
Final Scientific/Technical Report 
to the US Department of Energy  

 
 
 

“Solving large-scale sparse eigenvalue 
problems and linear systems of equations 

for accelerator modeling” 
 

 
 
 

Principal Investigator: Gene Golub 
Fletcher Jones Professor of Computer Science 
Stanford University, Stanford, California 94305 

 
Collaborator: Kwok Ko 

SLAC National Accelerator Laboratory 
Menlo Park, CA 94025 

  
 
 
 

 
 
 
 

Award No. DE-FC02-01ER41177 
 



Table of Contents 
 
 
 
 

Executive Summary …………………………………………………… 3 
 
1. Research Objective ………………………………………………….3 
 
2. Methods and Results ………………………………………………..3 
 

2.1 The Filter Algorithm …………………………………………….4 
 
2.2 The Hermitian skew-Hermitian Splitting Method……………..7 

 
3. List of Publications ……………………………………………………9 
 
References ………………………………………………………………10



Executive Summary 
 

The solutions of sparse eigenvalue problems and linear systems constitute one 
of the key computational kernels in the discretization of partial differential 
equations for the modeling of linear accelerators. The computational challenges 
faced by existing techniques for solving those sparse eigenvalue problems and 
linear systems call for continuing research to improve on the algorithms so that 
ever increasing problem size as required by the physics application can be 
tackled. Under the support of this award, the filter algorithm for solving large 
sparse eigenvalue problems was developed at Stanford to address the 
computational difficulties in the previous methods with the goal to enable 
accelerator simulations on then the world largest unclassified supercomputer at 
NERSC for this class of problems. Specifically, a new method, the Hemitian 
skew-Hemitian splitting method, was proposed and researched as an improved 
method for solving linear systems with non-Hermitian positive definite and 
semidefinite matrices.  
 
1. Research Objective 
One of the most important aspects in accelerator simulations is the accurate 
calculation of some low frequency electromagnetic fields within accelerator 
cavities, i.e., accurate eigensolutions of the frequency domain Maxwell's 
equations (FDME). Discretizations of FDME via edge-based finite element 
methods result in generalized matrix eigenproblems, K x =  M x. In a typical 
accelerator simulation, the size of matrices K and M is usually large and the 
eigenvalues of interest are tightly clustered small interior eigenvalues out of a 
large-eigenvalue dominated spectrum. The Shift-Invert Lanczos method (SIL) is 
theoretically ideal for the above-mentioned eigenproblems. However, it requires 
accurate solutions of the shifted linear systems (K – σ M) p = q, which are large 
and ill-conditioned in the accelerator modeling and simulation. The research 
objective of this awarded proposal is to tackle the computational difficulties in 
solving eigenvalue problems and linear systems arising in large-scale accelerator 
simulations. 
 

 
2. Methods and Results 
There are two major research activities for the entire period of the project. One is 
about devising highly parallel algorithms for solving the above-mentioned interior 
eigenvalue problems with similar convergence properties to those of Shift-Invert 
Lanczos method but without demanding accurate solutions of any linear systems. 
The other is to develop novel algorithms for linear systems arising in the 
discretization of partial differential equations in accelerator simulations.  
 
Two methods have been developed resulting from those research activities. The 
first method is the filter algorithm [1] for the sparse eigenvalue problem, which 
consists of two algorithms: an Inexact Shift-Invert Lanczos method for efficiently 
obtaining good eigenvector approximations and an inexact Newton-type method 



to refine the eigenvector approximations to the desired accuracy.  The second 
method is the Hermitian and Skew-Hermitian Splliting method [2-8] for solutions 
of linear systems.  
 
 
2.1 The Filter Algorithm 
Maxwell’s equations in differential form have three independent equations. 

 
For a simple medium, the constitutive relations between field quantities are as 
follows. 

 
where ε and μ are the relative electric permittivity and magnetic permeability while 
ε0 and μ0 are the values in the vacuum. In analyzing eigenmodes of electromagnetic 
cavities,  field  quantities  in  Maxwell’s  equations  can  be  written  in  the  form  of 
harmonically  oscillating  functions with  a  single  frequency ω.  By making  only  one 
field quantity (for example E), a vector wave equation is obtained. 

 
where  k  is  the  angular  wavenumber  ω/c  and  c  the  speed  of  light.    A  set  of 
hierarchical high‐order Nedelec basis functions which provide tangential continuity 
are  used  to  discretize  the  electric  field.    The  discretized  system  is  an  generalized 
eigenvalue problem. 

 
where the matrices K and M are 

 
There are several computational diffficulties associated with the above 
eigenvalue problems. 
1. Large matrix size: up to tens of millions. 
2. Big matrix bandwidth: typical for 3D finite element problems. 
3. Small eigenvalues out of a large-eigenvalue dominated spectrum: a typical 

eigenspectrum of the above eigenvalue problems has many eigenvalues with 
much bigger magnitudes than the eigenvalues of interest. Consequently, 



efficient spectral transformations, which often involve solving large, indefinite, 
and ill-conditioned linear systems, are required. 

4. Tightly clustered eigenvalues: the eigenvalues of interest are tightly clustered, 
due to the characteristic geometry of linear accelerator structures. A few 
hundred such eigenvalues and their eigenvectors need to be calculated. 

5. Accurate solutions: highly accurate solutions are required for accelerator 
applications. 

The combination of the above difficulties poses a significant challenge to many 
eigenvalue algorithms. The Shift-Invert Lanczos method (SIL) is theoretically 
ideal for finding tightly clustered interior eigenvalues and their eigenvectors, 
thanks to the effective spectral transformation achieved by solving the shifted 
linear systems, (K-σM)x = b. However, SIL requires accurate solutions of the 
shifted linear systems, which are large and ill-conditioned, and hence difficult to 
be solved accurately by iterative linear solvers. That makes SIL less appealing 
practically.  
For SIL, (K-σM)-1 is a effective band pass filter that emphasizes 
eigencomponents whose frequencies are close to σ. This is illustrated in the 
figure 1 that shows the spectra of a model matrix problem where M is the identity 
matrix.   

 
Figure 1. The spectra of A and (A-σI)-1 for a model problem. 

 
We developed the filter algorithm [1] for the eigenvalue problem, which consists 
of two algorithms: an Inexact Shift-Invert Lanczos (ISIL) method for efficiently 
obtaining good eigenvector approximations and an inexact Newton-type method 
to refine the eigenvector approximations to the desired accuracy. 
In the ISIL, we solve the shifted linear system inexactly, e.g., up to residual 
reduction of 0.1. The computed inexact solutions are not good enough for SIL to 
work but they are good enough to be considered as outputs of a band pass filter 
similar to the SIL (K-σM)-1 band pass filter. After applying the ISIL band pass 



filter to create a new vector, we employ the Lanczos three-term recurrence 
process with complete re-orthogonalization on the newly created vector to 
expand the subspace. Finally we perform an explicit subspace projection to 
detect convergence and extract solutions. The following is the schematic 
description of the ISIL algorithm for a generalized eigenvalue problem Kx=λMx 
with a shift σ. 

 
Given a good eigenvector approximation calculated by the ISIL algorithm, we use 
the inexact JOCC (Jacobi Orthogonal Component Correction) method refine the 
eigenvector approximations to the desired accuracy. In the method, at each 
iteration, a JOCC equation is solved approximately to get a correction vector for 
the current eigenvector approximation. The following gives a schematic 
description of the inexact JOCC method. 

 
We use both the SIL and the filter algorithm to calculate an eigenvalue near 
30,000 for the model problem. The convergence histories are plotted in the 
Figure 2. As shown in the figure, during the first 4 iterations, the ISIL converges 
almost as fast as the exact SIL; the ISIL stagnates at the 5th iteration and 
switches to the inexact JOCC. The inexact JOCC converges at a rate similar to 
exact SIL for the last 3 iterations. 



Figure 2. The convergence comparison of the SIL and filter algorithms for a 
model eigenvalue problem. 

  
Block version of the filter algorithms along with deflation techniques are used to 
deal with the tightly clustered eigenvalues. A thick restarted Lanczos process is 
employed to limit memory usage. The details of the techniques are documented 
in reference [1]. The parallel filter algorithm is implemented in Omega3P, a finite-
element eigenmode analysis for accelerator cavities. It ran on then the world 
largest unclassified parallel computers at National Energy Research Scientific 
Computing Center (NERSC) at Lawrence Berkeley National Laboratory (LBNL), 
and exhibited desirable parallel performance that scaled up to hundreds of 
processors. 
 
 
2.2 The Hermitian and Skew-Hermitian Splliting (HSS) Method 
To solve the numerical solutions of sparse linear systems of equations is one of 
the most common computational kernels in the simulations arising in the 
discretization of partial differential equations such as computational accelerator 
design.  
We consider the solution of large sparse system of linear equations 



 
Where A is a non-Hermitian and positive definite matrix. Because the coefficient 
matrix A naturally possesses a Hermitian/skew-Hermitian (HS) splitting A = H + 
S, with 

 
Collaborating with Bai et al, Golub proposed the following Hermitian skew-
Hermitian splitting (HSS) method [2] in 2003 to iteratively compute a reliable and 
accurate approximate solution for the above system of linear equations. 
 
The HSS iteration method. Given an initial guess x(0). For k = 0, 1, 2, . . . until 
{x(k)} converges, compute 

 
where α is a given positive constant.  
Theoretical results show that the HSS iteration converges unconditionally to the 
unique solution of the original system of linear equations. The upper bounds of its 
contraction factor in a special weighted norm and its asymptotic convergence 
rate are only dependent on the spectrum of the Hermitian part H, but are 
independent of the spectrum of the skew-Hermitian part S as well as the 
eigenvectors of the matrices H, S and A. In addition, the optimal value of the 
parameter α can be determined by the lower and the upper eigenvalue bounds of 
the matrix H. The details of the convergence study and the convergence rate 
were discussed in the reference [2] as well as a model problem analysis for a 
discrete three-dimensional convection-diffusion equation.  
Working with Benzi [3,5] and Bai [4], Golub proposed a preconditioning strategy 
based on the symmetric skew-symmetric splitting of the coefficient matrix for a 
2x2 block positive semi-definite linear systems such as generalized saddle point 
problems. The optimal choice of the involved iteration parameter and the 
corresponding asymptotic convergence rate can be computed exactly [3,9].  
Numerical examples confirm the theory and the effectiveness of the method 
[3,4,5]. The preconditioned HSS method was also applied to a discrete 
convection-diffusion equation and demonstrated its superiority with respect to the 
existing techniques [7]. 
In [6], Bai, Golub, Lu, and Yin further generalized the concept of Hermitian (or 
normal) and skew-Hermitian splitting for a non-Hermitian and positive-definite 
matrix nd introduce a new splitting, called positive-definite and skew-Hermitian 
splitting (PSS), and then established a class of PSS methods similar to the 



Hermitian (or normal) and skew-Hermitian splitting (HSS or NSS) method for 
iteratively solving the positive-definite systems of linear equations.  
In [8], Golub along with Bai and Li, derived necessary and sufficient conditions 
for guaranteeing the unconditional convergence of the preconditioned Hermitian 
and skew-Hermitian splitting iteration methods for the non-Hermitian and positive 
semidefinite systems of linear equations. 
In [2] Bai, Golub and Ng also proposed to solve the linear systems with 
coefficient matrices αI + H and αI + S inexactly by iterative methods, e.g., solving 
the linear systems with coefficient matrix αI + H by the conjugate gradient (CG) 
method and those with coefficient matrix αI + S by the Lanczos or the conjugate 
gradient for normal equations (CGNE) method, to some prescribed accuracies, 
and obtained two special but quite practical inexact Hermitian skew-Hermitian 
splitting (IHSS) iterations. In [10], Bai, Golub and Ng studied the convergence 
properties of both IHSS(CG, Lanczos) and IHSS(CG, CGNE) in depth and 
investigated the optimal numbers of inner iteration steps in detail by considering 
both global convergence speed and overall computation workload. 
In summary, the funding provided by this award supported fruitful research on the 
Hermitian skew-Hermitian Splitting method and its variants for solving non-
Hermitian positive definite and semi-definite matrices. And 9 journal articles were 
published  on the subject.  
 

 
3. List of Publications  
See the reference section below.
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