Final Scientific/Technical Report:
MOLAR: Modular Linux and Adaptive Runtime Support for
High-end Computing Operating and Runtime Systems

DOE award: DE-FG02-05ER25664
reporting period: 02/05-01/09 (Y1—Y4)

PI: Frank Mueller
Department of Computer Science
North Carolina State University



1 Executive Summary

MOLAR is a multi-institution research effort that concextes on adaptive, reliable,and efficient operating
and runtime system solutions for ultra-scale high-endnsifie computing on the next generation of super-
computers. This research addresses the challenges dubynthe FAST-OS - forum to address scalable
technology for runtime and operating systems — and HECRTHgh-bnd computing revitalization task
force — activities by providing a modular Linux and adapéhblintime support for high-end computing
operating and runtime systems.

The MOLAR research has the following goals to address thesees.

e Create a modular and configurable Linux system that allovesoouized changes based on the re-
quirements of the applications, runtime systems, anderlusinagement software.

e Build runtime systems that leverage the OS modularity andigorability to improve efficiency,
reliability, scalability, ease-of-use, and provide supp@legacy and promising programming models.

e Advance computer reliability, availability and servicéiyp (RAS) management systems to work
cooperatively with the OS/R to identify and preemptivelgaiwe system issues.

e Explore the use of advanced monitoring and adaptation toawepapplication performance and pre-
dictability of system interruptions.

The overall goal of the research conducted at NCSU is to dpwaalable algorithms for high-availability
without single points of failure and without single poinfscontrol.

2 Accomplishments

Throughout the project, NCSU has developed a scalable nrshipgorotocol for a group communication
systems without single points of failure and without singlents of control. The membership protocol
combines scalability with low stabilization overheads. eTdlgorithm is the key component of a group
communication framework utilizing a fully decentralizedofocol that maintains group memberships in
presence of faults. The group communication componentregisathe RAS capabilities developed within
the overall project. Our group membership service and rateg with the services for distributed control
and data replication in the mid-tier of the high-availakgiliramework for active/active head node redun-
dancy. Itis also designed to support fault tolerance formae nodes in MPI runtime systems, as detailed
in the following contributions:

1. NCSU developed runtime system mechanisms to supposgtdeajroup communication with fluctu-
ating number of nodes, reuse of network connections, teaaspcoordinated checkpoint scheduling
and a BLCR enhancement for job pause.

2. NCSU further developed a process-level live migratiorcimagism as a proactive FT to complement
reactive one. Through health monitoring, a subset of notlierés can be anticipated when one’s
health deteriorates. A novel process-level live migratieechanism supports continued execution of
applications during much of processes migration. This m&his integrated into an MPI execution
environment to transparently sustain health-inflictedenaglures, which eradicates the need to restart
and requeue MPI jobs.

3. NCSU is further developing an incremental checkpointeahnique for MPI tasks complementary to
full checkpoints to capture only data changed since thectaestkpoint. This significantly reduces the



size of checkpoint files and the overhead of checkpoint dipeiawhile only moderately increasing
restart costs relative to a restore from a single, full cpeak.

The objectives listed in the executive summary have beeramfgtlows:

e Modularity and Configurability: We have devised a set of rodthto provide fault tolerance in HEC
systems that can be deployed individually or combined inmagtementary manner.

e Efficiency: The complementary approach of fault-toleramichranisms results in significantly lower
overhead of the RAS software layer.

e Cooperation: The RAS layer and the OS/runtime layers cadpen providing fault tolerance. Our
contributions range from Linux kernel enhancements (diitysupport at page level within the mem-
ory management layer), Linux kernel module enhancemeotB{fCR to support advanced, lower
overhead checkpointing) and the runtime layer (via LAM/MdAhancements in both the LAM dae-
mon and the MPI runtime layer, which are applicable to oth&l Bystems as well).

e Monitoring and Adaptation: Proactive fault tolerance pded through process-level live migration
provides adaptive capabilities of fault tolerance in thespnce of immanent failures detected by
health monitoring.

Benefits of this project extend particularly to high-end poiting systems, such as Jaguar at ORNL’s Na-
tional Center for Computational Sciences, that increalimgve to counter component failures on a regular
basis. Our techniques provide a low overhead means to shield teetefbf component failures from appli-
cations and users. Activities past the funding period igeltechnology transfer to incorporate our BLCR
enhancements into LBNL's BLCR code base (in cooperatioh WR&NL), transfer of enhancements from
LAM/MPI into OpenMPI and further development of advanced Ri&echniquegall subject to obtaining
sufficient funds beyond the MOLAR project).

The overall aim is to fully integrate our techniques into community open-source codes such that future
software deployment can directly benefit from our results.

3 Research and Educational Activities

Partnership

The project is conducted in conjunction with Oak Ridge NadioLaboratory, the Ohio State University
and Louisiana State University. Frequent meetings enfilreeollaborative efforts of this project and their
overall integrity.

3.1 Research Activities

Activities are reported in several parts:
1. We provide an overview of the general research objectives
2. We briefly summarize results from past reporting periods.

3. We report new results obtained during the final period.



General Research Objectives

In this project, we investigate a scalable approach to fepare the communication infrastructure after
node failures within the runtime system of the communicatayer. Building on the experience of group
communication frameworks, we propose a decentralized-fpegeeer) protocol that maintains group mem-
bership in the presence of faults.

While existing approaches provide either scalability oaBmeconfiguration overhead, our protocol com-
bines these features. Instead of seconds for reconfigayaiior protocol shows overhead in the order of
micro-seconds over TCP on FastEther and over MPI on Myf@idt/Our protocol can be configured to

match the network topology to increase communication thinput.

We utilize radix trees to implicitly encode routing infortiam into node IDs and additionally represent
the tree structure as an array (dynamically resized upoe jmds/failures) to provide access to the data
structure of individual nodes in constant time.

We also verify our experimental results against a perfomaamodel to assess the scalability of the ap-
proach. Experimental results further indicate that coméigan choices of the protocol for asynchronous
communication may depend on parameters, such as latengaand

Our membership service combines the best of both worldssdhability of group membership and the

performance of existing fault-tolerant mechanisms withigh-performance runtime systems. We are cur-
rently assessing the protocol’s suitability for deploymetth the services for distributed control and data
replication in the mid-tier of the high-availability framverk for active/active head node redundancy.

Our approach is also designed to support fault tolerancedimpute nodes in MPI runtime systems in the
future, e.g., within the MPI Component Architecture (MCA)@penMPI, specifically as an add-on to the
Point-to-point Management Layer (PML).

Overall, our approach is general and can be applied for amypgmembership service or in other frame-
works that require scalable group communication, suchfasesit multicast services.

Results from Past Reporting Periods
In year 1, research activities have produced 1 paper. Keinfisdncluded:

1. We have designed and implemented a group communicatatagal that provides the basis for key
services in high-availability of clusters.

2. The approach is fully decentralized to avoid bottlenecks

3. The protocol design embeds aradix tree representat@ptbvides scalability and efficiency. Single-
node information can be accessed in constant time. Thengpintformation is natively encoded into
node IDs of the tree representation. It also provides thensx&aquickly reconfigure routing paths
upon node failures.

4. The protocol can sustain single and multi-node failuliewill rebuild internal communication struc-
tures in an efficient manner.

5. The protocol is configurable to reflect switch topology.
6. The protocol scales for large number of nodes.

7. The stabilization time for reconfiguration has been asgbboth qualitatively and quantitatively.



8. Experiments show that the qualitative model matches tlantifative measurements obtained for
TCP and GM/Myrinet.

9. The overall stabilization time is in the order of microseds. This is considerably lower than an past
work on group communication (generally in the order of seisdn

In Y2, research activities have produced 1 paper submissidril M.S. thesis. The findings include:

1. We have developed a transparent mechanism for job patisi& WAM/MPI+BLCR that allows live
nodes to remain active and roll back to the last checkpoirievidiled nodes are dynamically replaced
by spares before resuming from the last checkpoint.

2. The mechanism complements LAM/MPI with the scalable groommunication framework based
on our work from past reporting periods.

3. We designed a fault detector based on a single timeoutanesth with the group communication
framework.

4. The mechanism supplements LAM/MPI with a novel, decéiméd, scalable scheduler that trans-
parently controls periodic checkpointing and triggerscess migration and job pause upon node
failures.

5. The overhead of the scheduler is only in the order of hudelod microseconds.

6. The mechanism avoids requeuing overhead upon nodegilur

7. BLCR is supplemented with a gause mechanism to reuse the existing process resource, and

LAM/MPI is enhanced to reuse the network connections betwise nodes upon the faults. Both
decrease the overhead of job pause.

8. We provide a special process migration approach, whieblea seamless continuation of execution
across node failures and is suitable for proactive faudireosice with diskless migration, to dynami-
cally replace the failed nodes with spares.

9. Experiments show that the overhead for job pause is cabfgato that of a complete job restart,
albeit at full transparency and automation with the addaldbenefit of reusing existing resources
and continuing to run within the scheduled job.

10. The scheme offers additional potential for savingsiughoincremental checkpointing and proactive
diskless live migration. We are currently working on invgating these topics.

In Y3, research activities have produced 2 papers. The fisdimclude:

1. We have developed a process level live migration mechatiscomplement reactive with proactive
FT. The mechanism allows continued execution of an apicaturing much of processes migration.

2. This scheme is integrated into an MPI execution environtmeAM/MPI + BLCR, to transparently
sustain health-inflicted node failures, which also eradig#he need to restart and requeue MPI jobs.

3. By exploiting health monitoring capabilities, a subgeta@de failures can be anticipated due to dete-
riorating health of a node.



4. The mechanism supplements LAM/MPI with a novel, decéiméd, scalable scheduler that trans-
parently coordinates the live migration at the process! leased on the information from the health
monitor.

5. LAM/MPI is enhanced to create the connections betweemigeated MPI processes and the live
processes on the operational nodes.

6. The mechanism incrementally transfers the state of thegss through network connections to avoid
the overhead of storage 1/O for reading/writing checkpfiles. This also avoids roll-backs to prior
checkpoints.

7. BLCRis supplemented with a series of utilities fzecopysource, ciprecopydest, crstop, crstart,
and crsuspendcontinue etc.) to support incremental live migration andrdmate the synchroniza-
tion among the migrated processes and the live processhas MPI application on the operational
nodes.

8. We developed a feature at the kernel level to check thg digtus of the process memory pages
transparently for the incremental migration without irrduy much of any overhead.

9. We were deploying experiments with NPB benchmarks on &m648cluster and planned to compare
the result with that of OS-level virtualization live migi@n solution.

10. This proactive FT scheme has the potential to prolongns@ntime- to-failure, reactive schemes can
lower their checkpoint frequency in response, which imgptleat proactive FT can lower the cost of
reactive FT.

New Results Obtained during the Final Period

In the final year, research activities have produced 1 pdperfollowing novel key findings can be reported:

1. Forthe process-level live migration mechanism we dgesdan Y3, we deployed and finished exper-
iments with NPB benchmarks on an x8@ cluster. Experiments indicate that 1-6.5 seconds of prio
warning are required to successfully trigger live proceggaton while similar operating system vir-
tualization mechanisms require 13-24 seconds. This sellitiy approach complements reactive FT
by nearly cutting the number of checkpoints in half when 7G%he faults are handled proactively.

2. We have developed an incremental checkpointing tecknigu MPI tasks complementary to full
checkpoints to capture only data changed since the laskpbiet. This significantly reduces the
size of checkpoint files and the overhead of checkpoint djo@aswhile only moderately increasing
restart costs relative to a restore from a single, full cpeakt.

3. This hybrid full/incremental checkpoint/restart scleeisiintegrated into an MPI execution environ-
ment, LAM/MPI + BLCR, to provide a fault-tolerant MPI runtersystem.

4. The mechanism supplements LAM/MPI with a decentralizsedlable scheduler that coordinates the
full or incremental checkpoint commands based on usergumd intervals or the system environ-
ment, such as the execution time of the MPI job, storage mingt for checkpoint files and the
overhead of preceding checkpoints.

5. LAM/MPI is enhanced to drain the in-flight messages amdregMPI tasks before the incremental
checkpoint, and restore them after the checkpoint.



6. The mechanism incrementally saves the state of the mdcdle storage.

7. BLCR is supplemented with a series of utilities _fol_checkpoint, cfincr_checkpoint and
cr_fullplusincr_restart etc.) to support hybrid full/incremental checkpoestart.

8. A set of three files serve as storage abstraction for a poguksnapshotCheckpoint file aontains
the memorypage contenti.e., the data of only those memory pages modified since the lastkeh
point; Checkpoint file Istores memorypage addressese., address and offset of the saved memory
pages for each entry ifile a; and Checkpoint file @wovers othemeta informatione.g, linkage of
threads, register snapshots, and signal informationneartito each thread within a checkpointed
process / MPI task.

9. We used the same feature as we used for live migration &etimel level to check the dirty status of
the process memory pages transparently for the incremeriadory pages without incurring much
of any overhead.

10. We are deploying experiments with NPB benchmarks an@bAS T on an x8664 cluster and plan
to compare the result with that of single full checkpointusiain.

3.2 Educational Activities

Educational activities include coverage of high-end cotimgi compilation and optimization for paral-
lelism and performance analysis/tuning in two graduatesels, namely Parallel Systems and Code Opti-
mization for Scalar and Parallel Programs. The classe® @ftong emphasis on recent research in high-
performance computing. Students receive critical skiltschreers in these areas. Industry contacts confirm
that these skills are highly valued.

4 Training

In the first year, 1 M.S. and 1 Ph.D. student were trained ifjurmtion with this project. In the second year,
1 Ph.D. student was trained, and 1 M.S. thesis was produndtie Ithird and fourth year, 1 Ph.D. student
was trained, and this Ph.D. student is scheduled to graehititia 6 months of the end of the project period
(Summer 2009). The student is interviewing with ORNL opegrtime door to continued technology transfer
of our technology into the DOE realm and HEC systems in génera

Skills acquired through the project are in the area of teamkywoommunication and writing, the latter
through contributing to paper publications. This inclugessentation skills (invited talks, poster presen-
tations at a premier conference, and thesis defenseshdrumbre, a number of independent studies were
supervised by the Pls in related areas emphasizing prolanimg, design and implementation as well as
writing skills.

5 Internet

The following web site disseminates publications, abstrand talks for this project.
http://moss.csc.ncsu.eduhueller/molar.html

6 Contributions

This work pools a community of collaborators from labs, @nsities, and industry, to investigate adaptive,
reliable, and efficient solutions to the problems surrongdDperating and Runtime Systems (OS/R) for
Extreme Scale Scientific Computation. Building on the auraggpen-source operating system, Linux, target
High-End Computing (HEC) applications for the next gerierabf supercomputers. These HEC OS/Rs



must scale to the levels predicted by hardware architectsdih shared memory and distributed memory
platforms. Furthermore, applications must operate efftbieand reliably on any of these architectures as
transparently as possible. As described in recent reppittBHCRTF and the DoE Scales workshop, system
software is a key challenge in exploiting the promise of&xie-scale scientific computing. The MOLAR
project contributes to the research by:

e Creating a modular and configurable Linux system that alloustomized changes based on the
requirements of the applications, runtime systems, arstalumanagement software;

e Building runtime systems that leverage the OS modularity @nfigurability to improve efficiency,
reliability, scalability, ease-of-use, and provide suppmlegacy and promising programming models;

e Advancing computer RAS management systems to work coapasatvith the OS/R to identify and
preemptively resolve system issues; and

e Exploring the use of advanced monitoring and adaptatiomiréve application performance and
predictability of system interruptions.

6.1 Contributions To Human Resources

This project contributes to human resource developmentdiogaing students through research, provid-
ing new educational materials in the classroom, and givindents the communication and writing skills
needed to advance science and engineering for future diemsraHands-on computer systems and new
educational materials effectively integrate researchtaacdhing.

6.2 Contributions to Resources for Research and Education

Hardware and software has been installed to facilitate-thgbughput simulation and is managed by the
Pls and students. The new infrastructure benefits the Pisirttaents and colleges beyond the scope of the
project.

7 Publications

"MOLAR: adaptive runtime support for high-end computingeogting and runtime systems” by Christian
Engelmann, Stephen L. Scott, David E. Bernholdt, NarasiRh&ottumukkala, Chokchai Leangsuksun,
Jyothish Varma, Chao Wang, Frank Mueller, Aniruddha G. Shédadayappan in ACM SIGOPS Operating
Systems Review, Vol. 40, No. 2, April 2006, pages 63-72.

"Scalable, Fault-Tolerant Membership for MPI Tasks on HBGt&Ms” by Jyothish Varma, Chao Wang,
Frank Mueller, Christian Engelmann, Stephen L. Scott in06S

"A Job Pause Service under LAM/MPI+BLCR for Transparent IFaolerance” by Chao Wang, Frank
Mueller, Christian Engelmann, Stephen L. Scott in IPDPS’07

"Proactive Fault Tolerance for HPC with Xen Virtualizatidoy A. Nagarajan and F. Mueller and C. Engel-
mann and S. Scott in ICS'07.

"Proactive Process-Level Live Migration in HPC Environrte#rby Chao Wang, Frank Mueller, Christian
Engelmann, Stephen L. Scott in SC’'08

8 Additional Documents
A copy of the publication(s) is submitted with the report.



