
 
 
  
Uncertainty Quantification Approaches for
Advanced Reactor Analyses

ANL-GenIV-110

 

Nuclear Engineering Division



Availability of This Report
This report is available, at no cost, at http://www.osti.gov/bridge. It is also available  
on paper to the U.S. Department of Energy and its contractors, for a processing fee, from:

		  U.S. Department of Energy

	 	 Office of Scientific and Technical Information

		  P.O. Box 62

		  Oak Ridge, TN 37831-0062

		  phone (865) 576-8401

		  fax (865) 576-5728

		  reports@adonis.osti.gov

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States 

Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express 

or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 

product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific  

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply 

its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of 

document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, 

Argonne National Laboratory, or UChicago Argonne, LLC. 

 

About Argonne National Laboratory 
Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC  
under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago,  
at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne,  
see www.anl.gov.



A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

 
 
  
Status Uncertainty Quantification Approaches for Advanced 
Reactor Analyses

ANL-GenIV-110

 

by 
L. L. Briggs 
Nuclear Engineering Division, Argonne National Laboratory   
 
 
  
September 30, 2008
 
work sponsored by 
 
U. S. Department of Energy,  
Office of Nuclear Energy





 

 i  
 

Contents 

Abstract .......................................................................................................................................... iii 

1. Introduction ........................................................................................................................... 1 

2. Classification of Uncertainty Quantification Methodologies ................................................ 2 

3. Statistical Methods ................................................................................................................ 4 
3.1 Sampling and Propagation of Input Uncertainties ....................................................... 4 

3.1.1 Sampling Techniques ....................................................................................... 4 
3.1.2 Number of Samples Required .......................................................................... 5 
3.1.3 Monte Carlo Method........................................................................................ 6 
3.1.4 GRS and IPSN ................................................................................................. 6 
3.1.5 ENUSA ............................................................................................................ 7 
3.1.6 Surrogate models.............................................................................................. 7 
3.1.7 Dempster-Shafer .............................................................................................. 8 

3.2 Variance-Based Methods............................................................................................. 8 
3.3 First-Order and Second-Order Reliability Methods (FORM and SORM)................... 9 

4. The CSAU Method:  The Methodology Approved for Licensing of Operating 
Reactors................................................................................................................................. 9 

5. Deterministic Methods ........................................................................................................ 11 
5.1 Forward Sensitivity Analysis Procedure.................................................................... 11 
5.2 Adjoint Sensitivity Analysis Procedure ..................................................................... 12 

6. Method of Extrapolation of Output Uncertainties ............................................................... 13 

7. Comparisons of Uncertainty Methodologies ....................................................................... 14 

8. Considerations in Performing Uncertainty Evaluations ...................................................... 16 

9. Conclusions and Recommendations .................................................................................... 17 

References ..................................................................................................................................... 19 
 
 





 

 iii  
 

 

Abstract 
 

The original approach to nuclear reactor design or safety analyses was to make very con-
servative modeling assumptions so as to ensure meeting the required safety margins.  
Traditional regulation, as established by the U. S. Nuclear Regulatory Commission re-
quired conservatisms which have subsequently been shown to be excessive.  The com-
mission has therefore moved away from excessively conservative evaluations and has 
determined best-estimate calculations to be an acceptable alternative to conservative 
models, provided the best-estimate results are accompanied by an uncertainty evaluation 
which can demonstrate that, when a set of analysis cases which statistically account for 
uncertainties of all types are generated, there is a 95% probability that at least 95% of the 
cases meet the safety margins. 

To date, nearly all published work addressing uncertainty evaluations of nuclear power 
plant calculations has focused on light water reactors and on large-break loss-of-coolant 
accident (LBLOCA) analyses.  However, there is nothing in the uncertainty evaluation 
methodologies that is limited to a specific type of reactor or to specific types of plant 
scenarios.  These same methodologies can be equally well applied to analyses for high-
temperature gas-cooled reactors and to liquid metal reactors, and they can be applied to 
steady-state calculations, operational transients, or severe accident scenarios. 

This report reviews and compares both statistical and deterministic uncertainty evaluation 
approaches.  Recommendations are given for selection of an uncertainty methodology 
and for considerations to be factored into the process of evaluating uncertainties for ad-
vanced reactor best-estimate analyses. 

 

 





 

 1  
 

UNCERTAINTY QUANTIFICATION APPROACHES FOR 
ADVANCED REACTOR ANALYSES 

 

1. Introduction 
The original approach to nuclear reactor design or safety analyses was to make very con-
servative modeling assumptions so as to ensure meeting the required safety margins.  
Traditional regulation, as established by the U S. Nuclear Regulatory Commission 
(USNRC) required conservatisms which have subsequently been shown to be excessive.  
The commission has therefore moved away from excessively conservative evaluations 
and has determined best-estimate calculations to be an acceptable alternative to 
conservative models, provided the best-estimate results are accompanied by an 
uncertainty evaluation which can demonstrate that, when a set of analysis cases which 
statistically account for uncertainties of all types are generated, there is a 95% probability 
that at least 95% of the cases meet the safety margins [NRC 2007, NRC 1989].  The use 
of best-estimate results plus uncertainty analysis for demonstrating safety margins for 
licensing is also supported by the International Atomic Energy Agency [Sollima 2005]. 

This change in regulatory requirements makes a shift from conservative to best-estimate 
modeling tools very attractive.  Motivating factors for performing best-estimate calcula-
tions with uncertainty quantification include [Petruzzi 2005b]: 

- More realistic evaluation of plant safety margins for licensing 

- Improvements in emergency response when the response can be based on more 
realistic evaluations 

- Identification of parameters which most impact output uncertainty, thus guiding 
prioritization of model development and future experiments. 

While there is general agreement as to the distinction between conservative and best-
estimate models, there is no universally accepted approach to bounding and quantifying 
the effect of uncertainties on analysis results. 

The types of sources of uncertainty which can affect analysis results are almost as diverse 
as the perspectives of the analysts attempting to account for uncertainties (see, for ex-
ample, [Aragones 2005], [CSNI 2005], [Fanning 2008], [Petruzzi 2008], [Petruzzi 
2005b]).  Major categories are: 

- Modeling uncertainties, which can include modeling assumptions and simplifi-
cations, solution schemes, model options,  

- Experimental data uncertainties, including uncertainties in data libraries, instru-
ment errors, material properties measurements, 

- Plant data uncertainties, such as uncertainty in instrument response, unavailability 
of measurements for some plant parameters, manufacturing tolerances on plant 
components, or variations in reactor operating conditions, 
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- Representation/simulation uncertainties, including approximations in the repre-
sentation of the facility geometry, mesh size, imperfect knowledge of initial and 
boundary conditions, 

- Human reliability, such as variation in development of nodalization, different 
interpretations of the information supplied for the problem to be analyzed, 
variations in judgment for accepting the steady-state results upon which the 
transient will be based, differences in interpretation of the results for the transient 
and subsequent refinement of the solution, plus outright errors. 

Many of these types of uncertainties (e.g., experimental data uncertainties, human 
reliability) are common to all modeling efforts, regardless of the type of physics being 
modeled, while others are specific to the physical system.  In thermal-hydraulic models, 
for example [D’Auria 2005], uncertainties are introduced by the approximate nature of 
the conservation equations (not all interactions between phases are included) and by 
commonly used approximations such as assigning the same velocity to different fields of 
the same phase (for example, liquid film and liquid droplets), geometry averaging at the 
cross-section scale (thus ignoring any velocity profile), and geometry averaging at the 
volume scale (one velocity vector is associated with a hydraulic mesh point for each 
phase).  In addition, empirical correlations are typically used to close the thermal-
hydraulic balance equations; these correlations introduce uncertainty due to the scatter 
and error in the data upon which they are based, due to the fact that most correlations are 
developed for steady-state, fully developed flow (conditions which do not apply over 
much of the range of interest of the analysis), and due to the fact that their range of 
validity often does not encompass all of the problem being analyzed. 

To date, nearly all published work addressing uncertainty evaluations of nuclear power 
plant calculations has focused on light water reactors and on large-break loss-of-coolant 
accident (LBLOCA) analyses (two exceptions are [Morris 2007] and [Morris 1981], 
which discuss uncertainty analyses of liquid metal reactor (LMR) transients).  However, 
as demonstrated by the two Morris papers, there is nothing in the uncertainty evaluation 
methodologies that is limited to a specific type of reactor or to specific types of plant 
scenarios.  These same methodologies can be equally well applied to analyses for high-
temperature gas-cooled reactors (HTGR) and to LMR’s, and they can be applied to 
steady-state calculations, operational transients, or severe accident scenarios. 

2. Classification of Uncertainty Quantification Methodologies 
The term “uncertainty analysis” is not always defined consistently by authors in the field.  
In particular, there is sometimes confusion as to the distinctions between uncertainty 
analysis and the related area of sensitivity analysis.  Most authors classify uncertainty 
analysis of a modeling evaluation as the determination of the amount of imprecision 
present in the predicted output parameters of interest, while sensitivity analysis is the 
means of identifying the contribution to this imprecision made by the uncertainty in each 
input parameter to the model [Saltelli 2000, Ionescu-Bujor 2004].  If a sensitivity analysis 
is performed first and identifies the dependence, or sensitivity, of a given output 
parameter on the variation in each uncertain input parameter, then these sensitivities, 
once known, can be combined in an uncertainty analysis to predict the overall uncertainty 
in the output parameter.  By contrast, if an uncertainty analysis is performed first, it may 
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or may not be possible to estimate the sensitivities of the output parameters to individual 
input parameters, depending upon how the uncertainty analysis is conducted. 

Most methods for performing uncertainty analyses on a physical model involve pro-
pagating uncertainties in the model input parameters through the model in order to quan-
tify the resulting uncertainty in the model responses (outputs) which are of interest.  
These methods fall into one of two categories:  statistical or deterministic.  There is an 
additional approach based upon evaluation of output uncertainties; this method is briefly 
described in Sec. 6. 

The majority of techniques which evaluate uncertainties in model output parameter 
predictions are statistical.  These characterize the uncertainties in output parameters by 
estimating statistical quantities such as the mean value and variance of an output 
parameter before evaluating the sensitivity of the parameter to variation in each indivi-
dual input parameter [Cacuci 2004]. 

By contrast, deterministic methods first evaluate the sensitivity of an output parameter to 
each input parameter, then use an approach such as the method of moments to linearly 
combine the sensitivities and characterize the parameter uncertainty by estimating the 
mean value and variance.  Deterministic methods compute local partial derivatives of a 
particular system response (or output) with respect to each input parameter of interest; 
these local partial derivatives are the local sensitivities of the response [Ionescu-Bujor 
2004]. 

Statistical and deterministic methods share some common characteristics.  Both propa-
gate input uncertainties to determine uncertainties in output parameters of interest.  With 
both approaches, it is necessary to assign a range of uncertainty and a distribution 
function to each input parameter which is included in the evaluation.  Because both rely 
upon results from propagating input parameter values through the analysis model, both 
introduce uncertainty from the model limitations, in addition to the uncertainties in the 
input parameters [CSNI 2007].  This added uncertainty could be separately quantified 
only by writing several different versions of the code, each with different modeling 
assumptions, then applying uncertainty analysis to each model version. 

There are also significant differences between statistical and deterministic approaches.  
As a practical matter, statistical methods usually assign uncertainties to only a limited 
number of input parameters, so that application of a statistical method is preceded by a 
determination of which input parameters are the most influential on the model responses 
of interest when uncertainties are considered.  By contrast, deterministic methods 
establish sensitivities for all input parameters; in fact, one application of deterministic 
methods is to generate sensitivities which can be used to identify those input parameters 
which are of greatest importance to include in a model uncertainty analysis using a 
statistical method.  The number of uncertain input parameters which is included in an 
analysis is often limited by the number of parameters for which the range of uncertainty 
and a distribution function can be established either by experimental data or by expert 
judgment. 

Statistical methods are much easier and cheaper to develop than deterministic methods 
and are generally easier to use, but they can require many repetitions, or realizations, of 
the original high-fidelity model or a lower-fidelity surrogate for the model.  Since 
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licensing requires uncertainty bounds to a specified probability and confidence level, the 
number of runs required to establish an acceptable uncertainty bound on best-estimate 
calculations is determined by the sample size needed to set the required tolerance limits 
[CSNI 2007, Wilks 1941, DeVictor 2005], as discussed in more detail below in Sec. 
3.1.2. 

3. Statistical Methods 
As mentioned above, most approaches for quantifying uncertainties in best-estimate 
model predictions are based on statistical methods.  The most commonly used of these 
are described briefly below. 

3.1 Sampling and Propagation of Input Uncertainties 
This is the most basic and robust approach to evaluating uncertainties.  Several methods, 
discussed below, use some variation of this approach.  The process begins by identifying 
the dominant uncertain input parameters to be used in the analysis and defining a 
probability distribution function (PDF) for the uncertainty in each input parameter.  
Ideally, the function is determined from representative experimental data; however, in 
practice, such data are often incomplete or unavailable.  Frequently, all that is available 
for an input parameter is an experimentally determined range of uncertainty; in this case, 
it is common practice to assume a uniform distribution for the PDF [Chojnacki 2005b].  
If no experimental data are available, expert judgment must be used to estimate an 
uncertainty range.  This is a fallback position which is problematic for severe accident 
analyses and licensing evaluations [CSNI 2007]; however, in practice, it is difficult to 
avoid using expert judgment for at least some of the basis for the PDF’s for uncertain 
input parameters.  Information on interdependencies among the input parameters should 
be used when available, but it is often the case that little or no dependency information is 
known, and so the input parameters are assumed to be independent [Chojnacki 2005b].   

The set of uncertain input parameters is then sampled N times; several types of sampling 
techniques may be used, as discussed below. Then N runs are made with the model code, 
each run using a different one of the N sets of input parameters generated by the 
sampling.  These N runs produce a sampling of the output parameters of interest, from 
which the mean and variance of the distribution of each output quantity may be estimated 
[DeVictor 2005, Chojnacki 2005a]. 

3.1.1 Sampling Techniques 
There are several techniques commonly used to sample input parameters for uncertainty 
analyses.  These are described below. 

Simple random sampling.  This is the simplest of the sampling techniques, and probably 
the most widely used.  A sample is generated independently for each uncertain parameter 
according to the parameter probability distribution.  This method is preferred when the 
uncertainty in the model output parameters is significantly impacted by the uncertainty in 
a number of the input parameters.  Because it is purely random, statistical estimation 
methods can be applied to estimate the distributions of the output parameters. The main 
drawback to this technique is that often the number of samples drawn, and therefore the 
number of runs of the model code, must be quite large in order to give an acceptably 
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small variance, and this can be quite expensive if the model code is a high-fidelity, CPU-
intensive code [Chojnacki 2005a, DeVictor 2005]. 

Computational costs can be lowered if sampling is done with a variance reduction 
technique, rather than with simple random sampling.  The two most commonly used of 
these are stratified sampling and Latin Hypercube sampling. 

Stratified sampling.  In this approach [Iman 1982], the probability distribution for each 
uncertain input parameter is divided into N strata of equal marginal probability, and one 
sample is drawn from each stratum for each input parameter.  This technique results in a 
more even distribution of sampled values throughout the range of each uncertain 
parameter and prevents the clustering of sample values which can result if a moderate 
number of random samples is taken.  Stratified sampling thus generally reduces the 
number of samples required for good statistics. 

Latin Hypercube sampling.  This technique [Iman 1982, Helton 2005] improves upon 
stratified sampling, at a slight additional computational cost.  First, a stratified sampling 
is performed, then the samples for each input parameter are permuted using some method 
of randomization.  The first set of sampled input parameters is then made up of the first 
value for each input parameter in the permuted order, the second set is made up of the 
second value for each input parameter in the permuted order, etc.  This approach assumes 
that the input variables are uncorrelated.  If there is a known correlation among the input 
variables, the correlation matrix for the parameters, rather than a randomization scheme, 
can be used to permute the order of the stratified samples [Chojnacki 2005a, Iman 1982].  
Generally, Latin Hypercube sampling produces a more accurate estimate of the output 
PDF than does random sampling, if the same number of samples is drawn when applying 
each technique. 

3.1.2 Number of Samples Required 
Because simple random sampling samples the uncertain input variables one at a time and 
runs the model code once for each sampling, it can require thousands of code runs to 
generate good statistics.  This is a parametric approach, since the number of samples 
taken is dependent upon the number of input parameters to be sampled.  The number of 
random samples, and therefore code runs, can be substantially reduced if a nonparametric 
approach is used instead.  In this case, all uncertain parameters are sampled simul-
taneously, and the number of samples is decoupled from the number of uncertain input 
parameters. 

The criterion for setting the number of samples taken when the nonparametric approach 
is used is to take at least as many samples as will ensure that, when the model code is run 
for each of these samples and a set of values of the output quantity of interest is 
generated, this set of values meets the tolerance limit required for that output quantity 
with a specified confidence level [Muftuoglu 2007, Glaeser 2008, CSNI 2007].  The 
method for determining the minimum sample size for specified upper and/or lower 
tolerance limits was developed by Wilks [Wilks 1941] and extended to the multivariate 
case by Wald [Wald 1943] and Tukey [Tukey 1947].  Somerville [Somerville 1958] 
generalized Wilks’ approach to establish the minimum number of samples required so 
that the set of response values lying between the rth smallest and the sth largest of all the 
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response values meets the required tolerance limit.  In the case of uncertainty estimates 
for best-estimate calculations, r=0, and Wilks’ theorem provides an upper bound on the 
calculational uncertainty [Cadet-Mercier 2002].  The case of s=1, i.e., the Wilks formula 
at the first order, gives the minimum number N of samples required so that all N response 
values meet the tolerance limit with the specified confidence level, but this result often 
produces an upper bound value that is more conservative than desired.  The BEMUSE 
analysis of the LOFT L2-5 test [CSNI 2007] indicated that applying the Wilks formula to 
the 4th or 5th order usually produced a more satisfactory tolerance, at the price of some 
additional code runs.  Thus, if N runs are performed using N samples of the input 
parameters and the resulting values of Y, the output parameter of interest, are ordered, 
with Y(1)<Y(2)<...Y(N), then, for a tolerance limit of the 95% percentile at a confidence 
level of 95% [NRC 2007, NRC 1989], the first four orders of Wilks’ method give upper 
bounds as follows: 

- Y(N), with N = 59: Wilks at the first order (r = 1). 

- Y(N-1), with N = 93: Wilks at the second order (r = 2). 

- Y(N-2), with N = 124: Wilks at the third order (r = 3). 

- Y(N-3), with N = 153: Wilks at the fourth order (r = 4), etc.  

Thus, taking greater numbers of samples can reduce the maximum value Y that satisfies 
the USNRC 95/95 criterion [CSNI 2007]. 

3.1.3 Monte Carlo Method 
This is the simplest technique by which to propagate input parameter uncertainties. Para-
metric random sampling of the input parameters is used, and for each set of input 
parameters, the full, high-fidelity model is run to produce samples of the output responses 
of interest.  This method has the drawback of often being very expensive to apply, but it 
is one of the most straightforward and therefore economical to implement, and all 
statistical evaluation methods may be rigorously used on the resulting sample space 
[Devictor 2005].  It will also correctly account for any discontinuities and transitions 
between physical regimes, can incorporate correlations between input parameters, and 
works well for input parameters with large uncertainty ranges [Gorham 1993]. 

3.1.4 GRS and IPSN 
These approaches also use the full numerical/computational model, but instead of 
parametric sampling, they apply nonparametric simple random sampling in the form of 
the Wilks method [Glaeser 2008]. Thus, the number of code runs is much reduced over 
that required by the Monte Carlo method.  Both approaches address the effects of 
uncertainties in the code models, boundary and initial conditions, and the solution 
algorithms upon calculation results.  The GRS (Gesellschaft für Anlagen- und Reaktor-
sicherheit) method was developed in Germany and is used with several versions of the 
ATHLET best-estimate thermal-hydraulics code [Austregesilo 2005, Petruzzi 2007], 
while the IPSN (Institut de Protection et de Sureté Nucléaire) method is French and is 
applied to the CATHARE V2.5 best-estimate thermal-hydraulics code [Petruzzi 2007]. 
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3.1.5 ENUSA  
The ENUSA method was developed in Spain and is very similar to the GRS and IPSN 
methods.  It propagates input uncertainties by running the full, high-fidelity model and 
uses nonparametric sampling of the uncertain input parameters, with the number of 
samples taken determined by the Wilks method.  It differs from the GRS and IPSN 
approaches in that it selects the subset of uncertain input parameters to be sampled by 
applying the Phenomena Identification and Ranking Table process, a subjective approach 
which uses expert opinion to rank the dominant phenomena in the transient of interest 
[Boyack 1990].  This method is distinguished from the USNRC’s CSAU method (see 
Sec. 4) only by 1) the use of a high-fidelity model instead of a response surface (see Sec. 
3.1.6) and 2) by using nonparametric sampling [Petruzzi 2007]. 

3.1.6 Surrogate models 
For complex models, using the full-fidelity model to propagate each set of sampled 
uncertain input parameters can be prohibitively expensive.  It is therefore sometimes 
necessary to replace the full complex model with a surrogate model.  The surrogate 
model represents the same physical situation as the full model but is derived with 
simplifying assumptions, resulting in a model which runs much more quickly than the 
original code, at the price of reduced accuracy and range of applicability.  Each set of 
sampled input parameters is then propagated through the surrogate model, and the 
resulting responses are used to estimate the uncertainty distribution for the output of 
interest. 

There are several possibilities for surrogate models: 

Simplified modeling.  The detailed code model may simply be replaced by a model 
which makes simplifying assumptions about the problem to be analyzed.  This approach 
was used by Morris [Morris 2007] in a study of uncertainty in best-estimate analyses of 
three unprotected fast reactor accident scenarios.  Instead of using the SAS4A/SASSYS 
high-fidelity severe accident code [Cahalan 1994], Morris substituted the MATWS 
program [Cahalan 2002], which coupled the SAS4A/SASSYS point-kinetics model with 
a simplified modeling of the reactor thermal-hydraulics.  This substitution allowed him to 
use the Monte Carlo approach to estimating uncertainty and make thousands of code runs 
to propagate the input uncertainties while still keeping the required computing time to a 
reasonable amount. 

Response surfaces.  The response surface approach generates a simplified model using a 
three-step approach [Morris 1981]: 

1) The input parameters are evaluated to determine those which have the greatest 
influence on the model response(s) of interest, and from these a set is chosen to 
use as the uncertain input parameters. 

2) The responses of the full-fidelity model are evaluated over a range of samples of 
the input parameter space. 

3) These responses are used to generate a linear parametric expression which 
adequately approximates the model responses over the range of interest of the 
uncertain input variables.  This expression constitutes the response surface. 
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The response surface thus represents the full-fidelity model as an interpolation of a few 
solutions to the complex model generated by sampling the uncertainty in a few dominant 
input parameters.  This approach assumes that the code responses behave smoothly over 
the range of interest.  It also requires having a means to make a judicious selection of the 
dominant uncertain input parameters [Morris 2008].  If the complex model is sufficiently 
well-behaved, use of a response surface can produce accurate results while being much 
less expensive to run repeatedly with a set of sampled input parameters than would be the 
case with the full-fidelity model. 

Stochastic Finite Element Methods (SFEM).   These methods effectively create a higher 
order response surface surrogate model using finite elements as the approximation 
functions for the parametric expression which approximates the full model responses.  
They are more accurate than linear models and more computationally efficient than 
running the high-fidelity model, but the number of basis functions required expands 
rapidly as the dimension of the system of interest increases.  They are most efficiently 
used if a sensitivity analysis is performed first to serve as a basis for selecting the subset 
of uncertain input parameters to be sampled and used to generate the higher-order 
response model [Roderick 2008, Fanning 2008]. 

Neural networks.  This method has been proposed by Martinez [Martinez 2005].  A learn-
ing set of surrogate models is built by sampling the full model using either simple ran-
dom sampling or Latin Hypercube sampling. 

3.1.7 Dempster-Shafer 
Dempster-Shafer uncertainty methodology is an extension of the classical Monte Carlo 
approach that provides one way of addressing lack of knowledge about the true distri-
bution of an uncertain output parameter.  This theory provides a means for assigning 
probability distribution functions to some uncertain input parameters about which 
sufficient information is available and possibility functions to other parameters when the 
information available can be associated only with a fuzzy number.  The combined use of 
PDF’s and fuzzy numbers produces a plausibility distribution which gives accurate 
knowledge about the lower and upper probabilities of the uncertain parameter.  The un-
certainty assigned to the parameter of interest is represented by the lower and upper 
probabilities, and the difference between these probabilities is a measure of the lack of 
knowledge modeled by the fuzzy numbers [Chojnacki 2005b]. 

3.2 Variance-Based Methods 
These methods use variance ratios to assess the importance of an input parameter in 
contributing to the uncertainty of a model output parameter.  An example of these is the 
Fourier Amplitude Sensitivity Test, which is based on using a Fourier series to 
approximate the full model.  These methods have the advantage that they do not assume a 
linear relationship between the model input parameters and the model responses.  
However, they are computationally expensive, requiring many thousands of realizations 
if the problem involves more than a few input parameters.  Knowledge of the inverse 
cumulative distribution function for the PDF of each uncertain input parameter is also 
required [Lu 2001, Cacuci 2004]. 
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3.3 First-Order and Second-Order Reliability Methods (FORM 
and SORM) 

These methods focus specifically on estimating a probability of failure.  They make use 
of optimization algorithms which identify the most likely point of failure within the space 
of uncertain parameters, then approximate the probability of failure by fitting a first-order 
(linear) or second-order (quadratic) surface at that point.  They can be much faster than 
sampling-based methods for determining the particular mode of failure of the system 
under consideration.  With respect to severe accident and licensing analyses, these 
methods are primarily suited to structural mechanics evaluations.  Structural mechanics 
analyses are interested in failure probabilities, not just uncertainties, so behavior in the 
tail of a distribution function is of the greatest interest.  The FORM/SORM methods are 
therefore appropriate [DeVictor 2005, Cacuci 2004]. 

4. The CSAU Method:  The Methodology Approved for Licens-
ing of Operating Reactors 

CSAU, or the Code Scaling, Applicability, and Uncertainty evaluation method, is a 
complete specification of steps to prepare for and execute an uncertainty evaluation.  
Because CSAU, which employs a statistical uncertainty analysis approach, covers not 
only the actual uncertainty evaluation but also steps leading to performing both the 
scenario calculations and the uncertainty assessment, it is discussed separately from the 
other statistical methods.  Fourteen steps, which are grouped into three elements, are 
specified by the CSAU method.  It was developed by the USNRC for evaluating 
uncertainty in best-estimate code calculations performed for design and safety analyses of 
light water reactors [Boyack 1990, Lellouche 1990], but there is really nothing in the 
method specific to a particular category of reactor; in fact, the approach could be applied 
to calculations for systems other than nuclear reactors.  The method should require little 
modification to make it applicable to HTGR and LMR best-estimate calculations.  
Although a common application of this method is determination of the uncertainties in 
LBLOCA analyses, the approach can be applied to any steady-state or transient analyses 
for which sufficient experimental data are available. 

The three elements of the CSAU method, and the steps they cover, are as follows 
[Boyack 1990]: 

1) Requirements and code capabilities.  This element encompasses the first six steps 
of the CSAU method, namely 

i. Specify a scenario and thus determine the parameters to be evaluated. 

ii. Select the nuclear power plant for which calculations are to be performed. 

iii. Identify and rank the physical processes involved.  In this step, the dominant 
phenomena which drive the scenario are identified by expert judgment, then 
ranked and summarized in a Phenomena Identification and Ranking Table 
(PIRT).  From these rankings, the actual relevant model input parameters to 
which uncertainties must be assigned are determined. 

iv. Select a frozen version of an analysis code. 
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v. Provide code documentation. 

vi. Determine the applicability of the code to the scenario by comparing the 
modeling requirements established in steps (i) through (iii) against the inform-
ation on the code capabilities assembled in steps (iv) and (v). 

2) Assessment and Ranging of Parameters.  The next four steps in the process are 
grouped into this element and are 

vii. Establish an assessment matrix.  In this step, test data are assembled from both 
separate effects tests and integral tests to be used to evaluate if the code can 
accurately model the phenomena determined in step (iii) and to address any 
code shortcomings identified in step (vi). 

viii. Generate the nodalization of the plant that will be used by the analysis code. 

ix. Determine code and experiment accuracy by using the code selected in step 
(iv) with the nodalization established in step (viii) to simulate the experiments 
from which the data assembled in step (vii) were collected.  Any biases which 
must be included to compensate for deficiencies in the code models will be 
determined in this step also. 

x. Determine effects of scale, i.e., verify that the best-estimate code can scale up 
phenomena measured in test facilities to the same phenomena in the full-size 
plant.   

3) Sensitivity and Uncertainty Analyses.  In this element, the actual uncertainty and 
sensitivity analyses are performed through the final four steps: 

xi. Determine the effect of the reactor input parameters and state.  This step quan-
tifies how uncertainty in the reactor state and operating conditions at the start 
of the transient affect the simulation. 

xii. Perform nuclear power plant sensitivity calculations, to determine the effect of 
variability in individual parameters on the dominant safety parameters. 

xiii. Combine biases and uncertainties established in earlier steps into an asses-
sment of total uncertainty, justifying the particular method used to perform the 
combination.  This step combines the uncertainties of each of the processes 
identified in step (iii) to estimate the total uncertainty in the calculated para-
meters. 

xiv. Determine total uncertainty.  Use the output of step (xiii) to make a statement 
of total uncertainty for the code. 

The USNRC requires that an uncertainty evaluation of a best-estimate calculation of any 
output parameter identify a bounding value of that parameter that covers 95% or more of 
the domain of that parameter with a 95% confidence level.  In other words, there is a 95% 
probability that at least 95% of the values within the uncertainty range of the output 
parameter fall at or below the bounding value identified through the uncertainty analysis.  
This 95/95 criterion is considered sufficiently conservative by the USNRC for LBLOCA 
analyses for light water reactors [Martin 2005, Muftuoglu 2007, Boyack 1990].  This is 



 

 11  
 

the criterion which must be met by the overall uncertainty determined using the CSAU 
method. 

As described above, the original implementation of the CSAU approach determined the 
set of uncertain input parameters to be considered by applying the PIRT process, then 
used simple random sampling to sample the uncertain input parameters and propagated 
these uncertainties through a surrogate model in the form of a response surface [Boyack 
1990]. However, these are not fundamental limitations of the method.  For example, 
AREVA has applied the fourteen steps of the CSAU approach to several LBLOCA 
analyses for pressurized water reactors, using the S-RELAP5 code; however, instead of 
using response surfaces and simple random sampling, AREVA substituted the GRS 
method, which made used of the full-fidelity model and nonparametric sampling (see 
Sec. 3.1.4).  This modification to the original CSAU methodology has been approved by 
the USNRC for licensing of fuel reloads [Martin 2005]. 

The CSAU approach has been demonstrated by Westinghouse [Young 1998], as well as 
by AREVA [Martin 2005].  It has been applied to updates of the Final Safety Analysis 
Reports of about twenty U. S. light water reactors by Westinghouse [Glaeser 2002, IAEA 
2003], to the AP600 LBLOCA analysis [Glaeser 2002], and to boiling water reactor 
licensing in Japan [IAEA 2003]. 

5. Deterministic Methods 
Deterministic methods are used to find the local sensitivity of a particular output para-
meter to variations in the input parameters to the analysis model.  The methods assume 
that the sensitivity of the output parameter depends linearly on the variation in each input 
parameter.  Once the local sensitivities have been found, the mean value and variance of 
the output parameter can be determined from application of the Propagation of Errors 
method to express the value of the output parameter as a linear function of the 
sensitivities and the uncertainties in the input parameters. 

There are two deterministic methods which have been applied to large-scale, complex 
systems:  the Forward Sensitivity Analysis Procedure and the Adjoint Sensitivity Analy-
sis Procedure, sometimes called differential sensitivity theory.  These two methods will 
be briefly described. 

5.1 Forward Sensitivity Analysis Procedure 
This method begins with a system of linear equations, 

 Ax = b, (1) 

where the components of the n x n matrix A and the vector b are parameters with asso-
ciated uncertainties.  The responses, or output quantities, of this system are scalar quan-
tities of the form 

 R = cx, (2) 

where the components of c are also parameters with associated uncertainties.  The 
sensitivity of a response R, δR, to variation in any of the uncertain parameters can be de-
termined by perturbing Eq. (1) around the best-estimate, or nominal, system of equations 
and substituting the solution into the perturbation of Eq. (2) around the best-estimate 
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response R0.  However, this approach requires inverting a new matrix, A0 + δA, for each 
variation of a parameter.  A less burdensome approach is to solve the Forward Sensitivity 
System, 

 A0(δx) = δb – (δA)x0 (3) 

for δx and calculate the sensitivity of R to the perturbed parameter as 

 δR = c0(δx) + (δc)x0. (4) 

This approach requires inversion (or iterative solution) only of the same matrix A0 which 
must be inverted to generate the best-estimate solution anyway.  However, to determine 
the local sensitivity of each input parameter, solution of the differentiated system, Eq. (3), 
must be repeated each time an input parameter is perturbed.  Thus, the Forward Sensi-
tivity Analysis Procedure is a feasible approach only if the number of system responses 
of interest exceeds the number of uncertain input parameters, which is rarely the case in 
practice.  Also, since Eq. (3) is linear, the method is accurate only for small perturbations 
of the input parameters.  For further details on the Forward Sensitivity Analysis Pro-
cedure, see [Cacuci 2005, Ionescu-Bujor 2004, Ionsescu-Bujor 2005]. 

5.2 Adjoint Sensitivity Analysis Procedure 
The Adjoint Sensitivity Analysis Procedure (ASAP) is an alternative to the Forward Sen-
sitivity Analysis Procedure and avoids having to repeatedly invert matrix A0 in Eq. (3) 
above.  The method is derived by forming the inner product of Eq. (3) with an n-
component vector ψ, giving 

 〉−〈=〉〈 00 xδAδbψδxAψ )(,)(, . (5) 

Transposing the left side of Eq. (5) gives 

 〉〈=〉〈 +ψAδx,δxAψ 00 )()(, . (6) 

Since ψ is arbitrary, it can be set by identifying the right-hand side of Eq. (6) with the 
first term on the right side of Eq. (4), giving 

 (A0)+ ψ = c0. (7) 

Combining Eqs. (3) through (7) then gives 

,)(δR)()(,)(, 0000 xδcδxcψAδxxδAδbψ −==〉〈=〉−〈 +  

which can be rearranged to give 

 .)(,)(δR 〉−〈+= 00 xδAδbψxδc  (8) 

The vector ψ is the adjoint function which solves the adjoint sensitivity system, Eq. (7).  
Since Eq. (7) is independent of the input parameter uncertainties (δA) and δb and is 
linear in ψ, the adjoint function can be found by solving Eq. (7) just once.  The local sen-
sitivity of the system response, δR, to all system input parameters can then be found by 
solving Eq. (8), which is a much less costly calculation than inverting A0 or repeatedly 
solving Eqs. (1) and (2) for multiple samples of the uncertain input parameters.  The ad-
joint equations must be solved backwards in time, starting from the solution to the origi-
nal system of equations [Cacuci 2004, Ounsy 1994, Ionescu-Bujor 2000].  The sensi-
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tivities thus determined can then be used to perform an uncertainty analysis of the 
system. 

The ASAP has been implemented and tested in the light water reactor analysis codes 
RELAP5/MOD3.2 [Cacuci 2000], CATHARE [Ounsy 1994], and ATHLET [Glaeser 
2002], all of which couple point kinetics and thermal-hydraulics.  It has also been applied 
to a simple model of loss of decay heat in a gas-cooled fast reactor [Morris 1981].  While 
these implementations demonstrated that the ASAP can be used for sensitivity and 
uncertainty analyses, they also brought out some drawbacks to the method: 

1) Since the adjoint is a function of the model response R, a new adjoint must be 
developed for each model response parameter for which uncertainty is to be 
characterized. 

2) Development of an adjoint set of equations to be added to an existing code is 
usually difficult, expensive, and time-consuming [Glaeser 2002, Cacuci 2005].  
Even when the forward equations and adjoint equations are developed and coded 
simultaneously, the addition of the adjoint equations adds extensively to the 
development effort [Morris 1981]. 

3) The adjoint produces a linear approximation to the output parameter probability 
distribution function; for thermal-hydraulic problems, the true distribution may be 
significantly non-linear [Morris 2008]. 

4) If the range of responses of interest expands after the main code development 
effort, a large amount of additional development effort must be expended to 
develop additional adjoint functions.  Also, if the forward model is evolving, the 
associated adjoint models must be redeveloped to account for the evolution of the 
forward model. 

The conclusion is that, while the ASAP has some attractive features, the drawbacks of 
this approach are significant and the method requires further development.   

6. Method of Extrapolation of Output Uncertainties 
As mentioned in Sec. 2, one uncertainty analysis method (the Uncertainty Method based 
upon Accuracy Extrapolation “embedded” into the code with the Capability of Internal 
Assessment of Uncertainty, or UMAE-CIAU [Petruzzi 2007, Petruzzi 2008, Petruzzi 
2005b]) extrapolates output uncertainties by comparing best-estimate results against 
relevant experimental data from small-scale single-effects test facilities, integral test 
facilities, and, if available, the power plant.  This approach requires an extensive set of 
data which covers the full range of interest and is considered both representative of the 
problem being analyzed and reliable, and so the method is appropriate primarily to 
steady-state scenarios and operational transients and is not readily applicable to severe 
accident analysis.  It also cannot be used to determine the sensitivity of a model response 
to the uncertainty in a particular input parameter.  However, the method has the ad-
vantage that it does not require determination of either uncertainty ranges or distribution 
functions for uncertain input parameters, nor does it require selection of a set of uncertain 
parameters to be considered.  Thus, the need for application of engineering judgment is 
largely circumvented and is limited to the judgment required in selecting the experiments 
and data against which to compare model responses. 
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7. Comparisons of Uncertainty Methodologies 
A summary of the strengths and weaknesses of the various methodologies discussed in 
Secs. 3-6 is given below in Table 1.  As can be seen by examining the table, all methods 
have both strengths and weaknesses, and no one method stands out as the consensus 
choice for uncertainty evaluations. The selection of an uncertainty evaluation method for 
a particular best-estimate analysis must take into account several factors: 

• The tradeoff between the expense of using the full high-fidelity model equations 
compared with the loss of accuracy incurred when a surrogate model, such as 
response surfaces, is used.  For modeling of a sufficiently complex system, the 
high-fidelity model may simply take too long, using the available computer hard-
ware, to run multiple times for a statistical uncertainty evaluation, but the system 
must also be evaluated to determine if it is sufficiently well-behaved in the range 
of interest so that it can be represented by a surrogate model.  It should also be 
remembered that the use of high-fidelity models becomes increasingly attractive 
as faster computers with larger memory and improved reliability become avail-
able.  Given the rate at which computer hardware has improved for a number of 
years, it is prudent to consider whether the time and effort required for devel-
opment and implementation of a sufficiently accurate surrogate for a particular 
model may not be better spent in addressing considerations which will not benefit 
from hardware improvements, such as methods for determining uncertainty 
distributions for input parameters and for identifying dominant uncertain input 
parameters. 

• The level of difficulty in implementing an uncertainty evaluation method and the 
flexibility of the method once implemented.  The success of the GRS and similar 
implementations of the simple Monte Carlo approach, coupled with the Wilks 
method (see Secs. 3.1.4 and 4), demonstrates the benefits of an approach that is 
simple to implement and flexible to use.  By contrast, adjoint procedures for 
sensitivity analysis have been under development for about thirty years and have 
yet to gain much acceptance; as discussed in Sec. 5.2, the ASAP is both expensive 
to develop, even if developed in parallel with the original model, and it is 
inflexible in that a new adjoint must be developed for each model response of 
interest or if the original model is changed. 

• The expense of applying an uncertainty evaluation method once it is in place.  If 
the original high-fidelity model is not likely to change for a long period of time 
and the model responses of interest are not expected to change, an evaluation 
method, such as ASAP, that is more difficult to implement but inexpensive to run 
once it is developed may be the best choice. 

• Deterministic approach or statistical approach.  The deterministic methods pro-
vide insight into which uncertain input parameters most influence the model 
responses of interest.  However, these methods add another layer of complexity in 
that the uncertainty analysis can be performed only once a sensitivity analysis is 
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Table 1.  Comparison of Strengths and Weaknesses of Uncertainty Analysis Methods 
Method Easy to  

implement 
Number of 
code runs 

Cost per run Selection of 
uncertain input 
parameters 

Flexible to add new 
model responses? 

Flexible 
to model  
changes? 

Accuracy 

Statistical        
 Monte Carlo Yes Parametric - 

may be large 
Full model - 
may be high 

Data, experts Yes Yes Accuracy of input 
uncertainties 

 GRS/IPSN Yes Nonparametric 
(Wilks) 

Full model - 
may be high 

Data, experts Yes Yes Accuracy of input 
uncertainties 

 ENUSA Yes Nonparametric 
(Wilks) 

Full model - 
may be high 

PIRT Yes Yes Accuracy of input 
uncertainties 

 Simplified 
 modeling 

Additional 
model devel. 

Can use 
nonparametric 

Low Data, experts Redevelopment of simplified model < full model 

 Response 
 surfaces 

Resp. surface 
development 

Can use 
nonparametric 

Low Data, experts Redevelopment of response surface < full model, no 
discontinuities 

 SFEM Additional 
model devel. 

Can use 
nonparametric 

Low for small 
no. of inputs 

Data, experts Redevelopment of approximation 
model 

< full model 

 Dempster-Shafer Yes Parametric - 
may be large 

Full model - 
may be high 

Data, experts Yes Yes Accuracy of input 
uncertainties 

 FAST Fourier series 
expansion 

Increases rapidly 
with no. of input 
parameters 

May be high Data, experts Yes Yes Accuracy of input 
uncertainties 

 Original CSAU Resp. surface 
development 

Parametric - 
may be large 

Low PIRT Redevelopment of response surface Less than the full 
model 

 AREVA CSAU Yes Nonparametric 
(Wilks) 

Full model - 
may be high 

PIRT Yes Yes Accuracy of input 
uncertainties 

Deterministic        
 FSAP Yes One per input 

parameter 
variation for 
each response 

Full model - 
may be high 

Data, experts Yes Yes Assumes small input 
uncertainties, no 
discontinuities 

 ASAP Adjoint 
development 

One per input 
parameter for 
each response 

Adjoint model 
< full model 

None required New adjoint must be developed. Assumes small input 
uncertainties, no 
discontinuities 

UMAE-CIAU Yes One Full model - 
may be high 

None required Possible extensive addi-
tional experimenal data 

Yes Dependent on quality 
of experimental data 
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completed, and the analyst must then decide on a suitable method for combining 
the sensitivities in order to execute the uncertainty analysis. 

• Suitability of linear approximation.  Methods such as response surface and ASAP 
represent the model response distribution linearly; consideration needs to be given 
to the physics of the system to determine if it is appropriate to approximate the 
distribution as a linear function. 

Given these considerations, the best choice for many evaluations would be propagating 
input uncertainties using the full model and nonparametric sampling, since this approach 
is straightforward to implement and run, gives good accuracy, and, for many scenario an-
alyses, can be run in a reasonable amount of time, due to the use of order statistics (Wilks 
method).   If running times are excessive for the scenario of interest, either due to number 
of realizations required or time to run one realization of the full model, then the option of 
using a surrogate model should be considered.   If the dimension of the system of interest 
is not too large, the SFEM probably will provide the most accurate results of the various 
types of surrogate models, since it is nonlinear. 

8. Considerations in Performing Uncertainty Evaluations 
Most of the uncertainty analysis methods discussed above can be applied to transient 
analyses without regard to whether the system being analyzed involves a particular area 
of physics.  In fact, most of the methods have been used to evaluate uncertainties in best-
estimate modeling of light water reactor LBLOCA’s, which couples reactor physics and 
thermal-hydraulics.  An exception to this are the FORM/SORM methods, which are most 
suitable to problems in which a probability of failure is of interest and which therefore, 
for reactor plant analyses, are primarily of interest in structural mechanics analyses, as 
discussed in Sec. 3.3.  Specific physics comes into play primarily in terms of the type of 
uncertain input parameters that are selected for the analysis and the type of information 
available for establishing the uncertain input parameter probability distribution functions 
and ranges.  It is also true that modeling uncertainties are generally smaller for reactor 
physics analyses than for thermal-hydraulic or fuel behavior analyses, both of which are 
highly non-linear and strongly influenced by material properties modeling, which is often 
limited to empirical correlations valid over a limited range of conditions. 

There are several important considerations to address for methods other than the UMAE-
CIAU approach: 

• The means of selecting the dominant uncertain input parameters; in other words, 
determining which input parameters sufficiently influence the uncertainty in the 
model responses of interest so that uncertainty in these parameters needs to be 
included in the uncertainty analysis.  A sensitivity analysis can provide quanti-
tative input to this process.  Many times, this determination is done simply by the 
analyst’s judgment or by expert elicitation.  Also, in current practice, an input 
parameter is often selected simply because information is available concerning the 
range of uncertainty of the parameter. 

• The means of estimating the range of values and probability density function for 
each uncertain input parameter.  There are three options:  perform a literature re-
view to find ranges and distributions derived either from experimental data or 
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code analyses; fit available experimental data, either from separate effects tests or 
integral tests; or use expert elicitation if no data or validated calculational results 
are available [CSNI 2007]. 

• The choice of how to transfer raw measured data into input parameter ranges and 
distributions.  If sufficient data are available, classical statistics can be applied. If 
the amount of data available is small, the Bayesian procedure is suitable for per-
forming the best inference possible from the limited data [Glaeser 2002]. 

• Accounting for interdependencies of input parameter uncertainties.  Currently, 
most uncertainty analyses ignore these interdependencies.  While in many prac-
tical cases, most input parameters are independent [Devictor 2005], if it is the 
case that significant interdependencies exist, neglecting them can lead to 
underestimation of calculational uncertainties.  These can be addressed to some 
extent by fuzzy modeling [Chojnacki 2005b] or by developing a correlation 
coefficient matrix, if sufficient information on interdependencies is available 
[Devictor 2005]. 

9. Conclusions and Recommendations 
The uncertainty methodologies reviewed above have primarily been applied to uncer-
tainty evaluation of light water reactor best-estimate calculations.  This includes the 
several variations of the CSAU method which have been approved by the USNRC for 
licensing analyses.  These methods now need to be evaluated and, if necessary, adjusted 
for application to best-estimate calculations for high-temperature gas-cooled reactors and 
liquid metal reactors.  They also need to be optimally integrated into the development of 
advanced simulation codes.  These goals lead to several observations: 

• Initially, ranges and distributions for advanced reactor uncertain input parameters 
will probably have to be based much more on engineering judgment than is 
currently the case for comparable parameters in light water reactor analyses, due 
to a much more limited set of available experimental and operating data.    Plans 
for advanced reactor experimental programs need to include generating data for 
uncertainty evaluations, as well as for code validation. 

• Work is needed to improve the techniques used for identifying the dominant 
uncertain input parameters to be included in an uncertainty evaluation. 

• Step 7 of the CSAU method compares the high-fidelity model code against a 
range of single effects and integral tests, to assess how well the code is able to 
predict the dominant physical processes of the transient of interest [Young 1998].  
The USNRC will probably require more extensive data from both types of tests 
than are currently available for HTGR’s and LMR’s in order to execute this step 
satisfactorily.  This will require expanded experimental programs to generate the 
necessary validation data. 

• Currently, application of the CSAU usually involves making extensive use of the 
USNRC Reg. Guide 1.157 [NRC 1989], which lists all processes known to affect 
light water reactor LBLOCA’s [Young 1998]. The information in this document 
guides the analyst in selecting the uncertain input parameters and the output re-
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sponses for an uncertainty evaluation of a best-estimate LBLOCA analysis for a 
particular system.  This implies that the USNRC would need to develop a com-
parable guide for the dominant HTGR and LMR accident scenarios. 

• Light water reactor analysis experience has shown that different qualified versions 
of the same code can predict output temperatures that differ by more than 150K; 
thus, direct specific code version qualification is needed for uncertainty evalua-
tion [Petruzzi 2008].  Comparable qualifications of advanced simulation codes for 
HTGR and LMR analyses would be needed for output responses appropriate to 
these types of reactors. 

• Uncertainty assessment needs to be addressed in advanced simulation code docu-
mentation.  Code manuals should discuss uncertainty assessments and describe 
preferred methods for making uncertainty evaluations. 

• Internal assessment of uncertainty within the analysis is the most desirable ap-
proach [Glaeser 2002, Prošek 2003] but is not always feasible. Internal assess-
ment is an integral feature of the UMAE/CIAU method and could probably be 
implemented in mature codes for the ASAP method.  However, incorporating 
methods that sample and propagate input uncertainties as an optional internal 
feature of an analysis code would be somewhat challenging and would result in 
much longer running times. 

After considering the advantages and drawbacks of the various approaches to uncertainty 
evaluation, the recommendation is to use sampling and propagation of input uncer-
tainties, in conjunction with application of the Wilks formula to determine the number of 
samples required.  When possible, this should be done with the full, high-fidelity model, 
as in the GRS approach, such as AREVA has done with the S-RELAP5 code.  If this 
implementation is simply too expensive, a surrogate model should be substituted for the 
full model. 
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