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Abstract 
This is document reports the progress and accomplishments achieved in 2006-2007 with LDRD 
funding under the proposal 06-LW-013, “Nuclear Physics the Monte Carlo Way”.  The project was 
a theoretical study to explore a novel approach to dealing with a persistent problem in Monte Carlo 
approaches to quantum many-body systems. The goal was to implement a solution to the notorious 
“sign-problem”, which if successful, would permit, for the first time, exact solutions to quantum 
many-body systems that cannot be addressed with other methods. 
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In this document, we outline the progress and accomplishments achieved during FY2006-

2007with LDRD funding in the proposal 06-LW-013, “Nuclear Physics the Monte Carlo Way”. 
This project was funded under the Lab Wide LDRD competition at Lawrence Livermore National 
Laboratory. The primary objective of this project was to test the feasibility of implementing a 
novel approach to solving the generic quantum many-body problem, which is one of the most 
important problems being addressed in theoretical physics today. Instead of traditional methods 
based matrix diagonalization, this proposal focused a Monte Carlo method. The principal 
difficulty with Monte Carlo methods, is the so-called “sign problem”. The sign problem, which 
will discussed in some detail later, is endemic to Monte Carlo approaches to the quantum many-
body problem, and is the principal reason that they have not been completely successful in the 
past. Here, we outline our research in the “shifted-contour method” applied the Auxiliary Field 
Monte Carlo (AFMC) method 
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The team working on the project consisted of: 
W. Erich Ormand (PI) 
Gergana Stoitcheva (post-doc) 
Daniel Neuhauser (UCLA – university collaborator) 
David Dean (ORNL – outside collaborator) 

During FY2006-2007, funding under the project was used to support Gergana Stoitcheva (100%), 
the principal post-doctoral researcher on the project and the PI (20%). Additional funds were also 
procured to support travel for a single collaborative visit to UCLA by the Dr. Stoticheva and to 
conferences (both Ormand and Stoitcheva) for the purpose of reporting the results to the scientific 
community. 
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One of the great challenges in physics is to develop a fully microscopic theory for quantum 

many-body systems that includes the full range of quantum correlations. This problem is 
ubiquitous in that it spans atomic, condensed matter, and nuclear physics. Traditionally, 
configuration interaction (CI) methods, which rely on diagonalizing the Hamiltonian, H, within a 
basis, were used to achieve this goal. But, CI methods are limited in their applicability because 
typically the basis dimension grows dramatically with particle number. Unfortunately, the near 
exponential growth in basis dimension outpaces Moore’s Law, and dramatically limits the 
usefulness of CI. One alternative is the Auxiliary-field Monte Carlo (AFMC) method, which was 
introduced roughly twenty years ago to address large-scale applications of the Hubbard model in 
condensed-matter physics1, and to nuclear physics in the 1990’s. Since the computational effort 



for AFMC scales much more gently with particle number, it seems like a natural approach to 
large-scale problems. But, AFMC, and other Monte Carlo, methods are often crippled by the 
notorious Fermonic sign problem, which essentially makes the Monte Carlo sampling impossible. 
The sign problem substantially limits the efficacy of the AFMC method, and has limited nuclear 
applications only to even particle systems with simple schematic interactions that were at best 
semi-realistic.  
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The configuration interaction methods are among of the most successful methods for 

providing accurate and detailed descriptions of electronic structure in atoms and nucleonic 
degrees of freedom in nuclei. Valence particles are spatially confined to a set of orbitals and 
influence each other via a residual interaction. A mean-field is often used to provide the basis to 
build a set states, φi, that we then use to construct the many-body eigenstates of the nuclear 
Hamiltonian, i.e., Φµ=Σiαµiφi. Mathematically, the configuration interaction reduces to a matrix-
diagonalization problem by computing the matrix elements, Hij=〈φi |Η|φj〉 between each of the 
basis states, and then finding the eigenvalues of the resulting matrix. Considerable effort has gone 
into studying nuclei within this framework (developing effective interactions and operators, etc.), 
and impressive agreement between theory and experiment has been achieved. 

While configuration interaction methods are very powerful, they are really brute-force 
methods that face substantial computational limitations with increasing particle number. This is 
dramatically illustrated by the following formulae with enumerates the total number of basis 
states, 

€ 

ND , for a two-component system, such atomic nuclei with protons and neutrons, 

    

€ 

ND ≈
Ns

p

Nv
p

 

 
 

 

 
 
Ns

n

Nv
n

 

 
 

 

 
 ,       (1) 

where 

€ 

Ns
p(n ) denotes the number of proton(neutron) single-particle states, and 

€ 

Nv
p(n ) represents the 

number of proton (neutron) valence particles. With the deployment of computers such as ATLAS 
at LLNL and JAGUAR at ORNL it is possible to perform CI calculations for nuclei with basis 
dimensions, 

€ 

ND , approaching 1010, which might suffice for basic CI calculations for A~70 nuclei. 
Pushing to the mass 90-100 region will demand bases of the order 1016. Since the computational 
effort scales as N1.25, we would require a computer 106 times more powerful than any platform 
available today. Indeed, this computational requirement far exceeds even the plans for a future 
exa-scale computing facility that would likely not be available for the next 10 years. An 
alternative is to turn to Monte Carlo methods.   
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In this section, we describe the basic ideas behind the Auxiliary-Field Monte Carlo Shell 

Model. This was first applied to the nuclear physics problem in the early 1990’s while the PI was 
a post-doctoral fellow Caltech. More detailed description outlining the method can be found in 
Refs.2,3 

We start with the idea that we can “filter” to the ground state energy, EGS, via 

   

€ 

lim β →∞
 →   

ϕ0 e−β ˆ H 2 ˆ H e−β ˆ H 2 ϕ0

ϕ0 e−β ˆ H ϕ0

= EGS  ,    (2) 

where 

€ 

ˆ H  is the nuclear Hamiltonian, 

€ 

ϕ0  is a trial wave function. Because of the similarity to 
time-evolution in quantum mechanics, the exponential factor 

€ 

e−β ˆ H  is called the imaginary-time 
propagator. Further, we can use the same formalism to describe thermal properties within the 
canonical ensemble, i.e., 



     

€ 

E β( ) =
Tr ˆ H e−β ˆ H [ ]
Tr e−β ˆ H [ ]

’      (3) 

where 

€ 

β =1 T  is the inverse temperature, the denominator is actually the partition function, and 
the trace of an operator 

€ 

ˆ O  is defined as 

€ 

Tr ˆ O [ ] = φii∑ ˆ O φi , with the sum spanning over all the 
states in the system. Eq. (1) is the basis for the highly successful Green’s Function Monte Carlo 
method that has been applied to ab initio studies of light nuclei. It treats the full Hamiltonian in 
coordinate space and unfortunately is limited to light nuclei for computational reasons.  

At this point, we note that any two-body Hamiltonian can always be expressed as a sum of no 
more than quadratic operators, namely 

     

€ 

H = εα ˆ O α
α

∑ +
1
2

Vα
ˆ O α

2

α

∑ ,     (4) 

where often the operators 

€ 

ˆ O α  are based on the second-quantized density operators 

€ 

ˆ ρ ij = ai
+a j . The 

presence of the two-body term in Eq. (3) dramatically increases the complexity in Eq. (2). We can 
achieve simplification with the Hubbard-Stratonovich (HS) transformation4, which is really a 
Gaussian-integral identity, i.e., 

     

€ 

e
1
2Λ

ˆ O 2 =
Λ

2π
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1
2 Λ σ 2 +sσΛ ˆ O ∫ ,    (5) 

where 

€ 

s = ±1 if 

€ 

Λ ≥ 0  and 

€ 

s = ±i if 

€ 

Λ < 0 . The imaginary-time propagator in Eqs. (1) and (2) 
becomes 
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e−β ˆ H = D σ[ ]∫ exp − 1
2 β Vα σα

2
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∑
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 
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where 

€ 

D σ[ ] = ΔβVα 2π dσαα
∏  and 

€ 

ˆ h σ( ) = εα + sαVασα( )
α

∑ ˆ O α  is the resultant one-body 

Hamiltonian. The physical interpretation of 

€ 

ˆ h σ( ) is that it represents a constrained mean-field for 
the system. Indeed, it can be shown that once Eq. (6) is inserted into Eq. (2), the maximum in the 
integrand corresponds to the so-called Hartree mean field. The power of Eq. (6) is that it 
substantially simplifies computing observables in Eqs. (2) and (3). Indeed, they can be reduced to 
determinants of matrices whose dimensions are given by the number of single-particle, NS, states 
in the chosen space. This dimension typically ranges in the tens, and maybe a few hundred, and 
scales much more gently than the total number of many-body states, which typically increases 
factorially with NS. The total number of fields needed for the full Hamiltonian is just 

€ 

NS
2 . The 

final step comes about by noting that the operators 

€ 

ˆ O α  don’t commute so we are forced to “break 
up” the exponential into 

€ 

Nt  time slices via 

     
  

€ 

e−β ˆ H = e−Δβ ˆ H ( )
Nt

= e−Δβ ˆ H 
e−Δβ ˆ H , 

with 

€ 

Δβ = β Nt . One then performs the HS transformation at each time slice, carefully preserving 
the time ordering. Finally, Eq. (3) takes the form (for Eq. (2), replace the trace with the matrix 
element)  

     

€ 

ˆ O =
D σ[ ]∫ ˆ O 

σ
G σ( )ξ σ( )

D σ[ ]∫ G σ( )ξ σ( )
     (7) 

where, 

€ 

G σ( ) is the set of Gaussian factors in Eq. (6), 
  

€ 

ξ σ( ) = Tr e−Δβ ˆ h σ 1( )
e−Δβ

ˆ h σ Nt( )[ ]  is the trace of 

the one-body imaginary-time evolution operator, and  



     

  

€ 

ˆ O 
σ

=
Tr ˆ O e−Δβ ˆ h σ 1( )

e−Δβ ˆ h σ 1( )[ ]
Tr e−Δβ ˆ h σ 1( )

e−Δβ ˆ h σ 1( )[ ]
. 

The dimension of the integral in Eq. (7) is 

€ 

Nt ⋅ NS
2. For an application involving iron nuclei, 

Ns=20, and typically one needs Nt ~ 32, for an integral over 12,800 variables. For so many 
variables, we turn to Monte Carlo methods. Indeed, Eq. (7) has the typical form of an averaged 
observable with the weight function 

€ 

W σ( ), which must be positive definite. We proceed, with 

€ 

W σ( ) =G σ( )ξ σ( ) , and selecting an ensemble 

€ 

σ k{ } chosen according to 

€ 

W σ( ). The integrand in 
Eq. (7) is the average 

     

€ 

ˆ O 
MC

=
ˆ O 

σ k

Φ σ k( )
k

∑
Φ σ k( )

k∑
,     (8) 

where 

€ 

Φ σ k( ) = ξ σ k( ) ξ σ k( )  is the sign of the weight function, and the error is given by the 
variance.  For a practical application of the method, it is necessary that the sign be at least 
defined. In general, this is not the case, and often one finds that the denominator in Eq. (7) is very 
nearly zero. This is generally referred to as the “fermionic sign problem”. In early 1990’s, we 
determined the set of conditions under which 

€ 

W σ( ) would be positive definite2, and found that 
only a small class of semi-realistic interactions satisfied this condition and only for an even 
number of particles. Fully realistic Hamiltonians have bad sign characteristics, and the AFMC 
method suffered considerable failings when applied to most realistic problems.  
 The maximum of the weight function is readily found by differentiating 

€ 

W σ( ) with respect 
to 

€ 

ˆ O α  and solving the resulting self-consistent set of equations for each 

€ 

σα , i.e,  
     

€ 

˜ σ α = −sα sgn Vα( ) ˆ O α ˜ σ 
.     (9) 

Depending on the representation of the matrix elements in Eq. (6), Eq. (9) is equivalent to the 
Hartree mean field value. 

Recently5,6, a modification to the Hamiltonian in Eq. (4) was tried and found to be 
astonishingly successful in test cases. Instead of the “bare” quadratic operators, one shifts 

€ 

ˆ O α  by 
its mean-field, or Hartree, value, i.e., 

€ 

ˆ O α → ˆ O α − ˆ O α . Equation (4) becomes 
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α
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and in Eq. (6) we apply the HS transformation to the quadratic part 

€ 

ˆ O α − ˆ O α( )
2
. The significance 

of using Eq. (10) is twofold. First, each auxiliary field, 

€ 

σα , is shift by 

€ 

ˆ O α  towards the origin, 
and additional factors are retained in the exponential that suppress negative signs in the weight 
function. By shifting the fields towards the origin, we have an improved sampling via the 
Gaussian factor 

€ 

G σ( ) in Eq. (6) in a rotationally invariant way. This last feature is critical as it 
preserves important physical quantities that are constants of motion. 
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With a successful resolution of the sign problem, several important problems in nuclear 

physics can be addressed. The method is applicable to finding the ground-state binding energy, 
and one can make predictions for the mass of very exotic nuclei. Strength functions for 
electromagnetic and weak transitions can be reliably computed. This is fairly straightforward, as 



one uses the AFMC method to compute the imaginary-time correlation of the transition operator 

€ 

ˆ O , namely2 
    

€ 

ˆ O + τ( ) ˆ O 0( ) = e ˆ H τ ˆ O +e− ˆ H τ ˆ O .      (11) 

Here, we apply the HS transformation to all the imaginary-time propagators and the response 
function is obtained with the inverse Laplace transform of Eq. (8), which is best evaluated using 
maximum-entropy reconstruction methods3. With the response function of Eq. (8), we can 
compute electromagnetic and beta-decay strength functions important for astrophysics.  
 With the thermal energy in Eq. (2), the partition function can be computed via3 

    

€ 

lnZ β( ) = d ′ β E ′ β ( )
0

β

∫ + lnZ 0( ),     (12) 

where 

€ 

Z 0( ) is just the enumeration of the total number of states in the model space. The density 
of states is obtained by computing the inverse Laplace transform of 

€ 

Z β( ) , and can be evaluated 
with either the saddle-point approximation by 

    

€ 

ρ E( ) =
e ln Z+βE

−2π∂E ∂β
       (13) 

or, again, maximum-entropy reconstruction methods3. These microscopic level densities can 
reduce a primary uncertainty in (n,γ) capture rates important for a proper description of the 
synthesis of the heavy elements. 
 Overall, the range of projects that can be addressed with the AFMC method with the sign 
problem brought under control, is extensive. 
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 The AFMC method as describe here is ideally suited for parallel, high-performance 
computing, making it an ideal project to for LLNL. Like most Monte Carlo applications, a 
principal limit is the collection of statistics in order to reduce the estimated uncertainty in the 
evaluation of Eq. (8). In the simplest applications, the AFMC is what is referred to as 
embarrassingly parallel as one approach is to perform 

€ 

NProc independent calculations and simply 
collect the results after each run. In this mode, the AFMC method achieves high efficiency. As 
one moves towards more ambitious applications, however, an additional limit will be introduced 
by the size, 

€ 

Ns, of the model space. In this case, new algorithms that distribute core computations, 
such as the application of the imaginary-time propagator and the computation of matrix 
determinants and inverses will need to be implemented. 
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 Gergana Stoitcheva, who first implemented the shift-contour method for nuclear physics 
problems6, was hired as a post-doctoral employee on the project and initiated a collaboration with 
Prof. Daniel Neuhauser (UCLA) to implement the shifted contour method in a set of codes 
developed by Stoitcheva. These were independently developed, but broadly based on the code 
CAMSHAFT developed by the PI and other collaborators (including David Dean) over 15 years 
ago at Caltech. This effort yielded excellent results for test cases where exact diagonalization 
methods can be employed. The AFMC calculations were performed with 

€ 

Δβ =1/32  MeV-1. A set 
of test AFMC calculations were performed by Stoitcheva, which provide a basis for verifying the 
capability of the shifted-contour method to defeat the sign problem. This is shown in Figs. 1 & 2 
for the test cases 28Mg and 27Na, where the thermal energy, 

€ 

E β( ) , and the density of states, 

€ 

ρ E( ), 
compared to exact results. The exact results were obtained by the PI, who used the shell-model 



 
Figure 1. The thermal energy 

€ 

E β( )  and the 
density of states 

€ 

ρ E( ) for 28Mg calculated 
with the AFMC method and compared to 
exact CI results. 

 
Figure 2. The thermal energy 

€ 

E β( )  and the 
density of states 

€ 

ρ E( ) for 27Na calculated 
with the AFMC method and compared to 
exact CI results. 

code OXBASH to compute all the 28,503 angular momentum project eigenvalues,

€ 

Ei , for each 
nucleus. The thermal energy was then obtained by computing the thermal trace, i.e.,  

    

€ 

E β( ) =

2Ji +1( )Eie
−βEi

i
∑

2Ji +1( )e−βEi
i
∑

. 

The test calculations were performed in the model space defined by 0d5/2, 0d3/2, and 1s1/2 single-
particle orbits for both protons and neutrons and the fully realistic Wildenthal interaction7. The 
significance of the 27Na results is that in the past, the sign problem prohibited calculations with an 
odd number of particles even for the semi-realistic interactions mentioned above. 

 Shown in Table 1, is a comparison for the calculation of the ground-state energies obtained 
with OXBASH and the AFMC method in the so-called zero-temperature formalism, i.e., Eq. (2). 
In general, the AFMC ground-state energies are slightly higher and lie outside of the Monte-Carlo 
uncertainties. This indicates the need to use a small 

€ 

Δβ  value. 
Nucleus CI result (MeV) AFMC result (MeV) 

27Na -99.230 -99.106(55) 
28Mg -120.532 -120.370(25) 

Table 1 Comparison of the AFMC and CI ground-state energies for 27Na and 28Mg  



Going beyond test cases, we also applied 
the method to calculations on a much larger 
scale within the fp-shell, which is defined by 
0f7/2, 0f5/2, 1p3/2, and 1p1/2 single-particle 
orbits for both protons and neutrons. 
Calculations for 56Fe, with a dimension 

€ 

ND ~ 501M , were performed using the 
GXPF1A interaction8 using 

€ 

Δβ =1/32MeV-1. 
With AFMC, we obtained the ground-state 
energy of -195.687(107) MeV, which 
compares favorably to the CI result of -
195.901 MeV, which was obtained with the 
shell-model code REDSTICK written by the 
PI and Calvin Johnson (SDSU). The thermal 
energy, 

€ 

E β( ), is shown in the bottom part of 
Figure 3. In the upper part of Figure 3, the 
level density, 

€ 

ρ E( ), is shown as a function of 
excitation energy. Unlike, the test cases, it 
isn’t possible to determine the exact shell-
model level density. Instead, the level density 
inferred from experiment is shown9. Overall, 
reasonable agreement with experiment is 
achieved, with the AFMC result 
underestimating experiment as the excitation 
energy increases. This is not unexpected, as at 
higher excitation energies, we expect levels 
built on excitations out of the fp-shell to enter. 
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 While this LDRD funded project came to 
an end in October 2008, the research team 
successfully transitioned it from a Lab-wide funded project to an ER-funded project within the 
PAT Directorate: 08-ERD-018, “Towards a Universal Description of Nuclei with Monte Carlo 
Methods”. The goal was to apply the gains of the new project was to integrate the success of the 
Lab-wide project into a broader-based effort to develop a more universal picture of atomic nuclei. 
The main goal was to combine the AFMC method with spherical Hartree-Fock calculations. Here, 
the Hartree-Fock calculations would be used to provide both the model space and interaction 
matrix elements to compute the effect of quantum correlations on top of the Hartree-Fock 
calculation. This would provide for the first time a procedure to move well beyond the simplistic 
mean-field description most often used for heavy nuclei.  
 The results presented in the last section were submitted for publication in Physical Review 
Letters in October 2008 (at the conclusion of this funded LDRD project). The referee reports were 
fairly positive, and requested more detail on the generic efficacy of the shifted-contour method 
and some improved calculations, in particular a study of the convergence in the ground-state 
energy as a function of 

€ 

Δβ . In December 2008, our team suffered a substantial setback when 
Gergana Stoitcheva’s laptop suffered a simultaneous motherboard and hard-drive failure. The 
primary consequence was that all the source codes developed by G. Stoitcheva were lost when we 
discovered that this laptop was not being backed up by PAT computer support. Consequently, we 

 
Figure 3. The thermal energy 

€ 

E β( )  and the 
density of states 

€ 

ρ E( ) for 56Fe calculated 
with the AFMC method. The solid line in the 
bottom panel represents the exact CI ground 
state. In the upper panel, AFMC results are 
compared with recent experimental data.  



were unable to reproduce the previous results. Since the code developed by Stoitcheva was 
somewhat limited in that it could not compute the imaginary-time autocorrelation functions of Eq. 
(11), it was a primary goal for the first year of the extended LDRD to implement the shifted-
contour method into the existing CAMSHAFT code. Consequently, while this was a setback, we 
had a recovery plan. Unfortunately, the G. Stoitcheva left the Laboratory and the collaboration in 
June 2008. While the Pi has coded the shift into CAMSHAFT, it has not been able to reproduce 
the prior results. Possibly indicating a subtle error in the code. Work is still underway at LLNL to 
rebuild the codes, in order to apply the AFMC method to a broad range of nuclei. An alternative 
approach that is a hybrid between the AFMC and CI is also under investigation. In this case, the 
imaginary-time propagator will be used to generate a set of non-orthogonal basis states (in fact, 
Slater determinants) to be used in an angular-momentum- and isospin-projected matrix 
diagonalization. Since the AFMC is based on importance sampling, the action of the imaginary-
time propagator will likely generate a subset of important states that can lead to reasonable 
approximation to the system eigenstates that will be variational and will converge to exact result 
with a sufficiently large set of states. It is important to note, however, that because the AFMC is 
importance sampled, and the Slater determinants are deformed this subset should be substantially 
smaller than the full basis. Some preliminary test-case applications in the sd-shell look promising. 
For example, an AFMC calculation utilizing the shifted contour for 24Mg in the sd-shell with the 
Wildenthal interaction yields an average sign 

€ 

Φ ~ 0.9  with 1000 Monte Carlo samples using the 
Metropolis sampling method. The Monte Carlo energy is roughly halfway between the mean-field 
value and the exact CI result. In addition, the expectation value of the square of the angular 
momentum is ~7.5, which is substantially lower than the mean-field value of 14.5.  Further, 
previous experience indicated that projecting angular momentum onto just the mean-field solution 
yielded an energy nearly equivalent to the result obtained in the two time-slice AFMC calculation. 
Thus, a matrix-diagonalization method based on basis states generated with two or possibly four 
time slices could be highly promising.  
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