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Introduction

The report describes a theoretical procedure which could help evaluate the effect of quan-

tum electrodynamic corrections on the electronic structure of crystals consisting of heavy

elements. The procedure uses the effective Breit interaction as correction to traditional
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Coulomb interaction between electrons in non-relativistic theory. A number of other sim-

plifying assumptions were made since even such a simplified consideration of quantum elec-

trodynamic effects in crystals is a great challenge. These are as follows.

• Exchange and correlation effects from the nonrelativistic interaction (the Coulomb

term) between electrons are described within Density Functional Theory (DFT).

• The Breit correction is on at the phase which involves the calculation of matrix ele-

ments between basis functions which define the single-electron spectrum of a crystal.

In order to calculate the contribution from the Breit correction, the total wave func-

tion of electrons in the crystal is approximated by one Slater determinant consisting

of the single-electron DFT-orbitals.

• Only local matrix elements (i.e., the part of the two-electron integral for which both

coordinate arguments belong to one and the same muffin-tin sphere) are considered.

I. A GENERAL THEORETICAL PROCEDURE: QED HAMILTONIAN FOR IN-

TERACTING ELECTRONS

It is known that the basic equations of quantum elecrodynamics can be derived with the

variational principle if take an operator

L = −1

2

∂Aµ

∂xν

∂Aµ

∂xν

− 1

2
ψ̄(γµ

∂

∂xµ

+ m)ψ − 1

2
ψ̄c(γµ

∂

∂xµ

+ m)ψc + jµAµ (1)

for the Lagrange function density and Aµ, ψ, ψ̄ , operators of electromagnetic and electron-

positron fields (ψ̄(x) = ψ+(x)γ4) as independent variables. Here xµ is 4-dimensional radius-

vector, γµ is Diracs matrix, jµ(x) is 4-dimensinal electron-positron current density defined

by

jµ(x) =
ie

2
[ψ̄(x), γµψ(x)] =

ie

2
(ψ̄(x)γµψ(x)− ψ̄c(x)γµψ

c(x)), (2)

and ψc(x), ψ̄c are charge-conjugated operators of the electron-positron field:

ψc(x) = Cψ̄(x), ψ̄c(x) = C−1ψ(x) (3)
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Noting that

ψ̄c[γµ(
∂

∂xµ

+ ieAµ) + m]ψc = ψ[γT
µ (

∂

∂xµ

+ ieAµ)−m]ψ̄, (4)

and varying and rejecting negligible terms in divergence form yield

δL =
1

2
δAµ(¤Aµ + jµ) +

1

2
(¤Aµ + jµ)δAµ

−1

2
δψ̄[γµ(

∂

∂xµ

− ieAµ) + m]ψ +
1

2
ψ[γT

µ (

←−
∂

∂xµ

− ieAµ) + m]δψ̄

−1

2
δψ[γT

µ (
∂

∂xµ

+ ieAµ)−m]ψ̄ +
1

2
ψ̄[γµ(

∂

∂xµ

+ ieAµ)−m]δψ. (5)

This relation gives equations for the Heisenberg operators of electromagnetic and electron-

positron fields:

{γµ(
∂

∂xµ

− ieAµ(x)) + m}ψ(x) = 0,

{γT
µ (

∂

∂xµ

+ ieAµ(x))−m}ψ̄(x) = 0, (6)

¤Aµ(x) = −jµ(x).

Knowing the density of the Lagrange function for quantized fields, we can find the energy-

momentum tensor

Tµν = Lδµν − ∂L

∂ψ, ν
ψ, µ− ψ̄, µ

∂L

∂ψ̄, ν

=
1

2
{∂Aσ

∂xν

∂Aσ

∂xµ

+
∂Aσ

∂xµ

∂Aσ

∂xν

− δµν
∂Aσ

∂xλ

∂Aσ

∂xλ

}

+
1

4
{ψ̄(γν

∂ψ

∂xµ

− ∂ψ̄

∂xµ

γνψ}+
1

4
{ψ̄c(γν

∂ψc

∂xµ

− ∂ψ̄

∂xµ

γνψ
c} (7)

The term −T44 in this expression is the energy density operator. Expressing the time

derivatives of electron-positron field operators in terms of their spatial derivatives and using

the current density definition (2), represent

−T44 = −T 0
44 + T ′

44, (8)
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where

T 0
44 =

1

2
{2∂Aσ

∂x4

∂Aσ

∂x4

− ∂Aσ

∂xλ

∂Aσ

∂xλ

}

+
1

4
ψ̄{γ

←−
∂

∂r
−m}ψ − 1

4
ψ̄c{γ ∂

∂r
+ m}ψc +

1

4
ψ̄c{γ

←−
∂

∂r
−m}ψc, (9)

and

T ′
44 = jµAµ. (10)

The Hamiltonian H of the field system is a spatial integral of −T44

H = −
∫

T44d
3x = H0 + HI , (11)

where

H0 = −
∫

T 0
44d

3x,

HI = −
∫

T ′
44d

3x = −
∫

jµAµd
3x. (12)

II. APPROXIMATIONS: INTRODUCTION OF THE BREIT INTERACTION

(DIRAC-BREIT)

With the known interaction Hamiltonian we can define a scattering matrix S which

contains probability amplitudes of different scattering processes. The effective energy of

interaction between two charges (the Breit formula) can be derived through the consideration

of the scattering matrix in second order perturbation theory. Using the explicit form of the

interaction operator, write the second-order scattering matrix

S(2) = −1

2

∫
T [jµ(x)jν(x

′)]T [Aµ(x)Aν(x
′)]d4xd4x′, (13)

where T is the time-ordering operator, jµ is the current density operator and Aµ are

4-potential electromagnetic field operators. Since photons are absent in the initial and final

states, the operator T [Aµ(x)Aν(x
′)] can be replaced by its vacuum mean
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〈0|T [Aµ(x)Aν(x
′)]|0〉 = δµνDc(x− x′). (14)

As for contributions from electron currents, they are nonzero from only the terms of the

operator jµ(x)jν(x
′), which contain two creation operators and two destruction, all being

related to different individual electron states. That is why all the four factors anti-commutate

with each other and their pair products commutate. So, T can be omitted and we can write

〈f |S(2)|i〉 = −1

2

∫
jµ(x)Dc(x− x′)jµ(x′)d4xd4x′. (15)

Now use the explicit expression of the photon Green’s function Dc(x):

Dc(x) =
−i

(2π)4

∫
eikr−iωt

k2 − ω2
d3kdω. (16)

Integrating over d3k gives

Dc(x) =
−i

8π2

1

|r|
∫ ∞

−∞
e−iωt+ i

c
|ω||r|dω. (17)

Substituting it into (15) yields

〈f |S(2)|i〉 =
i

4π

∫
jCAµ(r1, t)jBDµ(r2, t)

e
i
c
|ωBD||r1−r2|

|r1 − r2| dr1dr2dt, (18)

where ωBD = ωB − ωD.

Now do time integration. Since the states A,B, ... are stationary, ψA(x) = ψA(r)e−iωAt,

then

jCAµ(x) = jCAµ(r)e−iωCAt, (19)

and

〈f |S(2)|i〉 =
i

2

∫
jCAµ(r1)

e
i
c
|ωBD||r1−r2|

|r1 − r2| jDBµ(r2)dr1dr2. (20)
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Now go over from the scattering matrix to the matrix of the effective energy of interaction

between two charges, V , which is defined by

〈f |S|i〉 = −2πi〈f |V |i〉δ(ωA + ωB − ωC − ωD). (21)

According to (18),

〈f |V |i〉 = − 1

4π

∫
jCAµ(r1)jDBµ(r2)

e
i
c
|ωAC ||r1−r2|

|r1 − r2| dr1dr2. (22)

In (22), we express transient currents in terms of wave functions

〈f |V |i〉 =
e2

4π

∫
ψ∗C(r1)ψ

∗
D(r2)

1− α1α2

|r1 − r2| e
i
c
|ωAC ||r1−r2|ψA(r1)ψB(r2)dr1dr2, (23)

where α1, α2 are Diracs matrices such that α1 acts on the function ψA(r1) and α2 acts on

the function ψB(r2).

To obtain the effective two-electron interaction Hamiltonian we expand the matrix ele-

ment in powers v/c up to v2/c2.

The expansion of the retardation factor has the form

e
i
c
|ωAC ||r1−r2|

|r1 − r2| =
1

|r1 − r2| + i
|ωAC |

c
− |r1 − r2| |ωAC |2

2c2
. (24)

The matrix elements which contain α are equal to v/c by order of magnitude. Therefore

in terms which contain α1α2 we can only leave the first term in expansion (24). After

substitution in (22) the second term in (24) will turn zero because the functions ψA and ψC

are orthogonal.

Using now the fact that the ψA are solutions of the Dirac equation with frequencies ωA,

we can prove1 validity of the replacement

−|r1 − r2| |ωAC |2
2c2

→ α1α2 − (α1n)(α2n)

|r1 − r2| , (25)

where
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n =
r1 − r2

|r1 − r2| . (26)

With (25) it is easy to show that the effective two-charge interaction is described by

(Breit interaction)

V (r1, r2) =
e2

|r1 − r2| −
e2

2

α1α2 + (α1n)(α2n)

|r1 − r2| , (27)

In the nonrelativistic limit this expression transforms into1

V (r) =
e2

r
− π

e2

m2c2
δ(r)− e2

4m2c2

1

r3
([rp1]σ1 − [rp2]σ2 + 2[rp1]σ2 − 2[rp2])σ1)

− e2

2m2c2
(
1

r
p1p2 +

1

r3
r(rp1)p2)

+
e2

4m2c2
(
σ1σ2

r3
− 3(σ1r)(σ2r)

r5
− 8π

3
σ1σ2δ(r)),

r = r1 − r2. (28)

In this expression one can easily see2 the Darwin interaction (the second term), the spin-

orbit + spin-other-orbit interaction (in the first parenthesis), the orbit-orbit interaction

(the second parenthesis), the spin-spin (magnetic dipole) interaction (the first two terms

in the last parenthesis) and the contact spin-spin interaction (the third term in the last

parenthesis).

III. LDA(GGA) AS AN APPROXIMATION TO EXCHANGE-CORRELATION

ENERGY

As mentioned in Introduction, the exchange-correlation effects related to the Coulomb

part (the first term in (27)) are treated here with DFT where LDA (local density approxi-

mation) and GGA (generalized gradient approximation) are used most often. A practically

convenient approximation for the coupled description of relativistic and magnetic effects

within the scope of the electronic density functional was obtained by Pajagopal, Callway,

Vosko and Ramana3–6. In this approximation, the total energy of a system with electronic

density n(r) and magnetization density m(r) is (a periodic system crystal is meant here)
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E[n,m] = Ts[n] +

∫

Ω0

dr[n(r)Vext(r) + m(r) ·Bext(r)] +

∫

Ω0

dr

∫

Ω

dr′
n(r)n(r′)
| r − r′ |

+Exc[n,m] + Enn, (29)

where Ω0 is the volume of the unit cell of the crystal and Ω is the total crystal volume.

Energy is calculated per unit cell in atomic units (with energy in Ry). Ts[n] is the kinetic

energy of the non-interacting single-particle system, defined by

Ts[n] =
∑

k

∑

λ

∫

Ω0

drΨ†
λ(k, r)ĤkinΨλ(k, r)θ[EF − Eλ(k)], (30)

where the Dirac kinetic energy operator Ĥkin (minus electron rest energy) is

Ĥkin = cα · p + (β − I)
c2

2
, (31)

c is light velocity (c = 274.074 in the system of units being used), p is momentum operator

(≡ −i∇), α and β are standard Dirac matrices, and I is 4× 4 unit matrix. Ψλ(k, r) stands

for the Bloch function with band index λ and wave vector k in the first Brillouin zone (BZ).

Eλ(k) is band energy and θ(x) represents unit theta-function which means that all states

whose energies are lower than EF are included in the sum of Eq. (30). The electron density

n(r) and the magnetization density m(r) are found using the Bloch function Ψλ(k, r) as

n(r) =
∑

k

∑

λ

Ψ†
λ(k, r)Ψλ(k, r)θ[EF − Eλ(k)], (32)

and

m(r) =
∑

k

∑

λ

Ψ†
λ(k, r)βσ̃Ψλ(k, r)θ[EF − Eλ(k)], (33)

respectively. Here σ̃ denotes 4× 4 matrices comprised of Pauli matrices σ:

σ̃ =


 σ 0

0 σ


 . (34)

The second term in the right-hand side of (29) is the energy of electron interaction with the

external field, where Vext(r) is the external scalar potential(nuclear potential) and Bext(r)
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is the external magnetic field. The third term is the classic Coulomb energy, Exc is the

exchange-correlation energy that is the functional of n(r) and m(r), and Enn is the nuclear

repulsion energy.

It should be noted that (29) is already certain simplification of fully relativistic DFT

where energy (including the exchange-correlation energy) is the functional of the 4-vector

current whose spatial components can be represented by the sum of the orbital electron

current (which causes diamagnetic effects) and the spin electron current. Since there are still

no satisfactorily validated approximations for the dependence of the exchange-correlation

energy functional on orbital current (there is no orbital motion in the uniform electron

gas which is usually used for deriving approximations to Exc), it is Eq. (29) that serves

as a starting point for numerical techniques at this stage of DFT development. Orbital

magnetism does appear in this theory (due to spin-orbit interaction), but its backward

(self-consistent) effect on the system is absent. Not accounting for the effects of orbital

polarization may result in not exact calculation of orbital magnetic moments.

The application of Hohenberg-Kohn variational principle7 to the total energy in (29) gives

a system of single-particle equations whose self-consistent solution allows us to determine

density (r) and magnetization m(r)

from (32) and (33):

ĤΨλ(k, r) = Eλ(k)Ψλ(k, r), (35)

where the Dirac spin-polarized Hamiltonian is

Ĥ = Ĥkin + V (r) + βσ̃ ·B(r). (36)

The scalar effective potential V (r) resulted from varying (29) is similar to the nonrela-

tivistic case:

V (r) = Vext(r) + 2

∫

Ω

dr′
n(r′)

| r − r′ | +
δExc[n(r),m(r)]

δn(r)
, (37)

while the effective magnetic field B(r) is the sum of the external field and the functional

derivative Exc with respect to magnetization density:

B(r) = Bext(r) +
δExc[n(r),m(r)]

δm(r)
. (38)
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Kinetic energy (30) can be rewritten in a more convenient form if use (35), orthonormality

of Ψλ(k, r) and definitions of n(r) and m(r):

Ts[n] =
∑

k

∑

λ

Eλ(k)θ[EF − Eλ(k)]−
∫

Ω

drn(r)V (r)−
∫

Ω

drm(r) ·B(r), (39)

where summation of states implies account for core levels.

Next, in expression (29) for total energy, there are three divergent contributions. They

however cancel one another and after some manipulation we obtain

E[n,m] = Ts[n] +
1

2

∫

Ω

drn(r)VC(r)− 1

2

∑
a

ZaV
′
C(ta) +

∫

Ω

drm(r) ·Bext(r)

+Exc[n,m], (40)

where the vectors ta represent coordinates of atoms in a unit cell, Za is nuclear charge on

atom a, VC(r) is the full Coulomb potential and V ′
C(ta) is Coulomb potential on the nucleus

without the nucleuss contribution.

Self-consistent solution is obtained through the definition of the initial electron density

distribution n(r) (the initial magnetization density m(r) is taken to be zero) and the mag-

netic field B(r). The effective potential is calculated from (37). The next step is to solve

(35). With the resulted eigenvalues and eigenfunctions we can calculate Fermi energy and

find n(r) and m(r) from (32) and (33). Then (if self-consistency is not reached yet) we

calculate V (r) and B(r) from (37) and (38), which completes the self-consistency cycle.

The computational procedure we are considering here is based on the use of (35-38)

together with (32-33).

IV. PRACTICAL ASPECTS OF THE APPROACH IN THE FLAPW METHOD

OF BAND STRUCTURE CALCULATION

A. Representation of n(r), V (r),m(r),B(r)

In the Relativistic Spin-Polarized Full-potential Linearized Augmented Plane Wave

(RSPFLAPW) method, like in all others based on APW formalism, space in the unit cell

is assumed to consist of the muffin-tin (MT) spheres Ωa of radius Sa around atoms and the

10



interstitial region ΩI . Wave functions are treated through their dual representation (i.e.,

expansions in spherical harmonics in the muffin-tin spheres and in plane waves in the inter-

stitial region) and it is convenient to use a similar representation for other quantities such

as the electron charge density n(r), the effective potential V (r), the magnetization density

m(r) and the magnetic field B(r). For scalar quantities we then have

V (r) =





∑
G VGeiG·r r ∈ I

∑
lm Vlm(r)Ylm(θ, ϕ) r ∈ MT

, (41)

and for vector quantities where the representation is valid for each component, we have

B(r) =





∑
G BGeiG·r r ∈ I

∑
lm Blm(r)Ylm(θ, ϕ) r ∈ MT.

(42)

B. Calculation of electrostatic potential

The effective potential in the Kohn-Sham equations consists of the exchange-correlation

part Vxc(r) defined by the last term of (37) and the Coulomb part Vc(r) defined by the

charge distribution (electrons and nuclei) in the form of the Poisson equation (in the atomic

system of units with energy in Ry)

∇2Vc(r) = −8πn(r). (43)

The solution of this equation in real space is far from trivial for crystals. On the other

hand, in reciprocal space, the Poisson equation is diagonal which formally allows us to write

the solution in a simple form

Vc(r) = 8π
∑
G

nG

G2
eiGr, (44)

where nG are coefficients in the Fourier expansion of charge density.

However in the LAPW method which is one of the so called full-electron approaches,

the density n(r) includes the rapidly varying density of core electrons and the charge of

nuclei represented by delta functions. That is why the expansion of the charge density

in plane waves in (44) does not converge. So the strongly localized core (and nuclear)

density complicates formulation in reciprocal space, while the long-range Coulomb potential
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complicates it in real space. The problem was resolved by Hamann8 and Weinert9, who

developed a hybrid approach. Below described is their solution based on the following

observations: (1) The interstitial density is a continuously varying function and the rapidly

varying density is in the MT-spheres; (2) The Coulomb potential outside the spheres only

depends on the charge outside the spheres and multipoles of the charge inside the spheres;

(3) The plane-wave representation of density in the interstitial is unambiguous in the sense

that it can be extended with the Fourier expansion of any function inside the spheres without

changing the interstitial charge.

The potential is constructed in steps. First we find multipoles of the true charge distrib-

ution in each MT-sphere a

qa
lm =

√
4π

∫

Ωa

rlYlm(θ, ϕ)na(r)dr− δl,0Za, (45)

where Za is nuclear charge in the corresponding sphere. Also we determine the multipoles

of the plane-wave charge representation extended into the spheres

qa,PW
lm =

√
4π

∫

Ωa

rlYlm(θ, ϕ)
∑
G

nGeiG·(r+a)dr. (46)

The next step is to construct the so called pseudo-charge which coincides with the in-

terstitial charge distribution and has the same multipoles in the spheres as the true charge

distribution. This is accomplished through complementing the plane-wave representation

with smooth functions which are zero in the interstitial and have multipoles equal to the

difference of the multipoles of (45) and (46). Such a function can be chosen arbitrarily, but

what is needed is the ease of its Fourier transform. A good option is

ña(r) =
∑

lm

Qa
lm

1

Sl+3
a

(
r

Sa

)l (
1− r2

S2
a

)N

Ylm(r), (47)

where Sa is the radius of the MT-sphere of atom a. This function has (N-1) continuous

derivatives and its Fourier transform is relatively simple.

AS mentioned above, the coefficients Qa
lm are taken to be such as to reproduce the differ-

ence of the true and plane-wave multipoles. Then the Fourier coefficients of (47) are added

to the coefficients in the plane-wave expansion of the interstitial charge. The true electro-

static potential in the interstitial is derived from (44). It is now necessary to integrate the
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Poisson equation in the spheres. The known interstitial potential on the sphere boundaries

is taken for the boundary condition and the Coulomb potential in the spheres is

V MT
lm (r) = V PW

lm (S)
( r

S

)l

+
8π

2l + 1

{
1

rl+1

∫ r

0

dr′r′l+2nlm(r′) + rl

∫ S

r

dr′r′1−lnlm(r′)

− rl

S2l+1

∫ S

0

dr′r′l+2nlm(r′)
}
− 2

√
4πZ

r
δl,0, (48)

where the last term is contribution from the nuclear potential.

C. Calculation of Vxc(r) and B(r)

Vxc(r) and B(r) are calculated in real space. For each value of the radial variable in

the MT-spheres, we calculate density and magnetization (and their gradients for GGA) on

a mesh of angular variables. Then we calculate Vxc(r) and B(r) on the same mesh and

find their spherical harmonics by integrating with respect to angles. In the interstitial the

procedure is similar, but with a 3D structured mesh and Fast Fourier Transform (FFT) which

is used for calculating density (magnetization) in each mesh point and then for calculating

Fourier coefficients of the exchange-correlation potential and the magnetic field.
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D. Basis functions of the RSPFLAPW method

Two types of basis functions are used in our method. The basis functions of the first type

are characterized by the relativistic plane waves (Loucks10) in the interstitial region:

ΦA(k + G, s; r)|Ωi
=

Nk+G√
Ω0


 us

cσ·(k+G)

c2+ε+k+G

us


 exp[i(k + G) · r], (49)

where G are vectors of the reciprocal lattice, ε+
k+G is the positive relativistic energy

associated with the wave vector k + G, i.e., 2ε+
k+G = −c2 + c

√
c2 + 4(k + G)2, Nk+G is a

normalization factor, and us denotes the spinor function for the spin state s = ±1
2
. The

basis functions of the second type are zero in ΩI .

In the MT-spheres the basis functions of the first type are derived from the solutions of

the Dirac equation for the central field with B = 0 and for only the spherical component of

the effective scalar potential V a
0 (r)

[Ĥkin + V a
0 (r)− εa

il]


 ga

il(r) Ωi;l;µ(θ, ϕ)

i
c
fa

il(r) Ω−i;l+2i;µ(θ, ϕ)


 = 0, (50)

and from their energy derivatives which are solutions to the equation

[Ĥkin + V a
0 (r)− εa

il]


 ġa

il(r) Ωi;l;µ(θ, ϕ)

i
c
ḟa

il(r) Ω−i;l+2i;µ(θ, ϕ)


 =


 ga

il(r) Ωi;l;µ(θ, ϕ)

i
c
fa

il(r) Ω−i;l+2i;µ(θ, ϕ)


 . (51)

Here εa
il are energy parameters that must be defined self-consistently; Ωi;l;µ(θ, ϕ) are spin-

angle functions; l is the quantum number of the orbital moment; i defines the total moment

j as j = l + i (i = ±1
2
, not confuse with imaginary unit i), µ is the z-projection of the total

moment. The relativistic quantum number κ is related to l and i as

κ = l, i = −1
2

κ = −l − 1, i = 1
2
.

The spin-angle functions are derived using the sum of moments:

Ωi;l;µ(θ, ϕ) =
∑

s=± 1
2

C lµ
is Yl;µ−s(θ, ϕ)us, (52)
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where Yl;µ−s(θ, ϕ) are spherical harmonics11 and C l;µ
is are Clebsch-Gordan coefficients that

are convenient to express with the parameter ulµ = µ/(l + 1/2):

C l;µ =


 C l;µ

− 1
2
− 1

2

C l;µ

− 1
2

1
2

C l;µ
1
2
− 1

2

C l;µ
1
2

1
2


 =

1√
2




√
1 + ulµ −√

1− ulµ√
1− ulµ

√
1 + ulµ


 . (53)

The spin-angle functions are orthonormalized:

∫
Ω†

i;l;µ(θ, ϕ)Ωi′;l′;µ′(θ, ϕ) sin θdθdϕ = δii′δll′δµµ′ . (54)

The radial functions ga
il(r) fa

il(r) are solutions to the following system of coupled differ-

ential equations:

d(rga
il)

dr
= −κ

r
(rga

il) +
c2 + εa

il − V a
0

c2
(rfa

il) (55)

d(rfa
il)

dr
=

κ

r
(rfa

il)− (εa
il − V a

0 )(rga
il). (56)

For the energy derivatives of the radial functions, we must solve the system

d(rġa
il)

dr
= −κ

r
(rġa

il) +
c2 + εa

il − V a
0

c2
(rḟa

il) +
1

c2
(rfa

il) (57)

d(rḟa
il)

dr
=

κ

r
(rḟa

il)− (εa
il − V a

0 )(rġa
il)− (rga

il). (58)

It is convenient to use the normalized radial functions

〈g2〉+ 〈f 2〉/c2 = 1, (59)

which means that the radial solution and its energy derivative are orthogonal:

〈g|ġ〉+ 〈f |ḟ〉/c2 = 0. (60)

From the solution of (50) and (51), it is convenient to make two linear combinations

Railµ
1 (r) and Railµ

2 (r)12

Railµ
1 (r) = pail

1


 ga

il(r) Ωi;l;µ(θ, ϕ)

i
c
fa

il(r) Ω−i;l+2i;µ(θ, ϕ)


 + qail

1


 ġa

il(r) Ωi;l;µ(θ, ϕ)

i
c
ḟa

il(r) Ω−i;l+2i;µ(θ, ϕ)


 , (61)
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and

Railµ
2 (r) = pail

2


 ga

il(r) Ωi;l;µ(θ, ϕ)

i
c
fa

il(r) Ω−i;l+2i;µ(θ, ϕ)


 + qail

2


 ġa

il(r) Ωi;l;µ(θ, ϕ)

i
c
ḟa

il(r) Ω−i;l+2i;µ(θ, ϕ)


 , (62)

such that the following relations hold on the boundaries of the MT-spheres:

Railµ
1 (Sa) =


 1 Ωi;l;µ(θ, ϕ)

0 Ω−i;l+2i;µ(θ, ϕ)


 , (63)

and

Railµ
2 (Sa) =


 0 Ωi;l;µ(θ, ϕ)

i
c
· 1 Ω−i;l+2i;µ(θ, ϕ)


 . (64)

Now we can write the basis functions of the first type inside the MT-spheres as linear

combinations of Railµ
1 (r) and Railµ

2 (r):

ΦA(k + G, s, r)|Ωa =
∑

ilµ

[yailµ
1 (k + G, s)Railµ

1 (r) + yailµ
2 (k + G, s)Railµ

2 (r)]. (65)

Properties of (63) and (64) and the requirement that the large and small components

of functions defined in (49) and (65) be continuous on the boundaries of the muffin-tin

spheres for all quantum numbers (i, l, µ) l 6 lmax allow us to determine the coefficients

yailµ
1 (k + G, s) and yailµ

2 (k + G, s):

yailµ
1 (k + G, s) =

4π√
Ω

ilei(k+G)taNk+GC lµ
is jl(| k + G | Sa)Y

∗
lµ−s(k̂ + G)

yailµ
2 (k + G, s) =

4π√
Ω

il−2iei(k+G)taNk+GC lµ
is

c2 | k + G |
c2 + ε+

k+G

× jl+2i(| k + G | Sa)Y
∗
lµ−s(k̂ + G). (66)

The basis functions of the second type are local functions12 which are defined similarly to

what was proposed by Singh13 for nonrelativistic formalism. They are nonzero only inside

the MT-spheres and can be used to increase the variational freedom of valence states, and

they help describe semicore states equally with the valence states. The local orbitals are

constructed beginning with the solution of (50) and (51) for appropriately chosen energy
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parameters εa
n where n is a set of quantum numbers unambiguously defining each local

orbital. Then the second energy derivative from the solution of (50) is added, creating the

linear combination Ran
3

Ran
3 (r) = pan

3


 ga

il(r) Ωi;l;µ(θ, ϕ)

i
c
fa

il(r) Ω−i;l+2i;µ(θ, ϕ)


 + qan

3


 ġa

il(r) Ωi;l;µ(θ, ϕ)

i
c
ḟa

il(r) Ω−i;l+2i;µ(θ, ϕ)




+


 g̈a

il(r) Ωi;l;µ(θ, ϕ)

i
c
f̈a

il(r) Ω−i;l+2i;µ(θ, ϕ)


 , (67)

whose large and small components tend to zero on the sphere boundary. The second

derivatives are solutions to

[Ĥkin + V a
0 (r)− εa

n]


 g̈a

n(r) Ωµ
n(θ, ϕ)

i
c
f̈a

n(r) Ω−nµ(θ, ϕ)


 = 2


 ġa

n(r) Ωnµ(θ, ϕ)

i
c
ḟa

n(r) Ω−nµ(θ, ϕ)


 , (68)

and the corresponding radial components are determined through integration of the equa-

tions

d(rg̈a
n)

dr
= −κ

r
(rg̈a

n) +
c2 + εa

n − V a
0

c2
(rf̈a

n) +
2

c2
(rḟa

n) (69)

d(rf̈a
n)

dr
=

κ

r
(rf̈a

n)− (εa
n − V a

0 )(rg̈a
n)− 2(rġa

n). (70)

Now the Bloch sums of the functions Ran
3

Φan
B (k, r) =

∑
R

eik(ta+R)Ran
3 (ra), (71)

are used as the basis functions of the second type. Here R are lattice vectors and ra is

the radius vector measured from the center of atom a: ra = r − ta.

Now we can write the solution of the Dirac-Kohn-Sham equations (35) as a linear com-

bination of the basis functions of types 1 and 2:

Ψλ(k, r) =
∑
Gs

AGs
λ (k)ΦA(k + G, s; r) +

∑
an

Ban
λ (k)Φan

B (k; r). (72)

The coefficients AGs
λ (k) and Ban

λ (k) are determined variationally.
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E. Matrix elements of the one-electron Hamiltonian and the overlapping matrix

in the RSPFLAPW method

The variational problem which emerges from the Dirac equation for a crystal (35) with

(72) reduces to the generalized eigenvalue and eigenfunction problem12


 HAA H†

BA

HBA HBB




∣∣∣∣∣∣
A

B

∣∣∣∣∣∣
= E


 OAA O†

BA

OBA OBB




∣∣∣∣∣∣
A

B

∣∣∣∣∣∣
, (73)

where indices are omitted for short. The matrix elements O and H (Overlapping and

Hamiltonian, respectively) can be split into interstitial and MT components, and for the

Hamiltonian, the latter can be split into spherical (kinetic energy and the l = 0 scalar

potential) and non-spherical terms (including the contribution from the magnetic field).

1. The interstitial contribution to H and O

The interstitial contribution only exists from the functions of the first type. It is calculated

from the definition of basis functions in the interstitial region (49) and the properties of Pauli

matrices. After some manipulation we obtain the following.

The overlapping integral is

OGs;G′s′
AA (k)|ΩI

=
Nk+GNk+G′

Ω0

∫

ΩI

ei(G′−G)rdr

{
δss′ +

c2

(c2 + ε+
k+G)(c2 + ε+

k+G′)

× [(k + G) · (k + G′)δss′ + i[(k + G)× (k + G′)]· < us|σ|us′ >]} . (74)

Matrix elements of the kinetic energy operator are

(Hkin)Gs;G′s′
AA (k)|ΩI

= ε+
k+G′O

Gs;G′s′
AA (k)|ΩI

. (75)

Matrix elements of the scalar potential are

V Gs;G′s′
AA (k)|ΩI

=
Nk+GNk+G′

Ω0

∫

ΩI

V (r)ei(G′−G)rdr{δss′ +
c2

(c2 + ε+
k+G)(c2 + ε+

k+G′)

× [(k + G) · (k + G′)δss′ + i[(k + G)× (k + G′)]· < us|σ|us′ >]}. (76)

Matrix elements of the magnetic field are
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BGs;G′s′
AA (k)|ΩI

=
Nk+GNk+G′

Ω0

∫

ΩI

B(r)ei(G′−G)rdr{nB· < us|σ|us′ >

− c2

(c2 + ε+
k+G)(c2 + ε+

k+G′)
[(nB · (k + G))((k + G′)· < us|σ|us′ >)

+(nB · (k + G′))((k + G)· < us|σ|us′ >)

−((k + G) · (k + G′))(nB· < us|σ|us′ >)

−inB · [(k + G)× (k + G′)]δss′ ]}, (77)

where the vector nB shows the direction of the magnetic field.

2. The contribution of overlapping and the spherical part of the Hamiltonian in the MT-spheres

to the matrix elements

The matrices of the overlapping integrals and the spherical Hamiltonian in the MT-

spheres are diagonal in (ilµ). Using (65) and (71) yields

(HMT − EO)Gs;G′s′
AA (k)|MT =

∑
a

∑

ilµ

{y∗ailµ
1 (k + G, s)yailµ

1 (k + G′, s′)
∫

Ωa

R†
1

ailµ
(r)[Hkin + V0 − E]Railµ

1 (r)dr

+y∗ailµ
1 (k + G, s)yailµ

2 (k + G′, s′)
∫

Ωa

R†
1

ailµ
(r)[Hkin + V0 − E]Railµ

2 (r)dr

+y∗ailµ
2 (k + G, s)yailµ

1 (k + G′, s′)
∫

Ωa

R†
2

ailµ
(r)[Hkin + V0 − E]Railµ

1 (r)dr

+y∗ailµ
2 (k + G, s)yailµ

2 (k + G′, s′)
∫

Ωa

R†
2

ailµ
(r)[Hkin + V0 − E]Railµ

2 (r)dr}, (78)

(HMT − EO)an;G′s′
BA (k)|MT =

∑

i′l′µ′

{yai′l′µ′
1 (k + G′, s′)

∫

Ωa

R†
3

an
(r)[Hkin + V0 − E]Rai′l′µ′

1 (r)dr

+yai′l′µ′
2 (k + G′, s′)

∫

Ωa

R†
3

an
(r)[Hkin + V0 − E]Rai′l′µ′

2 (r)dr}, (79)

(HMT − EO)a,nn′
BB |MT =

∫

Ωa

R†
3

an
(r)[Hkin + V0 − E]Ran′

3 (r)dr. (80)
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The most demanding expression (78) can be simplified through explicit summation over

moment projections with use of (66) for y1 and y2 and the identity (proved from the ex-

plicit expressions for Clebsch-Gordan coefficients (53) and the theorem of spherical harmonic

summation)

∑
µ

C lµ
is C lµ

is′Ylµ−s(k̂ + G)Y ∗
lµ−s′(k̂ + G′) =

|κ|
4π

Pl( ̂k + G;k + G′)δss′

+
iSκ

4π
P ′

l ( ̂k + G;k + G′)
[(k + G)× (k + G′)] · 〈s|σ|s′〉

|k + G| · |k + G′| , (81)

where the relativistic quantum number κ = l(l + 1) − j(j + 1) − 1/4 and Sκ is the sign

of κ. After some manipulation we obtain

(HMT − EO)Gs;G′s′
AA (k)|MT =

∑
a

4π

Ω
ei(G′−G)aNk+GNk+G′

∑

il

[
|κ|Pl( ̂k + G;k + G′)δss′

+iSκP
′
l ( ̂k + G;k + G′)

[(k + G)× (k + G′)] · 〈s|σ|s′〉
|k + G| · |k + G′|

]

×
{

jl(|k + G|Sa)jl(|k + G′|Sa)

∫

Ωa

R†
1

ailµ
(r)[Hkin + V0 − E] Railµ

1 (r)dr

+
S2

ac
2|k + G′|

2(c2 + E+
k+G′)

i2i−1jl(|k + G|Sa)jl+2i(|k + G′|Sa)

×
∫

Ωa

R†
1

ailµ
(r)[Hkin + V0 − E]Railµ

2 (r)dr

+
S2

ac
2|k + G|

2(c2 + E+
k+G)

(−i)2i−1jl+2i(|k + G|Sa)jl(|k + G′|Sa)

×
∫

Ωa

R†
2

ailµ
(r)[Hkin + V0 − E]Railµ

1 (r)dr

+
S4

ac
4|k + G| · |k + G′|

4(c2 + E+
k+G)(c2 + E+

k+G′)
jl+2i(|k + G|Sa)jl+2i(|k + G′|Sa)

×
∫

Ωa

R†
2

ailµ
(r)[Hkin + V0 − E]Railµ

2 (r)dr

}
.(82)

Here summation over total moment projections is absent. The radial integrals are calcu-

lated analytically from (50, 51, 61, 62, 59, 60).
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3. The contribution of the non-spherical potential and the magnetic field in the MT-spheres to

the matrix elements

The non-spherical contributions of the effective potential and the contributions of mag-

netic field to Hamiltonian elements are calculated as

HGs;G′s′
AA (k)|NMT =

∑
a

∑

ilµ;i′l′µ′

{y∗ailµ
1 (k + G, s)yai′l′µ′

1 (k + G′, s′)
∫

Ωa

R†
1

ailµ
(r)ĤNMT Rai′l′µ′

1 (r)dr

+y∗ailµ
1 (k + G, s)yai′l′µ′

2 (k + G′, s′)
∫

Ωa

R†
1

ailµ
(r)ĤNMT Rai′l′µ′

2 (r)dr

+y∗ailµ
2 (k + G, s)yai′l′µ′

1 (k + G′, s′)
∫

Ωa

R†
2

ailµ
(r)ĤNMT Rai′l′µ′

1 (r)dr

+y∗ailµ
2 (k + G, s)yai′l′µ′

2 (k + G′, s′)
∫

Ωa

R†
2

ailµ
(r)ĤNMT Rai′l′µ′

2 (r)dr}, (83)

Han;G′s′
BA (k)|NMT =

∑

i′l′µ′
{yai′l′µ′

1 (k + G′, s′)
∫

Ωa

R†
3

an
(r)ĤNMT Rai′l′µ′

1 (r)dr

+yai′l′µ′
2 (k + G′, s′)

∫

Ωa

R†
3

an
(r)ĤNMT Rai′l′µ′

2 (r)dr}, (84)

Ha,nn′
BB |NMT =

∫

Ωa

R†
3

an
(r)ĤNMT Ran′

3 (r)dr. (85)

Here non-spherical scalar potential and magnetic field integrals are calculated with the

representation

HNMT (r) =
∑

l 6=0m

Vlm(r)Ylm(r̂) +
∑

lm

Blm(r)Ylm(r̂), (86)

definitions (61, 62, 67) and identity (52).

In what the splitting of the matrix elements into spherical (Section IVE 2) and non-

spherical contributions is advantageous is that in expression (83) whose calculation requires

considerable time, summation over l can only be done for physically significant l (usually

to l = 2 or 3), while in the easier-to-calculate formulas from Section IVE2, the required

continuity of basis functions for the correct treatment of the kinetic energy operator results

in the maximal l ≥ 8.
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F. Correction to matrix elements with allowance for Breit interaction

Since we calculate the effects of the Breit interaction by representing the total electron

wave function of the system as one Slater determinant, the contribution to the total energy

will be

EBr
tot =

1

2

∑

jj′
{〈ψ∗j (r)ψ∗j′(r′)B(r, r′)ψj(r)ψj′(r

′)〉 − 〈ψ∗j (r)ψ∗j′(r′)B(r, r′)ψj′(r)ψj(r
′)〉}, (87)

where the indices j, j′ run over core states and valence levels, and the operator B(r, r′)

is the second term in (27).

Varying the valence orbitals and using the expansion of the valence wave functions (72)

and representations of basis functions (65,71) gives the following contributions to the matrix

elements (the same notation as in IVE)

HGs;G′s′
AA (k)|Br =

∑
a

∑
j

∑

ilµ;i′l′µ′

∑

k,k′=1,2

y∗ailµ
k (k + G, s)yai′l′µ′

k′ (k + G′, s′)

{
∫

Ωa

R†
k

ailµ
(r′)〈ψ∗j (r)B(r, r′)ψj(r)〉Rai′l′µ′

k′ (r′)dr′

−
∫

Ωa

R†
k

ailµ
(r′)〈ψ∗j (r)B(r, r′)Rai′l′µ′

k′ (r′)〉ψj(r)dr′}, (88)

Han;G′s′
BA (k)|Br =

∑
j

∑

i′l′µ′

∑

k′=1,2

yai′l′µ′
k′ (k + G′, s′)

{
∫

Ωa

R†
3

an
(r′)〈ψ∗j (r)B(r, r′)ψj(r)〉Rai′l′µ′

k′ (r′)dr′

−
∫

Ωa

R†
3

an
(r′)〈ψ∗j (r)B(r, r′)Rai′l′µ′

k′ (r′)〉ψj(r)dr′}, (89)

Ha,nn′
BB |Br =

∑
j

{
∫

Ωa

R†
3

an
(r′)〈ψ∗j (r)B(r, r′)ψj(r)〉Ran′

3 (r′)dr′

−
∫

Ωa

R†
3

an
(r′)〈ψ∗j (r)B(r, r′)Ran′

3 (r′)〉ψj(r)dr′}, (90)
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Write the operator B(r, r′) in component-wise form

B(r, r′) =
∑

βγ

αβ,rαγ,r′ [− δβγ

|r− r′| −
(r − r′)β(r − r′)γ

|r− r′|3 ], (91)

and represent it in the orthonormal basis of all possible products of the large and small

components of radial functions (similarly to what was done for the non-relativistic case in14

where the product basis was used for the implementation of the GW method):

B(r, r′) =
∑

βγ

αβ,rαγ,r′
∑

LL′

∑

tt′
ΠtL(r)Mβγ

tL,t′L′Πt′L′(r
′), (92)

where

ΠtL(r) = ΠtL(r)YL(r̂) (93)

and

Mβγ
tL,t′L′ =

∫ ∫
ΠtL(r)[− δβγ

|r− r′| −
(r − r′)β(r − r′)γ

|r− r′|3 ]Πt′L′(r
′)drdr′. (94)

Not difficult, but rather lengthy details in the calculation of Mβγ
tL,t′L′ will be presented in

the next report along with data of the code structure.

With the product basis the expressions in the braces of (88,89,90) are reduced to sums of

the products of integrals of three functions, which can be calculated with standard methods.

∫

Ωa

R†
k

ailµ
(r′)〈ψ∗j (r)B(r, r′)ψj(r)〉Rai′l′µ′

k′ (r′)dr′

−
∫

Ωa

R†
k

ailµ
(r′)〈ψ∗j (r)B(r, r′)Rai′l′µ′

k′ (r′)〉ψj(r)dr′

=
∑

βγ

∑

LL′

∑

tt′
{
∫

dr′R†
k

ailµ
(r′)αγ,r′R

ai′l′µ′
k′ (r′)Πa

t′L′(r
′)Ma,βγ

tL,t′L′

× < ψ∗j (r)αβ,rψj(r)ΠtL(r) >

−
∫

dr′R†
k

ailµ
(r′)αγ,r′ψj(r)Π

a
t′L′(r

′)Ma,βγ
tL,t′L′

× < ψ∗j (r)αβ,rR
ai′l′µ′
k′ (r′)ΠtL(r) >}, (95)

Quite similar formulas are true for expressions in (89) and (90).
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Conclusion and future plans

The report described a general theoretical procedure which would be used for evaluating

the effect of the Breit interaction on the electronic structure of some f-electron elements.

Calculated results and details of the computer code will be presented in the next quarterly

report.
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