approach as described so far provides a measure of system reliability that accounts for
random equipment failure and recovery on an item-by-item basis. We refer to such outages as nat-
ural to distinguish them from failures caused by cyber attack. To understand the impact of cyber
attack, attacks and their effects must be modeled and added to the process of natural outages de-
scribed above. Cyber attacks happen in addition to natural outages; both degrade grid performance,
but they are represented independently in the model because they are expressed and mitigated in
different ways. For each component the time until the next successful cyber attack is currently
modeled using an exponentially distributed random variable that’s independent of the natural out-
age variable and a selected mean time to attack3 (MTTA). The MTTR for a cyber-attacked piece of
equipment is based on the time required for cyber forensics, control system restoration, and device
restoration.

The separate contributions of generation and transmission to whole-system reliability can be
examined using RICA because both are explicitly represented. This means, for example, that RICA
can be used to assess whether a cyber security budget would be better spent protecting generators
or protecting transmission lines.

2.2 Reception of the FY07 RICA Work

The RICA algorithm and 2008 results have been informally well-received by academia, but an
audience made up primarily of operations staff from the electric, petroleum, and pipeline industries
criticized the work during a 2008 review4. The response from this audience indicates that we were
only partially successful in explaining the work effectively. Some members of the review team
expressed interest in the work, but others suggested that the project is of dubious merit. We feel
this deserves a considered response, which is contained in the following section, Justification for
the Analysis Approach.

2The substation marks the boundary between “distribution” and “transmission”; power transport between genera-
tion and the substation is considered transmission, everything below the substation is distribution.

3Mean time to attack is similar to mean time to failure, except that MTTA is the average interval between successful
cyber attacks and MTTF is the average interval between random outages.

4The agenda and presentations are at http://events.energetics.com/v&c08, which was available at the time of this
report’s publication.
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In particular, the utility of the Impact Analysis (IA) work was questioned. Overall, it does
seem clear that some decisions will not be particularly informed by RICA-type results. The intent
of RICA analysis is to quantify the reliability of a large-scale electric power grid using probabilis-
tically represented cyber attacks and vulnerabilities and understand the impact of cyber attack on
system performance. It is a research program whose purpose is to enable better-informed cyber
security investment.

RICA results are intended to inform strategic decisions rather than provide tactical support. To
isolate the effects of cyber security, the outage metrics are reported on an annual basis to “average
out” the effects of the time of year and other local variations. We want to know, for example, that
an observed change in system performance is due to cyber security measures, not, for example,
the fact that it’s currently winter. We note the potential for disparity over whether system perfor-
mance over 10,000 simulated years with all annual and weather effects averaged out is relevant
when considering day-to-day operations. We suggest RICA might appear more valuable to in-
dustry planners, investors, and other researchers deliberating among investments to improve cyber
security.

The RICA assumptions also drew significant criticism from operations staff. In the Justification
for the Analysis Approach section, below, we offer a defense of these assumptions and guidance
for potential improvements grounded in the applicable literature. This defense provides evidence
that we are not alone in advocating MC simulation as a way to measure the performance gain
engendered by cyber security investment.

2.3 Justification for the Analysis Approach

Our approach is to quantify system behavior in the absence of malicious activity, then add mali-
cious activity and quantify the difference using the measures described above in the Introduction
section. The RICA approach is essentially a reliability framework; computation of these measures
in the absence of adversaries is explicitly a reliability model. Unserved load is computed on an
hour-by-hour basis using a steady-state power flow model of the system. At each time step, com-
ponents fail (and failed components recover) at empirically derived rates5. RICA then attempts to
supply existing loads through the remaining network from the remaining sources. Unsatisfiable
loads are shed6, and, if load still exceeds supply, additional load is shed according to a load-
shedding plan. The amount of unsatisfied load, outage duration, etc. are recorded and used to
compute the metrics.

In the presence of adversaries, computation proceeds as above, with the distinction that com-
ponents fail at an increased rate based on a “successful attack” distribution function applied in an
identical manner on a component-by-component basis. These “attack” failures are independent
of, distinct from, and in addition to the “normal” failures. Three questions arise: Is a probabilistic
model appropriate for evaluating cyber security? If it is, how should attackers be modeled? Finally,
assuming a relevant attacker model, how should the attacks themselves be modeled?

5Associated secondary failures may occur due to cascading over-capacity tripping, etc.
6Load unsatisfiability can be caused not only by inadequate supply but also by inability to deliver power, which

may occur even when available power exceeds total load.
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Question 1: Are probabilistic models appropriate to evaluate cyber security?

The literature recommends knowing the degree to which a system is secure, as opposed to merely
knowing that it has certain features. Several papers suggest a probabilistic approach to enable such
a measure, which feature-based security assessments do not and cannot provide. The earlier work
cited below poses several questions; the later work cited attempts to answer those questions. The
need to answer these questions is not disputed by any of the cited sources.

Excerpts in this section are from analysts independently attempting to quantify the large-scale
infrastructure impact of cyber attack and defense. Our intent in exhibiting these excerpts is to show
that researchers attempting to measure cyber security advocate a probabilistic approach. Despite
included comments concerning the benefits of this approach, our aim here is not to discuss why
they have made this decision; we intend only to show that we are not alone in using a probability
model to measure cyber security.

From Littlewood et al. [7]:

Users are likely to be more interested in knowing the reliability of their system, ex-
pressed for example as a rate of occurrence of failures (ROCOF), than in knowing that
it possesses certain structural properties or measures, or that it was developed under a
particular regime. . . . We hope the preceding discussion has made clear the desirability
of a probability-based framework for operational security measurement.

From Soo Hoo [8]:

An estimate of safeguard efficacy is essential to any cost-benefit calculation. Uncer-
tainties severely complicate efforts to develop reliable measures of safeguard efficacy.
Accepting the uncertainties and capturing them with probability distributions is one
way to bound the problem of efficacy and prevent it from derailing the entire risk-
management process.

From Madan et al. [9]:

So far [prior to 2002], security attributes have been mostly assessed from the qual-
itative point of view. Qualitative evaluation of security attributes may no longer be
acceptable. Instead, we need to quantify security. We propose a model for quantita-
tive assessment of security attributes for intrusion tolerant systems based on stochastic
models.

From Taylor et al. [10]:

probability risk assessment (PRA) . . . seeks to define and quantify the probability that
an adverse event will occur. The benefits from performing a PRA for . . . cyber attacks
include numeric estimates for the allocation of security resources and an enhanced
understanding of the security vulnerabilities and threats. Yet, despite the potential
benefits, risk analysis for computer security has more detractors than supporters and is
typically not done.
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From Singh et al. [11]:

In this paper, we present a probabilistic validation of an intrusion-tolerant replication
system. The results are significant for the following reasons. First, they demonstrate
the utility of probabilistic modeling for validating complex intrusion-tolerant architec-
tures, and show that stochastic activity networks are an appropriate model representa-
tion for this purpose.

Question 2: Given that a probabilistic model is appropriate, what is the appropriate modeling
framework to accommodate adversaries?

Many researchers, as discussed in this section, consider the ability to quantify system availability
crucial to determining what kind of cyber hardening is needed to protect critical infrastructures.
These researchers have examined reliability analysis as an approach to security analysis because it
does exactly that: the prominent reliability measures are essentially system availability and outage
characterization. The literature on this subject provides examples ([6], [12]) that specifically apply
MC analysis to information security issues in a manner very similar to the current RICA approach.
However, the analogy between reliability and security is not entirely apt, as is pointed out in some
of the excerpts that follow. Note, on the other hand, the repeated statement that the probabilistic
framework of reliability analysis is particularly suited for critical infrastructure cyber security.

From Littlewood et al. [7]:

We discuss similarities between reliability and security with the intention of working
towards measures of operational security similar to those that we have for reliability
of systems. Very informally, these measures could involve expressions such as the rate
of occurrence of security breaches (cf. rate of occurrence of failures in reliability), or
the probability that a specified mission can be accomplished without a security breach
(cf. reliability function).

From Jonsson and Olovsson [13]:

Statistical tests on the data indicate that the times between consecutive breaches during
the standard attack phase are exponentially distributed. This means that traditional
methods for reliability modeling, e.g., Markov models, could be used.

From Taylor et al. [10]:

Problems with cyber security assessment of risk include difficulty analyzing the risks
and mitigation strategies for large complex networks and inaccuracies associated with
the expected loss from security events. [Note this is precisely what our impact work is
addressing] . . . Our technique is currently being developed for power industry cyber
security assessment and hardening [and] features self-assessment, risk estimates based
on actual data, and quantifiable inputs for decision analysis. This assessment method
is particularly well suited to hardening critical infrastructure systems against cyber
attack and terrorism.
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From Singh et al. [11]:

Probabilistic validation through stochastic modeling is an attractive mechanism for
evaluating intrusion tolerance.

From McDermott et al. [14]:

There are at least three ways to shift toward the new paradigm: 1) from fault-tolerance
approaches toward designed faults, 2) from trusted-component approaches toward
stochastic faults, and 3) increasing the expressiveness of models such as stochastic
process algebra to encompass practical systems. The first approach should be adopted
when coming from the field of fault tolerance . . . the second approach should be the
first step when coming from the security community.

From Schneidewind [15]:

This paper includes the conditional probability of security failures given the occur-
rence of reliability failures. In our model, we develop what is in effect a probabilistic
specification of the incidence of cyber attacks. A security intrusion and the response
of an intrusion-tolerant system to an attack can be modeled as a random process. This
integrated approach is particularly applicable to control systems that govern the opera-
tion of critical infrastructure systems in chemical, electrical, rail, and aviation systems.

Question 3: Given a modeling framework that accommodates adversaries, how are the at-
tacks modeled?

Modeling security using a modified reliability model is near the current state of the art. How-
ever, this model may not be entirely appropriate for representing the attacker; despite literature
that suggests an exponential attack distribution [which is the distribution used in RICA], other
distributions may be more accurate. The literature also suggests that modeling the attacker with a
stationary distribution may not be appropriate, and some ways of dealing with this are discussed.

As we write this, our attacker model is implicit and represents an adversary who has completed
the learning and experimental phases and can carry out the functional attack at a stationary rate.
This is the most effective adversary from a perspective of overall impact, so our analysis will
produce conservative results. The literature poses some questions about the inclusion of an attacker
in the reliability model. One approach is to use attacker submodels that can be integrated into the
primary model, and several researchers ([9] [11] [13]) suggest that this submodel take the form of a
Markov process. John McDermott of the Naval Research Laboratory has implemented an attacker
submodel using a mechanism that reduces to a Markov process [16]. The RICA approach supports
the integration of subsidiary attacker models, although greater accuracy will cost more and take
longer. We are presently considering extending our attacker models to provide a more accurate
understanding of how cyber security affects overall system performance. Our immediate intent is
to determine whether there is a difference in outcome caused by the shift to an attacker submodel.
One question of interest is how the LOEE will change if individual attacks occur less frequently
but cause greater impact.
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From Madan et al. [9]:

An attacker always tries to eventually send such a system into a security-failed state.
Obviously, this requires the attacker to spend time or effort. In general, this time or
effort is best modeled as a random variable. Depending on the nature of an attack,
this random variable may follow one of several distribution functions. In this paper,
we borrow some of the common distribution functions used in the field of reliabil-
ity theory. Deterministic, exponential, hyper-exponential, hypo-exponential, Weibull,
gamma, and log-logistic are some of the distribution functions that make sense in the
context of security an

From McDermott et al. [14]:

[I]ntrusion-tolerance and security researchers look at faults in terms of statistically
dependent events caused by the hard intruder, [while] the fault tolerance literature
assumes that faults . . . can be described as random variables with probability distribu-
tions. However, when considering the survivability of a system, we cannot assume that
the system is susceptible to only one type of fault or the other . . . we must consider
the failure behaviors of both classes of faults. . . . we need to consider development
of models based on a combination of stochastic behavior and . . . specific detailed sys-
tem behavior. This kind of model can encompass both types of faults and methods of
dealing with them.

From McDermott [16]:

We present a series of models that provide an example of attack-potential-based quan-
titative modeling of survivability for high-consequence systems. Our examples also
demonstrate the significance of getting the intruder model right. Quantitative model-
ing of survivability for validation or measurement of high-consequence systems should
be based on detailed intruder models. Detailed aspects of the intruder’s attack potential
can have significant impact on the expected survivability of an approach.

2.4 Additional Discussion on the Analysis Approach

Five other issues relating to the approach itself remain to be addressed: our non-standard use of the
term reliability; the ostensible negation of cyber impact in real life by operating in N–1 mode; lack
of data characterizing the cyber attacker; the greater operational applicability of scenario analysis
results vs. the hard-to-apply RICA results; and, finally, the accuracy of the attacker models. The
first four caused considerable discussion among the reviewers, while the fifth represents what we
think is a key discussion point for the entire reliability impacts analysis effort. Each is addressed
in this section.

Several reviewers noted that our use of the term reliability to refer to the RICA metrics does
not strictly coincide with North American Electric Reliability Corporation (NERC) usage. Our use
of reliability, while linguistically appropriate, does differ from NERC usage. We use the term to
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refer specifically to the adequacy of the electric power grid to deliver energy under steady-state
conditions. NERC usage encompasses not only this meaning but also some sense of resiliency,
relating to the stability and dynamic performance of the power grid, which we do not consider
here.

Reviewers also correctly pointed out that, since the grid is engineered and operated in an N–1
condition, loss of load due to a single cyber failure is, at worst, rather rare7. The essence of our
response is: we agree insofar as the phrase “a single cyber failure” refers to the failure of a single
grid element due to cyber attack.

The term single cyber failure is not well defined. Concerns over the N–1 criterion imply that it
is being interpreted to mean “the failure of a single grid element due to cyber attack”. The authors
agree that in this sense, a single cyber failure is unlikely to be of particular interest. However,
other interpretations of single cyber failure may be more relevant. A cyber vulnerability found at
one control system site is in general likely to be found at multiple sites; i.e., all those sites that
utilize the vulnerability-containing program or device. The extreme ease and speed with which
malware can be distributed [17] suggests that a more realistic approach would consider a “single
cyber failure” as affecting a percentage of elements (not just a single element) at sites operating the
vulnerable mechanism. A greater or lesser percentage of sites would be affected based on site se-
curity practices and on the probability that the site is running the vulnerability-containing program
or device version; exact values could be discovered for real-world vulnerabilities by examining the
operational infrastructure. A national map could illustrate the installation footprints of operating
system patch levels, commercial control system software, processor/firmware/software-containing
hardware, and common ancillary software. This map would provide significant insight into the
actual meaning of single cyber failure and enable more-accurate RICA results. If the information
were adequately detailed and up to date, the exploitable target population could be found quickly
for new vulnerabilities, thus enabling very specific risk assessment.

Furthermore, RICA does not enforce N–1, which logically entails RICA results that are con-
servative compared to what they would be if RICA did enforce N–1. In RICA, load is not shed
unless supply is insufficient, whereas in the real world there are conditions (which RICA currently
ignores) in which load must be shed preemptively in order to maintain N–1. For example, if total
supply were equal to total load and no additional supply is available, a single generation outage
would require that load be shed, simply because in that case there would not be enough power to
satisfy all loads. By definition, N–1 is not met in this situation; to achieve N–1 when load becomes
equal to supply, load must be purposely shed at that moment to prevent its being unexpectedly
shed when an outage occurs. If N–1 were enforced during RICA simulation, therefore, load would
occasionally be shed in cases where all load is satisfied; since outages happen randomly, this would
sometimes happen in cases where there is no subsequent outage. Thus, RICA metric values are
conservative with respect to N–1: load that would be curtailed under N–1 enforcement is not cur-
tailed in RICA, so results from RICA slightly underestimate impacts, at least with respect to N–1.
RICA could be modified to enforce the N–1 criterion. We welcome additional discussion on this
topic.

7 The N–1 condition, often referred to as simply “N–1”, means that the grid is in a state such that the failure of any
single element will not by itself cause load shedding or further failure.
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The third issue has to do with the lack of relevant data needed to characterize the cyber attacker.
The research team is painfully aware of the hypothetical nature of the values we have been using
for mean time to attack (MTTA) and MTTR (and, for that matter, for the scenarios themselves—
the hypothetical protection and SCADA attacks are also open to scrutiny). In the case of MTTR
after cyber attack, it is our position that a utility employing this analysis process should be able to
populate these numbers effectively based on their own cyber processes and procedures. As for the
MTTA, representing the interval between successful attacks requires either an appropriate data set
(of which only weakly relevant examples appear to be forthcoming) or consensus among a group
of experts. The latter option, while not preferred, at least represents the process by which decisions
on cyber security impacts are made now. The RICA approach accommodates this, requiring only
that these experts reach consensus on a set of stimuli parameters, after which the determination of
impacts is quantitative.

The fourth and final issue from the reviewers concerns the usefulness of the RICA approach
as it relates to scenario analysis for cyber security. The position of interest is apparently that
scenario analysis is more relevant to control systems security analysis than a RICA-style approach;
specifically, “nothing actionable or . . . insightful”8 was to be found in the latter, presumably in
contrast to the former. We think there’s a balance to be struck, although there is considerable room
to argue about what the complement to scenario analysis should be. Given the content of our RICA
work and published statements by several other researchers quoted herein, we think probabilistic
analysis is part of that complement. The article by Soo Hoo [8] discusses reliance on scenario
analysis; we have included an extended quote on the subject because it encapsulates our thoughts
on the subject perfectly:

Scenario-analysis approaches are probably more common than any others, especially
in small-to-medium sized enterprises. As its name implies, scenario analysis involves
the construction of different scenarios by which computer security is compromised.
Scenario analysis is often employed to dramatically illustrate how vulnerable an or-
ganization is to information attacks. For example, some consultants will, with their
client’s permission, hack into the client’s information systems, obtain sensitive data,
and provide the client with a report detailing the data stolen, how quickly it was ob-
tained, and other particulars of the exploit. This ‘red-teaming’ exercise helps motivate
the client to pursue better security and to provide further work for security consultants.

Scenario-analysis techniques are also used to encourage broader brainstorming about
computer-related risks. Some companies have small information technology risk man-
agement teams whose experts fan out to company divisions, provide facilitation ser-
vices and technical expertise, and help the divisions understand their risk exposure. In
this setting, scenarios are used to demonstrate the variety and severity of risks faced.
The scenarios deemed most likely and of greatest severity are then used as the basis
for developing a risk-mitigation strategy.

The primary drawback of an exclusively scenario-analysis approach is its limited
scope. Looking back at the event tree example from the common framework in Fig-
ure 2, scenarios essentially represent different paths through the tree. The danger of
assessing only a few scenarios is the possibility that important paths may be missed,

8remark made by a reviewer during the 2008 NSTB Peer Review.
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leaving serious risks unaddressed. By narrowing the focus in this way, the analysis is
made tractable, but incomplete. In addition, this approach also does nothing to encour-
age a better, more comprehensive data collection activity. Like the valuation-driven
approaches, scenario analysis simplifies the assessment process, but in doing so runs
the risk of fostering complacency as organizations, satisfied that they have addressed
the specified scenario risks, are led into a potentially false sense of security.

It should be pointed out that Soo Hoo’s analysis holds even when the scenarios are derived
from knowledge of genuine adversaries and address serious, specific problems; in the above quote,
his point is that the scenario approach can address real problems but, in the end, it can’t be shown
to have provided a secure system.

We think the key issue associated with analyzing impacts from cyber attack using the RICA
approach is that the current RICA attack model (i.e., component cyber-outage duration simulated
by random samples from exponential distributions based on MTTA and MTTR) assumes certain
characteristics about the adversary that may not adequately characterize the entire attacker spec-
trum. RICA analysis uses exponentially distributed random variables in a memoryless stochastic
process to depict the adversary as a group that can carry out repeated, successful attacks at will but
is not sufficiently organized to develop high-impact scenarios. Based on continuous popular-press
reports about attackers of this sort, we conclude the future control system cyber environment will
almost certainly include such attackers. This implies the RICA approach is relevant as it currently
stands, although we agree the attacker model would be improved if it were extended with relevant
attacker types not currently modeled.

We continue to investigate modeling the so-called hard attacker discussed in references [14]
and [16], with the intent of extending the RICA analysis to include this sort of attacker. From
[14]: “We consider two kinds of intruders . . . represent[ing] extremes that make our point [that
a better approach to security modeling is needed] clear. One kind, hard intruders, have relatively
high-value objectives, low risk aversion, high skills, and high resource levels. The other has no
objective at all, low skills, low risk aversion, and the capability to attack any component at any
point in its life cycle.”

As this is being written, the RICA algorithm captures the second type of intruder but not the
first. We agree with McDermott that, in general, the higher the consequence of failure, the more
one should worry about hard intruders (the first type) as opposed to unfocused, random ones (the
second type). McDermott addresses the hard intruder in terms of the intruder’s attack potential:
“Intruder work factor (e.g. mean time to accomplish an attack) is part of a good metric for sur-
vivability or security. However, intruder work factor is determined by the attack potential of an
intruder. A work factor metric should be coupled with a description of intruder attack potential
that determines it. Intruders are best characterized by directly defining their attack potential. Work
factor or mean time to breach (MTTB)9 can then be determined by modeling or experiment against
the system of interest.”

But (again from [16]) “MTTB quantification does not tell us if our system is safe from denial
of service, information leaks, or something else, because it doesn’t relate the survival statistic to

9McDermott’s mean time to breach is similar to our mean time to (successful) attack.
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the security architecture and protocols under attack and gives no indication of what security policy
or claim is being violated by an intrusion.” This is unfortunate, since MTTB is straightforward,
and already accommodated by the current RICA paradigm, but does clearly imply the need for an
improved attacker model.

Fortunately, the literature supplies direction for this. We find in [11], as cited by McDermott in
[16], that “probabilistic models for intrusion-tolerant systems should, either explicitly or logically,
include sub-models of the attacker, the intrusion-tolerance mechanism being used, the application,
and the resource/privilege state of the system.” This is the direction McDermott takes in [16].

Section 4 of [16] is Modeling Survivability Using Different Intruders. This is conceptual ter-
ritory that the RICA work should occupy. In this paradigm, survivability is approximated by
“availability in the presence of sponsored faults.” The RICA work measures availability at high
resolution in terms of lost load and is, therefore, consistent with this approach. [16] also recom-
mends, regardless of attacker model, that the survivability calculation support both stochastic and
sponsored faults—i.e., purposeful attack—which RICA permits.

In [16], survivability is computed for several attack/security combinations using performance
evaluation process algebra (PEPA). Every PEPA model, including any we might specify to support
our work, has a corresponding Markov process that can be solved to obtain the steady-state distri-
bution of the Markov model states. The parameter values of this distribution would allow RICA to
produce the metrics described above for attack/security combinations of interest.

The analysis in [16] leads to the conclusion that the hard intruder is the one that matters for
high-consequence systems, and furthermore supplies a representational framework that includes
the hard intruder. As this is being written, we are determining the effort required to extend the
current RICA framework to include hard attackers.

2.5 Algorithm Improvement

We leave the discussion about the usefulness of the RICA approach to focus on the actual re-
search. Last year, our results were based on cyber attack leading to generator unavailability. As
stipulated, this year’s work is intended to demonstrate a second-generation version of the RICA
algorithm that generated last year’s results. To that end, we successfully simulated the impacts
to grid reliability from attacks against wind protection and system supervisory control and data
acquisition (SCADA).

2.5.1 Attacks Against Protection

To study protection attacks, we focus on attacks against two common types of protective relaying:

• Generator protection
• Line protection
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Although generation protection attacks are generally unlikely10, they are included as an example
since loss of generation is frequently modeled in reliability studies (although not, at least in the
prior literature, from cyber attack). Based on a certain linked set of parameters from the cyber-to-
physical (C2P) bridge, a successful attack will be modeled as causing the generator to go offline
as its breakers trip. The interval between successful attacks is modeled using an exponentially-
distributed random variable and some selected MTTA. The MTTR for the generator depends on
the time required for cyber forensics and control system restoration, and the restart time for the
generator, which depends on its classification (hydro, coal, nuclear, etc.).

Line protection attacks assume advanced relays that allow cyber control of the protective break-
ers at both ends of a transmission line. A successful cyber attack opens the breakers and removes
the line from service. The line is successfully attacked at random intervals denoted by an MTTA
and is out of service for an MTTR, as above. This is again similar to the process for natural outages,
but with the recovery interval dependent on cyber remediation and line restoration.

2.5.2 Attacks Against SCADA

We also modeled an adversary’s successful penetration and use of a grid’s SCADA system to
send trip signals to system breakers. Opening breakers can isolate generators, open lines, and
disconnect shunts and loads. The interval between successful attacks is determined by sampling
from an exponentially-distributed random variable scaled by a specified MTTA, in a manner similar
that used in the protection modeling. The downtime (in this case, forced-breaker-open duration)
or MTTR is the cyber forensics interval in addition to the component restoration time. Another
parameter for analysis is the average percentage of tripped breakers (APTB) stemming from a
successful attack, which is modeled using a Bernoulli random variable for each breaker with a
selected mean value pSCADA. The APTB parameter enables quantification of the concept that not
all breakers will be sent a trip signal by the attack, not all breakers sent a trip signal will receive it,
and not all breakers receiving a trip signal will trip.

2.5.3 Overall Component Models Including Cyber

The overall diagram for constituent grid components is shown in Figure 2.1. A generator, line,
shunt, or load always starts in service, and eventually returns to service. In the meantime, random
failures not caused by attack may cause it to transition to the repair state and back (This is the
conventional behavior for reliability studies; note no de-rated states are currently used in RICA). A
successful cyber attack against a component’s protection scheme causes it to become unavailable,
and an interval of protection forensics begins. This presumably results in the protection scheme be-
ing restored or a workaround developed, after which the grid element is restarted and reconnected
to the grid (which may involve an additional delay, such as for a warm restart of a generator). If
a SCADA attack causes de-energization of the component, then it enters the SCADA forensics
interval before being reconnected.

10Most generators reside in generating stations, where protection significantly limits the possible attack paths.
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Figure 2.1: Possible states for grid elements using the RICA approach.

2.6 RICA Simulations and Results

The test system used for the initial RICA investigation into reliability impacts is the Roy Billinton
test system (RBTS) [18]. This reference provides parameters for the lines, generators, and loads,
including their normal failure and repair rates. The test system was modified by removing the
radial line connecting bus 5 and bus 6 and adding the bus-6 load to the bus-5 load. This prevents
the effects of losing this single line from dominating the simulation results [19]. This reduces the
six-bus, nine-line RBTS to five buses and eight lines, although it retains the eleven generators and
four loads of the original. Total system generation is 240MW and peak load is 185MW. A time-
varying load model was included in the analysis, as opposed to assuming unrealistically constant
peak load demand. Additional parameters for cyber forensics and recovery times are listed in
Tables 2.1 through 2.3.

2.6.1 Device Restoration Delays from Cyber

For this analysis, the forensics and restart/reconnection delays were fixed (i.e., not randomly dis-
tributed) to model the likely procedural rigidity associated with control system forensics and gener-
ator restoration. Assuming the only effect of a cyber attack is equipment deactivation, the duration
of restoration after a cyber attack will be less variable than after an arbitrary failure that may or
may not require physical repair. The fixed forensics intervals we used are arbitrary, as there are
very few data about these procedures (we found no non-anecdotal information). These values ap-
proximate delays intended to be representative of a well-established procedure, implying that an ad
hoc or unpracticed response may cause reliability effects greater than this paper’s results indicate.
The generator restart times are intended to be representative of hot restart times, given the expected
forensic downtime. Lines, shunts, and loads are expected to be reconnected immediately follow-
ing the cyber forensics interval, although these values may be adjusted based on new information.
Future research should investigate the parametric sensitivity of the RICA results to the restoration
model and its parameters.
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Table 2.1: Device forensics intervals for cyber attack.

Attack Vector Interval
Generation protection 8 hours

Transmission protection 4 hours
SCADA 4 hours

Table 2.2: Restart delays for RBTS generators after cyber attack.

Unit Type Size Delay
Hydro Any +0 hours to restart

Thermal Any +2 hours to restart

Table 2.3: Restoration delays for grid elements after cyber attack.

Component Delay
Lines +0 hours to reconnect

Shunts +0 hours to reconnect
Loads +0 hours to reconnect
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2.6.2 Test Results

The MC simulation was first used to calculate the base case measures of reliability for FOI, LOLE,
and LOEE; subsequently, values for the remaining reliability indices were derived. In this for-
mulation, the simulation uses a DC load flow approximation. Load curtailments may result from
insufficient generation or transmission congestion, although they are minimized using an optimal
power flow (OPF) routine to simulate remedial dispatch by system operators.

The results of RICA analysis with varying cyber scenarios are tabulated in Table 2.4. Here,
λGEN is the frequency of successful attack against cyber generator protection (in occurrences per
year), λLINE is that of cyber line protection, and λSCADA is for SCADA attack, while pSCADA is the
APTB for successful SCADA penetration.

Cyber attack against protection and SCADA (with the parameters previous mentioned) caused
significantly degraded reliability for this system. In this case, the test system often incurred a
higher incidence of outages. In Sim 1, the FOI indicates that interruptions are occurring more
than twice as often. Given the increased likelihood of interruption, the LOLE and LOEE naturally
climb. However, the drop in DOI and ENSI for Sim 1 also indicate that the additional outages
caused by the protection cyber attacks are shorter than base case outages. This may be an effect
particular to very reliable systems: in a less reliable grid, normal outages would occur more often,
so cyber attacks and normal outages would be more likely to overlap. This could significantly
increase the amount of curtailed load, not just how often load is curtailed. This may be explored in
future research in this area.

Decreasing the MTTA for protection attacks (Sims 2 and 3) shows a trend of more frequent
but slightly less severe interruptions. The results indicate that reliability is more sensitive to line
protection MTTA than to generator protection MTTA. Given the large generation capacity margin
of the RBTS test system, this is not surprising; we would expect a system with a less excess gen-
eration capacity to be more sensitive to generator interruptions. Overall, Sim 1, 2, and 3 indicate
the degree to which attacks against generators and lines can affect grid reliability indices.

Sim 4 shows that even well-contained SCADA attacks (i.e., attacks that affect only 20% of
the breakers, represented in the model as APTB) can significantly affect reliability indices. Even
though SCADA attack frequency was lower, all the reliability indices worsened. Interruptions
occurred four times as often, and expected load loss was fourteen times greater. These results are
alarming in light of the fact that only one in five breakers were tripped in the successful attacks. A
significant SCADA penetration could affect more than 20% of breakers, which makes the current
results alarming. In Sim 5, with SCADA attacks occurring more frequently, a trend toward more
severe interruption is evident, with the doubling in LOEE of particular note. Finally, combining
protection and SCADA attacks causes additional reduction in reliability, as shown in Sim 6. The
effect is dominated by the SCADA attack. However, the overall conclusion is that even small
reliability reductions on grid components, such as those we modeled as having been caused by
cyber attack, can significantly increase expected load curtailments, even in a highly reliable system.
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Figure 2.2: Comparing LLD (hours/year), with the base case and protection/SCADA attack.

In another interesting data comparison, the histogram for load loss duration (LLD)—the total
length in hours of outages in a particular year—with cyber attack against protection (Sim 1) and
SCADA (Sim 4) is compared with the results from the base case simulation in Figure 2.2. It
is evident that cyber attacks as modeled cause load curtailment much more often, as the relative
occurrences of years with zero hours of load lost has dropped precipitously while the rest have
increased. This indicates that both the frequency and total hours of unserved load have gone up
significantly when cyber attack is modeled.

2.7 Section Conclusions

Modeling the reduction in reliability that results from cyber attack allows quantitative analysis for
risk reduction. Using this approach, for example, amelioration of a set of vulnerabilities could be
prioritized based on the LOEE they induce. Used another way, a model of the power grid that
included the cyber component could be analyzed for sensitivity to particular attack approaches,
so that complementary threat analyses could be seeded with scenarios of interest. Finally, if risk
reduction efforts can be represented in terms of corresponding MTTA or MTTR reduction, com-
parative RICA analysis can quantitatively indicate the value of the proposed mitigations. We are
considering the relevance of advanced attacker models in providing informative analysis results.
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Chapter 3

Grid Dynamic Impacts from Cyber Attack

This chapter details the progress made in FY08 on the finite state abstraction (FSA) modeling
effort. The goal of this work is to develop a model of the power grid and its associated control
systems that lends itself to analysis of cyber security attack. In particular, we are looking for
opportunities for large-scale power-grid impacts that are manifest through adversarial tampering
with control systems.

Last year’s work (detailed in reference [1]) focused on the development of the model and its
expression in a form suitable for the application of the FSA process. This year, we have success-
fully analyzed a two-bus model and converted its continuous-time-domain representation into a
finite state system. In FY09, we will further analyze the resulting FSA of the two-bus model for
cyber security vulnerabilities.

3.1 Review of the Two-Bus Test System

The model is shown in Figure 3.1.
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Figure 3.1: Two-bus test system.

This small-scale model encompasses many dynamic power system characteristics, including

• Generator rotor dynamics
• Machine governor control
• Voltage-based load variation
• Dynamic load recovery
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Overall, the system variables include

x =


δ

∆ω

PM
E ′q
PL
QL

 , z =


V1
V2
θ1
θ2

 , u =
[

E f
]
, ud =

[
P0 (t)
Q0 (t)

]
, and q =

 qLS
qLT 1
qLT 2

 .

In this system, ud are disturbance functions representing the nominal active and reactive power
demands for the load. Other variable definitions are contained in Appendix B, Table B.2. These
variables fit the conventional system of dynamic equations:

ẋ = f (x,z,u,ud,q) ,
0 = g(x,q,z) , and (3.1)
y = C x .

Overall, the equations for the system dynamics are

ẋ =



2π60∆ω

1
2H {PM−PG−D∆ω}

−G∆ω

1
T ′d0X ′d

{
−XdE ′q +X ′dE f +

(
Xd−X ′d

)
V1 cos(δ −θ1)

}
1
TL

{
−PL +(1−KLS qLS)P0 (t)

(
V2

Vre f

)α}
1
TL

{
−QL +(1−KLS qLS)Q0 (t)

(
V2

Vre f

)β
}


. (3.2)

Inspection of Equation 3.2 suggests a possible difficulty during analysis given the linear rela-
tionship between the equations for δ and PM. This difficulty arises from inclusion of an isochronous
governor in this relatively simple two-bus network. The difficulty is obviated by setting PM =
(−G/2π60)δ , which has the effect of removing the equation for PM. This results in the following
revised equation for the state variables:

ẋ =



2π60∆ω

1
2H

{
− G

2π60δ −PG−D∆ω
}

1
T ′d0X ′d

{
−XdE ′q +X ′dE f +

(
Xd−X ′d

)
V1 cos(δ −θ1)

}
1
TL

{
−PL +(1−KLS qLS)P0 (t)

(
V2

Vre f

)α}
1
TL

{
−QL +(1−KLS qLS)Q0 (t)

(
V2

Vre f

)β
}


, (3.3)
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where ẋ is now reduced by one variable:

ẋ =


δ̇

˙∆ω

Ė ′q
ṖL
Q̇L

 . (3.4)

The constraint equations are

0 =


G12V 2

1 −V1V2 (G12 cosθ12 +B12 sinθ12)−PG

−B12V 2
1 −V1V2 (G12 sinθ12−B12 cosθ12)−QG

−G12V 2
2 +V1V2 (G12 cosθ21 +B12 sinθ21)−PL

B12V 2
2 +V1V2 (G12 sinθ21−B12 cosθ21)−QL

 . (3.5)

As before,

PG =
E ′qV1

X ′d
sin(δ −θ1)+

V 2
1
2

(
1

Xq
− 1

X ′d

)
sin(2δ −2θ1) , and

QG =
E ′qV1

X ′d
cos(δ −θ1)−V 2

1

(
sin2 (δ −θ1)

Xq
+

cos2 (δ −θ1)
X ′d

)
.

We have written for convenience

θ12 = θ1−θ2 ,

θ21 = θ2−θ1 ,

G12 = qLT 1G1 +qLT 2G2 , and
B12 = qLT 1B1 +qLT 2B2 .

The system outputs are

y =


0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1




δ

∆ω

E ′q
PL
QL

 . (3.6)

The simulation parameters used are as follows (in per-unit unless specified). The generator
electrical parameters are

Xd = 0.9 , Xq = 0.8 , X ′d = 0.3 , T ′d0 = 7 s , Emin
f = 0 , and Emax

f = 5 .
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The generator mechanical parameters are

ωS = 2π60 rad/s , H = 3 s , D = 0.3 , and G = 1 .

The line parameters are

R1 = 0.1 , X1 = 0.2 , R2 = 0.05 , and X2 = 0.1 .

The load parameters are

Vre f = 1 , TL = 60 s , α = 1.5 , β = 2.5 , and KLS = 0.05 .

E f for the generator is set to 1.01. Using these values, the initial conditions and values for the
system variables at the stable equilibrium point used in the analysis are

x =


−70.3477

0
0.9685
0.1853
0.0352

 , z =


0.9594
0.9503
−70.5034
−70.5157

 , u =
[

1.01
]
, ud =

[
0.2

0.04

]
, and q =

 0
1
1

 .

The simplification for PM (here, equal to 0.1866) means that δ lies well outside the normal
range of 0 to 2π . Of course, the critical aspect of the angles are their differences, which remain
reasonable.

3.2 Test System Analysis

The system has been constructed such that it has acceptable operation given the stated low de-
mand conditions only when both lines are in service. If the acceptable region for the variables is
represented as

V1,V2 ≥ 0.94pu, (3.7)

then the analysis question becomes: for what ud or q are grid conditions acceptable (excepting that
qLS is held at zero)? In terms of cyber security, we ask: can a cyber attacker cause an undesirable
impact by successfully tripping either transmission line? The first step of this analysis is construc-
tion of the FSA model for the two-bus system, which is the work accomplished during the FY08
period.

Here we exploit recent developments in control systems theory [20] that permit construction
of the FSA (a kind of discrete-state machine) that contains the transitions between the discretized
states of the dynamical system. The construction guarantees that if the dynamical system takes a
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neighborhood of one state into the neighborhood of another, the FSA does the same thing, and vice
versa. The discretization employed here is a simple hypercube in the space of dynamical variables.
For linear systems a fast code has been developed (Algorithm 3.2 in [20]) that produces an FSA
that contains the transitions between the states.

The analysis requires that we translate the differential-algebraic equations (i.e., constrained
dynamics) into an unconstrained ordinary differential equation. We employ singular perturbation
theory [21] to formally relax the constraints, i.e., we introduce pseudo-velocities for the former
constraint variables and take the limit as they go to zero, as follows:

M



δ̇

∆ω̇

Ė ′q
ṖL
Q̇L
V̇1
V̇2
θ̇1
θ̇2


=



2π60∆ω

1
6

{
δ

2π60 −PG−0.3∆ω

}
1

2.1

{
−0.9E ′q +0.303+0.6V1 cos(δ −θ1)

}
1

60

{
−PL +P0 (t)V 1.5

2
}

1
60

{
−QL +Q0 (t)V 2.5

2
}

G12V 2
1 −V1V2 (G12 cosθ12 +B12 sinθ12)−PG

−B12V 2
1 −V1V2 (G12 sinθ12−B12 cosθ12)−QG

−G12V 2
2 +V1V2 (G12 cosθ21 +B12 sinθ21)−PL

B12V 2
2 +V1V2 (G12 sinθ21−B12 cosθ21)−QL



(3.8)

where

M =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 ε1 0
0 0 0 0 0 ε2 0 0 0
0 0 0 0 0 0 0 0 ε3
0 0 0 0 0 0 ε4 0 0


(3.9)

and |ε j| → 0. The assignment of both the signs of the ε j and the new state variables to the extended
vector field is important; we rely on inspection for the former1 and the discussion in [22] and [23]
for the latter. In the new formulation,

X =
[

x
z

]
and U = ud .

1We chose ε1,ε3 < 0 and ε2,ε4 > 0 to guarantee a stable system at equilibrium.
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Note that u = E f = 1.01 has been fixed, and the states for q are addressed by enumerating differ-
ent dynamical systems for Equation 3.8. To implement the deterministic finite automaton (DFA)
analysis, we linearized Equation 3.8 around the equilibrium as follows:

Ẋ(t) = A∆X +B∆U (3.10)

where

∆X = X(t)−Xequilibrium,

∆U = U(t)−Uequilibrium,

A is the Jacobian of the right-hand-side of Equation 3.8 with respect to X evaluated at Xequilibrium,
and B is the Jacobian with respect to U evaluated at Uequilibrium. Such linearization is routine for
stability analysis and is not expected to affect our conclusions about the vulnerability of the system.
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Figure 3.2: Bisimulation transitions for V1 (Axis 6) and V2 (Axis 7).

Vulnerability analysis proceeds from the FSA as follows. If one can identify a set of nominal
states and a set of failure states (the key difference being the criterion in Equation 3.7), one can
ask if there exists a directed path in the FSA that connects the set of nominal states with the set
of failed states. If no such path exists, there are no inputs that will lead to failure from nominal
conditions. On the other hand, the existence of the path means that there exist some inputs that
will take a nominal state to failure (under varying conditions for q); for this model failure consists
of the plane defined by V1 ≤ 0.94 and V2 ≤ 0.94. In this model such paths exist (as expected) when
one or the other line is tripped; but we also found that even with no lines tripped there exist some
inputs that take an element of the set of nominal states somewhere into the set of failed states. The
situation is depicted in Figure 3.2, where qLT 1 = qLT 2 = 1 (i.e., both lines are in service), Axis 6
corresponds to V1, Axis 7 corresponds to V2, and the equilibrium state is at the origin. The figure
represents a subsection of the nine-dimensional hypercube formed by the FSA analysis performed
on Equation 3.8.
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Figure 3.3: Bisimulation transitions for θ1 (Axis 8) and θ2 (Axis 9).

Our analysis for this phenomenon (reachability of the unacceptable region with both lines in
service) is that the current analysis capability for the FSA algorithm allows bounding on the input
variables (here, ud only, as we fixed u = E f = 1.01 to eliminate it from consideration). Given
this stipulation, it is obvious that an unbounded ud makes most voltage states reachable, and all of
them in fact over the extent of Figure 3.2. Part of the planned work for FY09 includes applying
a bound for ud , so that its range is no longer arbitrary, and reachability may be calculated under
more reasonable conditions.

For reference we also show a non-trivial transition matrix for the θ1 and θ2 plane (Figure
3.3). Although in this plane there are no states corresponding to failure, the bisimulation correctly
displays the tendency of the dynamics to drive the angles toward equality (in this system, the
relatively low impedance of the two lines between buses one and two results in roughly equal
phase angles for their voltages).
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3.3 Section Conclusions

Finite state abstraction (FSA) of the continuous dynamics of a power model offers a rigorous
assessment of the vulnerability of the modeled system while at the same time remaining computa-
tionally tractable. Two items remain for future work, aspects of which are discussed in the review
by Colbaugh et al. [20]:

• The results obtained so far assess the vulnerability for any and all possible inputs. The utility
of such results could be increased by restricting the range of possible inputs. This would in
turn require a reformulation of the FSA. Such a reformulation seems achievable to us but
would require that we compute a simulation rather than a bisimulation, the difference being
that failed states reachable in the FSA would not necessarily be reachable in the original
system; any vulnerability identified in the FSA would need to be individually rechecked in
the original system. On the other hand, states unreachable in the FSA would continue to be
unreachable in the original system and would not require rechecking [24].

• So far we need to recalculate and check the FSA for each combination of lines closed and
open. For this model we need to check only three configurations (both open, one open and
two closed, one closed and two open), but the number of configurations to be checked grows
rapidly with the number of lines. Therefore, the algorithm ought to incorporate switching
between configurations into the analysis at the beginning. This also requires a reformulation
of the FSA that we think is feasible.
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Chapter 4

Report Conclusions

The two approaches taken in this research, reliability impacts from cyber attack RICA and finite
state abstraction FSA, provide a foundation for the quantitative evaluation of impacts to the power
grid caused by cyber attacks. The RICA method allows calculation of the degradation in reliability
caused by cyber attacks. The analysis can be understood as a means to calculate averaged measures
for the ongoing value of good cyber security (or alternatively, the cost of deficient security). It
depends on effective and agreed-upon characterization for the adversary and the effects caused
by cyber attacks. This calculation allows utility managers to estimate the cost of unmitigated
vulnerabilities, and to plan budgeting for their remediation.

The FSA research complements the RICA algorithm, as it provides a potential path to solving
the previously intractable problem of determining which cyber attacks can cause significant prob-
lems. The algorithm has been improved to the point where the finite-state model can be calculated
for simple systems, such that simple cyber vulnerability analysis is beginning to become feasible.
Future work will develop organized approached for evaluating vulnerabilities and risks.
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Chapter 5

Recommendations

To improve on the Impacts Analysis work, we recommend the following additional research. These
are categorized pertaining to the research approach.

For Reliability Impacts from Cyber Attack RICA:

1. Expand the testing to include larger power system models.

2. Investigate the parametric sensitivities for the restoration times.

3. Determine methods to improve the estimates for mean time to attack MTTA.

4. Research opportunities to include more advanced (though still probabilistic) attack models.

For Finite State Abstraction FSA:

1. Constrain the inputs to be bounded.

2. Develop a method to integrate the system switching behavior into a single model.

3. Determine an algorithm to extract information for the paths to unacceptable operation from
the FSA.

4. Perform tests on a larger system.
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Appendix B

Acronyms, Symbols, and Abbreviations

Table B.1: Acronyms

Acronym Phrase
APTB average percentage of tripped breakers
C2P cyber-to-physical
DOE Department of Energy
DOI duration of interruption
EIR energy index of reliability

ENSI energy not served per interruption
EPG electric power grid
FOI frequency of interruption
FSA finite state abstraction
FY fiscal year
IA impacts analysis

LCI load curtailed per interruption
LOEE loss of energy expectation
LOLE Loss of Load Expectancy
LLD load loss duration
MC Monte-Carlo

MTTA mean time to attack
MTTB mean time to breach
MTTF mean time to failure
MTTR mean time to recover

NERC North American Electric Reliability Corporation
NSTB National SCADA Test Bed
OPF optimal power flow

PEPA performance evaluation process algebra
PRA probability risk assessment

RBTS Roy Billinton test system
RICA reliability impacts from cyber attack

ROCOF rate of occurrence of failures
SCADA supervisory control and data acquisition
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Table B.2: Symbols

Symbol Units Description
α none load voltage exponential variability for active power
A varies Jacobian of the system with respect to X at equilibrium
β none load voltage exponential variability for reactive power
B varies Jacobian of the system with respect to U at equilibrium

Bi j per-unit susceptance from bus i to bus k
C varies matrix relating state variables to observable outputs
δ radians electrical angle between its voltage and the rotor major axis
D per-unit generator rotor damping constant

∆ω per-unit relative speed of the rotor and stator field
∆X varies difference between state variables and equilibrium values
∆U varies difference between control variables and equilibrium values
E f per-unit generator field circuit voltage

Emax
f per-unit maximum generator field

Emin
f per-unit minimum generator field
ε j none pseudo-velocity constant for relaxed constraints
E ′q per-unit q-axis generator induced voltage
f varies system differential equations
g varies system algebraic equations
G per-unit gain constant of a generator governor

Gi j per-unit conductance from bus i to bus k
H per-unit generator rotor inertia constant

KLS none discrete load shed factor
λGEN occ/yr rate of successful generator protection attack
λLINE occ/yr rate of successful line protection attack

λSCADA occ/yr rate of successful SCADA attack
M none multiplicative matrix for singular perturbation formulation
N none the number of elements in a power grid model
ωR per-unit machine rotor speed
ωS per-unit speed of a machine’s stator field
π none ratio of the circumference to the diameter of a circle

P0 (t) per-unit driving signal for load active power demand
PG per-unit generator active electrical power
PL per-unit load active power
PM per-unit generator mechanical power

pSCADA none percentage of breakers tripped per SCADA attack
q varies vector of discrete control variables

Q0 (t) per-unit driving signal for load reactive power demand
Continued on next page
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Table B.2 – continued from previous page
Symbol Units Description

QG per-unit generator reactive power
QL per-unit load reactive power
qLS none discrete current load shed level variable
qLTi none discrete trip variable for line i
Rk per-unit resistance for grid element k
SG per-unit generator complex power
SL per-unit load complex power
θi radians phasor voltage phase angle of bus i
θi j radians phasor voltage phase angle between buses i and j
T ′D0 seconds open circuit time constant for the generator d-axis
TL seconds load recovery time constant (in per unit)
u varies vector of continuous control variables
U varies vector of control variables after singular perturbation translation
ud varies vector of system disturbance functions

Uequilibrium varies vector of control variables at equilibrium in singular perturbation form
V per-unit phasor voltage magnitude

Vre f per-unit reference voltage for load exponential variability
x varies vector of state variables
ẋ varies first derivative with respect to time of state variable x
X varies vector of state variables after singular perturbation translation
Ẋ varies first derivative with respect to time of state variable X
Xd per-unit d-axis reactance of a generator
X ′d per-unit d-axis transient reactance of a generator

Xequilibrium varies vector of unconstrained state variables at equilibrium
Xk per-unit reactance for grid element k
Xq per-unit q-axis reactance of a generator
y varies vector of system outputs
z varies vector of algebraic variables
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Table B.3: Abbreviations

hr hour(s)
int interruption

MW megawatts
occ occurrences
pu per-unit
rad radians
s seconds
yr year(s)
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Appendix C

Glossary

Table C.1: Definitions

Term Definition
reliability impacts
from cyber
attack (RICA)
algorithm

The RICA approach presented and developed in this report is intended to
extend the conventional study of power grid reliability to include the
impacts of cyber attack against control systems. In particular, given an
agreed-upon set of assumptions regarding the likely rate of successful
control system attacks and their expected recovery periods, the RICA
approach can calculate the expected reduction in system reliability caused
by cyber attack; this can allow a value to be placed on the modeled level of
cyber insecurity.

finite state
abstraction (FSA)
algorithm

The FSA approach represents a possible method to determine the stability
and suitability of operations for an electrical power grid utilizing a fully
descriptive model (including dynamics and control action) under a wide
range of potential cyber attack scenarios. The underlying premise for this
work is the conversion of the hybrid grid/control model dynamics into a
representative FSA, which greatly improves the tractability of the problem.
The new approach is expected to scale to larger systems and modeling
complexity much better than traditional analysis for grid dynamics.
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Appendix D

Contacts

Table D.1: For More Information

Name Organization
Sandia National Laboratories

Jason Stamp P.O. Box 5800
Sandia Project Lead Albuquerque, NM 87185-1108

jestamp@sandia.gov
Sandia National Laboratories

Bob Pollock P.O. Box 5800
Sandia NSTB Lead Albuquerque, NM 87185-0671

rdpollo@sandia.gov
Sandia National Laboratories

Jennifer Depoy P.O. Box 5800
Sandia NSTB Manager Albuquerque, NM 87185-0671

jmdepoy@sandia.gov
U.S. Department of Energy

Hank Kenchington 1000 Independence Avenue, SW
DOE NSTB Manager Washington, DC 20585

henry.kenchington@hq.doe.gov
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Appendix E

Distribution

Table E.1: Distribution

Name Location
Jason Stamp Sandia National Laboratories

Sandia Project Lead MS 1108
Albuquerque, NM 87185-1108

Bob Pollock Sandia National Laboratories
Sandia NSTB Lead MS 0671

Albuquerque, NM 87185-0671
Jennifer Depoy Sandia National Laboratories

Sandia NSTB Manager MS 0671
Albuquerque, NM 87185-0671

Hank Kenchington U.S. Department of Energy
DOE NSTB Manager 1000 Independence Avenue, SW

Washington, DC 20585
Sandia National Laboratories Sandia National Laboratories

Technical Library MS 0899
Albuquerque, NM
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