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This final report summarizes the research activities during the entire performance period 
of the NERI grant, including the extra 9 months granted under a no-cost time extension.  
Building up on the 14 quarterly reports submitted through October 2008, we present here 
an overview of the research accomplishments under the five tasks originally proposed in 
July 2004, together with citations for publications resulting from the project.  Since the 
last quarterly report dated October 31, 2008, one paper has been accepted for presentation 
at the next American Nuclear Society (ANS) Conference in June 2009.  Following the 
review of the summary of the paper, the ANS Division of Fuel Cycle and Waste 
Management invited us to submit a full paper, which we have prepared, for publication in 
a special issue of  Nuclear Technology.  In addition, we have recently prepared for 
publication in Nuclear Science and Engineering a manuscript summarizing the fuel cycle 
optimization algorithms for the sodium-cooled fast reactor (SFR) developed under the 
grant. These three latest papers are attached to the report. 
 
 
1. Summary of research accomplishments 
 
Task 1. Optimization of fast rector transmuter 
 
With the objective to perform systematic optimization of SFR transmuters, we developed 
a general fuel cycle optimization methodology that could be applied to the optimization 
of fuel cycles both for SFRs and pressurized water reactors (PWRs).  The key features of 
the optimization algorithms include: 
  
(1) The optimization algorithms are based on the calculus of variations that allows for a 
systematic augmentation of desired objective function typically expressed in terms of 
end-of-cycle (EOC) fuel cycle attributes,  
(2)The Lagrange multipliers introduced in the augmentation process allows for direct 
representation of system constraints, e.g., the power peaking factor constraint,  
(3) A first-order variation of the augmented objective function yields the necessary 
condition for optimality together with Euler-Lagrange equations for the Lagrange 
multipliers cast in the form of adjoint system equations,  
(4) The adjoint flux and depletion equations are solved backward from EOC to 
beginning-of-cycle (BOC), with discontinuities introduced in the adjoint neutron flux at 
the constraint boundaries, 
(5) The adjoint flux, combined with the forward flux, provides the search directions for 
the control variables, e.g., transuranics (TRU) enrichment or burnable absorber (BA) 
placement, and 
(6) The combination of forward diffusion-depletion calculations and backward adjoint 
flux-depletion calculations is repeated until the objective function is minimized. 
 
The deterministic algorithms may be initiated from arbitrary core configurations and 
typically converge in a few iterations to yield optimal configurations desired.  This is to 
be contrasted with many of the popular stochastic optimization algorithms that require 
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104~105 iterations before an optimal configuration is attained.  Furthermore, through a 
separate backward diffusion theory algorithm, the power peaking constraints are 
rigorously satisfied.  The optimization algorithm for SFR transmuter cases systematically 
yields an optimized core configuration with a reduced power peaking factor and lower 
reactivity swing over a fuel cycle.  Similarly, the PWR optimization algorithm applied to 
the AP600 design yields a lower radial peaking factor than that presented in the Standard 
Safety Analysis Report, together with a reduced number of BA rods required.  This 
implies that the improved design allows for (a) a higher power density, (b) an increased 
cycle length due to a reduction in the residual BA penalty at EOC, and (c) savings in the 
BA cost.  Two doctoral dissertations were completed under Task 1. 
 
Publications resulting from Task 1 are listed below: 
 
1.  R. T. Sorensen, J. C. Davis, and J. C. Lee, "Systematic Method for Optimizing 

Plutonium Transmutation in LWRs," Trans. Am. Nucl. Soc., 95, 217 (2006). 
 
2. J. C. Lee, J. C. Davis, and R. T. Sorensen, "TRU Transmuters for Nuclear Fuel Cycle 

Optimization," Poster presentation, Computational Engineering and Science 
Conference, Washington DC (April 2007). 

 
3.  J. C. Davis and J. C. Lee, “Optimizing SFR Transmutation Through Direct Adjoining 

Control Theory,” Trans. Am. Nucl. Soc., 97, 96 (2007). 
 
4. J. C. Davis, N. W. Touran, and J. C. Lee, “SFR Fuel Cycle Optimization Using Direct 

Adjoining Control Theory,” to be submitted for publication in Nucl. Sci. Eng. 
(attachment 1). 

 
Task 2. Development of equilibrium cycle method for PWR configurations 
 
As part of the overall effort of the project to optimize the global nuclear fuel cycle, we 
developed a systematic search methodology for equilibrium cycle configurations in 
PWRs.  In few-group macroscopic fuel depletion calculations typically performed for 
PWR fuel cycle analyses, equilibrium cycle configurations would require repetitive 
transition fuel cycle calculations slowly approaching an asymptotic configuration.  To 
expedite the approach to an equilibrium cycle, we developed a method that extracts few-
group microscopic reaction rates from lattice physics calculations, which may then be 
used to arrive at an approximate asymptotic configuration. Through the use of 
microscopic reactions rates, we are able to arrive at a balanced excore cycle for each set 
of lattice physics calculations and the corresponding macroscopic cross section libraries.  
Once the excore nuclide balance is satisfied, we perform a new set of CPM-3 calculations 
to update the microscopic reaction rates.  This process is repeated for a fixed fuel loading 
pattern to arrive at an equilibrium cycle, resulting in a significant reduction in the number 
of repetitive lattice-physics depletion calculations required for convergence to an 
equilibrium cycle.  We developed the equilibrium cycle methodology for both assembly-
level calculations, via a linear reactivity model, and global 3-D diffusion theory 
calculations.  
 
Publications resulting from Task 2 are listed below: 
 
1.  R. T. Sorensen and J. C. Lee, "LWR Equilibrium Cycle Search Methodology for 

Global Fuel Cycle Analysis," Trans. Am. Nucl. Soc., 93, 622 (2005). 
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2. R. T. Sorensen and J. C. Lee, "LWR Equilibrium Cycle Search Methodology for 

Assembly-Level Fuel Cycle Analysis," Nucl. Sci. Eng., 158, 213 (2008). 
 
3. W. R. Morgan and J. C. Lee, “Development of a 3-D Global Equilibrium Cycle 

Methodology for PWRs,” accepted for presentation at the American Nuclear Society 
Conference in June, 2009 (attachment 2). 

 
4. W. R. Morgan and J. C. Lee, “3-D Global Equilibrium Cycle Methodology for 

PWRs,” to be submitted for publication in Nucl. Technol. (invited, attachment 3). 
 
Task 3. Evaluation of diverse fuel cycle options with DANESS 
 
This task was proposed with the intention of utilizing the dynamic fuel cycle modeling 
code DANESS under development at Argonne National Laboratory.  After some 
experimentation with DANESS, it was decided to use a new fuel cycle code, VISION, 
emerging from Idaho National Laboratory.  Based on the database for various fuel cycles 
incorporated into the VISION code package and VISION calculations using the 
Powersim software, an Excel-based script, Equilibrium Operation Fuel Cycle Model 
(EO-FCM), was developed for efficient fuel cycle calculations.  EO-FCM provides a 
simple calculation of key fuel cycle parameters for a nuclear park scenario consisting of 
up to two reactor types operating in equilibrium operation (EO) mode and approximating 
the detailed inventory tracking in transitional operation (TO) mode employed by the 
dynamic fuel cycle modeling codes.  EO-FCM models a fuel cycle campaign, yielding 
end-of-scenario (EOS) inventories of used nuclear fuel (UNF), heavy metal (HM) 
reprocessed, fuel cycle economics and electricity produced.  The EO-FCM module 
accurately tracks more complex TO calculations performed with VISION and provides, 
in a simple efficient manner, valuable physical insights into key characteristics of diverse 
fuel cycles.  One M.S. thesis was completed under the task. 
 
One publication resulted from Task 3: 
  

J. Haas and J. C. Lee, "Equilibrium Transuranic Management Scheme for Diverse 
Fuel Cycle Analysis," Proc. International Conference on Reactor Physics, Nuclear 
Power: A Sustainable Resource, Interlaken, Switzerland (2008). 

 
Task 4. Optimization of global fuel cycle 
 
During the early phase of the grant, substantial effort was made for this task 
concentrating on the use of thorium in the transmuters both for the PWR and SFR 
configurations.  The Th-based mixed oxide (TMOX) design, comprising (Th-Pu)O2 and 
(Th-233U) fuel rods in a heterogeneous PWR fuel assembly configuration, would achieve 
a 95% destruction of the 239Pu and a 70% consumption of the total Pu in once-through 
cycles.  Two-tier transmutation systems featuring a synergistic combination of PWR and 
SFR cycles were also studied, where minor actinides (MAs) from PWR UNF are 
reprocessed and recycled in the form of (Th-TRU)-Zr metallic fuel for efficient 
consumption of MAs.  As the research program for the project progressed, the emphasis 
for the global fuel cycle optimization shifted gradually to the development of fuel cycle 
optimization methods culminating in two doctoral dissertations, as discussed in Task 1. 
 
Publications resulting from Task 2 are listed below: 
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1. R. T. Sorensen, J. C. Davis, and J. C. Lee, "Thorium-based Fuels for Enhancing 
Plutonium Transmutation in Light Water Reactors," Trans. Am. Nucl. Soc., 94, 87 
(2006).  

 
2. J. C. Davis, R. T. Sorensen, J. C. Lee, and R. F. Fleming, "Transmutation 

Characteristics of Thorium-Based Fuel in a Multiple-Tier Fuel Cycle," Trans. Am. 
Nucl. Soc., 94, 89 (2006). 

 
Task 5.  Development of simplified fuel cycle model 
 
The original intent for this task was to develop semi-analytic models for simplified 
dynamic fuel cycle analyses in parallel with the DANESS code discussed under Task 3.  
The simple analytic models we studied, however, revealed significant limitations when 
applied to realistic fuel cycles involving TRU transmutations.  With the development of 
the VISION software at Idaho National Laboratory, our interest and focus shifted to 
VISION, which eventually resulted in developing the EO-FCM script discussed under 
Task 3.   
 
 
2.  Undergraduate and Graduate Student Participation 
 
During the course of the grant, two undergraduate students and 10 graduate students 
participated in the project: 
 
Undergraduate students: Anree Little and Josh Miesel 
 
M.S. students: Natallia Pinchuk, Jason R. Haas, William R. Morgan, Adam Hoffmann, 

Stephen Rice, and Fariz A. Rahman 
 
Ph.D. students: Reuben T. Sorensen, Jeffrey C. Davis, Nicholas W. Touran, and Yan Cao 

(limited).  
 
Two Ph.D. dissertations and one M.S. thesis resulted from the project: 
 
R. T. Sorensen, “Systematic Method for Optimizing Plutonium Transmutation in LWRs,” 
PhD dissertation (2006). 
 
J. C. Davis, “Optimizing SFR Transmutation Performance through Direct Adjoining 

Control Theory,” PhD dissertation (2007). 
 
J. R. Haas, “Equilibrium Transuranic Management Scheme for Diverse Fuel Cycle 
Analysis,” M.S. thesis (2007). 
  
 
3.  Concluding remarks 
 
The AFCI-NERI project provided excellent support for two undergraduate and 10 
graduates students at the University of Michigan during a period of three years and nine 
months.  Significant developments were achieved in three areas: 
 
(1) Efficient deterministic fuel cycle optimization algorithms both for PWR and SFR 

configurations, 
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(2) Efficient search algorithm for PWR equilibrium cycles, and 
(3) Simplified Excel-based script for dynamic fuel cycle analysis of diverse cycles. 
 
The project resulted in a total of 8 conference papers and three journal papers, including 
two that will be submitted shortly.  Another journal paper summarizing the PWR fuel 
cycle optimization methodology is under preparation and will be submitted during the 
summer. 
 
 
 List of Attachments 
 
1. J. C. Davis, N. W. Touran, and J. C. Lee,  “SFR Fuel Cycle Optimization Using 

Direct Adjoining Control Theory,” to be submitted for publication in Nucl. Sci. Eng. 
 
2. W. R. Morgan and J. C. Lee, “Development of a 3-D Global Equilibrium Cycle 

Methodology for PWRs,” summary of a paper to be presented at the ANS meeting, 
June 2009. 

 
3. W. R. Morgan and J. C. Lee, “3-D Global Equilibrium Cycle Methodology for 

PWRs,” to be submitted for publication in Nucl. Technol. 
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Abstract

An optimal control method has been developed in multi-group, 3-D, diffusion-

depletion state-space simulations to optimize the loading patterns of fast reactors.

Given an objective function, a generalized Kuhn-Tucker theorem produces necessary

conditions for optimality in the form of Euler-Lagrange equations, terminal condi-

tions, and optimality conditions while directly accounting for the power-peaking

inequality constraint. The terminal conditions require the Euler-Lagrange system

be solved backwards in time, from end of cycle to beginning of cycle, while the in-

equality constraint introduces discontinuities into the Lagrange multipliers at the

junction points. The possible inequality constraint violations that arise throughout

the cycle when the optimality conditions cannot be explicitly satisfied are elimi-

nated by backwards diffusion theory. The method has been applied to minimize

the reactivity swing objective function in three similar metal-fueled, sodium-cooled

transuranic burner reactor systems. In a typical case, the method has reduced the

reactivity swing from 4.0% to 2.5% while bringing the hot channel factor Fq from

3.0 to 2.0 in a single iteration.
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I. INTRODUCTION

Many aspects of the performance of any nuclear reactor depend pivotally on the fuel load-

ing pattern. The optimization of the pattern is of fundamental interest to fuel designers,

as approaching the optimal pattern allows cycle length, power peaking, reactivity swing,

coefficients of reactivity, and transmutation characteristics to be such that the reactor

operates as safely and as economically as possible. The art of optimizing reactor fuel

patterns was historically performed manually, guided by designer experience and heuris-

tics. More recently, automated tools have been developed to help designers quickly and

systematically reach optimal or near-optimal loading patterns.

Automatic optimization tools fall into two general categories – deterministic and

stochastic. Early optimization methodologies were generally deterministic due to the

computational efficiency of this category. Tzanos et al.[1] developed a method to opti-

mize the distribution of material in a one-dimensional infinite cylinder with respect to

integral parameters by linearizing the diffusion equation and power equation with a Tay-

lor series expansion and then using a linear programming algorithm to find an optimal

solution. The method considered power peaking constraints, but only works for optimal

controls that are close to the original control.

Terney and Williamson[2] invoked Pontryagin’s maximum principle to deterministi-

cally optimize reload cores. They minimized power peaking by augmenting the diffusion,

power normalization, and burnup equations to a cost functional with Lagrange multipli-

ers. Forcing first-order variations of the functional to vanish, they derived Euler-Lagrange

equations which they solved backwards in time from end-of-cycle (EOC) to beginning-of-

cycle (BOC) to obtain a reload pattern.

Following Terney and Williamson, Drumm and Lee[3] applied the Pontryagin max-

imum principle to a LWR cycle-length extension problem, using penalty functions to

maintain power-peaking compliance. The method effectively extended the cycle length,

but was inefficient at satisfying the power-peaking constraint at all times during the cycle.
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Building on these experiences, Wu[4] solved a similar cycle-length extension problem

by directly adjoining the power-peaking constraint to the cost functional, an approach

developed by Jacobson, et al.[5]. The one-group, one-dimensional formulation used the

solution of the Euler-Lagrange equations to reach an optimal gadolinium loading in fuel,

uniformly distributed axially, implementing the conjugate gradients search-direction up-

dated method for efficiency. Wu was able to account for constraint violations throughout

the cycle in a somewhat ad hoc manner.

Sorensen[6] applied Wu’s formulation to two-dimensional, two-group diffusion theory,

implementing backwards diffusion theory (BDT) developed by Crowther[7] to account

for mid-cycle power peaking violations. This involved solving the diffusion equation

backwards to obtain burnable poison distributions, given the desired optimal flux shape.

Sorensen applied this approach to a PWR system, using the method of conjugate gradi-

ents to update the state, Euler-Lagrange, and optimality conditions while satisfying the

power peaking constraint throughout the cycle.

Stochastic methods of optimizing loading patterns have emerged with the massive

improvements in computational performance throughout the last few decades. These

methods use concepts developed for artificial intelligence, attempting to learn how to

load reactors based on repeated tests of stimulation and reaction. The two most popular

stochastic methods have become genetic algorithms and simulated annealing algorithms.

Jessee and Kropaczek [8] used simulated annealing to optimize boiling water reactor

loadings, control rod programs, and gadolinium distributions, creating an abstract nuclear

reactor analogy to a solid material slowly cooling to its lowest energy state. The inequality

constraint is accounted for with a penalty function. A given reactor state is perturbed

randomly, giving a new objective function value. If the new value is lower than the

previous, the perturbation is accepted. If not, it is only accepted if a random number

exceeds the Boltzmann factor. When the reactor reaches a “frozen” state, it is considered

optimal.

Dechaine and Feltus[9, 10] developed a genetic algorithm methodology that uses bio-
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logical evolution to reach optimal loading patterns. In this method, an initial population

of several hundred loading patterns are combined imperfectly into a second generation

of offspring loading patterns. The offspring patterns undergo various genetic operations

such as crossover and random mutation, eventually generating an optimal offspring as

judged by the objective functional, which is calculated for every pattern. Power peaking

is again accounted for with a penalty function.

Both categories present advantages and shortcomings. The global nature of the

stochastic philosophy better handles multi-objective problems, but the algorithms require

hundreds of thousands of loading pattern tests to ascertain optimality. When evaluating

equilibrium fuel cycles, the sheer volume of calculations needed to perform stochastic

algorithms becomes impractical to implement. Jacobson and Lele[11] have shown that

the indirect method of accounting for inequality constraints with penalty functions leads

to numerical difficulties and the inability to find optimal solutions. Considering this,

and that penalty methods may lead to middle-of-cycle constraint violations, we prefer

the direct adjoining treatment. Thus, for efficiency and the ability to use a rigorous

power-peaking inequality, we have chosen a deterministic method.

In this paper, we present the derivation and application of a direct adjoining optimal

control method based on the generalized Kuhn-Tucker theorem for designing fuel enrich-

ment and burnable poison loading patterns in a sodium-cooled fast reactor. We extend

the time-domain theory based on ordinary differential equations to a space-time domain

described by partial differential equations, where control may only be specified at BOC.

The formulation solves the multi-group, 3D, quasi-static state-equations of the reactor

along with the corresponding Euler-Lagrange equations containing a directly adjoined

power-peaking state constraint to arrive at a control satisfying necessary conditions for

optimality, while guaranteeing compliance with power-peaking requirements throughout

the cycle with backwards diffusion theory. The derivation of the Euler-Lagrange equa-

tions from variational calculus concepts is presented in Sec. II., with discussion of several

subtleties. The application of the equations to a reactor simulator is discussed in Sec.
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III. Results from this application are presented and discussed in Sec. IV., followed by our

summary and conclusions of this work in Sec. V.

II. DERIVATION OF THE ADJOINING CONTROL METHOD

In this section, we begin with the formulation of the state equations of a SFR system.

We then introduce the cost functional to be optimized considering an adjoined inequality

state constrained. We derive necessary conditions for optimality, which are captured by

the Euler-Lagrange equations, terminal conditions, jump conditions, and a Hamiltonian

minimization condition.

II.A. State Equations of a SFR System

The state of a system is the smallest set of information specified at time t = t0 that is

sufficient to predict the behavior of the system at later times[12]. We wish to model the

power and reactivity of a dynamic nuclear reactor, considering only the characteristic

time scales of fuel burnup. Thus, neutron flux and nuclide number densities are required

as functions of space and time. We will neglect thermal hydraulic feedback for simplic-

ity, while conceding that it should be considered in a full-system design optimization

procedure.

Since we expect the neutron flux will vary slowly in time, we represent its time de-

pendence in a quasi-static fashion, solving the multi-group Bateman equation for nuclide

densities at various time-steps while assuming constant flux between them:

∂Ni

∂t
= −Ni

[

G
∑

g=1

σag,iφg + λi

]

+
I
∑

j=1

Nj

[(

G
∑

g=1

γg,,j→iφg

)

+ λj→i

]

, (1)

where

σag,i is the g-th group absorption cross section for nuclide i,

λi is the decay constant for nuclide i,
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γg,,j→i is the transmutation yield from nuclide j to nuclide i, and

λj→i is the decay constant from nuclide j to nuclide i.

We can represent in matrix notation as:

∂N

∂t
= AN, (2)

where A is the burn matrix, containing all the reaction rates of transmutation and decay.

As the problem is quasi-static, the neutron flux will be temporally flat between time step

boundaries, with jump discontinuities at each one. To describe the shape of the neutron

flux, we assume the global-diffusion approach and employ both the steady-state, 3-D,

multi-group diffusion equation and the multi-group Fick’s law for a system of G energy

groups:

∇ · J +Mφ =
1

k
χFTφ, and (3)

∇φ = −D−1J, (4)

where we have used the standard notation. J is the neutron current, φ is the neutron

flux, M is a GxG matrix consisting of removal and in-scattering cross sections, k is

the dominant eigenvalue, χ is a vector of length G containing the fission neutron energy

distribution, F is a vector of length G containing fission neutron yields, andD is a diagonal

GxG matrix consisting of diffusion coefficients. Solving these two coupled equations at

each time step will fully define the spatial shape and energy structure of the neutron flux.

The magnitude of the flux is uniquely determined by setting a specific power level for the

reactor and using the power normalization volume integral:

P (t) =

ˆ

V

dr p(r, t) =

ˆ

V

dr

G
∑

g=1

κΣf,gφg =

ˆ

V

drWTφ, (5)

where V represents the full volume of the reactor.

In general time-domain state-space analysis, the state of a dynamic system is presented
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as a system of coupled first-order differential equations in the form:

∂x

∂t
= f, (6)

where x is the state vector and f contains the state equations. Modeling the behavior

of our problem requires a system of partial differential equations, and we make an effort

to represent it in a form analogous to that of Eq. (6). Nothing need be done to the

diffusion equation nor to Fick’s law to comply with this practice, as they are both first-

order differential equations in neutron current and neutron flux respectively. However, the

power normalization integral requires some transformation. For a 3-D problem, we break

the integral normalization equation into three related first-order differential equations by

defining q, q1, and q2 as spatial integrals over arbitrary orthogonal directions ξ, η, and ζ.

q2 =

ˆ ξ

0

dξ′WTφ, (7)

q1 =

ˆ η

0

dη′q2, and (8)

q =

ˆ ζ

0

dζ′q1. (9)

With these defined, we can use their differential forms as state equations.

∂q

∂ζ
= q1, (10)

∂q1

∂η
= q2, and (11)

∂q2

∂ξ
= P (ξ, η, ζ) =WTφ. (12)

Finally, we have fully defined the state of the system we are interested in modeling

with a coupled system of first order differential equations. These are known as the state-
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equations, and are concisely:

































∇φ

∇ · J

∂q
∂ξ

∂q1
∂η

∂q2
∂ζ

∂N
∂t

































=

































−D−1J

(

k−1B −M
)

φ

q1

q2

WTφ

AN

































, or (13)

Dx = f, (14)

where we introduced a total derivative operator D, which we define as:

D ≡

































∇

∇·

∂
∂ξ

∂
∂η

∂
∂ζ

∂
∂t

































. (15)

To meet standard design safety requirements, any the reactor state must satisfy power-

peaking requirements at all times. The maximum power of any region of the reactor core

must not exceed the core-average power multiplied by a specified peaking factor. To

comply with this requirement, we apply a power-peaking inequality state constraint to

the system.

S =WTφ(r, t)− pmax ≤ 0. (16)

With our state system in this form, we can apply optimal control theory using the calculus

of variations, taking special care to satisfy the inequality constraint.
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II.B. The Augmented Objective Functional and Euler-Lagrange

Equations

Before we begin the optimization process, we must choose a performance index Φ that

somehow measures the characteristics that we are interested in minimizing. For typical

reactor design purposes, this may be the reactivity swing or the transuranic destruction

during a cycle. Then, the cost functional to minimize has the form:

K =

ˆ

V

dr Φ(r, τ). (17)

We seek the optimal control u∗ out of the set of all possible controls that guides the

reactor from its initial state x (0) to a final state x (τ) in a manner that minimizes K

while satisfying the power-peaking inequality constraint.

We approach this problem statement by augmenting K with the state equations using

a vector of scalar multiples, λ, which are familiar from vector calculus as Lagrange multi-

pliers, often used to solve constrained systems of equations. For the inequality constraint,

we follow the same process with an additional scalar Lagrange multiplier, η:

K† =

ˆ

V

dr Φ(r, τ) +

ˆ

V

dr

ˆ τ

0

dt
[

λT (f − Dx) + Sη
]

. (18)

By forcing first-order perturbations in this functional to disappear with respect to the

state variables and to the control, we derive conditions necessary for a stationary K†,

which are in turn necessary conditions for optimality. Since this problem is quasi-static,

we separate the time-dependent state variables from the time-independent variables in this

representation by introducing the sub-vectors xt and xsand their corresponding derivative

operators, ∂
∂t

and Ds. Under this separation, the augmented function is:

K† =

ˆ

V

dr Φ(r, τ) +

ˆ

V

dr

ˆ τ

0

dt

[

λTs (fs − Dsxs) + λt

(

ft −
∂

∂t
xt

)

+ Sη

]

. (19)
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We introduce first-order perturbations here, following the generalized Kuhn-Tucker the-

orem:

δK† =

ˆ

V

dr

{

[

∂Φ (r, τ)

∂xs

]T

δxs (r, τ) +

[

∂Φ (r, τ)

∂xt

]T

δxt (r, τ)

}

+

ˆ

V

dr

ˆ τ

0

dt

[

λTs

(

∂fs

∂xs
δxs +

∂fs

∂u
δu− Dsδxs

)

+ η

(

∂S

∂xs

)T

δxs

]

(20)

+

ˆ

V

dr

ˆ τ

0

dt

[

λTt

(

∂ft

∂xt
δxt +

∂ft

∂u
δu−

∂

∂t
δxt

)

+ η

(

∂S

∂xt

)T

δxt

]

= 0.

We simplify this by defining D
∗
s as a differential operator satisfying the adjoint property:

ˆ

V

dr

ˆ τ

0

dt λTs Dsδxs =

ˆ

V

dr

ˆ τ

0

dt (D∗sλs)
T
δxs. (21)

We continue simplification by integrating the temporal state variables by parts:

ˆ

V

dr

ˆ τ

0

dt λTt
∂

∂t
δxt =

ˆ

V

dr

[

λTt δxt
∣

∣

τ

0
−

ˆ τ

0

dt

(

∂λt

∂t

)T

δxt

]

. (22)

Next, we collect like terms to obtain:

δK† =

ˆ

V

dr

{

[

∂Φ (r, τ)

∂xs

]T

δxs (r, τ) +

[

∂Φ (r, τ)

∂xt
− λt (r, τ )

]T

δxt (r, τ)

}

+

ˆ

V

dr

ˆ τ

0

dt

{[

(D∗sλs)
T + λTs

∂fs

∂xs
+ η

(

∂S

∂xs

)T
]

δxs

}

(23)

+

ˆ

V

dr

ˆ τ

0

dt

{[

(

∂

∂t
λt

)T

+ λTt
∂ft

∂xt
+ η

(

∂S

∂xt

)T
]

δxt

}

+

ˆ

V

dr

ˆ τ

0

dt

{

λTt
∂ft

∂u
+ λTs

∂fs

∂u
δu

}

= 0,

where we have assumed δxt (r, 0) is zero. This assumption is consistent with our model

as the state of a nuclear reactor will be constant at beginning of cycle in all fuel cycle

analyses. All the spatial and temporal state and Lagrange sub-vectors can be recombined
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except those in the first integral:

δK† =

ˆ

V

dr

{

[

∂Φ (r, τ)

∂xs

]T

δxs (r, τ) +

[

∂Φ (r, τ)

∂xt
− λt (r, τ )

]T

δxt (r, τ)

}

+

ˆ

V

dr

ˆ τ

0

dt

{[

(D∗λ)
T

+ λT
∂f

∂x
+ η

(

∂S

∂x

)T
]

δx

}

(24)

+

ˆ

V

dr

ˆ τ

0

dt

{

λT
∂f

∂u
δu

}

= 0.

To force first-order perturbations to vanish, we set each integrand to zero. Forcing terms

involving δxt to vanish provides terminal conditions on the temporal Lagrange multipliers:

∂Φ (r, τ)

∂xt
= λt (r, τ ) . (25)

This condition requires that we solve the temporal Lagrange multipliers backwards in

time, from EOC to BOC.

We restrict the objective function to be an explicit function of xt, and thus the terminal

variations in xs become inconsequential, as:

∂Φ (r, τ)

∂xs
= 0. (26)

This restriction limits our possible objective functions to global parameters, and elimi-

nates the possibility of optimizing with any spatial resolution, such as maximizing TRU

destruction in a particular location of the core. If such detailed optimization is desired,

this restriction could be relaxed with the additional condition that:

(

∂Φ (r, τ)

∂xs

)T

δxs (r, τ) = 0, (27)

thus eliminating the limitation. We arrive at the Euler-Lagrange (E-L) equations by

12



forcing the terms involving δx to vanish in Eq. (24):

D
∗λ = −

(

∂f

∂x

)T

λ−
∂S

∂x
η. (28)

The Jacobian of f can be expanded as

(

∂f

∂x

)T

=

































0
(

k−1B −M
)T

0 0 W
(

∂
∂φ
AN

)T

(

−D−1
)T

0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0
{

∂
∂N

[(

k−1B −M
)

φ
]}T

0 0
(

∂
∂N
WTφ

)T
AT

































,

(29)

and the state-vector derivative of the constraint is:

∂S

∂x
=

































∂
∂φ
WTφ

0

0

0

0

∂
∂N
WTφ

































=

































W

0

0

0

0

∂
∂N
WTφ

































. (30)

With these terms identified, we can simplify the E-L equations to:

∇ · λ1 = −
(

k−1B −M
)

λ2 −Wλ5 −

(

∂

∂φ
AN

)T

λ6 −Wη, (31)

∇λ2 =
(

D−1
)T
λ1, and (32)

∂

∂t
λ6 = −

{

∂

∂N

[(

k−1B −M
)

φ
]

}T

λ2 −

(

∂

∂N
WTφ

)T

(λ5 + η)−ATλ6. (33)

Brief observation provides reason to redefine the Lagrange multipliers after their state-

13



space analogs, which in turn justifies enumerating the E-L equations as the adjoint diffu-

sion equation, the adjoint Fick’s law, and the adjoint depletion equation, yielding:

































λ1

λ2

λ3

λ4

λ5

λ6

































=

































−J∗

φ∗

q∗2

q∗1

q∗

N∗

































, (34)

where we have listed the adjoint current vector, the adjoint flux, the three adjoint power

components, and the adjoint number density. This identification is done for notational

convenience, and does not imply that the adjoint variables behave similarly to their

state-space analogs, but only that they are related though equations of similar form. For

example, we allow negative adjoint flux and adjoint number densities – concepts that are

meaningless in state-space.

The term in the perturbed functional K† involving perturbations in the control vari-

able, u, provides the optimality condition which we will use to find the optimal control.

Borrowing from classical mechanics, we define the Hamiltonian of the system as:

H = λT f + ηS, (35)

and obtain:
ˆ

V

dr

ˆ τ

0

λT
∂f

∂u
δu (r) =

ˆ

V

dr

ˆ τ

0

∂H

∂u
= 0. (36)

We again set the integrand to zero to ensure this is met:

∂H

∂u
= 0. (37)

Our task becomes solving the E-L equations (which require the real flux, power, and
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number densities to be known) and using the results in the optimality condition, from

which we will be able to gain information about how to adjust the control variable to

obtain a new system state that minimizes our objective function while satisfying the

inequality constraint. Several subtleties must be dealt with before we can begin solving the

E-L equations, including understanding the functional form of the inequality constraint

multiplier, and allowing for possible jump discontinuities in the Lagrange multipliers.

II.C. The Inequality Constraint Multiplier and Jump Conditions

From the generalized Kuhn-Tucker theorem, we know that η = 0 in the unconstrained

regions and is non-decreasing, with continuous and differentiable derivatives in the con-

strained regions[5]. In determining the functional form of the multiplier in the constrained

regions, we call an inequality constraint one of nth-order if its nth derivative is the first

to be an explicit function of the control. In nuclear reactors, the control variable is of-

ten associated with the material cross sections. In this problem, S is a second-order

inequality constraint. Thus, we expect the second derivative of the control-derivative of

the Hamiltonian to also be an explicit function of the inequality multiplier, and we find

a functional form for η in the constraint region by taking the second-derivative of the

optimality condition shown in Eq. (37):

∇ · ∇

(

∂H

∂u

)

= 0. (38)

The feasibility of obtaining η from this equation has been discussed at length[13]. Due

to the nature of η, we must solve the E-L equations with special boundary conditions at

junction points to allow for discontinuities in the adjoint variables, as discussed in App. A

considering a time-domain problem. Borrowing from this discussion, we apply the jump

conditions in the space-time problem, exchanging junction points in time for junction

points in space.

Flux (φ, or x1) is the only state variable that appears in the power-peaking inequality
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constraint, so only λ1, which we identified as −J∗, will undergo a jump at the j-th junction

point in one of the three spatial directions

J∗
(

z+j
)

= J∗
(

z−j
)

+ µzj , (39)

where we have introduced the jump parameter from App. A. We take deliberate steps in

our solution method to force these boundary conditions to be met.

II.D. The Optimality Condition

As discussed above, we find our control by setting dH
du

= 0. If this optimality condition

can not be met due to physical constraints, we adopt the strategy of minimizing its

magnitude to approximate a stationary objective functional as best as possible. We

expand our definition of H from Eq. (35) to find:

H = J∗D−1J + φ∗T
(

1

k
B −M

)

φ+WTφq∗ +N∗TAN + η
(

WTφ− Pmax
)

. (40)

If, for example, burnable poison (BP) density is the control, only absorbing terms are

explicit functions of u and the condition is simply:

dH

du
= −φ∗T (σp)φ = 0, (41)

where σp is the microscopic absorption cross section of the poison for all terms in M that

contain the poison. When transuranic enrichment is the control, then every cross section

will be given by:

Σ = uΣTRU + (1 − u)Σnon−TRU , (42)

where ΣTRU is the summation of the macroscopic cross sections of interest of all the

transuranic nuclides and Σnon−TRU follows from the summation of all the non-transuranic
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nuclides. The corresponding control derivatives are:

∂Σ

∂u
= ΣTRU − Σnon−TRU . (43)

Number densities will also be functions of the control, in the form of:

NTRU = uNmaxTRU , and (44)

Nnon−TRU = (1 − u)Nmaxnon−TRU , (45)

where the maximum number densities are set as control limits. The control derivatives

are:

∂Ni

∂u
=















NmaxTRU , Ni is a transuranic nuclide

−Nmaxnon−TRU , Ni is not a transuranic nuclide

(46)

In this case, the control derivative of the f is:

fu =

































0
(

νΣ
TRU
f

k
−
νΣ
non−TRU

f

k
− ΣTRUa + Σnon−TRUa

)

φ

(

κΣTRUf − κΣnon−TRUf

)

φ

0

0

AN

































, (47)

where N is the nuclide density vector comprised of maximum densities for transuranic

nuclides and negative maximum densities for others. This yields a more complicated

optimality condition that is not shown here, but can be implemented computationally

without difficulty. A more simplistic approach to TRU enrichment control is to choose

239Pu number density as the control, resulting in an optimality condition similar to the

BP condition, except with the opposite sign. In all cases, the Hamiltonian is a linear
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function of the control. In such problems, we invoke the Pontryagin Maximum Principle,

adopting bang-bang controls using ∂H
∂u

as a switching function. Where the switching

function is negative, we reduce the control, and vice versa. The magnitude of the control

adjustment is determined in practice with line searches.

III. SOLUTION METHODS OF THE EULER-LAGRANGE EQUA-

TIONS

We have modified the DIF3D 8.0 code[14] to solve the Euler-Lagrange equations as de-

scribed in Sec. II. The modifications include routines to calculate the adjoint power,

produce the adjoint inhomogeneous source, estimate the adjoint depletion, solve the E-L

equations with the jump boundary conditions, and determine the search direction vectors.

The modified executable is coupled to the REBUS-PC code[15], which provides the real

number densities and flux at each time step and determines the value of the objective

function. The 11-group coarse-group cross section libraries are computed by the MC**2-2

code[16] using ENDF-V data. The significant data management operations required for

this coupling are performed by Python scripts[17]. A flowchart of the computational loop

of calculating search directions is shown in Fig. 1.

III.A. The Adjoint Diffusion Equation

Our forward system is a critical reactor, so the adjoint diffusion equation is an inhomoge-

neous equation with a singular operator, and can therefore only have a unique, non-trivial

solution when the Fredholm alternative is satisfied[18]. This states that if an equation

of the form Aφ = 0 is solved, then the equation A∗φ∗ = S∗ can only have a non-trivial

solution when the inner product 〈φ, S∗〉 = 0 or, in other words, when the adjoint source

is orthogonal to the real flux.
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From Eq. (31), we define the inhomogeneous source:

S∗ ≡W (q∗ + η) +

(

∂

∂φ
AN

)T

N∗. (48)

Before computing S∗, the form of the inequality constraint multiplier and the adjoint

power must be known. We find η using the generalized Kuhn-Tucker theorem and then

solve for q∗ by forcing Fredholm alternative to be true. Thus, our adjoint source is

explicitly designed so that the adjoint diffusion equation will have a unique solution.

III.A.1. Functional Form of the Inequality Constraint Multiplier

Using neutron poison number density Np as a control, Eq. (38) becomes:

∇ · ∇

(

∂H

∂u

)

= −∇ · ∇
(

φ∗Tσpφ
)

= 0

= −∇ ·
(

−D−1J∗Tσpφ+−φ∗TσpD
−1J

)

(49)

= D−1∇ · J∗Tσpφ+D−1J∗Tσp∇φ +∇φ∗TσpD
−1J + φ∗σpD

−1∇ · J.

We assume flat flux on the constraint, and substitute the adjoint and forward diffusion

equations for the second spatial flux derivatives, eliminating the first-order flux derivatives

and leaving:

∇ · ∇

(

∂H

∂u

)

= D−1

(

−MTφ∗ + k−1BTφ∗ +Wq∗ +

(

∂

∂φ
AN

)T

N∗ +Wη

)T

σpφ

+ φ∗TσpD
−1

(

1

k
B −M

)

φ (50)

= 0,

which can be simplified by integrating over energy groups:

q∗
G
∑

g=1

Wgσp,gφg +

G
∑

g=1

(

φ−1
g AgN

T
)

N∗σp,gφg + η

G
∑

g=1

Wgσp,gφg = 0, (51)
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and finally solved for η:

η = −q∗ −

G
∑

g=1

(

φ−1
g AgN

T
)

N∗W−1
g , (52)

where A is the burn matrix without decay constants. Recall that in the unconstrained

regions, η = 0.

III.A.2. The Jump Conditions

The jumps in the adjoint current can be represented by Heaviside step functions, which

have Dirac-delta function derivatives. We impose the jumps in the adjoint current by

placing Dirac-delta functions in the adjoint source at the junction points where the prob-

lem switches between constrained and unconstrained. The number and locations of these

jumps is computed by the forward calculation in a constraint violation-monitoring routine.

S
∗
≡W (q∗ + η) +

(

∂

∂φ
AN

)T

N∗ +

Nj
∑

i=0

µjδ (r − rj) , (53)

where Nj is the number of jumps and µj is the jump parameter for the jump at rj in one

of the three hex-mesh directions. With the delta functions in place, we can integrate the

adjoint diffusion equation in an ǫ-neighborhood of an arbitrary jump j in one dimension

to find:

ˆ rj+ǫ

rj−ǫ

∇ · J dr+

ˆ rj+ǫ

rj−ǫ

(

M∗ − k−1B∗
)

φ∗dr =

ˆ rj+ǫ

rj−ǫ

S∗dr+

ˆ rj+ǫ

rj−ǫ

µjδ (r − rj) dr, (54)

and

J
(

r+j
)

− J
(

r−j
)

= µj , (55)

where we see that the jump condition is indeed properly imposed. We represent the

delta functions in S
∗

by averaging the jump parameter over the particular meshes that lie

between constrained and unconstrained regions, such that the numerical integral will have
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the expected results. This averaging handles jumps in any of the three spatial directions.

We show the shapes of S
∗

and φ∗ for a related 1-D slab problem in Fig. 2, where the

spikes in the source are clearly seen.

The jump parameter varies with the magnitude of the adjoint flux almost linearly.

To uniquely determine the jump parameter, we perform several simple bisection-search

iterations until the normalization condition 〈φ, φ∗〉 = 1 is satisfied for φ∗. We call this

process the jump-parameter iteration.

III.A.3. The Adjoint Power

With η known and the jump conditions imposed, we apply the Fredholm alternative to

solve for q∗ to guarantee that the adjoint source is orthogonal to the real flux:

〈

φ, S
∗
〉

=

〈

φ,W (q∗ + η) +

(

∂

∂φ
AN

)T

N∗ +

Nj
∑

i=0

µjδ (r − rj)

〉

= 〈φ,Wq∗〉U −

〈

φ,W

(

G
∑

g=1

φ−1
g AgN

TN∗W−1
g

)〉

C

(56)

+

〈

φ,

(

∂

∂φ
AN

)T

N∗

〉

V

+

Nj
∑

i=0

µjφj

= q∗
ˆ

U

drWTφ−

ˆ

C

dr
(

AN
)T
N∗ +

ˆ

V

dr
(

AN
)T
N∗ +

Nj
∑

i=0

µjφj

= q∗PU +

ˆ

U

dr
(

AN
)T
N∗ +

Nj
∑

i=0

µjφj = 0,

which we can solve for the adjoint power:

q∗ = −
1

PU

ˆ

U





(

AN
)T
N∗ +

Nj
∑

i=0

µjφj



 dr, (57)

where subscripts U and C represent the unconstrained and constrained regions respec-

tively. Note that the constrained regions do not contribute to the adjoint power what-

soever, and that the jump parameter magnitude can directly influence the adjoint power
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magnitude. With q∗ evaluated by Eq. (57), the Fredholm alternative will be satisfied and

the adjoint diffusion equation will have a non-trivial solution.

With the jump conditions, the inequality constraint multiplier, and the adjoint power

fully defined, we may build the adjoint source and perform the E-L calculation.

III.A.4. Flux Filtering

A process we call flux filtering is necessary during the outer iterations due to the numerical

nature of the problem. The solution to the inhomogeneous adjoint diffusion equation will

contain both homogeneous and particular components:

φ∗c = φ∗p + αφ∗h, (58)

for any arbitrary scalar α. In such problems, the magnitude of the homogeneous compo-

nent can become arbitrarily large yet still satisfy the differential equation. Since DIF3D

uses regular splitting with the power iteration method to solve the problem rather than di-

rect inversion, the adjoint flux solution becomes contaminated by the homogeneous mode.

We modified DIF3D to filter out this contamination guided by the Fredholm alternative

condition.

For any arbitrary α, the homogeneous component will satisfy:

(

L∗ − k−1B∗
)

αφ∗h = 0. (59)

Thus, the particular solution will contain all of the information of the adjoint source:

S∗ =
(

L∗ − k−1B∗
) (

αφ∗h + φ∗p
)

=
(

L∗ − k−1B∗
)

φ∗p. (60)
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The DIF3D inhomogeneous source iteration with operator splitting proceeds as:

S∗ = L∗φ∗p,1

S∗ + k−1B∗φ∗p,1 = L∗φ∗p,2 (61)

...

S∗ + k−1B∗φ∗p,n−1 = L∗φ∗p,n.

By forcing 〈φ, S∗〉 = 0, we step through this iteration using the properties of the adjoint

operator:

〈φ, S∗〉 =
〈

φ, L∗φ∗p,1
〉

=
〈

φ∗p,1, Lφ
〉

= k−1
〈

φ∗p,1, Bφ
〉

= k−1
〈

φ,B∗φ∗p,1
〉

= 0,

k−1
〈

φ,B∗φ∗p,1
〉

= k−1
〈

φ, L∗φ∗p,2 − S
∗
〉

= k−1
〈

φ, L∗φ∗p,2
〉

(62)

=
〈

φ∗p,2, Lφ
〉

= k−1
〈

φ∗p,2, Bφ
〉

= k−1
〈

φ,B∗φ∗p,2
〉

= 0.

Observing that at any step of the iteration, the fission source is orthogonal to the

forward flux:
〈

φ,B∗φ∗p,i
〉

= 0, (63)

we can uniquely determine the parameter α to filter out the contaminating homogeneous

component. To do so, we recognize that the contaminated fission source term also has

the two components:

B∗φ∗c,i = αB∗φ∗h,i +B∗φ∗p,i. (64)

Then, we take the inner product with the forward flux and solve for α:

〈

φ,B∗φ∗p,i
〉

=
〈

φ,B∗φ∗c,i − αB
∗φ∗h

〉

,

0 =
〈

φ,B∗φ∗c,i
〉

− α 〈φ,B∗φ∗h〉 , (65)

α =

〈

φ,B∗φ∗c,i
〉

〈φ,B∗φ∗h〉
.
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To ensure a converged solution, the modified DIF3D filters out the contamination at each

outer iteration:

φ∗p,i = φ∗c,i −

〈

φ,B∗φ∗c,i
〉

〈φ,B∗φ∗h〉
φ∗h. (66)

The filtering process adds slightly to the computational requirements of the optimization

algorithm, as it necessitates homogeneous adjoint flux calculations at each time step.

III.A.5. The Terminal Condition

For a reactivity swing objective function, the terminal condition on the E-L equations

from Eq. (25) is:

N∗ (r, τ) =
∂

∂N
[k (τ)− k (t0)] . (67)

As calculating k requires full lattice physics and global diffusion simulations, evaluat-

ing this expression rigorously for each nuclide in each region at BOC and at EOC would

be extremely computationally intensive, or would require a depletion perturbation theory

method[19]. To avoid complication, we approximate this condition by assuming constant

leakage and using k∞ rather than k. The condition becomes a function of the collapsed

one-group infinite-medium multiplication factor:

k (t) ≈ k∞ (t) =
1

V

R
∑

r=1

vr
A (r, t)

B (r, t)
=

1

V

R
∑

r=1

vr

I
∑

i=1

G
∑

g=1

νσif,gφg (r, t)Ni (r, t)

I
∑

i=1

G
∑

g=1

σia,gφg (r, t)Ni (r, t)

, (68)

where

R is the number of regions in the reactor,

I is the number of nuclides in the system, and

vr is the volume of region r.

From Eq. (68), we can quickly evaluate the terminal condition using our existing
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collapsed multi-group cross sections and using standard differentiation rules:

N∗i (r, τ) ≈
∂

∂Ni

[

A (r, τ)

B (r, τ)
−
A (r, t0)

B (r, t0)

]

=











G
∑

g=1

νσif,gφ (r, τ)

B (r, τ)
−
A2 (r, τ)

B (r, τ)

G
∑

g=1

σiaφg (r, τ)











(69)

−











G
∑

g=1

νσif,gφ (r, 0)

B (r, 0)
−
A2 (r, 0)

B (r, 0)

G
∑

g=1

σiaφg (r, 0)











.

This approximation allows us to set the adjoint number densities for each region at end

of cycle. We present the estimated k∞ values for each case along with the calculated keff

values in the Sec. IV.

III.B. The Adjoint Depletion Equation

Since terminal conditions of the Lagrange multipliers are imposed, we solve the E-L

system backwards in time. We do so in a quasi-static fashion, performing explicit finite

differencing to determine the derivative of each adjoint nuclide density from Eq. (33).

Since η varies between constrained and unconstrained regions, we compute the adjoint

number density derivatives accordingly:

∂N∗i
∂t

=



















−
G
∑

g=1

φgφ
∗
g

(νσf,g
k
− σa,g

)

−
G
∑

g=1

κσf,gφgq
∗ +

G
∑

g=1

N∗i σ
i
a,gφg Unconstrained Regions

−
G
∑

g=1

φgφ
∗
g

(νσf,g
k
− σa,g

)

+ 2
G
∑

g=1

N∗i σ
i
a,gφg. Constrained Regions

(70)

where we have neglected nuclide transitions and radioactive decay terms in the burn

matrix.

Thus, with constant real and adjoint flux values, adjoint nuclides deplete at varying

rates depending on whether or not they exist in a constrained region. As mentioned
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in Sec. II.B., the adjoint densities may become negative. We built the simple adjoint

depletion routines directly into DIF3D.

III.C. Search Directions

With the E-L equations uniquely solved, we use the optimality condition to update the

control. As discussed in Sec. II.D., we use ∂H
∂u

as a switching function to build search

directions for line searches. Control values are updated in proportion with their corre-

sponding search direction magnitude. Only the relative magnitudes of search directions

are carried into line searches.

III.D. Line Searching and Backwards Diffusion Theory

We have implemented several levels of rather simple line searching. In each level, search

directions for each region are binned into a coarse-mesh histogram. The bins are then

translated evenly into a control range. In the TRU enrichment line search, REBUS

enrichment modification factors are chosen based on this range. In the BP search, line

searches alternate between broadening assembly-to-assembly BP distribution fractions

and increasing the total available BP inventory. After each step, the algorithm checks

the objective function value and decides between taking an additional step and quitting.

None of the line searches consider the power peaking inequality, so it is possible that

a line search step that improves the objective function would cause a violation at some

point during the cycle. To properly avoid this, new search directions should be computed

at each control update. Under this practice, line searching would be inapplicable, and the

computational run-time of the optimization package would grow significantly. Considering

this difficulty, we allow the line searches to run unchecked and use a simplified BDT

step to eliminate any possible violations[7]. Using BDT we choose decreased flux values

at violated regions to satisfy the inequality constraint and solve the diffusion equation

backwards, finding the required cross sections of neutron poison in those locations. This

solution allows the optimization algorithm to perform efficient line searches on the search
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directions and quickly reach an optimal configuration.

IV. REPRESENTATIVE SFR OPTIMIZATION TESTS

Applying the optimization theory discussed, we have systematically optimized fast reactor

TRU loadings for three representative SFR configurations with reactivity swing minimiza-

tion. Common core parameters are listed in Table 1 and optimization performance for

all three cases is summarized in Table 2.

IV.A. Case 1 – Homogeneous, Bare Core

The first case is a bare, homogeneous, 0.6 m tall core with no axial reflectors. The first

nine radial rings (217 assemblies) are filled completely with fuel. The tenth and eleventh

are reflector rings. The outer rings are all shields. High peaking factors are expected in

this case due to the high leakage. The original REBUS criticality search set the TRU

enrichment of the metallic U-TRU-Zr fuel to 29.1%. The relative radial power distribution

of the unoptimized core is shown in Fig. 4. The first search iteration results in a TRU

enrichment search direction that tells us to reduce fissile material content in the inner six

rings of the core and increase fissile material in the seventh through ninth radial rings in

various concentrations, as seen in Fig. 5. The poison control search directions, shown in

Fig. 6, tell us to add burnable poisons to the inner rings, and reduce them in the outer

rings. As we are unable to control shields and reflectors, the search directions are zero in

these regions. The jump iteration in this case converges on a negative value of the jump

parameter µ, which in turn requires that the sense of all resulting search directions be

switched.

After running a set of line searches on the core, the objective function and the peaking

factor are reduced, but the constraint remains violated, so the BDT routines activate.

Their execution results in the much flatter, optimized power distribution seen in Fig. 7.

In this case, the values of k∞ estimated by Eq. (68) for the terminal condition were
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1.99 and 1.90 for BOC and EOC respectively, compared with the REBUS-calculated keff

values of 1.05 and 1.00. Such a discrepancy can be expected in this extremely high-leakage

core. The critical TRU enrichment for the optimized case is 27.4%. The optimization

package performed intuitive fuel loading maneuvers resulting in enhanced performance

by all measures.

IV.B. Case 2 – Axially Uniform Core

The second case is based on the moderate burner design[20], with control assemblies and

gas expansion modules represented, but with no axial reflectors nor shields, and a 0.6 m

active core region. The radial core layout is shown in Fig. 3. With control rod assemblies

in place, the fuel density has decreased from case 1, and as a result the critical TRU

enrichment is correspondingly higher, at 32.0%. As this case contains 354 fuel assemblies,

the radial power fall-off is less dramatic. The competing effects of higher fissile enrichment

and a lower radial peaking gradient thus result in an unoptimized peaking factor that is

comparable to that of the first case. We present the unoptimized radial power distribution

in Fig. 8, where we see it is peaked in the center, as expected for a uniform loading.

Estimating the terminal conditions on the Lagrange multipliers, we find k∞ values of

2.04 and 1.98 compared to 1.03 and 1.00 from REBUS, representing higher leakage when

compared to the first case. The calculational loop shown in Fig. 1 creates the search

directions shown in Fig. 9, which are then applied to line searches and BDT, finally

producing the radial power distribution presented in Fig. 10, and the reduced reactivity

swing. We again see the intuitive trend of removing fuel from the center and placing

it on the periphery, but this case results in a more complicated search direction shape,

with distinct instructions to change the control in varying relative magnitudes. With the

unoptimized core violating the constraint, the search direction resulted in a new control

that reduced the violation. The optimized critical TRU enrichment has been significantly

reduced to 27.5%, resulting in a much lower loading of Pu-239 than in the unoptimized

case. The destruction of Pu-239 has therefore also been reduced, a possibly undesirable
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effect that requires a multi-objective control approach to rectify.

IV.C. Case 3 – Full Core with axial reflectors

The third case is the moderate burner design[20] with axial reflectors and shields, and

the 42 cm active core. The radial layout is again given by Fig. 3. The axial leakage

in this case is significantly lower than other cases, and accordingly, the required TRU

enrichment is much lower, at 18.7%. The unoptimized radial power distribution shown

in Fig. 11 is nearly identical to that of case 2, but the axial reflectors reduce the axial

peaking factor Fz enough to bring the overall peaking factor down significantly. Still, the

obtained search directions provide a control set that reduces both the reactivity swing

and the power peaking factor. The optimized case has a critical enrichment of 17.0%.

V. SUMMARY AND CONCLUSIONS

We have derived and applied an optimal control theory to a sodium-cooled nuclear re-

actor fuel loading, demonstrating the ability to automatically obtain fuel enrichment

patterns that reduce an objective function while directly accounting for a power-peaking

inequality constraint. We extended time-domain variational calculus to a partial differ-

ential equation system to arrive at necessary conditions for optimality, which we solved

in diffusion-depletion state space. Our implementation of the conditions required treat-

ment of discontinuous Lagrange multipliers, estimation of the terminal conditions on the

multipliers, and numerical filtration of homogeneous-mode contamination. As our Hamil-

tonian was a linear function of our control, we applied the calculated search directions

using Pontryagin’s Maximum Principle in several levels of line searching, including a

backward diffusion theory search to account for any possible constraint violations. We

have shown the method to perform well on three reactor models, reducing the reactivity

swing from 4.0% to 2.5% while reducing Fq from 3.0 to 2.0 in one particular case, and

similarly in the others. The method is capable of accepting a variety of objective functions
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and controls, extracting search directions from variational techniques without guessing,

and efficiently pushing the reactor state towards optimality. This offers advantages in

calculational speed and in physical intuition over competing stochastic methods.

The optimality conditions solved in this problem are necessary for optimality, but

not sufficient. Therefore, obtained solutions can possibly be improved upon further.

Furthermore, since we forced only the integrands of several integral equations to vanish,

we expect additional control configurations to satisfy the necessary conditions. To seek

out these optimal solutions, one would naturally like to refine the control around the

search direction. However, since the objective functional is very expensive to compute,

a full-cycle perturbation theory accounting for depletion effects could be applied[19]. If

done, one could sweep through the core, slightly changing the control of each assembly

in various ways to determine the trends that improve optimality. We would also like to

implement the more rigorous transuranic enrichment control to obtain possibly improve

the quality of the resulting search directions.

APPENDIX A

We must solve the E-L equations with special boundary conditions at junction points

to allow for discontinuities in the adjoint variables. The possible jumps arise by taking

perturbations of the augmented objective functional in terms of the differential Lagrange

multiplier, dη∗ = η dt. Then, the time-domain form of Eq. (24) is:

K† = Φ(τ) +

ˆ τ

0

λT
(

f −
dx

dt

)

dt+

ˆ τ

0

S dη∗. (A-1)

Integrating by parts, the E-L equations in this case are:

dλ+ λT
∂f

∂x
dt+

(

∂S

∂x

)T

dη∗ = 0. (A-2)
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Integrating these E-L equations over a junction point at t1 gives:

λ
(

t+1
)

= λ
(

t−1
)

−
[

η∗
(

t+1
)

− η∗
(

t−1
)]

(

∂S

∂x

)

t1

. (A-3)

The generalized Kuhn-Tucker theorem guarantees that η∗ is non-decreasing, thus:

[

η∗
(

t+1
)

− η∗
(

t−1
)]

≥ 0, (A-4)

and therefore, the Lagrange multipliers may suffer a discontinuity at t1. We define the

jump parameter for the j-th junction point as:

µj ≡
[

η∗
(

t+1
)

− η∗
(

t−1
)]

(

∂S

∂x

)

tj

(A-5)
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Table 1. Reactor data common to all calculations

Assembly Pitch 16.14 cm
Fuel Material U-TRU-Zr

Cladding HT-9
Coolant Na

Driver Fuel LWR-RG-TRU
Host Fuel Natural U

Power (MWth) 840
Cycle Length (days) 310

Table 2. Optimization performance in terms of reactivity swing, maximum power peaking
factors, and Pu-239 destruction. Unoptimized values, values following a control update,
and values following a backwards diffusion theory step are shown for three cases.

Reactivity
Swing (%)

Power Peaking
Factor Fq

Pu-239 Destruc-
tion (kg)

Case 1
Unoptimized 5.03 2.94 116.3
After Control Update 4.06 2.15 120.0
After BDT 3.98 2.00 120.3

Case 2
Unoptimized 4.08 2.98 219.5
After Control Update 3.14 2.92 130.2
After BDT 2.53 2.00 131.9

Case 3
Unoptimized 3.03 1.92 32.4
After Control Update 2.70 1.43 38.4
After BDT 2.62 1.41 36.9
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Figure 1. A flowchart showing the computational logic to calculate search directions.
Once the forward results are computed, the modified version of DIF3D enters the time-
step loop at EOC and proceeds backwards in time to the BOC, performing iterative
jump-parameter bisection searches at each time step.
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Figure 2. Shape comparison of S∗ and φ∗ in a 1-D homogeneous slab. The Dirac δ-
functions used to account for discontinuous adjoint current are visible at the two junction
points, where the problem changes from unconstrained (represented by U) to constrained
(represented by C).



Figure 3. The radial core layout of cases 2 and 3. Control and shutdown systems are
withdrawn and gas expansion modules are filled with sodium.
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Figure 4. Unoptimized relative radial power distribution for case 1
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Figure 5. TRU enrichment search directions for case 1
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Figure 6. BP enrichment search directions for case 1
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Figure 7. Optimized relative radial power distribution for case 1
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Figure 8. Unoptimized relative radial power distribution for case 2
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Figure 9. TRU enrichment search directions for case 2
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Figure 10. Optimized relative radial power distribution for case 2
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Figure 11. Unoptimized relative radial power distribution for case 3
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Figure 12. TRU enrichment search directions for case 3
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Figure 13. Optimized relative radial power distribution for case 3
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INTRODUCTION 

 
As part of continuing effort to establish 

light water reactor (LWR) equilibrium cycle 
search methodology [1,2], we have 
developed a global equilibrium cycle search 
algorithm coupling the CPM-3 [3] lattice 
physics calculations to the 3-D fuel 
depletion calculations with the PARCS code 
[4].  The methodology is based on time-
dependent microscopic reaction rates 
extracted from the lattice physics 
calculations, which are used in global 
nonlinear isotopic depletion calculations.  
This allows for efficiently approaching an 
equilibrium cycle configuration with a fewer 
number of coupled lattice physics-global 
depletion calculations than that would be 
required in direct iterative approach to an 
equilibrium cycle with an asymptotic burnup 
map and asymptotic nuclide number 
densities.  
 
SEARCH ALGORITHM 
 
 In searching for an equilibrium cycle, 
we bypass costly assembly-level 
calculations by associating operators with 
incore and excore calculations.  The incore 
fuel cycle accounts for depletion within the 
reactor, and relates the beginning-of-cycle 
(BOC) number densities to the end-of-cycle 
(EOC) number densities.  This is 
accomplished by extracting microscopic 
reaction rates from the CPM-3 output file to 
create the transmutation matrix A, 
representing the solution to the isotopic 
depletion equation:  
 

(1)      
           

Here the matrix A contains microscopic 
cross sections, fluxes, and decay constants, 
with number density vector N(t), 
representing the CPM-3 21-actinide chain.  
The solution to this equation is a matrix 
exponential, which is expanded into a 
Taylor series 
 

  (2) 
 

 
The matrix Bcyc thus relates the charge vector Nc 
to the discharge vector N

d
= N(τ ) , with EOC 

time τ = ∆t
kk=1

K

∑ . 
To complete the incore fuel depletion 

algorithm, we need a charge vector Nc for 
each assembly, which is accomplished 
through the excore fuel cycle algorithm.  
Through this algorithm, we represent the 
cooling, reprocessing, and reloading of 
discharged assemblies.  For the decay-
cooling process, we generate matrix D 
containing all of the decay constants for the 
21 nuclides and obtain the decay-cooling 
matrix C for the cooling time period τcool: 

C = eDτcool .                (3) 
A diagonal reprocessing matrix R is then 
introduced, representing the fraction of each 
nuclide that is recovered during the 
reprocessing stage.  This reprocessing 
matrix is combined with the decay-cooling 
matrix to relate the recovery vector Nr to the 
discharge vector Nd: 
             Nr = RCNd

                       (4) 
A feed vector Nf, representing an external 
feed source, is then added to the recovery 
vector to generate the charge vector for the 
next cycle: 

Nc = Nr +N f = RCNd +N f ,             (5) 
where Nf can be chosen according to the 
recycling strategy.   

The equilibrium cycle search begins 
with CPM-3 calculations for each assembly 
type.  In our study, three different 
enrichments, 2.0, 2.5, and 3.0 wt%, were 
used in the first core of the AP600 design 
[5].  Transmutation matrices A are created 
for each assembly, followed by fuel 
depletion calculations with the PARCS 
code.  Burnup value for each assembly is 
converted into EOC time τ , which is used 
to generate a distinct Bcyc matrix for each 
assembly, so that EOC number densities can 
be calculated.   

An iterative scheme is then used to 
search for the next charge vector.  A feed 
vector is chosen based on the recycling and 
reload pattern selected, with Eqs. (5) and (2) 
applied until a converged charge vector Nc is 
obtained.  In the three-batch core we 
simulate, the discharge vector Nd represents 

   

dN(t)
dt

= A t,φ(t) N(t).

   
Nd = eAk∆tk

k=1

K

∏ N(0) = BcycN(0) = BcycNc .
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the fuel that is discharged from each of the 
thrice-burned assemblies.  These vectors are 
then averaged, so that charge vector and the 
recycled fuel in each fresh assembly will be 
the same.  
 
AP600 EQUILIBRIUM CYCLE 
 

The case we studied is an AP600 core 
using a self-generated recycling scheme.  
Here, all plutonium from thrice-burned 
discharged assemblies is recycled and mixed 
with 3.5 wt% uranium to create fresh 
assemblies for reloading. 

The main parameter of interest in the 
equilibrium cycle search is the amount of Pu 
discharged from thrice-burned assemblies at 
the end of each cycle.  This is summarized 
in Figure 1, which shows the inventory of 
Pu discharged per assembly during the 
search for the equilibrium core.  The 
inventory plots indicate that an equilibrium 
cycle is attained by the eighth cycle.  Each 
cycle represents typically 5 excore cycle 
searches via Eqs. (3) and (5). 
 

 
 
 
 
 
 

 
 
 
 
 
Figure 1.  Discharged mass of Pu during the 

approach to an equilibrium cycle 
 

We also summarize in Table 1 
equilibrium cycle characteristics of the core, 
including BOC isotopic concentrations and a 
mass balance over the cycle covering U and 
transuranic (TRU) nuclides.  We note that 
the Pu inventories at the BOC and EOC 
have converged to ~10 kg/assembly, 
indicating that an equilibrium cycle is 
reached  
 
CONCLUSIONS 
 

We have demonstrated the feasibility 
and efficiency of a 3-D global equilibrium 
cycle methodology for LWR fuel cycle 
analyses, which require in general burnup-
dependent microscopic reaction rates for a 
meaningful search for an equilibrium cycle.  
This is to be contrasted with typical 

Table 1.  AP600 Equilibrium Cycle 
Characteristics 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
equilibrium cycle calculations for fast 
reactors, where a single set of burnup-
independent few-group microscopic cross 
sections may suffice.  Our test calculations 
have been performed to date without 
explicitly accounting for thermal-hydraulic 
feedback effects and for burnup-dependent 
critical soluble boron concentrations.  In 
addition to improving on these approximate 
treatments in our fuel cycle calculations, 
additional effort will be required to optimize 
the fuel loading pattern subject to diverse 
objective functions. 
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Abstract 
 

We have developed a global equilibrium cycle search methodology that makes an 

efficient use of microscopic reactions rates extracted from lattice physics calculations.  

The  piecewise  continuous reaction rates are used to solve the isotopic balance equations, 

approximating lattice physics calculations during the search for an isotopic balance.  The 

solution is iterated with updated microscopic reaction rates until an equilibrium cycle 

emerges.  We have implemented the methodology combining the CPM-3 lattice physics 

code with the PARCS 3-D diffusion theory code.  The equilibrium cycle algorithm has 

been tested for the AP600 design involving both a self-generated and augmented 

recycling scheme in CORAIL-type heterogeneous assemblies.  In our AP600 test 

calculations involving two different recycling modes, an equilibrium cycle is attained in 5 

and 8 iterations, a small fraction of what would be required for direct calculations. 
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I. Introduction 

The time management of used nuclear fuel (UNF) from light water reactors (LWRs) 

remains one of the largest problems with operation of nuclear power plants (NPPs).  In 

the next 20 years, the current NPPs will accumulate 87 000 Mg of UNF, in addition to 

UNF expected from proposed NPPs.  Although the Advanced Fuel Cycle Initiative 

(AFCI) is assessing a number of different reactor technologies for transmutation of UNF, 

these will not see commercial use until the 2030 timeframe.  This suggests the 

importance of studying ways to utilize the current fleet of LWRs to stabilize the 

transuranic (TRU) inventory from the UNF stockpile.   

 In order to best minimize the buildup of TRUs, we must search for an LWR 

configuration with optimal transmutation capabilities.  For this, it is necessary to 

calculate the equilibrium cycle of such a configuration, which will allow for effective an 

comparison of TRU destruction capability with different reactor types, include alternate 

LWR designs and even fast reactors.  

 As a continuation and extension of R. Sorensen’s light water reactor (LWR) 

equilibrium cycle search methodology [1,2], we have developed a global equilibrium 

cycle search algorithm coupling the CPM-3 [3] lattice physics calculations to the 3-D fuel 

depletion calculations with the PARCS code [4].   The methodology is based on time-

dependent microscopic reaction rates extracted from the lattice physics calculations, 

which are used in global nonlinear isotopic depletion calculations.  This allows for 

efficiently approaching an equilibrium cycle configuration with a fewer number of 

coupled lattice physics-global depletion calculations than that would be required in direct 

iterative approach to an equilibrium cycle.  Sorensen’s work focused on the assembly-

level methodology, approximating a global equilibrium cycle by using a reactivity-based 

cycling model [5].  Only preliminary 2-D global equilibrium cycle calculations were 

reported using the UM2DB code, which is a heavily modified version of the 2DB code 

[6].   
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 We have implemented a global equilibrium cycle search algorithm coupling CPM-3 

and PARCS primarily to establish the feasibility of the algorithm in 3-D global 

macroscopic depletion calculations.  As the first step in developing an equilibrium cycle 

methodology applicable to general LWR fuel cycle studies, we have performed iterative 

cycling calculations to obtain an equilibrium core configuration, with the intent to 

perform the development of optimal fuel loading algorithms in a future study.  In this 

paper, we describe the basic fuel cycle methodology involving the incore and excore fuel 

cycle algorithms.  The incore algorithm develops the method to extract microscopic 

reaction rates from CPM-3 calculations, while the ex-core algorithm accounts for the 

decay-cooling, reprocessing, and mixing of fuel feed with discharged fuel.  A description 

of the overall equilibrium cycle search algorithm is then presented, followed by a 

summary of burnup distributions and Pu inventories obtained in our PARCS equilibrium 

cycle calculations. 

 The core configuration for this study is the Westinghouse AP600 reactor, using 

slightly modified CORAIL assemblies presented in [1].  These are heterogeneous 

assemblies each containing 198 slightly enriched UO2 fuel pins with a periphery of 66 

MOX fuel pins in a 17 ×17 array.  The initial cycle comprises three batches with 2.0, 2.5, 

and 3.0 wt% 235U enrichments in a checkerboard pattern.  Subsequent cycles use a typical 

three-batch reload scheme shown in Fig. 1, with 3.5 wt% 235U enrichment for the reload 

assemblies.  Fuel cycle calculations are performed without soluble boron concentration 

until the end of cycle (EOC) is reached with the effective multiplication factor 

keff = 1.003 . 

 We begin in Sec. II with a description of the incore fuel cycle algorithm, which 

extracts reaction rates from the lattice physics code, and uses these to construct an 

operator that effectively performs a sufficiently accurate fuel depletion calculation over a 

fuel cycle without repeating lattice physics calculations as fuel isotopics evolve.  Section 

III discusses the excore fuel cycle, where an operator is constructed to simulate cooling 
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and reprocessing of UNF.  In Sec. IV we illustrate the equilibrium cycle search 

algorithm, primarily the iterative scheme used to arrive at converged feed and discharge 

number density vectors.  Section V explains the two recycling methods used for testing 

the equilibrium cycle methodology: self-generated Pu recycling and augmented feed Pu 

recycling.  Converged equilibrium cycle results are presented in Sec. VI, followed by a 

summary and conclusions in Sec. VII. 
 

II. In-Core Fuel Cycle Algorithm 

The first step in the incore fuel cycle algorithm is to obtain an operator that relates 

beginning-of-cycle (BOC) number densities to EOC number densities.  This is 

accomplished by extracting microscopic reaction rates from the CPM-3 output file to 

create the transmutation matrix Bcyc  representing the solution to the isotopic depletion 

equation: 

 

dNi (t)
dt

= σ j→i (t)φ(t) + λ j→i⎡⎣ ⎤⎦N j (t)
j
∑

− σ ai (t)φ(t) + λi⎡⎣ ⎤⎦Ni (t), i = 1,2,…, I , j = 1,2,…, I ,
                  (1) 

where σ j→i t( )φ t( )  and λ j→i  are the transmutation rate and a sum of the radioactive 

decay and (n,2n) reaction rate, respectively, that lead to the production of nuclide i from 

nuclide j, while σ ai t( )φ t( )  and λi  are the absorption rate and decay constant for nuclide 

i, respectively.  With the CPM-3 21-actinide chain summarized in Fig. 2, Eq. (1) may be 

set into vector form: 
dN(t)
dt

= A t,φ(t)[ ]N(t) ,                (2) 

in terms of the nuclear density vector 
 
N(t) = Ni (t),N2 (t),…,NI (t)[ ] . 

 With time steps Δtk ,k = 1,…,K ,  the solution to the isotopic depletion equation (1) is 

written for the EOC nuclear density vector at : 

 Nd = N(τ ) = eAkΔtk

k=1

K

∏ N(t0 ) = BcycN(t0 ) = BcycNc;τ = Δtk
k=1

N

∑ .            (3) 
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The transmutation matrix Bcyc  acts as a single operator that relates the charge vector Nc  

at the beginning of cycle (BOC)  t = t0  to the discharge vector Nd  at the end of cycle  

(EOC) t = τ .  For the AP600 core design used in the current study, there are three 

different assembly types, with each type having its own sequence of reaction rate 

matrices Ak .  In global depletion calculations performed with the PARCS code, 

however, a different EOC burnup is obtained for each individual assembly reflecting a 

different power density for each assembly.  The EOC assembly burnup value is then 

converted into the EOC time 
 
τ

 for assembly 

 
,  = 1,…,L , and substituted into Eq. (3), 

so that each assembly has its own unique discharge vector Nd .  
 

III. Ex-core Fuel Cycle Analysis 

To complete the in-core fuel depletion algorithm presented in Section II, we need a 

charge vector Nc for each assembly, which is accomplished through the ex-core fuel 

cycle algorithm.  Through this algorithm, we represent the cooling, reprocessing, and 

reloading of discharged assemblies. 

 For the decay-cooling process, we generate matrix D  containing all of the decay 

constants for the 21 nuclides and obtain the decay-cooling matrix C  for the cooling time 

period τ cool : 
C = eDτ cool .       (4) 

A diagonal reprocessing matrix R  is then introduced, comprising recovery factors 

ri , i = 1,…, I , giving the fraction of each nuclide that is recovered during the reprocessing 

stage.  This reprocessing matrix is combined with the decay-cooling matrix to relate the 

recovery vector Nr  to the discharge vector Nd : 
 
 Nr = RCNd . (5) 
 

A feed vector N f , representing an external feed source, is then added to the recovery 

vector to generate the charge vector for the next cycle: 
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 Nc = Nr + N f = RCNd + N f , (6) 
 

where N f  can be chosen according to the recycling strategy.  Material flow using these 

equations is shown in Fig. 3, with ovals depicting mass inventories and rectangles 

representing fuel cycle operations. 
 

IV. Equilibrium Search Algorithm 

The equilibrium cycle search begins with CPM-3 calculations for each assembly type.  In 

our study, three different enrichments, 2.0, 2.5, and 3.0 wt%, were used in the first core.  

Macroscopic cross section files are generated via a cross section processing program, 

macrolinx.f, in a format readable by PARCS.  At this point, A matrices in Eq. (2) are also 

generated for each assembly type, and BOC number densities for each assembly are 

saved as well.  A fuel depletion calculation is then performed with the PARCS code until 

keff = 1.003  and the burnup value for each assembly is converted into EOC time 
 
τ

.  

These EOC times are used to generate a distinct Bcyc  matrix for each assembly, so that 

EOC number densities can be calculated.   

 Once the first cycle is completed, an iterative scheme is used to search for the next 

charge vector.  A feed vector is chosen based on the recycling and reload pattern used, 

with Eqs. (6) and (3) applied until a converged charge vector Nc  is obtained.  In the 

three-batch core we simulate, the discharge vector Nd  represents the fuel that is 

discharged from each of the thrice-burned assemblies.  These vectors are then averaged, 

so that charge vector and the recycled fuel in each fresh assembly will be the same.  This 

entire process is shown in Fig. 3. 

 The algorithm contains two iterative loops, as illustrated in Fig. 4.  The innermost 

loop of the application is described by Eqs. (3) through (6), and constructs in-core and 

ex-core operators using the reaction rates extracted from CPM-3 calculations.  Repeated 

application of these operators effectively simulates lattice physics calculations, whereby 

converged charge and discharge vectors are obtained.  These converged vectors are 
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number densities that represent an equilibrium cycle for the specific reaction rates from 

the previous lattice physics calculation.  The algorithm then proceeds to the outer 

iterative loop, where new reaction rates are obtained using the updated number densities.  

Once both the inner and outer loops are converged, a true equilibrium cycle has been 

reached. 

 Assemblies were loaded using a simple three-batch pattern and a PARCS depletion 

calculation was performed to reach EOC.  All thrice-burned assemblies were removed, 

with a new feed vector used for creation of fresh assemblies. 

 

V.  Recycling Modes 

In testing and validating our equilibrium search algorithm, we make use of two different 

recycling schemes: self-generated Pu (SGP) recycling mode and augmented-feed Pu 

(AFP) recycling mode. Assemblies were loaded using a simple three-batch pattern and a 

PARCS depletion calculation was performed to reach EOC.  We represent a typical three-

batch core with a total discharge burnup of 42~45 MWd/kgHM.  Once the target batch-

average burnup is achieved, the thrice-burned assemblies are discharged and allowed a 

cooling period of 5 years, after which they undergo reprocessing and refabrication.  In the 

SGP mode, all self-generated Pu is recycled.  The remaining fuel mass is composed of 

enriched U, the enrichment of which can be adjusted to obtain the desired cycle length. 

 Alternatively, the AFP recycling mode does not involve the recycling of any of the 

UNF in the assemblies.  It instead utilizes a Pu feed vector, representing the average 

composition which will be accumulated in France by 2016.  This feed vector gives the 

isotopic weight percents as {238Pu, 239Pu, 240Pu, 241Pu, 242Pu | 0.027, 0.56, 0.259, 0.081, 

0.073}.  The remainder of the fuel is U at a fixed enrichment. 

VI.  Equilibrium Cycle Results 

The first parameter of interest in the equilibrium cycle search is the amount of Pu 

discharged from thrice-burned assemblies at the end of each cycle.  This is summarized 
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in Figures 5 and 6, which show the inventories of Pu discharged per assembly during the 

search for the equilibrium core, with an equilibrium cycle length of 420 equivalent full 

power  days (EFPDs) for SGP recycling mode, and 450 EFPDs for AFP recycling mode.  

These cycle lengths are calculated from PARCS output, at the point when . 

The inventory plots indicate that an equilibrium cycle is attained by the eighth cycle.  

Each cycle represents typically 5 ex-core cycle searches via Eq. (6). 

      In the approach to equilibrium, fewer calculations were required to obtain converged 

number densities for AFP recycling than for SGP.  This is due to the external feed of Pu 

for AFP, which causes the fractional change in TRUs to be less as we approach an 

equilibrium cycle.  Since the smaller fractional changes in number densities mean that 

reaction rates will be similar for subsequent cycles, the AFP case apparently converges 

faster to an equilibrium cycle. 

 Assembly-wise burnup distributions at the BOC and EOC are also of interest when 

examining an equilibrium cycle.  Figures 7 and 8 show the equilibrium BOC burnup 

distributions and normalized assembly power maps for a quarter core, while Figs. 9 and 

10 show the corresponding EOC burnup distributions and power maps.  In both cases, we 

see the expected flattening of power across the core as the cycle progresses, with similar 

assembly-wide power and burnup maps.   

 Finally, we summarize equilibrium cycle characteristics of the core, including BOC 

isotopic concentrations and a mass balance over the cycle covering U and TRU nuclides 

in Tables 1 and 2.  We note that the Pu inventories at the BOC and EOC have converged 

to ~10 kg/assembly for the SGP recycling, whereas they are converged to ~17 

kg/assembly for AFP recycling, indicating that equilibrium cycles are reached for each 

case.  Both an increased Pu content and the higher concentration of fissile Pu in the AFP 

case lead to a spectral hardening of the flux, seen in the larger fast-to-thermal flux ratios.  

This spectral shift also leads to a lower reactivity swing, as the absorption of neutrons in 
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238U leads to the production of 239Pu which is more likely to undergo fission in the harder 

spectrum.  This is also true in the production of fertile TRUs. 
 

VII.  Summary and Conclusions 

In our effort to develop an equilibrium cycle methodology for global LWR fuel cycle 

analysis, we have coupled the CPM-3 lattice physics code with the PARCS 3-D diffusion 

theory code for a demonstration of the methodology.  Our test cases are three-batch 

AP600 configurations involving either the recycling of all self-generated Pu, or a feed 

vector composed of stockpiled Pu, both in a CORAIL-type heterogeneous assembly 

design.  Through the use of microscopic reactions rates extracted from CPM-3 depletion 

calculations, we are able to arrive at a balanced ex-core cycle for each set of lattice 

physics calculations and the corresponding macroscopic cross section libraries.  Once the 

ex-core nuclide balance is satisfied, we perform a new set of CPM-3 calculations to 

update the microscopic reaction rates.  This process is repeated for a fixed fuel loading 

pattern to arrive at an equilibrium cycle.    

 We have demonstrated the feasibility and efficiency of a 3-D global equilibrium cycle 

methodology for LWR fuel cycle analyses, which require in general burnup-dependent 

microscopic reaction rates for a meaningful search for an equilibrium cycle.  This is to be 

contrasted with typical equilibrium cycle calculations for fast reactors, where a single set 

of burnup-independent few-group microscopic cross sections may suffice.  Our test 

calculations have been performed to date without explicitly accounting for thermal-

hydraulic feedback effects and for burnup-dependent critical soluble boron 

concentrations.  In addition to improving on these approximate treatments in our fuel 

cycle calculations, additional effort will be required to optimize the fuel loading pattern 

subject to diverse objective functions.  Further effort is also required to streamline our 

equilibrium cycle methodology so that it may be applied with alternate lattice physics 

codes.   
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Figure 4. Flow chart for the equilibrium cycle search algorithm 
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Figure 5.  Discharged mass of Pu during the approach to an equilibrium cycle 
using SGP recycling mode 

 
 
 

 
 

Figure 6.  Discharged mass of Pu during the approach to an equilibrium cycle 
using AFP recycling mode. 
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 Figure 7.  BOC burnup distribution (MWd/kgHM) and assembly power map for 

the equilibrium cycle using the SGP recycling mode. 
 
 

 
 

 Figure 8.   BOC burnup distribution and assembly power map for the equilibrium 
cycle using AFP. 
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Figure 9.    EOC burnup distribution and assembly power map for the equilibrium 
cycle using the SGP recycling mode. 

 
 
 

 
 
Figure 10.  EOC distribution and assembly power map for the equilibrium cycle 
using AFP. 
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Table 1. Summary of Equilibrium Cycle Characteristics 
 

Equilibrium Cycle Characteristics 
  SGP AFP 

Cycle Length (EFPD) 420 450 
235U enrichment (wt%) 3.5 4.0 
Pu (wt%) in MOX Fuel 6.81 11.59 

Fissile Pu (wt%) 54.4 64.1 
  

Mass Balance 
(kg/assembly) BOC EOC BOC EOC 

Uranium 458.84 446.52 454.91 444.68 
Neptunium 0 0.09 0 0.72 
Plutonium 9.99 10.02 17.06 17.20 
Americium 0 0.25 0 1.04 

Curium 0 0.06 0 0.46 
  

Total TRU 9.99 10.42 17.06 19.42 
Total Heavy Metal 468.83 456.94 471.97 464.10 

 
 
 

 
Table 2.  Summary of Equilibrium Cycle Reactor Characteristics 

 
Reactor Characteristics for Equilibrium Cycle 

  SGP AFP 
Cycle Reactivity Swing (% Δk/k) 21.4 16.1 

Fast-to-Thermal Flux Ratio   
BOC 7.263 7.931 
EOC 7.557 8.233 

Radial Peaking Factor   
BOC 1.465 1.469 
EOC 1.271 1.265 

Axial Peaking Factor   
BOC 1.480 1.469 
EOC 1.051 1.099 
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