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1 Introduction

This is the second of three memos describing how normal form map analysis is implemented in CHEF. The first [1]
explained the manipulations required to assure that initial, linear transformations preserved Poincaré invariants, thereby
confirming correct normalization of action-angle coordinates. In this one, the transformation will be extended to nonlinear
terms. The third, describing how the algorithms were implemented within the software of CHEF's libraries, most likely
will never be written.

The first section, Section 2, quickly lays out preliminary concepts and relationships. In Section 3, we shall review the
perturbation theory - an iterative sequence of transformations that converts a nonlinear mapping into its normal form - and
examine the equation which moves calculations from one step to the next. Following that is a section titled
“Interpretation,” which identifies connections between the normalized mappings and idealized, integrable, fictitious
Hamiltonian models. A final section contains closing comments, some of which may - but probably will not - preview
work to be done later.

My reasons for writing this memo and its predecessor have already been expressed. [1] To them can be added this:
“black box code” encourages users to proceed with little or no understanding of what it does or how it operates. So far,
CHEF has avoided this trap admirably by failing to attract potential users. However, we reached a watershed last year:
even | now have difficulty following the software through its maze of operations. Extensions to CpiyBiss
functionalities, software upgrades, and even simple maintentance are becoming more difficult than they should. | hope
these memos will mark parts of the maze for easier navigation in the future.

Despite appearances to the contrary, | tried to include no (or very little) more than the minimum needed to
understand what CHEF’s nonlinear analysis module’ 8o with the first memo, material has been lifted - and modified -
from Intermediate Classical Dynami¢kCD) [2], old technical memos, seminar viewgraphs, and lecture notes. Finally,
for a reason | do not know but am willing to indulge, equation and comment labels start from where they left off in Part 1.

2 Prerequisites: notation, definitions, lemmas, and assertions

This section need not be read but should be referred to as needed. In it are telegraphically compiled prerequisites for the
ones that follow. More complete introductions, explanations, and examples can be found in various sections of ICD [2]. |
do not intend to reproduce them in their entirety but will extract and modify pieces indiscrimiately.

1To save reading time, permit me to identify what is important: Equations (39), (41), (42), (50), (52), and the pseudocode that follows Eq.(41).
2Excerpts from ICD and other copyrighted material are reproduced with permission of the author.



To begin, an “observable” is a function defined over phaseesp@nd a coordinate is a special case of an observable.
However, we need to expand this concept from real valuedifumeto complex valued ones as well; complex observables
and complex coordinates are not only permitted but not easisential but exceedingly useful for this formalism. Asalsu
Rrepresents the field of real numbers &)abf complex. The symbaF will stand in for eithelR or C, when it is
convenient to leave the field ambiguous.

On those few occasions when it is convenient to do so, I'lllsglize phase space by Calculations take place
within localized, open subsets with coordinates writteriamal charts: open subsets of eittif or C2", for somen,
which contain the origin.

The dimensions of?" andR?" are different, but as in the first memo, we are restrictedecstibset

{(a,az,...,a) €C" |Vk:agn=a;} C C*, (29)

where index arithmetic will always be understood to proamedulo 2. | shall abuse the notatio82", by henceforth
assuming this restriction everywhere without further caanin There are other subtleties, such as angle coordinattes n
being defined at zero action, so ti#atechnically must be “punctured” by removing the origin andiag it back as a
“special point.” | shall ignore that, and all similar embssments, because they make it awkward to write intuitively
simple sentences like, “The origin must be a fixed point ofrttagping.”

2.1 Polynomial mappings

The subjects of our attention are smooth invertible mapping
M: 72n — ?-Zn

where notational abuses have already been noted (and wét again be mentioned). More specifically, we are primarily
interested in the jétrepresentatives of such mappings: polynomial maps, i.ppings whose components are
polynomials* Even then, we shall restrict ourselves only to those thattimaprigin into itself.

No good, universally accepted notation has been inventaedriting about all this. For openers, I'll switch freely
between several ways of representing coordinates and betugngN or 2n to represent the dimension of phase space,

either as an ordered tuple:  e.g(uz,up,...,un) e fN
or as an underlined symbol: e.g.u e FN
or as an indexed set of variables: e.g{ux | k= 1..2n}, or simply{us} € FN

depending on convenience within a current context. We giseaial designation®s,” indexed by exponents, to a
monomial with coefficient one.

N
CDQZTN—>T, {u} — rlukok, with all ok € {0,1,2,3,...} .
k=1

The degree of this term is the sum of the exponents; the defeegeneral polynomial is the maximum degree of any of
its terms? If polynomials are viewed as forming a vector space gFethen the subset,j5{®s}, span the subspace in

3| cannot remember where | first read this, but in the theoryiefBacklund transformations a “jet” is an equivalence slasmappings all of whose
derivatives are identical, up to a specified order, at onergpoint. It is, if you will, a generalization of the conceparigent space.” More on this can be
found in the 1995 revision of the MXYZPTLK User's Guide. [3]

4l had thought that “polynomials” were functions taking orrguanent,P: F — F, and used “multinomials” for those taking several arguments
P:FN — F. Evidently, correct mathematical terminology employs th@dv‘polynomial” in both cases.

5| shall use the words “degree” and “order” interchangeaddyif they had the same meaning. This is not so in other variaperturbation theory,
but for us the order parameter is always linked to some pofreccoordinates’ scale.



which we shall work.
P:gN—g, P= > P, {C}C T .

{0]0<3koksM}
The positive integeM is the degree of the polynomiaNOTE: We disallow the constant termg,= 0, to enforce the
constraintP(0) = 0.

Next, we need a notation for projecting out of P. Again thinking ofP as belonging to a vector space, we can
employ an inner product notation, such as
Co = (CDQ, P)

Many accelerator physicists have adopted an abuse of Dirtation,
Co=(a|P)
that is frequently convenient though sometimes ambigusheuld we need to filter out more than the coefficient, we can
define an indexed set of projection operators.
Mg: F7' = 75 | Pio ey
To projectcomponentsf a mapping we shall use a notation that anticipates its coengmplmentation. Iff : #N — FN
is a mapping, theri[i] will represent its™ component. That is,

it fo FN— FN (U up,. . uN) — (UL U, ... uy) then f[i]: FN— F. (ug,uz,...,un) — U .

Finally, we tacitly acknowledge that all functions inhdhie algebraic properties of their image spaces: for example
for f,g: #N — #F andce 7,

h=f4+g < h(u)=f(u)+g)
h=f.g < hu="fu) g
h=c-f=cf < h(u)=cf(u)

and so forth. To this we must include the composition algelhen the range of one function matches the domain of
another e.g. forg: FN — F andf: ¥ — Z,

fog: 7N =2, um f(g(u)

Notice that polynomial maps are closed under compositienifif andg are polynomial maps, then sofs g.
In everything that follows, the symbglwill represent the identity mapping in whatever space happe be the
current context.

foral ucR: J(uy=u; forallue F: J(u)y=u; forallue #N: J(uy=u; andsoon..

COMMENT:

23. All this notational fussbudgetry is not meant to be eifredantic or didacti€.Considering what lies ahead, this
seems a little like straining out gnats and (later) swalfmpéamels [4]. Nonetheless, when the time comes to translate
equations into lines of code — or, even worse, to desityh @asses with useful attributes and behaviors — it helpsve ha
identified the categories of objects that operators act @parare expected to return.

6To paraphrase from Woody AllenBroadway Danny Rose.



2.2 Function algebras

Collected here are a few lemmas that will be needed on thérdg®f mappings. All but one are too trivial to bother
writing their proofs.

LEMMA : Homogeneous functiong,f : N +— # | f(Au) = APf(u), forallA,uc ¥, forsomepe Z*},forma
graded algebra under multiplication, with the multipleegXponent as the grade.

deq f-g) =dedf)+dedqq)

LEMMA : Polynomial mappings form a graded algebra under additimhc@mposition. A mapping’s grade is its degree,
which is propagated through algebraic operations as fallow

ded f +g) = maxdeq f),deqg)) and deqfog)=deqf)-degq) .
In particular, if degg) = 1, then degdf o g) =deq f).

That last, innocuous sentence makes possible the proctndiie the subject of this memo. These first two lemmas will
have increased importance for the material in the next one.

LEMMA : Composition (for both functions and mappings) is rightmlisitive over addition. It is also left distributive for
linear maps. That is,

forall f,g,h: (g+h)of=(gof)+(hof
fo(g+h)=(fog)+(goh) ifandonlyif fislinear

The next lemma is non-intuitive and important enough to hveriting its proof, albeit as simple as the others.

LEMMA : LetQ(P) be a (specific) homogenous polynomial map of degreel, and letOlP* represent a generic
(p035|bly |nf|n|te) polynomial map whosdewestorder term is of degrep+ 1. Then, the composite inverse of
7+QP - olPH s,

(7+QP +olPH) = g QP 4 olPtH

PROOF: This proof is nothing more than a simple calculation thatsuhe previous lemma. To improve its readability, |
shall replace 4 OP+1" with “+...”

forall u: [[7—QP +...Jo[74+QP +...]Ju) = [7+QP 4...— QP o[74+QP +...]+---](u)
u+QP () — QP (u+ QP (L) +--- ) +---
= u+QP () —-QP(u)+--

Written functionally,



COMMENTS

24. Thaty + QP +... is a finite polynomial map does not mean that its inverse is Boeexample, on the real axis, the
inverse of f : x+—x+x? is f~1:x— (vV4x+1—1)/2=x—x?+---. More could be written about this — e.g. branch
cuts, domains — but why bother? One point to be netegassanis that CHEF's mxyzptlk library contains a method to
compute the exact composite inverses of jets automatically

25. Nothing within this memo has anything to do with conveige Estimating domains of convergence of the (possibly
asymptotic) series soon to be written is a research areadinkith the existence, strengths, and locations of res@sarc
have no intention of stepping into it here; just establigharsensible topology would by itself take us too far astragat

all operations as formal, as though our purpose does notymmdeghe minimum needed to understand CHEF's source
code. (Oh, wait: it doesn't!)

2.3 Action-angle and Weyl coordinates

We shall need the differential forms connecting complex Mg@grmal form) coordinates and action-angle coordinates
from Eq.(13) of the previous memo or from ICD [2, page 24, E®).

for j=1.n: aj=iy/lje ¥ — daj/a;=dl;/2I;—id¢; .

Since we are not being rigorous | won't bother pointing ouitkeiies, such as the fact thdg; is globally well defined but
¢; is not. The corresponding dual forms will be even more useful

0 _1f10 13
oj  2\ajda ajoa

i = i aiki_a-i
b, Joar  oa; |

(30)

the inverses of which are,

0

0 L0 00 0 0,10
0a; B ol 2aj 0¢;

or, if you prefer, aja_aj = Ij6_|j+§6T>j )

2.4 Lie (derivative) operators

Much of this section will be lifted directly from the pagesIl&D [2]. We begin with the notion of a “vector field” — also
known as “system,” “dynamical system,” “dynamic,” or “ondiry differential equation.” For our purposes, this is aaar
of observables, usually interpreted as the (local) compts® a differential equation.

z = dz/de = v(z[.0])
The symboB is used as the orbit parameter in anticipation of definingtieturn map,

M z(0) — z(0+2m) .

"These appeared as Problem 2.4 (page 97) of ICD [2].



If v has no explicit dependence 6nthen the system is “autonomous.”

Lie Derivative. Given any observablg, and local representation, of the vector field, we define the linear operatqf,

as
Lg=h, where h(z) =v(2)- 92

Depending on author and contekig is called the “Lie derivative,” “Lie operator,” or simply dtangent] vector [field].”
We note in passing that (k)= L,g is again an observable, at least locally, so that (a,Ideed acts like a linear operator
on the space of observables (treated as a vector space).2hii ¢an be applied repeatedly (powerd gfare well

defined) and (b).y is a geometric objedti.e. if a coordinate transformation is effected,

T: 27 and v(2) —V(2) ,
then 5
7)== .
= ) aZ/
The Lie derivative has a natural interpretation as eitherectional derivative or a “time” derivative, through the
application of the chain rul&

v2) 2 = v(

dg dz dg B
%—%'a—z—\_/'@g—lﬂg- (31)

Exponential maps. If Ly is autonomous — or if autonomy is forced by extending phaaeesp andj itself is
independent of the orbit parameter, then as an operatotiequa the linear vector space of observables, Eq.(31)H&s t
immediate (and more than formal) solution.

go = e”go
We write gg with a subscript to emphasize that this represents a oravder family of observables. Depending on
context this is called either an exponential map, the (aBgime evolution operator, the Heisenberg picture impsy
Taylor’s theorem. In particular, replacimyg with the identity provides an expression for what we woulldl tbee one-turn
mapping.

M =e”mvy
Earlier chapters of ICD [2, pages 63ff] contain examplesaf this generates the orbits of simple, exactly solvable
dynamical systems. In the present context, it will be useBdation 4 to connect underlying Hamiltonian models with
mappings.

Hamiltonian dynamics. A Hamiltonian dynamic is obtained by rotating a gradientteeéield by 1/2 along a specific
direction in phase spacé.LetH : ? — Rbe any observable. An associated Hamiltonian dyn&nhiasthe components

2 OH
= dz/d6 = J-0H , thatisfori=1.2n, vi= Jx=—
v =dz/dd = J-0H . thatis fori n, Vi k; 3z

8This is standard notation among mathematicians and mosiematical physicists.

9This is like writing thatV is a vector whose components areThe operator®/dz comprise the “natural” basis for the tangent spaces aithtthe
points of P. For an extended discussion of this, see ICD [2] or, bettgr,gmod book on modern differential geometry.

10Thjs equation provides the simplest argument thahustbe a geometric, coordinate-independent entitg@sl8 cannot depend on the coordinates
used to evaluate it. In fact, Eq.(31) is the starting pointnfiore exact, formal treatments of the theory of tangentespaad tangent bundles. From it is
definedwhat one literally means by the tangent space attached tadaiabat a point.

11This is stated loosely. The concept of “angle” has no natleéihition in a space that does not possess a metric.

12what I've written here is a simplified treatment, specialize global canonical coordinates.



wherez are canonical coordinates ovBrordered as in the first memo, so that

=(33)

Mathematicians symbolize the vector field with these coneptsmas<y; in his seminal 1982 lectures at the first USPAS
session [5], Alex Dragt introduced a colon notation intoederator physics to represent the same thing (apart frogr.si

I=11o
ol

X =L = —tH:=vd = —0H-J-0

If we separate into “position” and “momentum” sectors in coordinate sysseof interest, the components take on readily
recognizable form&3

“Cartesian” coordinates: z= ( I)_(D ) Xx=0H/ap, p=—0H/ox,
action-angle coordinates: z= ( Ti ) $=0H/al, I = —0H /09,
normal (Weyl) coordinates: z= a% ) a=—ioH/oa*, a"=ioH/0da,

BecauseéXy is a geometric objett - a vector, independent of the coordinate system - we cantequa

XH

OH /dp-9/0x —dH /dx-9/ap
OH /01-9/0¢ —dH /a¢ -9/aL (32)
= 20(0oH/oa"-d/da) .

A fundamental property is thatamiltonian fields are closed under commutatioith

forall f,g: [Xi,Xg] =Xgt} >

where{-, -} indicates a Poisson bracket.

2.5 Integrable Hamiltonian models

A not totally necessary step in map analysis is classifyiiregane-turn mapping as being “equivalent to” one generated b
a member of a collection of (preferably) integrable Hanmiiems. The first of these is the linear model,

l 0 i 0
H=vl = ZVH, andXH_v—q) Zjad)J

At this level, mappings are (linearly) equivalent if thewhahe same tunes. One level up are the shearing Hamiltgnians
which contain nonlinear terms in the action coordinate.

H =v-l+Hsl), and Xy = ( +6—Hs)-i =v(l) = (33)

13For an explanation of the extra factoriaippearing in the third equation, see ICD [2, page 133].

14again, see ICD [2, page 59, Eq.(2.54); page 130, Eq.(3.46)].

15This defines a morphism between the commutator algebra affigeators of Hamiltonian dynamics and the Poisson bradgebea of observables.
For a quick derivation and discussion, see ICD [2, page ¥08further discussion, read Abraham and Marsden [6].



These provide representative models possessing ampliegendent tunes. The final category we shall consider icenta
integrable resonance models. First the autonomous,
H = v-14+Hs(l)+Hrs(l)sin(m" ¢)+Hrc()cos(m -0)
= V-l+Hs(l) +H()cogm" - ¢ +n(1)) , (34)

wheremis an array of integers. To this is added the periodic version
H=v-1+Hs(l)+Hs()sinm' -¢+n6) +Hr (L ycogm' -¢+nd) , (35)

weren is an arbitrary integer, not half the dimension&fBy a well known sequence of manipulations, Eqg.(35) can be
transformed into Eq.(34 That this is so effectively proves its integrability.
The resonance models written above are specializatiotgafibre generic,

H = v-1+Hs(l) +H (DF (m 9)

whereF is a (not arbitrary) periodic function. We shall shun the engeneral possibilities and be content with a single
trigonometric function.

COMMENTS

26. The attraction of integrable models is that the asynpgidbal behavior of their orbits is (semi-)analytically
calculable. Thus, their stable regions of phase space cahdracterized unambiguously without resorting to tragkin
Further, they are characterized by a small number of copr@meters, such as tunes and resonance strengths.

27. One way of classifying or “interpreting” a symplectic pping is arguing that it is equivalent to the exponential map
generated by one of these models by constructing a cooedirsatsformation that converts one into the other. That s,

M ~e?™ 9 or perhapsM ~ <|_| e ) g, (36)
|

where the latter product is ordered and ¥pe do not necessarily commuté Such transformations almost never exist
globally, so the argument proceeds to its conclusion by io@itvg the reader (or listener) - by whatever means are dsone
disposal - that a usually infinite number of (higher ordenntgcan be ignored. Failing that, one appends the phrase “at
this order” to the end of the argument and hopes for the bést pfeceding sentences could initiate a long discussidn tha
| do not intend to enter. Instead, we shall turn to constngtine required transformation(s).

3 lIterative sequence of transformations

With these preliminaries out of the way, we are ready to diesthe perturbative procedure called “map analysis.” Its
first, linear step was already explained in the previous mevith all the details needed to assure that normalization
preserves the Poincaré invariants, including the (podak) phase space volume. Subsequent, nonlinear stepsl shoul
maintain that objective while iteratively bringing the girial symplectic mapping into normal form.

16This procedure is described in gory detail on pages 205-21Qm[2].
This is, of course, the goal of MARYLIE.
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Figure 1: Ladder of normal form transformations. Each stéptder,” or “degree,” is annotated as a parenthetical supe
script. The rightmost compositioN,o L, is the (one-turn) nonlinear mapping expressed in the algihase space.
The square in the upper right hand corner represents reductiinear normal form.

3.1 Transformative tandem

Shown as a commutative diagram in Figure 1 is the iteratidddaof transformations that reduce a nonlinear map to its
normal form. Each step’s “order,” or “degree,” is annotadsdh parenthetical superscript. The square in the upper righ
hand corner represents the linear piece described in th@eopsememo. The rightmost compositiddip L = M, is the
(one-turn) nonlinear mapping expressed in the originabplspace coordinates. Such a factorization is “always’ipless
simply setN =MoL 1. As a result, the linear part f is the identity. This simple and exceedingly useful trickasried
over throughout the procedure: the linear part ofiglP), as well as allZ (P, will be the identity. In a slight abuse of the
word “near,” such mappings are frequently called “near fgitransformations,” but again | emphasize that nothimg i
this memo has anything to do with convergence.

The objectiveon the(p — 1) step of this ladder is to absorb as many terms as possible of
degreep— 1 from the mapping\((P~Y into the transformatiod (P~ so that they will not

appear in\((P).

That is the most important sentence in the entire memo; #viaryelse just describes manipulations for carrying it
out. Meditate on the words while staring at Figure 1 untilbloécome irreversibly imprinted. After that happens, peace
to read the definition of\(P from the diagram by traversing thie — 1) step clockwise.

AP = (TP Lo arPD) 6 p o (P o -1 (37)

ALP~D and, of coursef. are already known7 (P~ must now be constructed so as to achigeobjectivefor A((P). To



that end, we choosg (P~ to be,
L IR N (38)

where the lowest nonlinear terms form a homogeneous poli&imp,‘fp(fil), of degreep — 1. In principle, at this point
we could take those as the only terms, but we shall leave depdssibility of later adding more, of degreep, which
we are temporarily buried in the dots.

Using an lemma from the previous section,

(T(P-y1og Tp(BIl) b

Further, we exposg((P~1’s series of homogeneous polynomial maps,
N(p—l) — 74 N(prl)_i_ 7\[(3p71)+"'+ N(pP:11)+ N(pp71)+"' :

of which we are primarily interested, at this stepy\(r&)pjll). Inserting these expressions into Eq.(37) isolates tmeserf
(current) interest.

N(P) = (j_f]‘p(le>_|_...) o (]+...+9\£(pp:11>_|_...) of o (]4_(1"3(811)4_...) or 1
Now using the distributive lemma, and the (crucial) fact thas linear, we can rework the three rightmost factors,

to produce
AP = (]_Q‘D(EID_F...)O(_7+...+57\£(pp:11)_|_...)o(]+Loq‘p(le)o[fl_|_...)
= It NP (LY - Lo P o) o

The final expression is obtained by continuing to apply tgbtrdistributive property and ruthlessly shoving highetear
terms into the dots as they appear. Projecting out figf the homogenous map of degnee- 1 provides the following
evocative result. ) (p-1) (p-1) (p-1)

Ny =Ny 1 — (TP = Lo’V or™) (39)
For reasons definitely not worth going into, this is calleel thomological equation.”

COMMENTS

28. While not yet completely obvious, the nature of this mdvill mean that, once it is converted into an algorithm, the
algorithm is the same at all orders. Thus, written once ntlmaapplied iteratively. More than anything else, that istvh
originally made this entire procedure so attractive.

29. However, it was not the first such breakthrough. Pomeaticipated this technique but, not possessing computers
did not push it beyond the first two stepsin the 1960’s, André Deprit [7] developed a correspondiatgitive procedure
for celestial mechanics that operated in the realm of autanus Hamiltonian dynamics not necessarily expressed as
polynomialst® Deprit's algorithm was my first exposure to nonlinear peséiive techniques that could be automated to

18] once had the reference, have lost it, but shall search.for it
19An extension that handles non-Hamiltonians as well is fdélyived in Section 5.2 of ICD [2, pages 253ff].

10



any order. It was the first significant advance in this areeesPoincaré, and its elegance contrasted sharply with the
manipulations necessary to get results even to second®Brdsing the generating function techniques emphasized in the
overly venerated text of Goldstein [12].

30. lonce had the privilege, in the late 1980’s, of spendidgywith Deprit at the Naval Research Laboratory. He
informed me that even within his own field of celestial medbahis revolutionary accomplishment was not trusted. He
had been applying it to establish the stability of satetitieits, yet those higher in his administrative food chasisted on
continually “benchmarking” his answers against numeiirti@gration. André Deprit died in November, 2006.

3.2 Solving the homological equation

We have now reached the heart of the matter: solving Eq.B883)auseL is linear this can be handled one monomial term
at a time. To ease the notation, | am temporarily droppiagd (p — 1) subscripts and superscripts, with the
understanding that we are positioned on giepl of the ladder. Expand,

T = Ztgdbg

and consider that

2n . 2n
DgoL 7t a s Dg(A'a) = rll((é“kaw"k = exp<i wa) Pg(a)
k= k=1

where it is understood thak, , = — i, SO that

2n n
cof Fom) - o0{15 -

Mathematical notation becomes a little awkward at this pdihe remaining left operation by is easier to explain
in words: “thej™ component off" is multiplied by exg—ipj).” Symbolically, | want to write something simple, like,

2n
forall j: forall g: Lo ®go leexp<i Z(ck—éj,k)pk> Pg
K=1

with ; ¢ being the usual Kronecker delta. While this captures theressof what must happen, it is wrong on two counts:
(1) j does not appear on the lefthand side of the equality, and¢X)dmain ofz is the space of observablesGfl' —i.e.
functions mappin@?" — C?" — while the argument presented to it is a function mapgifiy— C. It is more correct to

use an inner product to write something like,

2n

forall j: forall g: (®g, (LoToL H[j]) = exp<i Z(ok—éj’k)pk> (Pg, T1j]) »
K=1

20For example, the technical memo of Cole [8], though conteameous with Deprit's work, was considered “state of thé afrthe time among
accelerator physicists. In those days this was frequeatlgd:a “Moser transformation,” at least at Fermilab, preably because Moser had used such
transformations in his proof of the KAM theorem. My own sn@dhtribution was to realize that Deprit's algorithm couklodified slightly to include
periodic Hamiltonian systems [9] [10] [2]. It had all the iagi of a gnat landing on a wet water buffalo and was rapidlyesserled by the mapping
techniques [11]. Nonetheless, case studies on simple mt@tkto a “resonance seeding hypothesis” [2, pages 281f@8duickly estimating dynamic
apertures, an idea that had even less influence on subseyeeits. Ah, the memories!

11



which, while less transparent, at least keeps track of tlublégrojection taking place. Referring back to Eq.(39),

forall j: forall g: (®g, (T— LoTo L [j]) = (1—exp<i %(O—k—éj’k)uk )((Dc, TMi]) -
K=1

Finally, let the coefficients by in the j" component 0f7\[<pp:11), 7\[%’21 andTFffIl) beggf’c;l), ggp) andtfi’y
respectively. Eq.(39) then boils down to the following. a B

2n
forall j: forall o: gﬁ?g = ggﬁ;l)— (1—exp(i Z(ck—éj,k)uk>> tj(?;n (40)
- - K=1 -
Our objective is to choosas many as possiblef the tJ( Y so that g 0 = 0. That is, we want to construct the

transformation so as to absorb as much as possible of thmaanbehawor removing it from the mapping. The only
terms that cannot be absorbed are those for which

2n
exp<i > (ok—éj’k)pk> =1. (41)
K=1
Peeking ahead to the third memo and indulging in a little geeade, this piece of the algorithm can be written:
for each j:
for eachao:
if Eq.(41) is satisfied:
— (p-1
o = g% "
tJ( 5 Y=o [[ Could be anything, but for now make it zero. ]
else
g(p) =0

1,0 °
t2 Y = gl Y/ (1—exp(i 32 (0 — 5.0Mk ) )
COMMENTS

31. Ifithappens thaggfgl) =01in Eq.(40), whether Eq.(41) is satisfied becomes a noreidaithe language of
accelerator physics, a resonance is not excited if its gtheranishe$?

32. Inthe final step of the mini-algorithm abowfao b may be excessively large if the denominator is small thougth n
exactly zero, unless the numerator is correspondinglylsila¢refore, when implementing the algorithm, choicestmus
be made as to the meaning of “small.” Tiielause must be made fuzzier, and perhaps even interactimecobmodate
this ambiguity. We shall return to this in the next memo.

33. lwantto avoid reinforcing the ridiculous notion thaso@ances come into existence because of “small
denominators.” Resonances — and, to some extent, sheargisesection) — are topological barriers that prevent the
construction of transformations connecting the actuaksygo an ideal. Systems that are not topologically equntale
cannot be mapped onto one another. This is manifested iarpative calculations by the appearance of “small
denominators,” but they aedfects not causes.

34. The combination,
O:T—T—LoTorLt

21Exploiting this one fact filled much of my second and thirdrgeat Fermilab. The activity was called “magnet shuffling.”
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is a linear operation on the space of mappings. Eq.(39) caevmitten in terms of this “adjoint” operator as,

p-1 p-1 p

O’Tp(,l ) _ N(p,l) _ N(p,)l .

The terms satisfying Eq.(41) comprise the null space ofitteal, “homological operator®. Their removal amounts to
nothing more than the usual requirement for handling thesmaice of a linear equatiéhbefore solving it.

3.3 Null space: shear and resonance terms

In mathematics as in biology, what cannot be absorbed mysaésed on. Two types of zeroes appear while solving the
homological equation: systematic and accidental. The éolerd to “shear terms” corresponding to the phenomenon of
amplitude dependent tunes. The latter arise from the existef resonances and may or may not be problematic,
depending on their strengths. We shall treat them sepwgiattie next section.

Before doing so, it may be useful to point out that Eq.(41)sdoet specify a unique set of exponents. Rewrite the
summation, usin@y.n = —H to halve the number of (formal) terms.

2n

Hen=—Hc = > (0k=8j1)l = ) (Ok—9j k) Hk+ (Tictn — &j,ksn) Micin
=

Py
jllM:

= [(Ok = 8j k) = (Okin— O kin) | Mk
1

=~
Il

Thus, the accidental zeroes (resonances) satisfying Bpt€ur when

n

> [(0k=8j k) = (Oksn—Bjkn)]Vk=0  mod1, (42)
k=1

where | have usepy = 2mvi.?3 That is, the summation on the left hand side is an integendnmal condition for a
resonance line. Obviously, there is not a one-to-one cporedence between a resonance condition and a set of exponent
Systematic zeroes (shear terms) correspond to theggch satisfy

forall k: ox—0jk = Okin—dj kin (43)

Notice the absence of “mod 1.” This is an exact equality wiigtkes Eq.(42) valid independent of the tunes. It can be
written less symmetrically, but perhaps more understalycegfollows.

1, j=k
forall k: ox—0Okin = Ojk—0j kin = —1, j=k+n
0, otherwise

)

COMMENTS

35. This comment could be deferred as a programming isstighdexpression ex(p' zﬁil(ok — 6j,k)pk) is most
easily evaluated by using the already calculated diagdeaients of the linear eigenvalue matx,

] 2n 2n S 0 2n 5j.k*0k /\jj
exp( iy (ok—dj Kk | = [](e™)% = [\ NS
- - K=1 Mk=1"\xk

2?Including linear differential equations, resulting in ttlistinction between “particular” and “general” solutions
231t is regrettable that andv look so much alike, but we must learn to tolerate such incoievees with patience and forbearance.
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This can be simplified further. For example, becaligé\v: nk.n = 1, for all k, we can replace evenry with
Ok — Min(ok, Ok4n). However, let us postpone such considerations to the intkefirture.

36. When everything is connected back to physics, the extwadcker deltas appearing in Eq.(43) or Eq.(42), which do
not appear in a continuous Hamiltonian formalism, arisenftbe circumstance that nonlinearities in the Hamiltonian
come from a vector potential while those in the mapping comeafa magnetic field.

3.4 Symplecticity: connecting the dots

All those “+--." terms, so far hidden from view, must now be filled in. In E@)Xhe terms left unexpressed could, in
principle, be anything; they could even be nothing. Howgteepreserve the Poincaré invariants — which, let us agnee f
the moment, is a good thing — they should be chosen so thadker of transformations is symplectic. One way of doing
that is to generate each(P~b as the exponential mapping of the Lie operator associatétaxicalar observable: i.e. a
"Hamiltonian.” This is not the only way, but it is the way ofetiFIB** algorithm [11], which CHEF currently uses and its
predecessors, mxyzptlk and AESOP, have used since 1989.

So, we begin by asserting th@tP~ can be written as the exponential map of a Lie operator.

TP = expTP V)7, (44)
thatis 7+ V.. = (14TCP D4y

There is no subscript oh(P-1). The components of this operator are homogeneous polyt®afia single degree; there
are no higher or lower order terms. From this we identify comgnts:

- —1) ;.
TP = 2]
which is to say,
-1 _ s 100 0 _ S g1 9
T = S TPl 0= = > T, il 5 (45)
; 0a, ; p-1 0a,

The same should be the case fgf”), which also is expected to be symplectic.

NP = exp2nNP) g (46)
& P i1 0
2T[N(p> = leg\[:pfl[]] a_aj ) (47)

COMMENTS

37. These alone do not guarantee symplectidit§. ) andN(P) must actually be the Lie operator of a single, scalar
observable. Nothing written so far guarantees this. Canditmust be met, to which we shall return in the next section.

38. After constructing (P~Y andN(P), Equations (44) and (46) must be used to generate the enatirgformation and
normal form mappingip to the order of the final calculatidmefore proceeding to the next step.

39. An additional factor of # appears im\((P) because the exponential is toinéerpreted aghe “time”-evolution

24Forest, Irwin, Berz. | would have preferred calling it thedlgorithm, but the seminal paper [11] has three authors Féds easier to pronounce
than IFB. For awhile | called it the FBI algorithm, but thaeses too subservsive, and FIB fits in better with the use of perators.
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operator of the dynamical systeM, over the intervab < [0, 2m). This comment leads directly to the topic of the next
section.

40. Being able to write Eq.(44) easily is one advantage afgisear identity transformations.

4 Hamiltonian interpretation and/or classification

By “interpretation” | mean the attempt to associate the fified “shear terms” and “resonance terms” of the mapping —
i.e. the null space of the homological operator — with shedrrasonance terms that would appear in an ideal, integrable
Hamiltonian model. We limit our attention to Hamiltoniam&t can be expanded using the §&} as a basis: that is,

H = Zhgd)g )
{g}

The basis is not complete. There are many Hamiltonians tratat be so expressed: eHj= 12cog7¢), which is not
analytic at the origin. Happily, we won’t need them. The agsted vector field — aka Lie derivative — is expanded

correspondingly.
X = ;& hQXLDQ
o

Our objective now is to construct the coefficiertis, from those appearing in the mappin@é\P). To peek ahead to the
answers, see Eq.(50) and Eq.(52).

4.1 Shearterms

Start from Equations (46) and (47). Consider now the appearaf a shear term, i.e. one satisfying Eq.(43). The
components of the Lie operator at a given order

2n 0 n ] . d
N = J-:lmj]a_m ;M”a_m*mj”] e (48)
will contain shear terms like the following.
2n n
A[[j] contains g; nagk = g (acay)% | a;%a;*%i~t
k=1 k=1
k#]

n
= g |-71 |k0k> a;
(A

I have temporarily dropped the explicip™ and “p — 1” subscripts and superscripts which indicate our locadiothe
transformative ladder. It is understood that all operatiorthis section occur within a single step. A similar re$ullds

for AL[j +n.
n
A[j+n] contains g I;lrlllkok al
k=
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Putting these pieces into Eq.(48) and using Eq.(30) givésainal result.
N contains [t - 1, Ok -a-i+ *-‘a*fi
J le K 9i8i5q, T 9 J0ay
n 10 10 n 0 0
Ok -z - s Ok | i ai— —af—
[ ' ) (aT 5] +aj aa]f> + Og; (IJ leIk ) |<aJaaj a’aa]-*>
= 20g; | [ k™ 9 _ Og; (171 ﬁ 1o | 2 (49)
) al; AT A 00;
Ifall Ogj =0, then we can identify amplitude dependent tuneshifts gitedigp by comparison with Eq.(33).

n n a
NP = 0o (1t 0 ) = =
leg P\ k|:|1 LT

The sum oro is carried out only over those exponents satisfying Eq.(43)

Associating this with the Lie generator arising from an agtmous Hamiltonian model is not trivial. We have
already seen one piece: it requiréd; = 0. If somellg; aresignificantlynon-zero, it is an indication that the chain of
perturbative transformations is breaking down becauseafraulation of computational roundoff errors or the existe
of a strong resonance that has not been handled correctlybBing assumed, we rewrite

I
[
L
VR
T
=) Lt

n
Py 9
AP (1) 2
il J ad)j

n 1 a n
NP Dg(-p) - Ok | —
leg M2 gjoly \ b 00
n 0 (p) 1 n 0
= — | =S Ogi'g — 1 % | =
= ( g 12 g k':ll 00

Clearly we want to identify that final quantity in parenthess the effective Hamiltonian at degnge
n
N(P)(U _ z NéP) I—l IOk
] k=1

but that requires,
forall j: forall o: N((,p) = —Dgﬁg/cj , independent of . (50)

If that is the case, then we can write, as in Eq.(33),

NP ¢ NP

=) olj o ’
completing the identification,AvEp) (1) =aN®)(1) / a1;.

COMMENTS

41. Proving algebraically that (or when) this will work isyimad the scope of this memo, which at best attempts to lay
down a minimal set of the equations implemented in CHEF. incase, it would be going about the problem backward. If
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the original mapping is symplectic, and symplecticity isg@rved throughout all orders, then these seeming
“conspiracies” among the coefficients are to be expeatdess the perturbation procedure breaks dowrany case, the
normal form series remains valid whether or not the conoadtiith a Hamiltonian can be established. The iterative
procedure could even be made to work with non-symplecticuings.

42. Og; = O trivially for single thin multipole models, for the kick oditionsAx = 0 andAy = 0 require that
Aa= —Aa*.

43. The physical consequenced jj # O are not to be sneezed at. In a continuum interpretatiorcdagicient of

0/0l; isdl;/d6. Looking at Eq.(49), a so-called “secular” term is inducedewhlg; # 0 : d1/d6 depends olh alone. As

has been understood for well over a century, these can lediddmence and should be avoided when doing perturbation
theory.

4.2 Resonance terms

That was the easy part. The treatment of resonance termsch wdilisfy Eq.(42) but not Eq.(43) — is more devious. It
helps to work backward. Our target is the coefficient of a teraresonance model Hamiltonian. We postulate that there
is a Hamiltonian model, like the one in Eq.(34), with terms containing factors @xjm" - ¢) for which

S k-1 Mk = 0 (mod 1). We assert further the sufficiency of our basis fonst®g, so that

N contains resonance termsNg ®g, where my = £(0yn—0k), forall k.

The resonance condition for the Hamiltonian model can beittemn.

n n n 2n
0 (modl) = % (Ok—Oken)Vk = ) OkVk+ Okin(—Vk) = ) OkVk+OkenVken = » OkVk (51)
k=1 =1 k=1 =

The trick is to fixm and allowg to run over all possibilities.
We are aided and abetted by the geometric nature of vectds fias expressed in Eq.(32).

N = Ly contains Ng X, = N"Z B 36 30 31

Il
pzd
Q
M
o
__QJ
ol
o
+
=)
o
__QJ
+
=)
)
o

- n 0 2n o 0 B 0 2n o i
B Gzaaj Dlak 0ajn 0ajin kDak 0a;

1
0

|N Oj | | ok o —iNgOjn |2n! agkfék‘”” —
oY) (g
J aaj+n K an

We must equate these coefficients with those in the Lie gearashthe mapping. Notation again becomes a little
awkward. Referring back to Equations (48) and (50)g|¢t] {03} be the coefficient o|"|kak i in the component

[
M:

A[j +n] and letg; (¢, _& be the coefficient of] i in A'[j]. The postulated relation is,
J:{0k—0 jin} ak

ZT[NQ = igj,{dkfﬁk'jﬂq}/o’ﬂ*n = —igj+n,{0k—6k,j}/0j ’ for all J (52)
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5 Final comments

We have reached the point of diminishing returns. Rathar tloatinuing in this awkward manner, it would be easier and
more meaningful to deal directly with algorithms, their iimmentations, and case studies of applications, i.e. thesu
matter of the third mem&? Written here are a few scattered observations before gjosin

COMMENTS

44. Staring back at Equations (41) and (42), it is not obvtbasthese are indeed the resonance terms singled out
previously. That they are is confirmed using Eq.(51).

2n 2n

2n
> ((Ok=djsn) =Oj)Vk = > OkWk— H (Sijen+Skj)Vk
=1 = =

= —(Vj4n+Vj) (modl
= 0 (modJ
2n
and similarly Z((Ok—ak’j)—ak’jJrn)Vk = 0 (mod)
K=1

45. Results analogous to Eq.(52) hold By via the components appearing in Eq.(45)71tan be written as the
exponential map generated by a Hamiltonian field, then By.(5operly transposed, must be vadixtept thathere is no
resonance condition. Thus, Eq.(52) must be applieadffaexponentsg. If this works, then the iterative transformations
will be symplectic.

46. There are two schools of thought on whether a Hamiltoinigmpretation will always work: yes and no. To argue on
the positive side, one can appeal to something like the MAIRYdlgorithm [5]. It constructs such exponential maps,
progressing element by element through a beamline, by tissnBaker-Campbell-Hausdorff (BCH) formdfao absorb

the generators of individual element maps one at a time. ®nelgative side of the argument, there are statements &ke th
following [13]: “Every element of @ompact_ie group ... can be obtained by exponentiating some eleofdht Lie
algebra. Often, the theorems that hold for compact groupaatonger valid for noncompact groups. ... For noncompact
groups every element may be reached by exponentiating alsnwall number of straight lines in the Lie algebfaAs

the symplectic group is not compact, and as we must work wgtimfinite dimensional representations, this begs the
guestions, under what conditions (if any) can our techrédai and are they pathological or of practical concern? How
does the issue of convergent versus asymptotic seriesietd@onsideration? One can run but not hide from these
questions. | confess to being confused; neverthelesgjiihésto move on.

47. This memo is not finished, but | am temporarily droppin@ibe missing section has to do with transverse
resonances in a storage ring. The resonance formalisnewdtiove assumes bounded orbitall degrees of freedomnin
accelerator terminology, this means it applies to bunckpsréencing possible synchrobetatron resonances. Tddand
transverse resonances alone we can try (a) taking the lintidaty voltage andp,/ p simultaneously approach zero,

which may be too cumbersome to consider seriously, or (B)drio extend the formalism to unbounded orbits (remember
the “secular” terms?), or (c) isolating the transverse éegof freedom by projection and using something like the

25There might be something to Stephen Wolfram’s idea that spiysical theories should be - and possibly must be - writeemlgorithms, not
transcribed into analysis.

26For a derivation of the BCH formula, see ICD [2, pages 188fhkiRem 3.46, p.196] or practically any textbook on Lie algeh from which |
recommend Gilmore [13].

2TThat other form of exponentiation, “along a small numbertrdight lines,” amounts to an ordered product, like the dra in Eq.(36).
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“co-moving map” approach devised by Irwin and Forest [14}jck parallels (almost) exactly the “well known sequence
of manipulations” mentioned on page 8, below Eq.(35), whidhused in the context of continuous Hamiltonian
dynamics [2, pages 104-211]. | shall postpone writing altiistuntil it too is implemented in CHEF's libraries, at whic
point I may revise this memo or its public successor.
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