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Abstract 
 

In this report, we summarize our work on developing a production level capability for 
modeling brine thermodynamic properties using the open-source code Cantera.  This 
implementation into Cantera allows for the application of chemical thermodynamics 
to describe the interactions between a solid and an electrolyte solution at chemical 
equilibrium.  The formulations to evaluate the thermodynamic properties of 
electrolytes are based on Pitzer’s model to calculate molality-based activity 
coefficients using a real equation-of-state (EoS) for water.  In addition, the 
thermodynamic properties of solutes at elevated temperature and pressures are 
computed using the revised Helgeson-Kirkham-Flowers (HKF) EoS for ionic and 
neutral aqueous species.  The thermodynamic data parameters for the Pitzer 
formulation and HKF EoS are from the thermodynamic database compilation 
developed for the Yucca Mountain Project (YMP) used with the computer code 
EQ3/6.  We describe the adopted equations and their implementation within Cantera 
and also provide several validated examples relevant to the calculations of extensive 
properties of electrolyte solutions. 
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1 Introduction 

This report describes the implementation of the standard form of Pitzer equations and the revised 
Helgeson-Kirhham-Flowers (HKF) Equation of State (EoS) within Cantera to calculate 
thermodynamic properties of electrolyte solutions and to conduct equilibrium speciation and solubility 
calculations as a function of solute concentration, pressure, and temperature. This effort is a subtask of 
a larger effort to generate the numerical software necessary to model water layers, relevant to 
atmospheric corrosion. In these water layers, in contrast to imbibed conditions, there is almost always 
a strong electrolyte present. At equilibrium, the strong electrolyte serves to stabilize the water-
electrolyte phase, causing the activity of water to decrease substantially relative to the pure water 
phase.  That is, the equilibrium relative humidity (RH) in the system can exert changes in the activity 
of water in these aqueous layers therefore imposing variations in the activity coefficients of all solute 
species in solution.  These variations in activity coefficients (i.e., deviation from unity) in electrolytes 
can have strong effects on the solubility of solids and gases, and in the formation of aqueous 
complexes in the aqueous film.  For this reason, accurate quantification of the effects of ionic strength 
on the activity of water is essential in the modeling of solubility and aqueous speciation in electrolyte 
solutions.   

Cantera is a general purpose object-oriented constitutive modeling package with interfaces to C++, 
FORTRAN, Python, and Matlab. Its origins lie in modeling combustion systems and allied chemical 
vapor deposition processes [41]. However, it’s been used extended to solid oxide fuel cell (SOFC) 
modeling [53], and it has been extended to model soot formation [8] using a sectional bin formulation. 
Currently, extensions for electrode reactions relevant to corrosion systems, where modeling the 
conditions for desiccation of brine systems are a prerequisite, and battery modeling are being sought 
after.  The equilibrium speciation and solubility calculations referred to here as “EQ3-type” are related 
to the EQ3NR component of the code package EQ3/6 [7].  The software package EQ3/6, developed by 
Dr. Thomas J. Wolery of Lawrence Livermore National Laboratory (LLNL), is used to conduct 
calculations relevant to geochemical modeling of fluid-mineral interactions involving dilute aqueous 
solutions and strong electrolytes.  The EQ6 component is used for reaction path modeling involving 
titration of a solid, gas, or aqueous species into solution in both time-independent (reaction progress) 
or time-dependent (kinetic) modes.  There is no equivalent of EQ6 in this Cantera implementation.  
There are other computer codes that could perform “EQ3-type” of calculations, for example, WATEQ 
[9], PHREEQC [13], and Geochemist’s Workbench [10, 11].  These codes compute the equilibrium 
concentrations of aqueous and gas species for a given input of solution composition as constrained by 
pressure, temperature, and ionic strength.  Other input constraints used when calculating the 
concentration of aqueous species are charge balancing with respect to some charged aqueous species 
or that defined by saturation with respect to mineral solid or a gas (e.g., solubility).  In comparison to 
software package EQ3/6, this Cantera implementation has the capability to compute multiphase 
chemical equilibrium between solids, aqueous species, and gases.  The basic output generated by 
Cantera for this type of equilibrium calculations is similar to that of EQ3NR where it provides the 
equilibrium molal concentrations of aqueous species and molar abundances of gases, activities of 
aqueous constituents, and thermodynamic properties of the solution.  It should be noted, however, that 
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some important differences exist between the this Cantera implementation and EQ3NR (or other codes 
such as PHREEQC and Geochemist’s Workbench) as to the capability of explicitly constraining run 
inputs such as fixed pH or any other species concentration, or constraints on charge balancing.  These 
features will be expanded into the Cantera EQ3 implementation and is work in progress.   

In this report, we lay out the formulations of the standard Pitzer equations in terms of the expression 
for the excess Gibbs free energy and its derivatives with respect to solutes and solvents. The complete 
equations, as implemented within Cantera, are described.  The implemented Pitzer formulations are 
referred herein as ‘standard’ and correspond to the original form of the equations given by Pitzer 
(1973, 1991) [12, 18].  There are variants of the Pitzer equations developed over the last two decades 
that involves, for example, extensions of the ion interaction terms to accommodate ionic strength 
dependencies or the use of ion pairing reactions that essentially act as an additional parameter [77,79].  
The motivation of extending the standard form of Pitzer equations is mainly to accurately represent the 
thermodynamic properties of electrolytes at elevated ionic strengths where deviations from 
experiments were significantly reduced by practically adding another parameter to the Pitzer 
formulation [79]. The Pitzer thermodynamic database developed for the Yucca Mountain Project 
(YMP) and used here with Cantera is parameterized to be consistent with the standard form of the 
Pitzer formulations.  In the literature, it is usually stated that the standard form of the Pitzer equations 
are limited to solutions not exceeding an ionic strength of about six molal.  This is probably due to the 
overall maximum ionic strength for the large set of electrolytes considered by Pitzer and coworkers in 
their parameterizations.  However, the work by Rard and Wijesinghe [19] and Wijesinghe and Rard 
[68] demonstrated that a standard Pitzer model can accurately reproduce osmotic coefficient data for 
very soluble electrolytes such as Ca(NO3)2(aq) and NaNO3(aq) over the range of ionic strengths and 
temperatures considered in experimental studies. Their results show a very strong agreement with 
those obtained using extended Pitzer formulations developed to model strong electrolytes.  The 
methods of Wijesinghe (2003) [19] and Wijesinghe and Rard (2005) [68] were adopted in the 
development of the YMP Pitzer thermodynamic database for cases of strong electrolytes.  Details on 
the development of the YMP Pitzer thermodynamic database are given elsewhere (see Appendix I of 
[43]. 

Next, the details of the implementation within Cantera will be addressed. Verification of the 
implementation within Cantera is carried out by a comparison of the mixture activity coefficient, 
osmotic coefficient, and Debye-Hückel parameter against published data for some binary salts like 
NaCl, as a function of temperature and molality. An example thermodynamic equilibrium calculation 
involving between NaCl solid, NaCl electrolyte solution, and air is carried out and reported as a 
verification exercise. 

In subsequent sections, a description of the formulations for the mixture enthalpy, mixture heat 
capacity, and mixture solution volumes, in terms of derivatives of the previously derived activity 
coefficients and osmotic coefficient to complete the implementation of the Pitzer equations. 
Verification of computed results is conducted in the form of comparisons against selected values 
reported for the NaCl, MgSO4, and Na2SO4 salt systems for excess enthalpy, heat capacity, and 
osmotic coefficient calculations.  The solubility of halite (NaCl solid) and sylvite (KCl solid) in mixed 
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NaCl-KCl electrolyte solutions was evaluated and compared to solubility data.  Finally, the solubility 
of calcite (CaCO3) in NaCl at a fixed PCO2 was also evaluated and compared to experimental data. 

We don’t go into detail about the derivation or motivation for the equations chosen. That would 
require an extensive discussion and these formulations have been described in detail elsewhere. It 
would also be a mute point, considering that a vast amount of experimental data for liquid brines has 
been fit to be used with the implementations in the code EQ3/6. We note, however, the Pitzer 
formulation is effective at describing binary interaction with a minimum number of parameters and 
has been shown to be effective at capturing the interactions of multi-component brines also with a 
minimum number of additional ternary interaction parameters. 

Cantera is an open source application developed by Prof. David G. Goodwin from the applied physics 
department at Caltech and is hosted on sourcefource.net. The electrochemistry modules described here 
have been copywrited by Sandia/DOE for open source distribution and will be added to the 
sourceforge.net Cantera distribution. 
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2 Gibbs Excess Free Energy Formulation 

Pitzer (1973, 1991) expresses his equations in terms of a formulation for the excess Gibbs free energy. 
The Pitzer model is an extension of the Debye-Hückel model for ionic solutions, employing an ionic 
strength-dependent and temperature-dependent virial coefficient expansion to account for short-range 
interactions not handled by the Debye-Hückel term. The excess Gibbs free energy formulation is 
based on the ideal molal solution model (which is anything but ideal, since there is a singularity when 
the solvent concentration goes to zero), introduced in ref. [4]. Let’s show this below. 

Pitzer’s basic presentation starts on p. 85 of ref. [18]. In that presentation, the chemical potential for 
solutes, i, iµ , and water, o, oµ , is defined as: 

 ( ), ln i i
i i

mT P RT
m
γµ µ

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
, where i

i
o o

nm
M n

= and 
1000

o
o

MM =  (1) 

 ( ) ( ), lno
o o oT P RT aµ µ= +  

( ),i T Pµ  is the standard state of solute i on a one molal ideal solution basis. im is the molality of 
solute i, oM represents the number of moles of water present in one kilogram of water (1 kg/0.018015 
kg·mol–1 = 55.508 mol·kg–1), and iγ  corresponds to the molality-based activity coefficient for solute i.  

( ),o
o T Pµ  stands for the standard state for water, i.e., pure water at the temperature and pressure of the 

solution, and oa  designates the water activity at the temperature, pressure, and composition of the 
solution. The m  term in the denominator with units of 1 molal (1 gmol kg-1) represents consistency 
with the standard state adopted in this formulation which is that unit of activity for a hypothetical one 
molal solution referenced to infinite dilution at any given T and P. The total Gibbs Energy, G nG= , 
an extensive quantity, is equal to 

 ( ) o o i i
i

nG n nµ µ= +∑   (2) 

where n  is the total moles of solution, on  corresponds to the number of moles of water, and in  
designates the number of moles of solute i. Then, the Gibbs free energy of mixing, ,mixG∆ , an 
extensive quantity is equal to: 

 ( ) ( ),
0 0

ln lno i i
mix o o i i o i

i i

mG nG n n RT a n
m
γµ µ

≠ ≠

⎛ ⎞⎛ ⎞⎛ ⎞
∆ = − + = +⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑  (3) 

Pitzer (1973, 1991) introduces the osmotic coefficient in order to replace the water activity term using 
the following definition for the osmotic coefficient (φ): 
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 ( ) ( )
0 0

1
ln lno

o o
o i i

i i

na a
M m n

φ

≠ ≠

−−
= =

∑ ∑
 (4) 

Plugging this expression in yields: 

 ,
0 0

ln lni i i i
mix i i i

i i i

m mG RT n n RT n
m m
γ γφ φ

≠ ≠

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞∆ = − + = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ ∑ ∑  (5) 

,mixG∆  is broken up into 2 parts. The first part assumes that the osmotic coefficient is equal to 1, and 
the molality-based activity coefficients are equal to one; this is called the ideal Gibbs free energy of 
mixing, ,

,
id
mixG∆ . 

 ,
,

0

ln 1id i
mix i

i

mG RT n
m≠

⎛ ⎞⎛ ⎞⎛ ⎞
∆ = −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

∑  (6) 

Eqn. ) is the same result obtained by Eqn. (15) of ref. [4], for the ideal molal solution model. The 
second part of the Gibbs energy of mixing, Pitzer labels as the excess Gibbs free energy, ,exG , it 
includes everything else that is not part of the ideal molal solution model. 

 ,
, , , ,

0

ln 1id i
ex mix mix mix i

i

mG G G G RT n
m≠

⎛ ⎞⎛ ⎞⎛ ⎞
= ∆ −∆ = ∆ − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

∑  (7) 

Note, we have included the symbol as a subscript to differentiate from the real exG  expression which 
is based on differences from the true molar-based ideal solution behavior.  By dividing by o oM n , the 
excess Gibbs free energy may be put on a per kg of water basis: 

 , ,

0

ln 1ex mix i
i

io o o o

G G mRT m
M n M n m≠

⎛ ⎞⎛ ⎞∆ ⎛ ⎞
= − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

∑  . (8) 

Plugging Eqn. ) into the general equation, Eqn. ), yields the expression for ,exG  

 ( )( ),
0

ln 1ex i i
i

G RT n γ φ
≠

⎛ ⎞= + −⎜ ⎟
⎝ ⎠
∑  (9) 

 ( )( ),

0

ln 1ex
i i

io o

G
RT m

M n
γ φ

≠

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
∑  (10) 

Eqn. ), which is on a per kg solvent basis, is the starting place for the rest of Pitzer’s work. All 
formulas start with virial coefficient expansions involving expressions for ,exG .  Further details on the 
Pitzer equations and related parameters are discussed in Section 4.  
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2.1 Partial Derivatives of the Excess Gibbs Free Energy 

Let’s derive the relationship of the partial derivatives of Eqn. (2) with respect to the species mole 
numbers to the molality based activity coefficients and osmotic coefficient. The definition of the 
chemical potential is given by Eqn. (11). All other partial molar properties follow the same form. 

 ( )
, ,

, ,
j

i
i T p n

dG T P
dn

µ
⎛ ⎞

=⎜ ⎟
⎝ ⎠

x   (11) 

in is the number of moles of species i in the solution. This may be combined with the expression for 
the extrinsic Gibbs free energy in terms of the chemical potentials, Eqn. (11), to yield Eqn. (12): 

 
0

n

k k
k

G n µ
=

=∑     (12) 

Then, taking the total derivative of Eqn.  (12) and substituting into Eqn.  (11) yields: 

 
0 0

n n

k k k k
k k

dG dn n dµ µ
= =

= +∑ ∑   (13) 

But, it’s also true that the general functional total derivative of the Gibbs free energy ( ), , kG G T P n=  
is given by the following expression  

 

0, , ,

0, ,

k k

k k

n

k
kP n T n k T P

n

k k
kP n T n

dG dG dGdG dT dP dn
dT dP dn

dG dGdT dP dn
dT dP

µ

=

=

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟= + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
= + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑

∑
 (14) 

Substituting Eqn. (13) into Eqn. (14) yields the Gibbs-Duhem equation, Eqn. (15). 

 0, ,

0

0

0

k k

n

k k
kP n T n

n

k k
k

dG dGdT dP n d
dT dP

S dT V dP n d

µ

µ

=

=

⎛ ⎞ ⎛ ⎞
+ − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

− + =

∑

∑
 (15) 

Note, often this equation is applied at constant T and P which reduces to: 

 
0

0
n

k k
k

n dµ
=

=∑     (16) 

However, note that Eqn. (15) still contains the temperature and pressure dependence.  Eqn. (16) is very 
useful in the sense that for a solution containing water and a dissolved salt, it takes the form: 
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0

i i

i i

w w sc sc

w w sc sc

n d n d

n d n d

µ µ

µ µ

+ =

= −
   (17) 

where wn  and wµ  refers to the number of moles and the chemical potential of water, respectively.  
Likewise, 

iscn  and 
iscµ  designate the number of moles and the chemical potential of the salt 

component i , respectively.  For this case of a multicomponent solution, this equation allows for the 
determination of the thermodynamic properties of the salt components from those of water (see [83]; 
Chapter 34.)   

This analysis may be carried over to the excess Gibbs free energies by applying the following 
separation to the analysis above: 

 ,
,

id
exG G G= +    (18) 

,idG  is the “ideal” component of the total Gibbs free energy expression, which is not an ideal solu-
tion. In the analysis above,  

 ( )( ),

0 0

ln 1id o
o o k k o o k k

k k

G n n M n RT m mµ µ
≠ ≠

⎛ ⎞= + + −⎜ ⎟
⎝ ⎠

∑ ∑  (19) 

where lno
k k oRT M mµ µ= −  and 

 
,
,

0

id
id o

o o k
ko

dG
RTM m

dn
µ

≠

= − ∑     and   
,
, ln

id
id k

k
k

dG mRT
dn m

µ
⎛ ⎞

= + ⎜ ⎟
⎝ ⎠

 (20) 

In Eqn. (19), we introduce the notation ,idG  for meaning the unperturbed expression for the total 
Gibbs free energy of an ideal molal solution component, ,idG , because below, we will introduce 
modifications to ,idG  which will be calling mod, ,

,
id

idG . Plugging this into the general expression for the 
definition of the chemical potential: 

 ( )
,

,

, ,

, , ln

j k

id
exk k

k k
k k kT P n

dGmdG dGT P RT
dn m dn dn

γµ µ
≠

⎛ ⎞ ⎛ ⎞
= = + = +⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
x  (21) 

 

( )
,

,

, ,

,

, ,

k

id
exo k

o o
k oo o o oT P n

exo
o o k

k o o

dGndG dGT P RT
dn n dn dn

dG
M m

dn

µ µ φ

µ

≠

≠

⎛ ⎞ ⎛ ⎞
= = − = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

= − +

∑

∑

x
 (22) 
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( )

,

,

1

1
1

ex
k k

k o k o o o

ex
k

k o o o

dG
RT m RT m

dn M

dG
RT m

dn M

φ

φ

≠ ≠

≠

⎛ ⎞⎛ ⎞ ⎛ ⎞
− = − + ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞
− = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑ ∑

∑
 (23) 

Therefore, 

 ( ), lnex
k

k

dG
RT

dn
γ=   or  ( )

,

, ,

ln

j k

ex

o o
k

k

T P n

G
d

RTM n
RT

dm
γ

≠

⎛ ⎞
⎜ ⎟
⎝ ⎠ =  (24) 

Eqn. (24) is a reproduction of Pitzer’s Eqn. (34) on p. 86 of ref [18]. Rearranging Eqn. (22), we obtain 

 
( )

,

1
1

ex

ko o
k o

G
d

RT
md M n

φ

≠

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎝ ⎠− = −⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
  (25) 

Eqn. (25) is given by Pitzer as Eqn. (35) on p. 86 of ref. [18]. 
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3 Formulation of Standard States within Cantera 

To compute the thermodynamic properties of multicomponent solutions, it is necessary to know 
something about the thermodynamic properties of the individual species present in the solution. 
Exactly what sort of properties is required depends on the thermodynamic model for the solution. For 
a gaseous solution (i.e., a gas mixture), the species properties required are usually ideal gas properties 
at the mixture temperature and at a reference pressure (almost always at 1 bar). For other types of 
solutions, however, it may not be possible to isolate the species in a "pure" state. For example, the 
thermodynamic properties of, say, Na+ and Cl- in an electrolyte solution are not easily determined 
from data on the properties of solid NaCl (halite), or solid Na metal, or chlorine gas. In this case, the 
solvation in water is fundamental to the identity of the species, and some other reference state must be 
used. One common convention for liquid solutions is to use thermodynamic data for the solutes in the 
limit of infinite dilution within the pure solvent; another convention is to reference all properties to 
unit molality. However, in all of these cases the reference states for the fluid mixture are considered 
asymmetric since some species have reference states based on being in infinite dilution, while other 
species have reference states based on their undiluted form. 

In defining these standard states for species in a phase, we make the following refinement in language 
pertaining to Cantera. A “reference state” is a standard state of a species whose definition is limited to 
one particular pressure; the reference pressure. The reference state specifies the dependence of all 
thermodynamic functions as a function of the temperature in between a minimum temperature and a 
maximum temperature at the reference pressure. The reference state also specifies the molar volume of 
the species as a function of temperature. The molar volume is an additional thermodynamic function. 
In contrast, a Cantera “standard state” does the same as a Cantera “reference state” but specifies these 
thermodynamics function at all pressures. A standard state may employ a reference state in order to 
provide the temperature dependence, while it provides the pressure dependence. For example, the ideal 
gas standard state does this. Or, a standard state may not employ a reference state in its formulation, 
depending on its needs if it doesn’t make sense to do so. For example the real equation of state of pure 
water in the liquid state doesn’t employ a reference state formulation, because the equation of state is a 
complex function of temperature and density that doesn’t benefit from its description at any particular 
pressure. 

The formulation of standard states is done within the ThermoPhase object. Objects which inherit 
directly from the object ThermoPhase assume that each species has a reference state associated with 
it. The class ThermoPhase owns a pointer to the class SpeciesThermo. The class SpeciesThermo is 
the base class for a family of classes that compute properties of all species in a phase in their reference 
states, for a range of temperatures. Note, the pressure dependence of the species thermodynamic 
functions is not handled by this particular species thermodynamic model. SpeciesThermo calculates 
the reference-state thermodynamic values of all species in a single phase during each call. 
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The class SpeciesThermoInterpType is a pure virtual base class for calculation of thermodynamic 
functions for a single species in its reference state. All individual reference state classes inherit from 
SpeciesThermoInterpType. Fig. 1 depicts a description of this relationship along with a listing of the 
currently available classes that inherit from SpeciesThermo and SpeciesThermoInterpType. 

As stated previously, Cantera allows for the use of a variety of standard states.  Cantera’s primary use 
is for ideal gases. These have standard states that are just based on temperature, and assume an ideal 
gas at 1 bar. Also, they are based on the NIST/JANAF table convention [24, 57] where the heats of 
formation of the elements in their standard states are set to zero. Calculation of standard state 
properties can be computationally intensive. Therefore, ThermoPhase object relies on the set of 
SpeciesThermo manager classes to calculate the thermodynamic properties of the reference state for 
all of the species in the phase at the same time. Different derivative class of SpeciesThermo make 
assumptions about the identity of the reference state classes for species in the phase, allowing for the 
grouping together of common operations and for the speedup of standard state calculations.  Of 
particular importance is the class NasaThermo, which assumes that each species in the phase is an 
ideal gas comprising a NasaPoly2 reference state format. The NasaPoly2 format assumes that the 
standard state polynomials may be separated into two temperature regions, each with a standard 
NASA polynomial represented by 7 coefficient polynomials used in the JANAF tables and in the code 
Chemkin [57,56].  

The GeneralSpeciesThermo class, which inherits from SpeciesThermo, is special in the sense that it 
doesn’t make any assumptions about the reference states of the species in its phase. The class, which 
just contains a list of pointers to SpeciesThermoInterpType classes, which it calls consecutively to 
calculate thermodynamic properties, should work in all cases.  

All classes that employ variable temperature and pressure standard states for their species inherit from 
the class VPStandardState, which in turn inherits from ThermoPhase. VPStandardState modifies 
the assumptions of ThermoPhase slightly while still maintaining its interface functions. A variable 
pressure and temperature standard state is assumed.  All pressure dependent standard states inherit 
from the virtual base class PDSS (pressure dependent standard state) calculator class. 
VPStandardState maintains a pointer list of PDSS standard state calculator classes. However, in order 
to calculate a vector of standard state properties for its species, it maintains a Manager class called 
VPSSMgr, which assumes certain properties of the species standard state classes within the phase in 
order to create efficiencies in the calculation of those properties by grouping common work. 

Fig. 1 contains a current list of all classes that inherit from the PDSS and VPSSMgr classes. Of particular 
interest to the current work are the PDSS child classes PDSS_HKFT and PDSS_Water. The pressure and 
temperature equations for the PDSS_HKFT class, described in the next section, are the most common 
equations used to describe electrolytes in water.  The PDSS_Water class is used to describe the liquid 
portion (liquid and supercritical fluid) of the full equation of state for water from Wagner and Pruβ 
[32].  
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Fig. 1. Pictorial description of Standard State Calculators and Standard State Managers 
within Cantera 

Cantera classes maintains a child PDSS_IdealGas class just for internal checking against the 
alternative and faster class, NasaPoly2, described previously. The associated Manager class is 
VPSSMgr_IdealGas. The class VPSSMgr_General makes no assumption about the type of PDSS 
classes in the phase, and may be used with any combination of PDSS classes. The manager class that is 
used with the brine thermochemistry capability the most is the VPSSMgr_Water_HKFT manager class. 
This class assumes that species 0 employs a real water equation of state (PDSS_Water) and the rest of 
the species employ an electrolyte equation of state, PDSS_HKFT, described in the next section.   

3.1 Formulation of the HKFT Standard State 

The common standard state adopted for solute ions in electrolyte solutions is designated in this work 
as the HKFT standard state.  HKFT stands for the four authors who develop the EoS formulations for 
retrieval of thermodynamic data of aqueous species consistent with this standard state: Harold C. 
Helgeson, David H. Kirkham, George C. Flowers, and John C. Tanger (IV).  Often in the literature, 
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VPStandardStateTP implements a variable pressure standard state 
model for species in a phase.   VPStandardState owns a pointer to 
VPSSMgr and a vector of pointers to PDSS for each species. 

ThermoPhase is the base thermodynamics class for solutions and phases. 
Mechanical equations of state as well as the electrochemical potential are covered. 
ThermoPhase is itself derived from additional subclasses.  
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this EoS is referred as HKF after the seminal works of Helgeson, Kirkham, and Flowers [20 and 
references therein] or the revised HKF after the work of Tanger and Helgeson [32].  This standard 
state is defined by unit activity of the ionic species in a hypothetical one molal solution referenced to 
infinite dilution at any pressure and temperature.  The implementation of the HKFT standard state 
within the Cantera framework [44] is the emphasis of this section.  Nothing necessarily new has been 
developed within Cantera to handle electrode reactions. This capability to model Butler-Volmer 
electrode reactions has previously been used extensively within Cantera to model solid oxide fuel cells 
[45]. Wedo, however, explain how this functionality is used within liquid water electrolyte systems. 

The HKFT standard state is used extensively within the SUPCRT92 [46] package calculating 
thermodynamic properties if ions, solids, and gases, and the EQ3/6 software package. Essentially, 
because this standard state has been widely used as the basis for fitting experimental data on ions in 
water, this has become the de facto standard despite some of the heuristic issues involved with its 
implementation. The standard state varies with both temperature and pressure. Therefore, it’s 
fundamentally different from other standard states, for example the one adopted in the gas phase 
literature, and available on the NIST website [24], that are based on a fixed temperature. 

The HKFT standard state is similar to the NIST standard state in the fact that it makes an assumption 
about an idealized standard state. The HKFT assumes an idealized one molal solution of the ions 
referenced to the infinite dilution state, while the NIST standard state assumes an idealized ideal gas 
approximation at any temperature and pressure, which is only ideally realized at infinite dilution. 
Thus, it’s assumed that the activity coefficients (on the molality scale) are all one. 

3.1.1 Definition of Standard States 

There is no such thing as an absolute value of a Gibbs free energy or an Enthalpy of a species. These 
energies are all based on comparing differences of energies for a set of species relative to a common 
reference condition, within which differences due to legitimate chemical reactions which conserve 
elements cancel out. Because Cantera has its roots in the combustion field, we maintain its adherance 
to the Gibbs free energy reference condition used by NIST and by the JANAF tables based on the 

( ),298 0o
fH elements∆ =  condition. In this section we will explain how to reconcile this condition with 

the convention normally invoked for aqueous thermodynamics [47] which uses the apparent standard 
partial molar Gibbs free energy of formation as its reference condition for its Gibbs free energies. 

( ),jG T P∆  is the apparent standard partial molar (or molal1) Gibbs free energy of formation from the 
elements of species j. The “apparent” standard partial molal Gibbs free energy of formation at any T 
and P may be related to the Gibbs free energy of the formation reaction of the species from its 
constitutive elements in their stable states at 298 K and 1 bar by Eqn. (26). The “apparent” modifier 
takes on a special meaning in Eqn. (26). ,

o
f jG∆  is evaluated at ( ),r rT P . However, only the Gibbs free 

energy of species j is adjusted at a given temperature and pressure. 

                                                       
1  The distinction between partial molar and partial molal quantities is one based on units only. They are the same up to a 
multiplicative constant. See the discussion in the nomenclature section concerning the difference between 

, ( , )f kG T P∆  

and 
, ( , )f k r rG T P∆ . 
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 ( ) ( ) ( ) ( )( ),, , , ,j f j r r j j r rG T P G T P G T P G T P∆ = ∆ + −  (26) 

( ), ,f j r rG T P∆  is defined as the standard partial molar Gibbs free energies of formation of a species 
from its elements in their stable forms at the reference pressure rP  and temperature rT of 1 bar and 
298 K. ( ) ( ), ,j j r rG T P G T P−  is the difference in the standard partial molal Gibbs free energies of 
species j at  vs. . 

There is a further convention applied only to ionic species in aqueous solutions that has far reaching 
consequences. The apparent standard partial molar Gibbs free energy of formation of those ions are 
represented on a conventional (i.e., H+ convention) basis rather than an absolute basis via the 
following formulation [46, 66].  

 ( ) ( ) ( ), ,
H+, , ,abs abs

j j jG T P G T P z G T P∆∆ = ∆ − ∆  (27) 

( ),
H+ ,absG T P∆  is the absolute standard partial molal Gibbs free energy of formation of the hydrogen 

ion. jz  is the ionic charge of the ion, j. With this definition, ionic species may be defined on a relative 
basis, in which apparent standard partial molal Gibbs free energy of the hydrogen ion is zero for all 
temperatures and pressures: 

 ( )H+ , 0G T P∆ =    (28) 

Lastly,  ( ), ,f j r rG T P∆  may be related to the Gibbs free energy definition used in the JANAF and 
NIST database, which is referred to here as either ( ),o

jG T P or ( ),jG T P  depending upon whether the 
specific activity coefficient formulation is on the molar or molality scale. This Gibbs free energy 
formulation is based on the standard state conventions where ( ),298 0o

fH elements∆ = . This convention, 
followed by NIST and the JANAF tables, sets the Enthalpy of formation of the elements at rT  and rP  
to zero. The two scales may be related by the following equation. 

         ( ) ( ) ( ) ( ) ( ), ,, , , , ,o o
f j r r j r r ij i r r j r r i j i r r r

i i

G T P G T P G T P G T P S T P Tα α⎛ ⎞∆ = − = + ⎜ ⎟
⎝ ⎠

∑ ∑  (29) 

because 

 ( ) ( ) ( ) ( ), , , , ,o
f j r r j r r ij i r r j r r

i

H T P H T P H T P H T Pα∆ = − =∑  (30) 

,i jα  is the formula matrix for the jth species, with ,i jα  being the number of atoms of element i in 
species j. ( ),o

i r rS T P  is the Entropy per gmol of the ith element in its stable state at  and . 

To calculate ( ),jG T P , the NIST-scaled Gibbs free energy to be used within Cantera, either of the 
following formulas, Eqn. (31) or Eqn. (32), may be used. 

 ( ) ( ) ( ) ( )( ), , , ,j j r r j j r rG T P G T P G T P G T P= + −  (31) 

( ),T P ( ),r rT P

rT rP
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 ( ) ( ) ( ) ( ) ( )( ), ,, , , , ,o
j f j r r i j i r r r j j r r

i

G T P G T P S T P T G T P G T Pα
⎡ ⎤⎛ ⎞= ∆ − + −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑  (32) 

The first formula, Eqn. (31),  assumes the Gibbs free energy is already using the NIST 
( ),298 0o

jH elements∆ =  absolute scaling convention. The second formula, Eqn. (32), assumes that the 
base thermodynamic data is given in SUPCRT92 format, i.e., Gibbs free energy of formation, in which 
case a correction factor based on the entropies of the elements in their standard states needs to be 
applied before being used within Cantera. For more information see ref. [3]. We provide an explicit 
example of Eqn. (29) in action in the example section at the end of the memo.  It should be noted that 
the form of equations (26) through (32) applies to any standard molal property of the ion or the bulk 
electrolyte.   

The standard state adopted so far, i.e., the “ ” in the expression, ( ),jG T P , is a special one. For ions 
in solution it is defined as the state of unit activity of the species in a hypothetical one molal solution 
referenced to infinite dilution at any pressure and temperature [33]. The full expression for the partial 
molal chemical potential ( ), ,j T Pµ m  may then be calculated from Eqn. (33), 

 ( ) ( ), , , ln j j
j j

m
T P G T P RT

m
γ

µ
∆

∆

⎛ ⎞
= + ⎜ ⎟⎜ ⎟

⎝ ⎠
m  (33) 

where jm  is the molality of species j in the solution, jγ
∆ is the molality-based activity coefficient of 

species j, and m∆  is the molality in the adopted standard state.  Notice that the latter is a constant that 
makes the logarithm of the expression unitless. The standard state for gases, however, remains a unit 
fugacity of the gas at 1 bar at any temperature. 

Unlike the Gibbs free energies, all other thermodynamic functions don’t have to be modified. From 
Eqn. (30), the absolute-scale enthalpies used by Cantera, ( ),jH T P , are equal to the enthalpy of 
formation of species j from elements in their standard states, ( ), ,f j r rH T P∆ , used by the computer 
code SUPCRT92. 

For ionic species, within Cantera, we have chosen the case that both ( )H+ , 0G T P∆ = and 
( )H+ , 0G T P =  are true [27], implying also that  

 ( ) ( ) ( )+ + + + +H H H H ,H
, , , 0

p
G T P H T P S T P V C= = = = =  (34) 

Also, only reactions that ensure charge neutrality in the liquid phase are allowed. Therefore, the H+ 
formation reaction may be invoked if an e- species is used: 

 ( )2

1
H H      +   e ( )

2
g Pt+ −=   (35) 

It turns out that an additional standard (the standard hydrogen electrode – SHE) is invoked at this point 
which specifies that the Gibbs free energy of Eqn. (35) is zero when the electron e- is located within 
platinum metal. In this case we can write out the consequences in Eqn. (36). 
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 ( ) ( ) ( ) ( )+ -
2H+ H (g)H e

1
, , , , 0

2
oG T P G T P G T P G T P∆ = + − =  (36) 

implying that 

 ( ) ( ) ( ) ( )( ) ( )-
2 2 2 2H (g) H (g) H (g) H (g)e

1 1 1
, , , , ,

2 2 2
o o o oG T P G T P H T P S T P T S T P T−

= = − =  (37) 

The last step in Eqn. (37) is due to the ( ),298 0o
fH elements∆ =  convention. Note, Eqn. (37)  is true for 

any temperature and pressure. The Pt  e- electron for the NIST-based Gibbs free energy has a pressure 
and temperature dependence similar to an ideal gas. Eqn. (37) is sometimes helpful in deriving 
expressions involving electrode reactions [50] which involve the exchange of an electronic charge in a 
metal electrode with the aqueous phase.2 In this case a related expression to Eqn. (37) is actually 
employed for electrons within metals: 

 ( ) ( )-
2H (g)e ,M

1
, ,

2
o o

Me
G T P G T P T z F−= − + Φ  (38) 

Here ( )e-,M ,oG T P  refers to the chemical potential of an electron within a Metal M.  It’s strictly true 
only for Pt and for relative measurements between electrodes made up of the same metal, but can be 
considered to be independent of the type of metal for practical cases not involving large changes in 
temperature  MΦ  refers to the electric potential of Metal M with respect to the electrolyte liquid. 

3.1.2 HKFT System of Equations  

From the theory presented in refs. [47, 66], the change in the standard state Gibbs free energy with 
respect to temperature and pressure may be written as Eqn. (39). 

                                                       
2 Work function differences between metal electrodes are absorbed within the Gibbs free energies of the electrode 
reactions such that all electrons within quoted electrode reactions can be assumed to be in a platinum metal. 
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( ) ( ) ( )( ) ( )

( )( )

( )
( )

( )

1
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, , , ln

ln

1 1
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1
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j j r r j r r r r
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r
r

r

r r

r
r

TG T P G T P S T P T T c T T T
T

Pa P P a
P

T TT Tc
T T T T

Pa P P a
T P

⎛ ⎞
− = − − − − −⎜ ⎟

⎝ ⎠
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+ − + ⎜ ⎟Ψ +⎝ ⎠
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⎛ ⎞⎛ ⎞Ψ +⎛ ⎞+ − +⎜ ⎟⎜ ⎟⎜ ⎟⎜−Θ Ψ +⎝ ⎠ ⎝ ⎠⎝ ⎠

( )( ), , , , ,
,

1 1
1 1

r r r r r r

r r

j rj P T j P T P T
P T

Y T Tω ω ω
ε ε

⎟

⎛ ⎞⎛ ⎞ ⎜ ⎟+ − − − + −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (39) 

We note a couple of conventions. First, the constants, 1c , 2c , 1a , 2a , 3a , 4a  and 
, ,r rj P T

ω are all 
implicit constant values of the ion, j, fit to experimental data. The Born radius, jω  is a calculated 
function of the temperature and pressure that only depends on the one constant value,  . The j 
subscript has just been left out of the expression. These constants are supplied from the input file for 
each ion. 

Some of the variables in Eqn. (39) pertain to the solvent water. The parameters Θ  and Ψ are set to 
228.0 K and 2600, respectively. They represent universal behavior experienced by ions in water.  ε , 
the dielectric constant of water, is a complicated function of T and P. The following variables derived 
fromε , Z, Y, Q, and X, are defined and used within Cantera: 

 
1Z
ε

= −   ,      (40) 

 
2

1

P P

dZY
dT T

ε
ε

∂⎛ ⎞= = ⎜ ⎟∂⎝ ⎠
, 

 
2

1

T T

dZQ
dP P

ε
ε

∂⎛ ⎞= = ⎜ ⎟∂⎝ ⎠
, 

 
2

2
2 2

1
2

P P

dYX Y
dT T

ε ε
ε

⎛ ⎞∂
= = −⎜ ⎟∂⎝ ⎠

 

The dielectric constant for liquid water and its derivatives have already been implemented within 
Cantera [4]. However, SUPCRT92 has an alternative form from [49] that is qualitatively the same. 
Experiments have shown that even the derivatives of the two formulations are quantitatively fairly 
close to one another. 

, ,r rj P T
ω
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From Eqn. (39), the development of the equations for the standard state entropies, enthalpies, and 
standard state volumes follow directly from thermodynamic relations. And, for consistency it must be 
the case that 

 ( ) ( ) ( ), , ,j j jG T P H T P T S T P= −  (41) 

Also, the other thermodynamic function s will be derived from derivatives of Eqn. (39). Therefore, 
Eqn. (39) represents the complete specification of the standard state HKFT. 
 

3.1.2.1 Entropy Calculation 

The entropy may be derived from ( ) ( ), ,j j jdG T P V dP S T P dT= −  to yield: 

 
( ),j

j

P

dG T P
S

dT
= .   (42) 

The absolute entropy of species j at the reference temperature and pressure ( ),r rT P  is an input 
parameter. The change in entropy from the reference temperature and pressure is calculated from 
taking the derivative of Eqn. (39) to yield the following expression. 

 

( ) ( )

( )
( )

( )
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1
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2
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1 1 1
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1
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1 1
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j j
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P P T

TS T P S T P c
T

T Tc
T T T T

Pa P P a
T P

d d
Z Z Y Y

dT dT
ω ω

ω ω

⎛ ⎞
− = ⎜ ⎟
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 (43) 

Note, this expression is different than Eqn. (61) in [47]. However, the latter is missing the 

( ),
/ 1

r r
j P T

d dT Zω +  term. It may however be the case that the term is missing because it is zero for 
the cases considered, and therefore was just left out. Numerical experiments indicated that it is small 
but not zero. Therefore, we have formally left the term in. 

3.1.2.2 Enthalpy Calculation 

The enthalpy may be calculated from the previous formulas for ( ),jG T P  and ( ),jS T P , and from 
Eqn. (41). 
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Although this equation may seem redundant, since Eqn. (39) and Eqn. (43) are sufficient as to provide 
a complete set of thermodynamic properties of interest, it’s useful for understanding changes in the 
standard state enthalpy (measurable quantity) with temperature and pressure.  

For purposes of the code, however,  ( ),j r rH T P  is not a primary quantity, unlike ( ),j r rG T P  and 
( ),j r rS T P . This somewhat arbitrary prioritization is necessary for internal consistency. You can’t 

have three quantities specifying two independent unknowns ( ),j r rH T P  is supplied from the input 
file and checked for consistency, however. 

It should also be mentioned that the SUPCRT92 database contains three quantities, ( ),jG T P∆ , 
( ),jH T P∆ , and ( ),jS T P∆ , which are not independent quantities. As has been previously 

mentioned, the heat of formation reaction for species j at standard conditions, ( ), 298.15 ,1 baro
f jH K∆ , 

is equal to the absolute enthalpy under the NIST convention, ( ),o
j r rH T P . However, in implementing 

the database within SUPCRT92, we ignore the  entry. Actually, its value is internally 
checked to make sure that its value is within an acceptance tolerance condition. 

 

3.1.2.3 Heat Capacity Calculation 

The constant pressure heat capacity may be calculated from the following expression. 

 
( )

,

,j
p j

P

dH T P
C

dT
=    (45)

  

Taking the derivative of Eqn. (45) yields: 

( ),o
jH T P∆
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 (46) 

 

3.1.2.4 Standard State Volume 

The standard state molar volume may be calculated from the following expression. 

 
( ),j

j

T

dG T P
V

dP
=    (47) 

Taking the derivative of Eqn. (39)  yields: 
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⎝ ⎠

 (48) 

Thus, the standard state volume depends on both T and P. 

3.1.3 Theory 

We write down the formation reaction Gibbs free energy as a sum of two terms: a non-solvation term 
and a solvation term. The absolute standard partial molal Gibbs free energy of solvation, ,o abs

s jG∆ , is 
expressed as [66] 

 
2 2

,

,

1 1
1 1

2
a jo abs abs

s j j
e j

N z e
G

r
ω

ε ε
⎛ ⎞ ⎛ ⎞∆ = − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (49) 

where abs
jω  is the absolute Born coefficient for the ion, aN  stands for the Avogadro’s number, and jz  

designates the charge of the ion.  
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3.1.4 Calculation of the Born Radius 

The absolute Born coefficient of the jth ion appears in the expressions above. Following Johnson et al. 
[46] and Shock et al. [66], the conventional Born coefficient it is given by Eqn. (50). 

 H+
abs abs

j j jZω ω ω= −    (50) 

We note that this means that H+ 0ω =  by definition. Also, it means that the expression for H+
absω  is 

associated with all other ions in the solution, and it is compatible with the convention that 

H+ H+ H+ 0o o oV H S= = = , as long as all the other coefficients for H+  (e.g., 1a , 2a , ...) are identically zero, 
as well. In turn, 

 
2

H+
,

jabs

e j

Z
r
η

ω =     (51) 

where 51.66027 10η = ×  Å cal gmol-1. The value of H+
absω   at 298 K and 1 bar is taken to be 50.5387 10×  

cal gmol-1, which yields 
,H+, ,

3.082
r re T P

r =  Å.   ,e jr
 
refers to the effective electrostatic radius of the jth 

ionic species defined as 

 , ,H+, ,r r
e j je T P

r r Z g= +    (52) 

g  is a function of the solvent and is dependent on temperature and pressure. It is also an universal 
function with respect to the identity of the ionic species, and its formulation is described below.  
Combination of Eqns. (50),  (51), and (52) yields the following expression: 

 
2 2
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, , , ,

1 1

3.082 3.082
r r

j jabs abs
j j j

e j je j T P

Z Z
Z

r g gr Z g
ω ω ω η η

⎛ ⎞⎛ ⎞
⎜ ⎟= − = − = −⎜ ⎟⎜ ⎟ ⎜ ⎟+ ++⎝ ⎠ ⎝ ⎠

 (53) 

Eqn. (53) is implemented within the code. An expression for the ionic radius of ion j at the standard 
temperature and pressure, 

, , ,r re j T P
r , is needed. Eqn. (53)  may be used to determine an expression for 

, , ,r re j T P
r  in terms of 

, ,r rj T P
ω  . 
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, , ,
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Z
r Z

r

ω

η

−
⎡ ⎤
⎢ ⎥= +
⎢ ⎥⎣ ⎦

 (54) 

Again, the value of 
,H+, ,

3.082
r re T P

r =  Å is used within Eqn. (54) to calculate the Born radius of ion j. 
All of the fitting therefore has implicitly relied on this number. In practice, 

, ,r rj T P
ω  is used as the 

fitting parameter for species j. Then, Eqn. (54) is used to evaluate  at rT  and rP . Then, 
Eqn. (53) is used to extrapolate the value of ,e jr  to other temperatures and pressures. In this process, 
there is just one fitting parameter, , per species. 

, , ,r re j T P
r

j T P
ω
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The function g is parameterized as a function of T and P, and was originally fit from an extensive 
investigation of the NaCl system [33]. It’s form, revised in [34], is given in Eqn. (55). 

 ( )ˆ1 gb
gg a fρ= − −    (55) 

where 

 2
,1 ,2 ,3g g g ga a a T a T= + +   (56) 

 2
,1 ,2 ,3g g g gb b b T b T= + +  

and f denotes a difference function given by the following expression 
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⎢ ⎥= +⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤× − + −
⎣ ⎦

 (57) 

Non-zero values of g  are limited to values of the density, ρ̂ , which are less than 1 gm cm-3. Non-zero 
values of f are restricted to temperatures greater than 155 and less than 355, and pressures below 1000 
bar. The whole procedure is restricted to absolute densities greater than 0.35 g cm-3, due to the lack of 
fitting data outside this density range.  The coefficients in Eqns. (55) through (57) are given in Tables 
2 and 3 in [47] and Tables 3 and 4 in [67].  It sould be noted to the user that there are minor 
discrepancies in these tabulations even when they should be identical.  The numerical values for these 
coefficients as given by [47] are correct and are adopted in the current Cantera implementation of the 
HKFT EoS.  However, the temperature units reported for some of the coefficients in this source is in 
degree Celsius instead of Kelvin.  Shock et al. [67] reports these coefficients in degrees Kelvin, 
consistent with the usage of temperature units in all these equations.  Nevertheless, there is one 
discrepancy in the numerical value of ,1ga , which is smaller by a factor 10 relative to that listed in [47] 
(i.e., 3.66666 instead of 36.66666).  The value of 36.66666 given by [47] is the correct one and is 
adopted in the current Cantera implementation.   

3.1.5 Modification for Neutral Species 

For the case of neutral species, Eqns. (50) and (53) are essentially replaced by an “effective” Born 
coefficient ,e jω that is essentially obtained from a fitting process [51].  These effective eω , obtained 
from regression of experimental data, are assumed to be independent of temperature and pressure. 
Therefore, the following simplifications in Eqn. (53) can be made. 

  , , , ,r r
e j e j T P

ω ω=     , , 0e j e jd d
dT dP
ω ω

= =  (58) 
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These simplifications to ,e jω modify the equations for the standard state properties given in Eqn. (39) 
to Eqn. (48). 

, , ,r re j T P
ω  is input directly from XML file.  

 
    <species name=”Na+”> 
      <speciesChemFormula> Na+ </speciesChemFormula> 
      <atomArray> Na:1 </atomArray> 
      <charge +1 </charge> 
      <thermo model=”HKFT”> 
      <HKFT Pref=”1 atm” Tmax=”625.15” Tmin=273.15”> 
          <DG0_f_Pr_Tr units=”cal/gmol”> -62591 </DG0_f_Pr_Tr> 
          <DH0_f_Pr_Tr units=”cal/gmol”> -57433 </DH0_f_Pr_Tr> 
          <S_Pr_Tr units=”cal/gmol/K”>   13.96  </S_Pr_Tr> 
      </HKFT> 
      </thermo> 
      <standardState model=”HKFT”> 
        <a1 units=”cal/mol/bar”> 0.1839 </a1> 
        <a2 units=”cal/mol”> -228.5 </a2> 
        <a3 units=”cal K/mol/bar”> 3.256 </a3> 
        <a4 units=”cal K/mol”> -27260 </a4> 
        <c1 units=”cal/mol/K”> 18.18 </c1> 
        <c2 units=”cal K/mol”> -29810 </c2> 
        <omega_Pr_Tr units=”cal/mol”> 33060 </omega_Pr_Tr> 
      </standardState> 
      <source> ref:G9 </source> 
    </species> 
 

Fig. 2. XML Format for an HKFT standard state 

Values of 
, , ,r re j T P

ω  regressed from experimental data are negative. This is due to the disruptive effect 
of a neutral molecule on the electrostatic forces of attraction among the solvent dipoles [52]. 

3.1.6 Implementation within Cantera 

The standard state is implemented as a derivative of the PDSS (pressure dependent standard state) base 
class. The form of the XML data file entry is provided in Fig. 2. The example used is for the ion, Na+. 
The units are native to SUPCRT92. Within Cantera, the units are translated into MKS format. It’s 
assumed that 298.15rT =  K and 1rP =  atm within Fig. 2. 

More must be said about the specification of ( ), ,o
f j r rG T P∆  within Cantera given its roots as a gas-

phase constitutive modeling package. Cantera works with absolute Gibbs free energies, o
jG , not 

( ), ,o
f j r rG T P∆ , which is the norm within the combustion community. Therefore, the ( ), ,o

f j r rG T P∆  
values input from the input file, an example of which is Fig. 2, must be translated into . This is 
done automatically within Cantera using Eqn. (59). Eqn. (59) is written in two forms: one for species j 
whose standard state is on the molar basis and one for species j whose standard state is on the molality 
basis; the equation is equivalent for the two forms. 

 ( ) ( ) ( ) ( ), , H2(g), , , ,
2

jo o o o
j r r f j r r e j e r r r r

e

Z
G T P G T P G T P G T Pα⎛ ⎞

= ∆ + −⎜ ⎟
⎝ ⎠
∑  (59) 

o
jG
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 ( ) ( ) ( ) ( ), , H2(g), , , ,
2

jo o
j r r f j r r e j e r r r r

e

Z
G T P G T P G T P G T Pα⎛ ⎞

= ∆ + −⎜ ⎟
⎝ ⎠
∑  

,e jα  is the element stoichiometry within species j for element e. ( ),o
e r rG T P  is the Gibbs energy for 

the element e in its stable state at ( ),r rT P . jZ  is the charge for species j. Within Cantera, the values 
of ( ),o

e r rG T P  have been added to the element database, so that Eqn. (59) may be applied 
automatically within the initialization process. 

Let’s go through an example of applying Eqn. (59) to the case of Na+. CODATA [29], which follows 
the NIST standards for representing heats of formation and Gibbs free energies, has the following 
entries for Na+: 

 ( )298.15, 240.34 .06j rH P = − ±  kJ gmol-1 

 ( )298.15, 58.45 .15j rS P = ±  J gmol-1 K-1 

This implies that 

 ( )298.15, 257.7668j rG P = −  kJ gmol-1 

The SUPCRT92 database developed for the YMP (SPEQ06.dat) has the standard partial molal Gibbs 
free energies of formation of the Na+ ion species set at 

 ( ),Na+ , 62.591f r rG T P∆ = −  kcal gmol-1 = –261.88 kJ gmol-1 

Let’s go through the exercise of reconciling the two values, which differ by 4.113 kJ gmol-1. 
( ),Na+ ,f r rG T P∆  refers to the formation reaction below 

 2

1
H + Na(s) Na H (g)

2
+ +→ +  

Then, we can formulate the Gibbs free energy of formation reaction in terms of the NIST-scaled Gibbs 
free energies as 

 ( )+ + +
2H (g) Na(s),Na Na H

1
,

2
o o

r rf
G T P G G G G∆ = + − −  

Note, this is an explicit example of Eqn. (59) applied at the reference state conditions of ( ),r rT P . 
Now, obtaining entropies from the JANAF tables, we obtain for NIST-scaled Gibbs free energies of 
the elements: 

 ( ) ( )( )
2 2

1 1
H (g) H (g) 298 130.68 J gmol K 298KG S − −= − = −  

 
2H (g)

1
19.48112

2
G = −  kJ gmol-1 
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( ) ( )( )1 1

Na(s) Na(s)

1

298.15 51.30 J gmol K 298.15 K

15.29509 kJ mol

G S − −

−

= − = −

= −
 

Therefore, since the definition, H+ 0G = , is used: 

 ( ) ( ),Na+ Na+, , 4.18606f r r r rG T P G T P∆ = −  kJ gmol-1 

Therefore, the SUPCRT92 Gibbs free energy value is consistent with an absolute scaled Gibbs free 
energy of ( )Na+ , 257.6904r rG T P = −  kJ gmol-1. The SUPCRT92 value is 0.07 kJ gmol-1 which is larger 
than the CODATA value. This is typical (actually, one of the better cases) for the types of 
accuracies/discrepancies between the CODATA/JANAF and the SUPCRT92 thermodynamic databases.  

3.2 Water Standard State 

The PDSS_Water object employs the real EoS formulation of water given by Wagner and Pruß et al. 
[32], a complicated function of the Helmholtz free energy (not repeated here).  The EoS expression 
advanced by these authors is also referred as the Internationation Association for the Properties of 
Water and Steam (IAPWS) 1995 formulation. 

 

  

Fig. 3. Comparison of ( ),a
fG T P∆ of H2O between SUPCRT92 and the IAPWS implentation 
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in Cantera as a function of temperature along ( )satP T
.
 

Fig. 3 is a graph comparing the values computed using SUPCRT92 and Cantera for the apparent Gibbs 
free energy of formation of H2O as a function of temperature along .  The 
differences are very small (in the order of 0.01 to 0.02 percent).  The consistency in results from two 
different sources (although similar sources of data) provides almost identical results. 

The independent variables in the formulation are density and temperature. The PDSS_Water object 
translates the independent variables into pressure and temperature, by solving for the pressure at every 
density and temperature point. The pressure is a multivalued function at some points. For the purposes 
of calculating liquid equations of state, we have employed an algorithm that always chooses the liquid 
branch even if it is unstable compared to the gas branch as long as it is on the correct side of the 
spinodal curve, where  

 0
T

d
dp
ρ

=   .    (60) 

The spinodal curve as well as the liquid-vapor saturation curve are depicted in Fig. 4. Always 
choosing the liquid branch is necessary because the water standard state is calculated for conditions 
where the pure liquid water is unstable relative to pure steam yet the addition of electrolyte stabilizes 
the water phase. Complications associated with convergence of the pressure calculation very near the 
critical point have been deferred in this initial implementation.  
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Fig. 4. Saturation curve from calculated from Wagner and Pruβ’s equation of state is 

( ),a
fG T P∆ ( )satP T
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displayed in red. Blue curve is the spinodal curve calculated within Cantera. 

Additionally, the basis for the thermodynamic functions, both with respect to the entropy and the 
enthalpy, must be adjusted from zero value corresponding to liquid water at the water triple point to 
Cantera’s current standard which follows the NIST/Chemkin standard of zero heat of formation for 
elements in their standard states and the absolute entropy. This transfer of basis is done within the 
PDSS_Water object. 

3.2.1 Dielectric Constant 

The dielectric constant of water is a full function of the temperature and pressure obtained from 
Bradley and Pitzer [38]. Fig. 5 confirms that the equations in Cantera are implemented correctly. The  
equations and coefficients in WaterC are fitted to the values given by the equation of  Uematsu & 
Franck (1980) [39], another standard for obtaining H2O dielectric constant as a f(P,T) for the dielectric 
constant of H2O below 550°C. The WaterC code is a C implementation of a FORTRAN subroutine 
called ‘H2O88’ and was developed by Prof. Denis L. Norton and Loki Demsey at the Department of 
Geosciences, University of Arizona.  This FORTRAN subroutine was written by James W. Johnson 
(LLNL) and Denis L. Norton for calculating the thermodynamic properties of H2O. Details on the 
implementation of EoS formulations are described in Johnson and Norton [49]. 

 

 

 
Fig. 5. Dielectric constants for water from Bradley and Pitzer [38], implementation of 

‘H2O88’ in WaterC code (see text; Johnson and Norton, 1991) [49], and Cantera. 
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3.3 Other Standard State Implementations with Cantera 

Several other types of standard states have been implemented within Cantera to support the database 
format used to generate the needed thermodynamic data to feed EQ3NR.  

Aqueous species that are not ions are still handled by the PDSS_HKFT object. These have been covered 
in Section 3.1.5. However, there are a variety of minerals in the database used for EQ3NR which may 
be fit to the Shomate polynomial form (see Fig. 1 for a listing of the Thermodynamic objects). 

Fig. 6 provides an example of the MineralEQ3 format for specifying the formulation of a 
stoichiometric phase within Cantera, i.e., a phase whose composition can not vary. The 
thermodynamic model MineralEQ3 is inherited from other existing models within Cantera that have 
previously emulated stoichiometric solids, specifically StoichSubstanceSSTP. However, MineralEQ3 
differs from the existing implementation in the sense that the Gibbs free energy, enthalpy and entropy 
at the rT  and rP  are specified via the Gibbs free energy of formation, the Enthalpy of formation and 
the Entropy, just as the ionic species in the aqueous phase are.  Within Fig. 6, the first three entries, 
DG0_f_Pr_Tr, DH0_f_Pr_Tr, and S0_Pr_Tr. specify these quantities. Internally within Cantera, these 
are converted to the NIST absolute chemical potential standard, following the discussion in Section 
3.1.1. 

 

 
 
<?xml version="1.0" ?>  
  <ctml> 
    <validate reactions="yes" species="yes" />  
    <!--  
          phase NaCl(S)     
      -->  
    <phase dim="3" id="NaCl(S)"> 
      <elementArray datasrc="elements.xml">Na Cl</elementArray>  
      <speciesArray datasrc="#species_NaCl(S)">NaCl(S)</speciesArray>  
      <thermo model="MineralEQ3" />  
      <transport model="None" />  
      <kinetics model="none" />  
    </phase> 
    <!--  
       species definitions      
      -->  
    <speciesData id="species_NaCl(S)"> 
       <species name="NaCl(s)"> 
         <atomArray>Na:1 Cl:1</atomArray>  
         <charge>0</charge>  
         <thermo model="MineralEQ3"> 
           <MinEQ3 Pref="1 atm" Tmax="1073." Tmin="200."> 
             <DG0_f_Pr_Tr units="cal/gmol">-91807</DG0_f_Pr_Tr>  
             <DH0_f_Pr_Tr units="cal/gmol">-98260</DH0_f_Pr_Tr>  
             <S0_Pr_Tr units="cal/gmol/K">17.24</S0_Pr_Tr>  
             <a units="cal/gmol/K">10.98</a>  
             <b units="cal/gmol/K2">3.9E-3</b>  
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             <c units="cal K/gmol">0.0E5</c>  
           </MinEQ3> 
         </thermo> 
         <standardState model="constantVolume"> 
           <V0_Pr_Tr units="cm3/gmol">27.015</V0_Pr_Tr>  
         </standardState> 
      </species> 
    </speciesData> 
  </ctml> 
 

Fig. 6. Example of the MineralEQ3 database format. Example is for the stoichiometric 
solid NaCl(S). 

 

The heat capacity is given by Eqn. (61). The form of this equation is consistent with that used in 
SUPCRT92 as given by Eq. 81 in Johnson et al. [47].  This turns out to be a subset of the Shomate 
polynomial representation already existing within Cantera. The coefficients for the heat capacity are 
given in the MinEQ3 block within Fig. 6. 

 ( ), 2
,o

p j
cC T P a bT

T
= + +   (61) 

For the MineralEQ3 stoichiometric solid, it is assumed that the phase has a constant molar volume, o
jV

, which is specified within Fig. 6.  We have assumed that the enthalpy is adjusted as a function of 
pressure in order to make this assumption thermodynamically rigorous. The enthalpy is therefore 
given by 

 ( ) ( ) ( ) ( ) ( ) ( )2
, ,

2
o o o
j j r r r r j r

r

b cH T P H T P a T T T T V P P
T T

− = − + − − + −
−

 (62) 

The entropy is given by 

 ( ) ( ) ( )
( )2, , ln

2

o o
j j r r r

r r

T cS T P S T P a b T T
T T T

⎛ ⎞
− = + − −⎜ ⎟
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The Gibbs free energy is then given by 
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 (64) 

The MineralEQ3 object helps to implement exact comparison of Cantera against other codes as a 
function of temperature and pressure. Due to the effect of small differences in Gibbs free energies on 
the solubility of minerals in aqueous systems, which we will demonstrate in Chapter 7, we have found 
implementing exact representations instead of approximate representations, to be necessary. 
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4 Multicomponent Formulation of the Pitzer Formulation 

The starting point for the formulation of Pitzer’s model is the equation for the excess Gibbs free 
energy, exG , described in the previous section. All other formulas are derived by taking suitable 
derivatives. 

The formulae are based around a combination of the Debye-Hückel theory for long range ionic 
interactions with a second and third order virial coefficient expansion to take into account of short 
range interactions that dominate strong electrolytes. A review paper [18] contains the most complete 
description of Pitzer’s model. The equations described below come from this paper, unless otherwise 
stated. The general expression for the excess Gibbs free energy, adopted by Pitzer, is Eqn. (65). 
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 (65) 

a is a subscript over all anions, c is a subscript extending over all cations, and i is a subscript that 
extends over all anions and cations. n is a subscript that extends only over neutral solute molecules. 
The second line contains cross terms where cations affect cations and/or cation/anion pairs, and anions 
affect anions or cation/anion pairs. Note, part of the coefficients, cc′Φ  and aa′Φ , stem from the theory 
of unsymmetrical mixing of electrolytes with different charges. This theory depends on the total ionic 
strength of the solution, and therefore, cc′Φ  and aa′Φ  will depend on I, the ionic strength. caB is a 
strong function of the total ionic strength, I, of the electrolyte. The rest of the coefficients are assumed 
to be independent of molalities or ionic strengths. 

A, the Debye-Hückel constant, with a value of 1.1744  1/2 1/2kg gmol−  at 25 °C and 1 atm, is given by 
the following expression in SI units: 

 
1/2 3/2221

8 1000
a wN eA

RT
ρ

π ε
⎛ ⎞ ⎛ ⎞

= ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 , (66) 

where aN  is Avogadro’s number, wρ  is the density of water, e  is the electronic charge, oKε ε= is the 
permittivity of water, oε is the permittivity of free space, K is the dielectric constant of water, R is the 
gas constant, and T is the temperature in Kelvin.  is a function of both T and P. Within the Cantera 
implementation, , and its derivatives, are evaluated from the IAPWS formulation for the equation 

wρ
wρ
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of state for water [32]. K, the dielectric constant for water, is also a large function of temperature and 
pressure. Its functional form and associated derivatives were taken from Bradley and Pitzer [38]. 

The ionic strength of the solution, I, is defined on the molality concentration scale as 

    (67) 

In contrast to several other Debye-Hückel implementations, the parameter b in Eqn. (65) is a constant 
that does not vary with respect to ion identity. This is an important simplification as it avoids troubles 
with satisfaction of the Gibbs-Duhem analysis, mentioned in ref. [4]. A Gibbs -Duhem analysis checks 
to make sure that the Gibbs-Duhem equation, which expresses the interdependence of the activity 
coefficients, is satisfied for all possible cases. When variable b’s are used, the Debye-Hückel 
equations don’t satisfy a Gibbs-Duhem analysis [4]. 

A few of the other terms used in Eqn. (65) are defined as follows: 

  i i
i

Z m z=∑     (68) 

  ( ) ( )(0) (1) (2)
1 2ca ca ca caB g I g Iβ β α β α= + +  (69) 

where 

 ( ) ( ) [ ]( )
2

1 1 exp
2

x x
g x

x
− + −

=  (70) 

The formulation for , combined with the formulation of the Debye-Hückel term in Eqn. (65), stems 
essentially from an empirical fit to ionic strength dependent data based over a wide sampling of binary 
electrolyte systems. caC , ncλ , naλ , nnλ , cc aψ ′ ,  and aa cψ ′ are experimentally derived coefficients that 
may have pressure and/or temperature dependencies. cc′Φ  and aa′Φ  formulations are slightly more 
complicated; their formulation is described in a later section. b is a constant, in contrast to some 
Debye-Hückel implementations, defined to be equal to 1.2 . The exponential coefficient 

1α is usually fixed at 1α = 2.0 , except for 2-2 electrolytes, while other parameters were 
fit to experimental data [18]. However, recent formulations have fit 1α to experimental data [16]; 
within Cantera, it’s treated as an input parameter. For 2-2 electrolytes, 1/2 1/2

1 1.4 kg gmolα −= was used 
in combination with either 1/2 1/2

2 12 kg gmolα −= or 2 kAφα = , where k is a constant. For electrolytes 
other than 2-2 electrolytes the ( )(2)

2ca g Iβ α  term is not used in the fitting procedure; it is only used 
for divalent metal sulfates and other high- valence electrolytes which exhibit significant association at 
low ionic strengths. 

The (0)
caβ (1)

caβ , (2)
caβ , and caC  binary coefficients are referred to as ion-interaction or Pitzer parameters. 

These Pitzer parameters may vary with temperature and pressure, but they do not depend on the ionic 

21

2 i i
i

I m z⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑

caB

1/2 1/2kg gmol−
1/2 1/2kg gmol−
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strength. The ionic strength dependence is built in through Eqn. (69). Their values and temperature 
derivatives of their values are tabulated for a range of electrolytes at 25°C in ref. [18]. Additionally, 
their values are tabulated in the YMP Pitzer database documentation [43]. In general, the temperature 
and pressure dependencies of these coefficients must be measured and experimentally fit to each 
binary electrolyte system independently. Later, wewill show results for the NaCl system, where the 
Pitzer parameters have been exhaustively measured for a full range of temperatures and pressures up 
to and actually beyond the critical point for water. 

The cc′Φ  and aa′Φ   contributions, which capture cation-cation and anion-anion interactions, also have 
an ionic strength dependence to be described later. 

Ternary contributions, cc aψ ′ , and aa cψ ′ , are reported for some systems at 25 °C in ref. [18, 14, 15]. In 
general, these contributions are fairly highly correlated with the aaθ ′  and ccθ ′  values are input in the 
same block as their aa cψ ′  and  counterparts in the XML input file. The success of the Pitzer 
method lies in its ability to model nonlinear activity coefficients of complex multicomponent systems 
with just binary and minor ternary contributions, which can be independently measured in binary or 
ternary subsystems [14, 15].  Nonionic species are represented by the last terms in Eqn. (65). 

4.1 Temperature Dependence of Coefficients 

A key feature is the temperature dependence of the Pitzer coefficient when calculating excess Gibbs 
energies and activity/osmotic coefficients of electrolyte solutions. A key underlying issue is the 
decision as to which coefficients need to be dependent on the temperature and what functional 
formalism will be used to describe that temperature dependence and to describe its dependence on the 
ionic strength. These issues have already been decided by the original authors (Pitzer, Helgeson, et al.) 
within the field. 

What we have chosen to do is to establish sets of parameterizations and label them with string names. 
Conceptually, all of the coefficients in Eqn. (65) can have temperature and pressure dependencies 
within a parameterization.  

Silvester and Pitzer [31] described one set of numerical fitting data where he fit much of the 
experimental data for NaCl over an extensive data range, below the critical temperature. They found a 
temperature functional form, Eqn. (71), for fitting the 3 coefficients that describe the Pitzer 
parameterization for a single salt that can adequately describe how those three coefficients change 
with respect to temperature. In Pitzer’s cumulative paper [18], he presents tables of derivatives of 
these three quantities at the reference temperature of 25°C for a range of binary salt systems. 
Therefore, it seems prudent to generate functional dependencies which parameterize the temperature 
dependence of the three Pitzer coefficients, (0)β , (1)β , Cφ , as a way to handle the general case. 
Additionally, there are temperature dependencies involved with specification of the standard states. 
But conceptually, these may be found independently of the Pitzer coefficients. 

cc aψ ′
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The YMP Pitzer database [43] developed for use with the code EQ3/6 somewhat follows the 
parameterization used in Silvester and Pitzer. In our initial treatment we use a slightly expanded form 
of the EQ3/6 parameterization that is a superset of the two. We call this parameterization, which only 
depends on temperature, as COMPLEX1. This formulation is given below. 

Also, in later papers, Pitzer has added additional temperature dependencies to all of the other 
remaining second and third order virial coefficients. Some of these dependences are justified and 
motivated by theory. Therefore, a formalism wherein all of the coefficients in the base theory have 
temperature dependences associated with them.  
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where  

 ( )E
cc cc cc Iθ θ′ ′ ′Φ = +   and ( )E

aa aa aa Iθ θ′ ′ ′Φ = +  (72) 

And 

 1/2
2

ca
ca

c a

CC
z z

φ

=    (73) 

Thus,
 

ccθ ′  is obtained from fitting data, and ( )E
cc Iθ ′  is obtained from a theoretical expression to be 

presented later. The temperature-dependent parameterization adopted in EQ3/6 is centric to 
298.15rT K=  and can be described by the following equations.  
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We have written Perl scripts routines to translate from the EQ3/6 database format into the COMPLEX1 
description, in order to port the database into Cantera.  These Perl scripts take a text file containing 
comma-separated values of Pitzer interaction parameters for all aqueous species and convert them in 
the xml file format used by Cantera.  See Section 6.4 for more details on the xml file format used by 
Cantera. 

There are other parameterizations other than COMPLEX1 within Cantera. The parameterization 
CONSTANT may be used, in which case only the first non-temperature dependent parameter in each of 
the equations in Eqn. (71) is used.  The parameterization LINEAR may be used also, in which case only 
the first two terms (the second one being a linear term in temperature) in each of the equations in 
Eqn. (71) is used. In the future, it should be possible to add additional (T, P, I) parameterizations of the 
Pitzer coefficients, as warranted by the physical system. 

4.2  Multicomponent Osmotic Coefficient 

The osmotic coefficient may be obtained from the following formula applied to Eqn. (65). 
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The result is Eqn. (76). 
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 (76) 

We have employed the definition of Aφ , also used by Pitzer, which is equal to  

 
3

AAφ =  .    (77) 

 It can also be shown that the expression, 
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dBB B I I I
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φ β β α β α= + = + − + −  , (78) 

is consistent with the expression caB  of Eqn. (69) after carrying out the derivative in Eqn. (75). 
Demonstration of this is left to the notes [5]. 

Also, taking into account that   and  has an ionic strength dependence, 
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4.3 Multicomponent Activity Coefficients for Solutes 

The full osmotic coefficient formulation can be obtained by applying the previously derived relation, 
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to Eqn. (65). The full result, with derivation left to the notes [5], is Eqns. (81)-(83). The subscript M, 
refers to the particular cation, whose activity coefficient is being evaluated, while the subscript, X, 
refers to the particular anion whose activity coefficient is being currently evaluated. 

cc′Φ aa′Φ
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where 
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i i
i

Z m z=∑ . /ccd dI′Φ  and /aad dI′Φ are the ionic strength derivatives of the mixing functions, cc′Φ  
and aa′Φ , respectively. The formulation for the mixing functions is described in the next section. The 
function /MXdB dI may be calculated by taking the derivative of Eqn. (69). 
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where ( )h x is defined as 
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The activity coefficient for neutral species N is given by Eqn. (86). 

 2ln 2 3N i Ni N NNN
i

m mγ λ µ= +∑   (86) 

The sum over i refers to a full sum over all solute species (charged and uncharged), even N. 

4.4 Mixing Functions 

The previous equations contain the functions, aa′Φ cc′Φ , and their derivatives with respect to the ionic 
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strength. Since like charged ions repel each other and are thus generally not near each other, the virial 
coefficients for same-charged ions are small. However, Pitzer doesn’t ignore these in his formulation. 
An exception to this is the long-range electrical force which appears only for unsymmetrical mixing of 
same-sign charged ions with different charges. ijΦ , where ij is either aa′  or cc′ , is given by 

 ( )E
ij ij ij Iθ θΦ = +  .  (87) 

ijθ  is the small virial coefficient expansion term. Dependent in general on temperature and pressure, 
its ionic strength dependence is ignored in Pitzer’s approach. ( )E

ij Iθ  accounts for the electrostatic 
unsymmetrical mixing effects and is dependent only on the charges of the ions i, j, the total ionic 
strength and on the dielectric constant and density of the solvent. This seems to be a relatively well-
documented part of the theory. The theory below comes from Pitzer summation [18], where it 
constitutes an entire appendix [pp. 122-124]. It’s also mentioned in Bethke’s book [11], and the 
equations are summarized in Harvie and Weare (1980) [15]. 

Within the code,  is evaluated according to the algorithm described in Appendix B of ref. [18]. 
Eqn. B-15 of ref. [18] is reproduced below as Eqn. (88). 

 ( ) ( ) ( )1 1
( )

4 2 2
i jE

ij ij ii jj

z z
I J x J x J x

I
θ

⎛ ⎞⎛ ⎞= − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 (88) 

where     

 6ij i jx z z A Iφ=  , 

and, 

 ( ) 2 2

0

1 1
1

2
qJ x q q e y dy

x

∞ ⎛ ⎞= + + −⎜ ⎟
⎝ ⎠∫  and ( ) ( ) ( )1 1

( )
4 2 2
i jE

ij ij ii jj

z z
I J x J x J x

I
θ

⎛ ⎞⎛ ⎞= − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
(89) 

where     

 6ij i jx z z A Iφ=  , 

and, 

 ( ) 2 2

0

1 1
1

2
qJ x q q e y dy

x

∞ ⎛ ⎞= + + −⎜ ⎟
⎝ ⎠∫  and yxq e

y
−⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 (90) 

( )J x is evaluated by numerical integration. 

( )E
ij Iθ
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4.5 Simplification of the Pitzer Formulation for Binary Solutions of a Single Strong 
Electrolyte 

A binary electrolyte has the following simplifications. Let’s call the cation M, and the anion X. The 
cation, M, has charge, Mz . The anion has charge, Xz . There are Mν  cations in solution and Xν  anions 
in solution. Charge neutrality constraints require that Eqn. (91) holds for a single strong electrolyte. 

 M M X Xz zν ν=    (91) 

A few other formulas are important 

 M Mm mν=  X Xm mν=      MX M Xν ν ν= +  (92) 

Individual activity coefficients cannot be independently measured due to the charge neutrality 
constraint requiring that any real solution be electrically balanced. Thus, activity coefficients of 
aqueous ions can only be measured in electrically neutral combinations The mean activity coefficient, 

MXγ ± , Eqn. (93), for every cation M and anion X can be defined and measured. The osmotic coefficient 
may also always be measured. 

 
ln ln

ln M M X X
MX

MX

ν γ ν γγ
ν

± +
=   (93) 

4.5.1 Excess Gibbs Free Energy 

Let’s simplify Eqn. (65), the multicomponent excess Gibbs free energy for the case where there is just 
a single cation M and anion X. 

 ( ) ( ), 4
ln 1 2

3
ex

M X MX M X MX
o o

G AI b I m m B m m ZC
M n RT b

⎛ ⎞= − + + +⎜ ⎟
⎝ ⎠

 (94) 

This expression is often rearranged in Pitzer’s papers into the following form. First, for a binary 
electrolyte: 

 ( )2 M M M M X X M Xm z m z m z mz m z Zν ν ν= + = + =  (95) 

And, using the definition often used in Pitzer’s papers: 

 1/2
2

MX
MX

m x

CC
z z

φ

=   ,  (96) 

Eqn. (94) turns into 
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 ( ) ( ) ( )( )3/2, 2 34
ln 1 2

3
ex

M X MX M X MX
o o

G AI b I m B m C
M n RT b

φν ν ν ν⎛ ⎞= − + + +⎜ ⎟
⎝ ⎠

 (97) 

4.5.2 Osmotic Coefficient 

Let’s reduce the expression (Eqn. (76)) for the osmotic coefficient to the case of one cation M and one 
anion X, Eqn. (98). 

 
3/22

1
1

M X MX M X MX
MX

IA m m B m m ZC
m b I

φ
φφ

ν
⎛ ⎞

− = − + +⎜ ⎟
+⎝ ⎠

 (98) 

The first term may be simplified by noting the relation, Eqn. (99), which holds for binary electrolytes: 

 
1

2 M X
MX

I mz z
ν

=    (99) 

The third term in Eqn. (98) may be simplified by employing Eqn. (95) and (96) to yield: 

 ( ) ( )3/2

21 2 2
1

M XM X
M X MX MX

MX MX

Iz z A m B m C
b I

φ φ
φ

ν νν νφ
ν ν

⎛ ⎞
− = − + +⎜ ⎟

+ ⎝ ⎠
 (100) 

MXBφ  is given by Eqn. (78). MXCφ  is given by Eqn. (74). 

4.5.3 Solute Activity Coefficient for a Single Strong Electrolyte 

Reducing Eqn. (81) - (83) for the case of a binary electrolytes produces Eqns. (101) to (103). 

 ( ) 2ln 2 2M M X MX X MX M M X MXz F m B m ZC z m m Cφγ = + + +  (101) 

 ( ) 2ln 2 2X X X MX M MX X M X MXz F m B m ZC z m m Cφγ = + + +  (102) 

where 

 ( ) '2
ln 1

1
M X MX

IF A b I m m B
bb Iφ

⎡ ⎤
= − + + +⎢ ⎥

+⎣ ⎦
 (103) 

These may be rearranged and combined to yield: 
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3
2
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γ
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ν
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 (104) 

 
( ) ( )

( )( )

2 '
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2
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3
2

2

X X M X MX

M MX M X MX
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Iz A b I m m B
bb I

m B m C

φ

φ

γ

ν ν
ν

⎛ ⎞⎡ ⎤
= − + + +⎜ ⎟⎢ ⎥⎜ ⎟+⎣ ⎦⎝ ⎠

+ +

 (105) 

We note that this implies that M Xγ γ=  for the case where M Xν ν= , because M Xm m= . 

4.5.4 Mean Solute Activity Coefficient 

The mean activity coefficient is given by Eqn. (93). We seek the expression for the mean activity 
coefficient of a pure binary electrolyte. First we note the following relation holds: 

 
2 2
M M X X

M X
MX

z z z zν ν
ν
+

=  and 
1

2 MX M X
M

I m z zν=  (106) 

Then, combining Eqns. (104) and (105) yields Eqn. (107). 
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Iz z A b I z z m m B
bb I

m B m C

φ

φ

γ

ν νν ν
ν ν

±

⎛ ⎞⎡ ⎤
= − + + +⎜ ⎟⎢ ⎥⎜ ⎟+⎣ ⎦⎝ ⎠

⎛ ⎞⎛ ⎞ ⎜ ⎟+ +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

.  (107) 

These relations simplify the first term in the mean activity coefficient formulation. Then, rearranging 
and using Eqn. (106) yields: 
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. (108) 

Then, using the relation, 

 ( ) ( )1 1 1exph I g I Iα α α⎡ ⎤+ = −⎣ ⎦  , 

yields: 

 

( ) ( )

( ) ( )

( ) ( )

( )

(0)

(1) (2)
1 2

(1) (2)
1 2

3/2

2

2
ln ln 1 2 2

3 1

2 2 2 2

2 2

3

M X
M X MX

MX

M X M X
MX MX

MX MX

M X M X
MX MX

MX MX

M X
MX

MX

Iz z b I m
bb I

m g I m g I

m h I m h I

m Cφ

ν ναγ β
ν

ν ν ν νβ α β α
ν ν

ν ν ν νβ α β α
ν ν

ν ν

ν

±

⎛ ⎞⎡ ⎤ ⎛ ⎞
= − + + +⎜ ⎟⎢ ⎥ ⎜ ⎟⎜ ⎟+ ⎝ ⎠⎣ ⎦⎝ ⎠

⎛ ⎞ ⎛ ⎞
+ +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞

+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞
⎜ ⎟+
⎜ ⎟
⎝ ⎠

 . (109) 

Eqn. (109) is the same as Pitzer’s Eqn. (58), p.88, ref [18]. Assuming (2) 0MXβ =  for the moment, Eqn. 
(109)is often rewritten by expanding the ( )g x  term to yield: 
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 . (110) 

For example, Eqn. (110) is used in ref [31]. 
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4.6 Implementation of pH Scaling 

Single ion activity coefficients are not unique. The following transformation described in Eqn. (111)
may be carried out on a set of single-ion activity coefficients 1s

kγ  to transform those activity 
coefficients into a new set, 2s

kγ , such that all observables are the same.  

 ( )2 1 2 1s s s sk
k k j j

j

c
c

γ γ γ γ= + −   (111) 

1s
jγ  and 2s

jγ  are the old and new single ion activity coefficients for any one specific species, and kc  
is the charge on the species k. However, the specification of the pH and other p-type standards is 
actually a single-ion calculation as the pH is defined from the following Eqn. (112). 

 10 10log logH H HpH a mγ+ + += − = −  (112) 

The NBS standard for the calculation single-ion activity coefficients is the Bates-Guggenheim 
equation (1973) [70]. In that standard, the chloride ion (Cl-) is specified to have the following activity 
coefficient. 

 2

1 1.5
s

Cl
A I

I
γ −

−
=

+
   (113) 

Then, from Eqn. (111) all other single-ion activity coefficients including the hydrogen ion activity 
coefficient are specified.  

The scaling carried out by Eqn. (112) in aqueous speciation calculations in EQ3/6 is generally referred 
as the pH scaling [see Appendix B, ref. 7]. The pH scaling as originally laid out in Eqn. (81) and Eqn. 
(82) is referred as the ‘internal’ or Pitzer pH scaling when adopting the Pitzer formulation for 
computing activity coefficients.  However, it should be noted that this is not an officially-sanctioned 
definition for this type of pH scaling. In the Pitzer pH scaling, the activity coefficients for the anion 
and cation of a single binary electrolyte are equal to each other, if the absolute value of their charges 
are equal. The pH scaling determined by Eqn. (113) is called the “NBS” pH scaling in EQ3/6. For 
concentrated solutions, the scaling options may radically alter the values of the single-ion activity 
coefficients. For dilute solutions, the limiting for of the Debye-Huckel term is essentially the same as 
the Pitzer scaling form so deviations are very minor. 

All single-ion values returned by Cantera including partial molar enthalpies are affected by the choice 
of the pH scaling. Note, also that electrode reactions are also affected by pH scaling, because they 
involve single-ion activity coefficients. Numerical experiments have shown that the scaling introduced 
by Eqn. (113) is numerically stable, because the expression depends on the total ionic strength. Note, 
the “NBS” scaling isn’t currently possible if Cl- isn’t an active ion in the solution. 
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5 Elimination of Singularities in the Thermodynamic functions 

We analyze the equations from the point of view of the molar activity coefficients, the best way to 
analyze the equations for their singularities. First we will fix up the ideal molal solution 
approximation. This is at the heart of the singularities. We then show how to apply this to the Pitzer 
equation.  Lastly, we demonstrate our method of modifying the Pitzer formulation for the Gibbs 
molality-based excess free energy to ensure that these terms are nonsingular.  

Most of these modifications don’t affect the actual physical results, because they occur in regions of 
the parameter space that are unphysical. However, they do affect the numerical software, because 
frequently the numerical software will query physically inaccessible regimes as it searches for stable 
phases. 

5.1 Values for the Molality-Based Activity Coefficients. 

In order to understand stability issues inside equilibrium solvers, we seek to understand what the 
formulas for the molar based activity coefficients are, especially in the limits of the solvent, water 
species, going to zero. The equilibrium solver effectively uses the molar based activity coefficients. In 
Eqn. (114), we have written the molality-based activity coefficients in terms of the molar-based 
coefficients. 

 ( ) ( ), , ln lnok k
k k k k k

mT P RT RT X
m
γµ µ µ γ

⎛ ⎞
= + = +⎜ ⎟

⎝ ⎠
x           1,...,k N=  (114) 

 ( ) ( ) ( )
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, , ln lno o o
o o o o o j o o o

j

T P RT a RTM m RT Xµ µ µ φ µ γ
≠

⎛ ⎞
= + = − = +⎜ ⎟

⎝ ⎠
∑x  

            where ( )lno
k k oRT M mµ µ= +   and k

k
oX

γγ =  

The requirements for the equilibrium solver are that the Henry’s law constants asymptote to constant 
positive definite values in all accessible limits [28]. This is easily true except for the limit of the 
solvent disappearing. This means that even the ideal molality solution behavior has to be modified in 
order to accommodate the requirement. What this explicitly means in the context of Eqn. (114) is the 
following. 

 0solvent
k kγ γ =→   as 0sX →   (115) 

 0solvent
o oγ γ =→   as 0sX →   
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Perhaps, the constraints on the activity coefficient models inherent in Eqn. (115) are more severe than 
necessary. However, these constraints may be shown to be sufficient to allow for a successful 
equilibrium solution of nonideal multiphase equilibrium problems [28].  

We take it piece by piece. The ideal molality solution piece can be handled by taking a look at the 
Gibbs excess free energy of an ideal molality solution and inventing alterations to make sure the 
limiting behavior is appropriate. Eqn. (116) represents the Gibbs free energy of mixing on the molality 
scale, assuming an ideal molal solution. 
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∑  (116) 

Then, Eqn. (117) represents the total excess Gibbs free energy of the “ideal molality” solution. To 
note, an ideal solution would have an excess Gibbs free energy of zero. 
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 (117) 

The molar based activity coefficients may be obtained by differentiating Eqn. (117). 
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 (118) 

 ( ) ( ), / 1 1
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o
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Implying that 
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⎛ ⎞−
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Thus, the resulting activity coefficients violate Eqn. (115) and leads to problems within the 
equilibrium solver. A first thought would be to use the following equation for the  total Gibbs free 
energy for a modified ideal molal solution, ,mod,idG . 

 ( ) ( )
,

0 0

ln ln 1
mod,id

jo
o o j j o j

j j o

XG n n M m n
RT f X

µ µ
≠ ≠
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  with ( ) min

,

,
o o

o
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X x X
f X

X x X
⎧ >
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, 

which implies: 
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 ( )( ) ( )
,

0 0

ln ln
mod,id
ex

k o o o k
k k

G n f X n X n
RT ≠ ≠

= − − −∑ ∑  

So that the molar activity coefficients for ox X>  are the same as Eqn. (119). For ox X< , they are 
given by Eqn. (122). 
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oeX
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( )exp o
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γ =  

The kγ  value is now stable as the solvent disappears, but the oγ  value still blows up as 0oX → . 
Another approach would be to use Eqn. (123). 
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which is derived from the following total Gibbs free energy. 

 ( ) ( ) ( )( ) ( )
,

0 0

ln ln 1 ln ln
mod,id
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o o j j o j o o o o

j j o

XG n n M n n f X n X
RT f X
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∑ ∑  

Then, for , the values for the activity coefficients are the same as Eqn. (119). For ox X< , they 
are given by Eqn. (124). 

 
min

1
k

oeX
γ =     (124) 

 
min

1
o

oX
γ =  

Now, both kγ  and  values are bounded as . Unfortunately, the problem with this is that the 
activity coefficients aren’t continuous. It turns out that the Gibbs excess energy must be at least a C1 
function for the equilibrium solver to function properly [28]. Therefore, in the next two sections we 
will seek a more complicated alteration to the ideal molal Gibbs free energy that satisfies the C1 
continuity requirements. 

5.1.1 Search for an Appropriate Exponential Polynomial function. 

We seek the right value of f and g, starting with Eqn. (125) and breaking the domain up into two 
regions depending on the value of oX the solvent mole fraction.

 

( )of X  and ( )og X are arbitrary 
functions of the solvent mole fraction, whose form we will generate to fit the requirements described 
below.  For *

o oX X> , the ideal molal solution approximation will hold. For *
o oX X< , a C1 

approximation will be assumed that employs an exponential function multiplied by a polynomial  
in *

oX . 
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= − − −∑ ∑  (125) 

This implies a Gibbs free energy of mixing on the molar scale, mod, ,id
mixG∆ , given by Eqn. (126), 
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∑  (126) 

And a Gibbs free energy of mixing on the molal scale, mod, ,
,

id
mixG∆ , given by Eqn. (127). 

ox X>

oγ 0oX →
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Mathematically, this problem may be specified in the following way. For *
o oX X> , 

  

For the 0oX =  limit, we require that  ( )of X  and ( )og X  have the following form so that the activity 
coefficients are finite in this limit. 
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1
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In the middle region, *0 o oX X< < , we will require that 
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o o of X X X= =    ( )* *

o o og X X X= =  (128) 

 2)   High condition on derivative     ( )* 1of X′ =      ( )* 1og X′ =  
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 4)   Low condition on derivative     ( )0 f
of S′ =     ( )0 g

og S′ =  

f
oS  is the limiting value of derivative of f, while g

oS  is the limiting value of derivative of g. Note, f
oS  

appears prominently in the value of min
oγ , and a non-zero value  appears to be essential for creating 

a well-behaved solution of the problem. Within the lower interval, the following holds:  
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At the top of the domain, the following boundary conditions hold: 
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These agree with the ideal molality solution in Eqn. (119). With the aid of the following two functions, 

( )f X and, ( )g X , we may solve this problem. 

 ( ) ( )2exp o
o o f f f o f o

f

Xf X X e a b X d X
c

⎡ ⎤−
= + + + +⎢ ⎥

⎢ ⎥⎣ ⎦
 (130) 

 ( ) ( )2exp o
o o g g g o g o

g

Xg X X e a b X d X
c

⎡ ⎤−
= + + + +⎢ ⎥

⎢ ⎥⎣ ⎦
 (131) 

We assign c to be significantly smaller than oX ; for example, the default values of oX and c are 0.20 
and 0.05 respectively. We may iteratively solve for the remaining four values in   and 
in order to satisfy the boundary conditions in Eqn. (128). Then, we may derive the molar based 
activity coefficients in the two regions to be Eqn. (132). 
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Fig. 7 contains a plot of the activity coefficients produced by the default parameters. *
oX  is set to 0.2 

in the plot. The activity coefficients are monotonic, continuous and well bounded even in the limit of 
the solvent disappearing completely. Table 1 contains a listing of the regressed value of Eqns. (130) 
and (131) that were used in Fig. 7. 
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Fig. 7. Solvent and solute activity coefficients for modified Ideal Molal Solution 

approximation. The red dashed curve is the unmodified Ideal Molal solution 
model.  

Table 1:  Parameters for Eqns. (130) and (131), determined via an iterative procedure 

 f g 

ai 3.55663E-2 9.56254E-3 

bi 3.113262E-1 8.08749E-1 

ci 0.05 .05 

di -4.11326 5.587491 

ei 1.22163E-3 -1.30613E-3 

oS  0.6 0.0 

5.2 Modification of the Pitzer Equations for Cases of High Molalities 

Modifications carried out on the Pitzer equations follow the lessons learned in the previous sections. 
First a common modification is to place a cap on the total ionic strength, I. Recall that 

 21

2 i i
i

I m z⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑    ,   (133) 
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where im is the molality of ion i, and iz is the charge of ion i. To place a cap on the total ionic strength 
would imply changing Eqn. (133) to: 

 2
max

1
min ,

2 i i
i

I I m z
⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑   (134) 

maxI is an input parameter, whose value is around 20 gmol kg-1. However, such a change would not 
result in continuous values of the activity coefficients nor would it satisfy the Gibbs-Duhem equations. 
Alternatively, we may modify the values of all molalities in the global expression, Eqn. (65) for ,exG . 
The modification of  occurs in all terms the extrinsic expression Gibbs free energy expression,  

,exG , guaranteeing satisfaction with respect to the Gibbs-Duhem relation, and if the modification is 
continuous or even C1 or C2, then ,exG  will be continuous or even C1 or C2. Each of the molalities 

im  are replaced by the quantity *
im  where  
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 (135) 

min
oX  is an adjustable parameter that we have initially set at 0.20. The expression for ( )op X , 

Eqn. (136), is modeled after ( )of X  and ( )og X  of the previous section to provide C2 continuity at 
min
oX . 

 ( ) ( )2exp o
o o p p p o p o

Xp X X e a b X d X
c

⎡ ⎤−
= + + + +⎢ ⎥

⎣ ⎦
 (136) 

Therefore, the modified Gibbs excess free energy, called mod
,exG , is equal to 

 ( )mod * *
, , 1, ,...,ex ex o NG G n m m=  

The derivatives of mod
,exG  are then: 
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im
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where 

 21 exp 2p p po
p p o o

o

a b dXdpp b d X X
dX c c c c

⎛ ⎞⎛ ⎞⎡ ⎤−′ = = + − + + − + −⎜ ⎟⎜ ⎟⎢ ⎥ ⎜ ⎟⎜ ⎟⎣ ⎦ ⎝ ⎠⎝ ⎠
 

In Eqn. (138), we have written down the relation of the derivative to the osmotic coefficient. Because 
we only seek numerical stability and do not need rigorous adherence to the Gibbs-Duhem equation in 
the limit of 0oX → , we modify the form of Eqn. (138). The modified form of Eqn. (138) is  
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 (139) 

This equation is exactly what one would obtain from Eqn. (81) by just plugging in *
im  for im . Not 

equivalent to Eqn. (138), Eqn. (139) is computationally inexpensive to implement and maintains the 
property that the values of the activity coefficients approach a constant non-zero value as . In 
the same way the following approximation is used to calculate the solvent derivative. 
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 (140) 

In Eqn. (140), ( )1, ,...,o Nf n m m  is the same function both above and below min
oX  , and φ  is the same 

function  as Eqn. (76) but with  used instead of . 

5.2.1 Application to the Pitzer Equations 

The Pitzer equations are expressed in terms of the molal activity coefficients and the osmotic 
coefficient. The mixture Gibbs free energy change due to mixing, ,mixG∆ the key quantity for 
thermodynamic calculations, may be divided into two quantities, Eqn. (141). The first, ,

,
id
mixG∆ , is the 

Gibbs free energy change due to mixing of an ideal molality solution. The second is the 
remainder, ,exG

.

.  

0oX →

*
im im
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 (141) 

The molal ideal solution component to the total ,mixG∆  value is the following 
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We have found a suitable change for ,
,

id
mixG∆  that produces a stable numerical scheme to be the 

following Eqn. (143). 
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Eqn. (143)  reduces to Eqn. (6), when of g X= = . These facts motivate us to start with Eqn. (144) as 
the basis for a numerically stable formulation of the Pitzer equations. 
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mod
,exG is a modified form of the excess Gibbs free energy on the ideal molality solution basis that we 

introduced in the previous section. And, we will maintain the following definitions that were originally 
contained in Eqn. (75) and Eqn. (80).  
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We may then calculate 
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Starting with Eqn. (114), 
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  where ,mod, , mod, ,id id
k o kXγ γ=  (148) 

mod, ,id
kγ  is given by the expression in Eqn. (132) after conversion from the molar to the molality-based 

activity coefficient. Eqn. (139) is then used for the second half of Eqn. (146). Combining everything 
together, the formula for the complete, numerically stable molal activity coefficient is Eqn. (149). 

 ( )( ),mod, mod,id
k k kγ γ γ=     (149) 

mod,
kγ  approaches a constant value as 0oX → .  The molar-based value of mod,id

kγ  approaches a non-
zero constant as  0oX → . Therefore the entire molar based activity approaches a constant value 
multiplied by oX , which is the original goal of the stabilization. 

We may formulate the expression for the complete osmotic coefficient. Starting with Eqn. (150), 
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The latter term is a constant as , after modifications applied in Eqn. (140), so it poses no 
concerns in that limit. From Eqn. (132), the value of mod,id

oγ  approaches a constant as . Note,  
occurrences wherever, min

o oX X>  are flagged,  so that the numerical conditioning will not normally 
get in the way of the Gibbs free energy formulation, whenever physically significant conditions are 
being calculated.  

5.2.2 Additional Direct Cropping of Activity Coefficients 

In numerical testing it was found that an additional layer of cropping was needed to maintain stability 
in the equilibrium solver. In general low molar-based activity coefficients in unphysical regions are 
dangerous, because they may spawn the creation of unphysical phases. The water activity coefficient 
has a tendency to become extremely low as 0oX → , despite all of the modifications presented in the 

0oX →
0oX →
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previous sections. This is due in part to the fact that the osmotic coefficient scales with the 3m  power 
while the solute activity coefficients are scaled with respect to the 2m  power. Therefore, the activity 
coefficient for water was modified to never fall below nor rise above set values 

 minln lno oγ γ≥    maxln lno oγ γ≤  (152) 

minln oγ  is currently set at 6.0− , and maxln oγ  is currently set at 3.0.  This sets a limit on the reduction of 
the activity for water. Both minln oγ  and maxln oγ  may be adjusted from the input file. 

Additionally, a maximum value was set on the activity for solutes, Eqn. (153) , based on the current 
value of the solvent mole fraction, oX . 

 maxln ln 3.5lnk k oXγ γ≤ −  minln ln 3.5lnk k oXγ γ≥ −  (153) 

All of these modifications are carried out at the end of the activity coefficient calculation. This ensures 
that all activity coefficients are strictly bounded by these limits. Fig. 8 contains an example of the 
format for specifying these cropping coefficients. 

It should be noted that some of the available Pitzer parameters for very concentrated electrolytes may 
not extend up to the solubility limits of the salt, particularly at elevated temperatures.  For this reason, 
extrapolated values at very large salt concentrations may not be accurate and could be the source of 
unphysical results in the computation of activity coefficients.  Calculations close to dryness (i.e., 

) are in computational terms inherently unstable or not feasible.  Therefore, these methods are 
a necessary step to alleviate code run instabilities at conditions where the solvent is nearly absent, 
even when the modified activity coefficients could be considered fictive.  It is then recommended that 
any result from this cropping approach should be checked against real data (if available) to establish 
confidence in the code prediction. 

The negative coefficient with respect to oX in Eqn. (153) and the positive or zero coefficient with 
respect to oX  in Eqn. (152) are motivated by an analysis of the highly nonlinear phase stability 
subproblem that mathematically describes when and if a multispecies phase becomes stable as a 
function of temperature, pressure, and composition. These coefficients are chosen from an analysis of 
that problem in an attempt to avoid multiple solutions to that nonlinear problem in unphysical 
parameter regimes. 

 

0oX →
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      <activityCoefficients model="Pitzer" TempModel="complex1">  
         <croppingCoefficients> 
           <ln_gamma_k_min> 
                 <pureSolventValue> -5.0 <pureSolventValue> 
           <\ln_gamma_k_min>  
           <ln_gamma_k_max> 
                 <pureSolventValue> 15.0 <pureSolventValue> 
           <\ln_gamma_k_max>  
           <ln_gamma_o_min> 
                 <pureSolventValue> -6.0 <pureSolventValue> 
           <\ln_gamma_o_min>  
           <ln_gamma_o_max> 
                 <pureSolventValue> 3.0 <pureSolventValue> 
           <\ln_gamma_o_max> 
         </croppingCoefficients> 
      </activityCoefficients>  

       
Fig. 8. The croppingCoefficients XML element is a child element of the 

activityCoefficients XML element, for a HMWThermo model using the 
complex1 temperature model. 

5.2.3 Example 

Below we demonstrate the theory in this section by carrying out several examples. The example will 
stretch the NaCl system into unphysical regimes. However, those regimes are regularly queried during  
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Fig. 9. 298 K value for the molar-based activity coefficients of Na+ and H2O(L) as a function 

of the mole fraction of H2O(L) 

the execution of the equilibrium solver. The examples are from a later section where we analyse the 
NaCl system, with only the one salt consisting of Na+ and Cl- ionic species having any appreciable 
concentrations. 
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Fig. 9 contains a plot at 298 K of the molar-based activity coefficients for water and for Na+ (note for 
this particular case Cl- has the same value for the activity coefficient as Na+, when presented on the 
Pitzer pH scale). Also shown on the plot is the solubility limit of NaCl in water (green line) at 298 K. 
All measurements occur of course on the right side of the green line or below the solubility limit of 
NaCl solid. The results to the left of the line are due to taking an exponential of the extrapolations of 
polynomials in the molality outside the range of the fitted values. The results can be widely disparate. 
Therefore, cropping of their values is a numerical necessity. 
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Fig. 10. 298 K Value for the molar-based activity coefficients of H2O(L) (a) and Na+ (b) as a 

function of the mole fraction of H2O(L). Solubility limits are denoted in green. 
Uncropped activity coefficient values are denoted by dotted magenta lines. 

Fig. 10 contains an example of the same system, but at 373 K. The extrapolations of the activity 
coefficients have different asymptotic values as they approach a zero solvent mole fraction. This 
particular system can suffer from the existence of multiple solutions in the phase stability problem at 
these elevated temperatures. This is primarily due to the positive slop of kγ  with respect to oX  
exhibited in Fig. 10 (b). Obviously, adjustments in the cropping algorithm could help alleviate these 
numerical complications. However, it’s hard to know a priori and in general how to do this in the 
general case. Therefore, these parameters are accessible from the input deck. 
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6 Implementation of Brines within Cantera’s ThermoPhase Objects 

The base class thermodynamics object within Cantera is called ThermoPhase. ThermoPhase consists 
of a multitude of questions about the values of thermodynamics functions, and the values/ properties 
of the mechanical equation of state. Under ThermoPhase are objects that implement mole fractions 
and species elemental compositions. The HMWSoln thermodynamics object, which implements the 
Pitzer equations, is a derived object of the ThermoPhase class.  

 

Fig. 11. Layout of Thermodynamic Objects 

Fig. 11 describes the inheritance of objects within this architecture. The HMWSoln object is derived 
from the several hierarchal objects which are layered between it and the main ThermoPhase object. 
The first object is the filter, VPStandardStateTP. It implements a variable pressure standard state for 
species on top of base ThermoPhase object. There are various ways to implement mixture 
thermodynamics. However, almost all of the methods for aqueous solutions employ activities. 
Activities divide the description of the complexity of solution thermodynamics into two levels. The 
first level is the species standard state, which depends on both temperature and pressure. The second 
level, the determination of the species activity or species activity coefficient, determines the effects of 

ThermoPhase is the base thermodynamics class for solutions and 
phases. Mechanical equations of state as well as the electrochemi-
cal potential are covered. ThermoPhase is itself derived from addi-
tional subclasses.  

VPStandardStateTP 

ThermoPhase  

MolalityVPSSTP 

IdealMolalitySoln 

VPStandardStateTP implements a variable pressure standard state 
model for species in a phase.   Note, there isn’t much done here, 
because ThermoPhase presently assumes this format. 

MolalityVPSSTP implements an API based on molality units on top 
of the VPStandardStateTP class. Note, the previous API retains its 
original definitions. 

DebyeHuckel HMWSoln 

IdealMolality, DebyeHückel, HMWSoln implement 
molality-based thermodynamics models on top of 
the MolalityVPSSTP object. The mechanical 
equation of state is based on a zero excess volume 
of mixing approximation on top of the standard 
state models. 
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mixing the species. For example, Eqn. (154) describes the chemical potential of species i in solution: 

 ( ) ( ) ( ) ( ) ( ), , , ln , lno o
i i i i i iT P X T P RT a T P RT Xµ µ µ γ= + = +  (154) 

is the chemical potential of the standard state for species i in solution. It may be a hypothetical state, 
especially if species i is dilute in the solution. It provides a clear break-out of the solution properties 
based upon whether they involve mixing or not. The standard state properties include specification of 
how the thermodynamic functions for species i change as a function of temperature and pressure at 
“unit activity”. The standard state also includes a description of how the molar volumes behave as a 
function of temperature and pressure at unity activity. The activities and activity coefficients are 
clearly based on the values of the standard states. They describe how mixing affects the 
thermodynamic properties. The activity coefficients are directly tied to specification of the excess 
thermodynamic functions of solution, i.e., how the mixing process deviates for the ideal solution 
behavior for mixing. 

Note there are other ways to break up the determination of solution properties than a variable pressure 
standard state. For example, many non-ideal gas based thermodynamics methods use a fixed pressure 
standard state, and the concept of fugacities instead of Eqn. (154) to break the problem up. 

While the ThermoPhase object is generally built to handle the variable pressure standard state, the 
VPStandardStateTP object is defined to handle the formulation described in Eqn. (154). Additionally, 
it answers some of the questions posed by the ThermoPhase object where possible. 

As part of the Pitzer implementation, a virtual base class called PDSS (Pressure Dependent Standard 
State) has been implemented within Cantera. It serves as a template to hold all of the questions that a 
pressure dependent standard state has to answer in order to serve its function within ThermoPhase. 
One instantiation of this is for a real equation of state for water, named WaterPDSS. This will be 
described in a later section.  

The MolalityVPSSTP object implements the molality-based units system. Additionally, it adds to 
ThermoPhase the concept of a molality-based activity coefficient representation, Eqn. (155). 

 ( ) ( ) ( ) ( ), , , ln , ln i
i i i i i

mT P X T P RT a T P RT
m

µ µ µ γ
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= + = + ⎜ ⎟
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( ),i T Pµ∆ is the molality-based standard state; it is based on a unit activity coefficient at infinite 
dilution. ia is the molality based activity, which is also defined in Eqn. 155). iγ  is the molality based 
activity coefficient; im is the molality of the ith solute; and m , which usually is left out of the 
equations, has a value of 1 gmol solute (kg solvent-1) and is needed to make the units work out within 
the logarithm. 

The relationships between the molality-base quantities and molar based quantities are repeated here, 
having been determined in previous memos: 
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MolalityVPSSTP implements molality-based units in a way that doesn’t override many of the 
previously defined mole fraction based API for the ThermoPhase object. Most of the implementation 
is under the hood. If mole fractions are input from the API, MolalityVPSSTP recalculates an internal 
molality representation before it goes on to calculate values for thermodynamic functions. 
MolalityVPSSTP implements new functions where it specifically requires molality-based quantities in 
the API. The API contains an explicit function that returns the molality-based activity coefficients. 
MolalityVPSSTP calculates the molar activity coefficients based on the molality-based activity 
coefficients using Eqn. (156). 

The HMWSoln object implements the Pitzer equations within Cantera. It’s derived off of the 
MolalityVPSSTP object. The sections below describe details of how the ThermoPhase API is 
implemented within the HMWSoln object in terms of broad categories. These categories specify how 
kinetics expressions are formulated (i.e., activity concentrations), what the mechanical equation of 
state looks like, and how standard states are implemented. 

6.1 Standard State Chemical Potentials 

There are two choices for how standard state chemical potentials are handled for molality-based 
thermodynamics models in the ThermoPhase API. The first choice is to maintain the molar-based 
definition of the return values from getStandardChemPotentials(double *grt). This would 
imply that all standard state chemical potentials remain on a molar basis, and in turn, this would imply 
that all returned activities by getActivities(double *a) be on the molality basis as well. The 
second choice is to change the API so that getStandardChemPotentials(double *grt) returns a 
molality-based standard chemical potential. This would also imply from Eqn. (155) that the function 
getActivities(double *a) would return molality based activities. wehave chosen the later 
approach. 

In making the choice, it’s tempting to stick to the same API, i.e., go with the first option. This option 
would provide the least amount of work in mixing molality based systems with molarity based 
systems in thermodynamics codes such as VCS (and was the first implementation within VCS as well). 
However, molality based standard states are ubiquitous in the literature. By default, standard state 
chemical potentials for ions are based on the molality units. For example, the CRC and other reference 
works give an extensive series of half-cell reactions involving mixed phases involving gases and 
liquids. It is assumed in the specification of standard EMF’s for these cell, which is equivalent to the 
standard Gibbs free energy of reactions, that gas phase species have standard states on the molar scale, 
while the liquid phase electrolyte species have standard states on the molality scale. Therefore, in 
obtaining data from these sources, conversions from ( ),i T Pµ∆  to ( ),o

i T Pµ , roughly 2.38 kcal gmol-1 
at 298 K, would always have to take place before they could be plugged into Cantera’s 
thermodynamics objects. Moreover, comparisons of liquid-phase activities between Cantera and other 
programs would have to undergo the same filtering process, if choice #1 were made.  
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The following is a list of changes to the ThermoPhase API that are needed to support molality-based 
standard states activities: 

 1) Addition to the ThermoPhase API of a variable to indicate what standard state basis the 
current phase adheres to. There are two choices so far: a) molarity-based and b) molality-based. This 
variable would affect what equation is used, i.e., either Eqn. (154) or Eqn. (155). 

 2) All standard state properties for molality-based phases are evaluated consistent with the 
molality scale. This means that the ( )ln oRT m M term adds to the standard state enthalpy. The 
standard state entropy is not affected by this term. 

 3) All evaluations of the chemical potential have to take into account the new formulation of 
the activity for molality-based phases. For example, VCS has to special-case the evaluation of 
chemical potentials in phases specified by molality-based units, because it relies on the chemical 
potential equation being specified in terms of mole fractions and molar-based activity coefficients. It 
can do this by changing the molality-based chemical potentials into the molar form, Eqn. (157). 
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The extra ( )ln oRT m M can be either subtracted out at the beginning of the nondimensionalization 
step which is done at the problem setup time, or it can be added in whenever the chemical potential is 
evaluated. 

 4) The API for functions providing activity coefficients don’t need to be changed. Eqn. (157) is 
an example of why the evaluation of the molar-based activity coefficient is useful, even in a phase 
where the activities are based on molalities. Therefore, the getActivityCoefficient(double ac*) 
function always return molarity-based activity coefficients. A new function, 
getMolalityActivityCoefficients(double *acMolality) has been added to the Molali-
tyVPSSTP object to return molality-based activity coefficients. 

6.2 Water and Solute Standard States 

The water standard state used by the HMWSoln object employs the full equation of state for water given 
in the 1995 IAPWS formulation [32]. This formulation, similar to all recent formulations, is based on 
an accurate specification of the Helmholtz free energy as a function of the independent variables, 
temperature and density. The formulation therefore covers the liquid, gas, and supercritical regions 
using a monotonic function. 

The pressure is calculated from the first derivative of the Helmholtz free energy. Therefore, spec-
ification of the pressure as the independent variable requires that a small nonlinear problem be solved 
to find the corresponding density. Gas-Water equilibrium is solved from an equation representing the 
equality of the gas and water chemical potentials at equilibrium. 



68 

Within Cantera, the real water equation of state object, named WaterIAPWS, is referenced by the object 
WaterPDSS, which inherits from the virtual base class PDSS representing a pressure dependent standard 
state. Because WaterPDSS represents the conditions in the liquid state or in some cases the 
supercritical state, WaterPDSS never returns conditions corresponding to the gas state of water. An 
error occurs whenever WaterPDSS is requested to calculate a state point to the gas-side of the water 
spinodal curve. 

Therefore, in contrast to existing treatments in Cantera (i.e., the tpx modules which calculate the 
equation of state for various two-phase pure fluids such as N2, O2, and H2O), mixed water-gas 
conditions are not allowed in WaterPDSS. Instead the water phase conditions are returned up to the 
position of the spinodal curve, where the liquid phase ceases to be stable as a phase, i.e., constitutes a 
minimum in the Gibbs free energy. If conditions beyond the spinodal curve towards the gas state are 
input to WaterPDSS, then a Cantera exception is thrown indicating a fatal error. 

No special treatments for the standard states of the solutes have heretofore been implemented within 
Cantera. There are a range of standard state implementations available to solutes based on various 
parameterizations of the temperature dependence of the standard state thermodynamic functions. 
However, these are currently only combined with a constant volume approximation for the mechanical 
equation of state that yields a constant standard state volume, independent of pressure and 
temperature. This is inaccurate for most real liquid systems for extended temperature and pressure 
ranges. In the near future, the HWFT implementation recommended by numerous authors [35] will be 
implemented for solutes [21, 22, 33, 34]. This implementation contains a complicated temperature and 
pressure dependence, and most importantly has a range of data available to it for the most common 
aqueous ions [36]. 

6.3 Activity Concentrations 

In order to use finite kinetics, expressions for reaction rates must be employed that involve the 
concentrations of species. If the reactions are reversible, in order to be consistent with the thermo-
dynamic limit, reaction rates must include the activities of reactants and products in the forward and 
reverse directions. However, there is a multiplicative constant (usually having the units of 
concentrations) that is left unspecified. In Cantera, this multiplicative constant is called the “standard 
concentration”, and the standard concentration multiplied by the activity is called the “activity 
concentration”. The standard concentration appears in the equilibrium constant expression for 
reactions involving unequal moles of reactants and products. 

Thus, the activity concentration will appear within the kinetics operator to obtain mass action kinetics 
rates that are consistent with the thermodynamic limit. Standard concentrations are defined by the 
requirement that the activity of a species, which appears in thermodynamic equilibrium expressions, 
be equal to the activity concentration, which appears in kinetics expressions, divided by the standard 
concentration for that species. 

In many cases the proportionality constant between activities and activity concentration, the standard 
concentration, is independent of species number. In our case of molality-based solution ther-
modynamics, the most reasonable default is to use the concentration of the pure solvent as the standard 
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concentration for all species, solutes, and solvents. 

For example, let’s take the reaction, 1 2 3+ → . The reaction rate expression for the forward and 
reverse directions is:  

 1 2f fR k AC AC⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦    and  3r rR k AC⎡ ⎤= ⎣ ⎦   , (158) 

where we have used the expression iAC as the activity concentration of the ith species. Then, plugging 

in the expression for the molality-based activity, we obtain:  

 0 0 i
i o i o i

mAC C a C
m

γ
⎛ ⎞

⎡ ⎤ = = ⎜ ⎟⎣ ⎦
⎝ ⎠

 . 

0
oC is the concentration of pure water; it’s a function of both temperature and pressure. iγ  is the 

molality-based activity coefficient. oM  is the molecular weight of water divided by 1000. im  is the 
molality of the ith solute species. Using this definition means that iAC⎡ ⎤⎣ ⎦  has MKS units of kmol m-3, a 
normal result.  

The expression for equilibrium for the reaction  is given by Eqn. (159). 
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Collecting terms: 
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  where 3 2 1
oG µ µ µ∆ = − −  (160) 

This can be made consistent with the finite kinetics expression at equilibrium, if we employ the 
following conventions: 
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where n∆ is the net change in moles going from the reactants to the products, and the concentration 
dependent equilibrium constant, cK , is 

1 2 3+ →
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is potentially dependent on the pressure, because the standard state Gibbs free energies are  
dependent on the pressure. is independent of the composition of the solution. 

Note, kinetics expressions in the liquid phase are very often not based on mass action formulations. A 
very typical variation from mass action kinetics is to make the reaction rate constant dependent on the 
pH of solution or to insist on a supersaturation before any reaction takes place (see [17] for an 
example). Therefore, the kinetics manager for liquid solutions will have to take these additional 
formulations into account in order to successfully accommodate existing liquid- phase kinetics 
treatments. 

6.4 XML file Format 

Extensions to the Cantera XML file format are needed in order to incorporate the complexities of  
non-ideal solution models. New types of models for the standard state for species must also be added 
to handle the common formats for liquids. One broad rule will be adhered to when expanding the 
Cantera XML file format, which involves the general location of new data elements. 

A Cantera XML file contains two main parts: the XML elements phase and speciesData. The first 
XML element, phase, contains a broad description of the phase. The second XML element, 
speciesData, contains subsections for each species in the phase. Cantera has previously stored 
charge, the elemental composition, and the coefficients for the thermodynamic polynomials that make 
up the temperature dependent thermodynamic functions within speciesData. speciesData has also 
contained the expanded Lennard-Jones coefficients (Stockmayer coefficients) that are used to 
calculate transport coefficients for gas-phase species. 

Therefore, by analogy to what has gone before, the species XML element should generally contain the 
complete description of the expanded definition of the standard state of the species. Cantera previously 
has not included pressure dependent data in this part of the XML description. However, it had only 
dealt with purely ideal gas or ideal surface-solution, or stoichiometric solids previously. Or, it had 
used real two-phase fluid models that haven’t utilized the XML file format.  

The species section is now expanded to include everything necessary to calculate the pressure and 
temperature dependent standard state of a particular species, i.e., ( ),i T Pµ∆  in Eqn. (157). The ther-
modynamics model of the phase itself will still be needed to provide hints as to what particular 
standard states are appropriate for that phase. In principle, each species may have quite a lot of 
additional parameters, if, for example, the Helgeson, Kirkham and Flowers (HKF) standard state for 
aqueous solutes is employed. Additionally, it may involve providing a hook into the real-fluid 
capability to describe the pressure and temperature dependence of the solvent; the hook will be added 
to the species section of the speciesData XML element. 

That leaves the specification of the activity coefficient model to be added to the XML element, phase. 
Everything needed to calculate ia∆  in Eqn. (157) is to be supplied under the phase subelement. This 

cK
cK
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involves quite a lot of information, as Pitzer coefficient formulations contain two and three-
dimensional matrices of coefficients. 

With this general approach of separating the ia∆ and  implementations in the XML file, 
different activity coefficient formulations may be readily employed with the same standard state 
formulations. Let’s go through an explicit example of the contents of an XML file. 

Fig. 12 contains the HMW_NaCl.xml data file. The file contains two main parts, the XML elements, 
phase and speciesData. The XML attribute of phase, named id, contains the name of the phase, to 
be used within Cantera, NaCl_Electrolyte. The XML-element named elementArray contains a list 
of element names as values. These are the allowable elements to be used in the formula matrix 
representation for species in that phase. The value of the XML-attribute name datasrc contains the 
file name where the properties (i.e., molecular weights) of these elements are specified. The XML 
element speciesArray contains a description of the species in the phase. 

The phase contains 5 species, named H2O(L), Cl-, H+, Na+, and OH-, whose standard state 
thermodynamic description is presented in the species data section, identified by the datasrc 
attribute. The thermodynamic model of the phase, HMW, is specified as a value of the model XML- 
attribute in the thermo XML element. The speciesData XML element contains a set of XML 
subelements named species. Transport and kinetics XML-elements are also included with their 
model attributes set to None. This indicates that no model for transport or kinetics has been specified 
for this phase. Each species subelement describes the standard state for that species in the phase. 

 

( ),i T Pµ∆
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<ctml> 
  <phase id="NaCl_electrolyte" dim="3">  
    <speciesArray datasrc="#species_waterSolution">H2O(L) Cl- H+ Na+ OH- 
    </speciesArray>  
    <state>  
       <temperature units="K">298.15</temperature>  
       <pressure units="Pa">101325.0</pressure>  
       <soluteMolalities>Na+:6.0954 Cl-:6.0954 H+:2.1628E-9 OH-:1.3977E-6 
       </soluteMolalities>  
    </state>  
    <thermo model="HMW">  
      <standardConc model="solvent_volume" />  
      <activityCoefficients model="Pitzer" TempModel="complex1">  
         <A_Debye model="water" />  
         <binarySaltParameters cation="Na+" anion="Cl-"> 
           <beta0>0.0765, 0.008946, -3.3158E-6, -777.03, -4.4706</beta0>  
           <beta1>0.2664, 6.1608E-5, 1.0715E-6</beta1>  
           <beta2>0.0</beta2>  
           <Cphi>0.00127, -4.655E-5, 0.0, 33.317, 0.09421</Cphi>  
           <Alpha1>2.0</Alpha1>  
         </binarySaltParameters>  
         <binarySaltParameters cation="H+" anion="Cl-">  
            <beta0>0.1775, 0.0, 0.0, 0.0, 0.0</beta0>  
            <beta1>0.2945, 0.0, 0.0</beta1>  
            <beta2>0.0</beta2>  
            <Cphi>0.0008, 0.0, 0.0, 0.0, 0.0</Cphi>  
            <Alpha1>2.0</Alpha1>  
         </binarySaltParameters>  
         <binarySaltParameters cation="Na+" anion="OH-"> 
            <beta0>0.0864, 0.0, 0.0, 0.0, 0.0</beta0>  
            <beta1>0.253, 0.0, 0.0</beta1>  
            <beta2>0.0</beta2>  
            <Cphi>0.0044, 0.0, 0.0, 0.0, 0.0</Cphi>  
            <Alpha1>2.0</Alpha1>  
         </binarySaltParameters>  
         <thetaAnion anion1="Cl-" anion2="OH-">  
            <Theta>-0.05</Theta>  
         </thetaAnion>  
         <psiCommonCation cation="Na+" anion1="Cl-" anion2="OH-">  
            <Theta>-0.05</Theta>           <Psi>-0.006</Psi>  
         </psiCommonCation>  
         <thetaCation cation1="Na+" cation2="H+">  
            <Theta>0.036</Theta>  
         </thetaCation>  
        <psiCommonAnion anion="Cl-" cation1="Na+" cation2="H+">  
            <Theta>0.036</Theta> <Psi>-0.004</Psi>  
        </psiCommonAnion>  
      </activityCoefficients>  
      <solvent>H2O(L)</solvent>  
    </thermo>  
    <elementArray datasrc="elements.xml">O H C Fe Si N Na Cl</elementArray>  
    <kinetics model="none" />  
  </phase>  
 

Fig. 12. Phase XML element for a HMWThermo model using the complex1 temperature 
model. 

 



    
  73 

<speciesData id=”species_WaterSolution”> 
  <species name="H2O(L)"> 
    <atomArray> H:2 O:1 </atomArray> 
    <thermo>  
      <NASA Tmax="600.0" Tmin="273.14999999999998" P0="100000.0">  
        <floatArray name="coeffs" size="7">7.255750050E+01, -6.624454020E-01,  
           2.561987460E-03, -4.365919230E-06, 2.781789810E-09, -4.188654990E+04, - 
           2.882801370E+02</floatArray>  
      </NASA>  
    </thermo>  
    <standardState model="waterPDSS" />  
  </species> 
 
  <species name="Na+"> 
    <atomArray> Na:1 </atomArray> 
    <charge>+1</charge>  
    <thermo>  
      <Shomate Pref="1 atm" Tmax="623.15" Tmin="298.00">  
        <floatArray size="7">12321.25829 , -54984.45383 , 91695.71717 ,  
           -54412.15442 , -234.4221295 , -2958.883542 , 26449.31197 
        </floatArray>  
      </Shomate>  
    </thermo>  
    <standardState model="constant_incompressible">  
      <molarVolume>0.00834</molarVolume>  
    </standardState> 
  </species> 
</speciesData> 
 

Fig. 13. Part of the speciesData XML element. The solvent H2O(L) and electrolyte 
Na+ are shown. 

Within the thermo XML subelement, the thermo model is set to HMW. This means that the Ther-
moPhase object is handled by the child HMWSoln object (see Figure 1), and it also means that the phase 
is assumed to have molality-based standard states for its solute species. Within the thermo XML 
element there are three subelements, standardConc, activityCoefficients, and solvent. The 
solvent XML element sets the identity of the solvent species; it must refer to a name contained in the 
list of species in the speciesArray XML element (and currently, it must refer to the first name, as the 
solvent must be the first species in the mechanism). The standardConc XML element contains the 
default convention for specifying the standard concentration. The value solvent_volume in the 
example triggers the usage of o

oC , the solvent concentration, as described in the previous section, to be 
the standard concentration for all species. 

The last XML sub-element is activityCoefficients. It has two attributes. The first attribute, model, 
with value, Pitzer, identifies the activity coefficient formulation as being derived from the Pitzer 
formulation. The second attribute, TempModel, with value, complex1, identifies the formulation of 
the temperature dependence of the Pitzer parameters. complex1 refers to the formulation in Silvester 
and Pitzer 1977 [31], where the temperature dependence of the Pitzer parameters, (0)

MXβ , (1)
MXβ , MXCφ are 

fit to experiment data. 

The XML element binarySaltParameters contains parameters necessary to specify a single binary 
cation, anion interaction, i.e., the parameters, (0)

MXβ , (1)
MXβ , MXCφ , (1)

MXα , and (2)
MXα . The cation and anion 

attributes of binarySaltParameters identify the particular anion and cation. Each parameter 
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occupies its own XML subelement: beta0, beta1, beta2, Cphi, Alpha1, and Alpha2. The 
number of parameters for specification of each entry depends on the particular temperature and 
pressure formulation used. For example, the complex1 temperature dependence formulation takes 5 
parameters to specify the  temperature dependence. Therefore, there are 5 values in the beta0 
XML subelement. 

Anion-anion interaction parameters are specified in the thetaAnion XML element, with attributes 
anion1 and anion2, whose values identify the interaction anions in the mixture. Within this XML 
element, the XML subelement, theta, identifies the value of the parameter aaθ ′ . 

Cation-cation interaction parameters are specified in the thetaCation XML element, with attributes 
cation1 and cation2, whose values identify the interaction anions in the mixture. Within this XML 
element, the XML subelement theta identifies the parameters of the value for the ccθ ′   coefficient. 
thetaAnion and thetaCation take the same temperature and pressure parameterization as the binary 
salt parameters. However, if a constant is all that is desired, a single number may always be input into 
the XML field. 

In a similar way, the XML elements psiCommonCation and psiCommonAnion serve to specify the cc aψ ′

and caaψ ′ interaction parameters, respectively. psiCommonCation and psiCommonAnion take the same 
temperature and pressure parameterization as the binary salt parameters. However, if a constant is all 
that is desired, a single number may always be input into the XML field. 

Another new feature in the phase XML element is the soluteMolalities XML subelement of the 
state description. In the soluteMolalities section, the default or initial electrolyte concentration may 
be specified. Checks to ensure charge neutrality are made in processing this element. 

The second part of the XML representation of the HMW Pitzer phase is given in the speciesData XML 
element. Fig. 14 contains an example of a charged species Na+ and the solvent, H2O(L). The solvent 
water section is very similar to a normal ideal gas species description; the reference thermodynamic 
functions are given as a NASA polynomial. However, the standard State section specifies that the 
waterPDSS model is used. The waterPDSS model uses the full IAPWS model for water described in 
the previous section. The Thermo section is only used to specify the initial value for the internal energy 
and entropy of the liquid at the triple point. As with all steam table-like thermodynamic functions, the 
IAPWS functions are defined such that the internal energy and entropy of the liquid is equal to zero at 
the triple point. The Thermo section parameters are used to adjust the scale to agree with NIST data 
tables [24] or any other scale depending on the user’s needs. 

 

 

(0)
MXβ
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<speciesData id=”species_WaterSolution”> 
  <species name="H2O(L)"> 
    <atomArray> H:2 O:1 </atomArray> 
    <thermo>  
      <NASA Tmax="600.0" Tmin="273.14999999999998" P0="100000.0">  
        <floatArray name="coeffs" size="7">7.255750050E+01, -6.624454020E-01,  
           2.561987460E-03, -4.365919230E-06, 2.781789810E-09, -4.188654990E+04, - 
           2.882801370E+02</floatArray>  
      </NASA>  
    </thermo>  
    <standardState model="waterPDSS" />  
  </species> 
 
  <species name="Na+"> 
    <atomArray> Na:1 </atomArray> 
    <charge>+1</charge>  
    <thermo>  
      <Shomate Pref="1 atm" Tmax="623.15" Tmin="298.00">  
        <floatArray size="7">12321.25829 , -54984.45383 , 91695.71717 ,  
           -54412.15442 , -234.4221295 , -2958.883542 , 26449.31197 
        </floatArray>  
      </Shomate>  
    </thermo>  
    <standardState model="constant_incompressible">  
      <molarVolume>0.00834</molarVolume>  
    </standardState> 
  </species> 
</speciesData> 
 

Fig. 14. Part of the speciesData XML element. The solvent H2O(L) and electrolyte Na+ 
is shown.  

The species Na+ section looks very familiar to gas phase species. The standard state model, 
constant_incompressible, specifies that the standard volume of the ion is constant. This also means 
that the internal energy doesn’t depend on pressure, and that the standard state enthalpy has a simple 
linear dependence on the pressure. The temperature dependence of the standard state is given by a 
Shomate polynomial form. The Shomate polynomial is created from the SUPCRT92 J. Phys. Chem. 
Ref. article [36], and the CODATA recommended values [29]. ( )298 240.34o

fH K∆ = − kJ gmol-1, 
( )298 58.45oS K =  J gmol-1 K-1. There is a slight discrepancy between CODATA, SUPCRT92 and 

Silvester and Pitzer [30], which is resolved in favor of the last authors. 

Binary virial-coefficient-like terms may be specified in the mnλ terms that appear in the equations 
above.  Currently these interactions are independent of temperature, pressure, and ionic strength. Also, 
currently, the neutralities of the species in the mnλ terms are not checked. Therefore, this interaction 
may involve charged species in the solution as well. The identities of the two species specified by the 
species1 and species2 attributes to the XML lambdaNeutral node. These interactions are 
symmetrical; species1 and species2 may be reversed and the interactions are the same. An example 
of the block is given below. 

 
 <lambdaNeutral species1=”CO2” species2=”CH4”> 
  <lambda> 0.05 </lambda> 
 </lambdaNeutral>  
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Further discussion about Cantera’s XML database structure can be found online and in Cantera’s 
documentation [25, 26]. 

6.5 vcs_cantera Example Problem 

As a validation exercise, an explicit calculation of an NaCl equilibrium example problem using 
Pitzer’s activity model is presented, using Cantera’s objects and the vcs program [28]. The vcs 
program in Cantera computes multiphase-multicomponent chemical equilibria and is based on the 
Villars-Cruise-Smith (VCS) algorithm described in Smith and Missen [84].  Phases included in the 
program are the liquid electrolyte containing NaCl, solid NaCl, and a gas phase that includes nitrogen, 
water, NaCl, H2, and O2.  The NaCl-H2O system is chosen given the large amount of thermodynamic 
data available as function of electrolyte concentration, temperature, and pressure. 

The equilibrium solver, vcs, not only needs models for the activities and/or activity coefficients of the 
phases, but it’s also necessary to provide the standard state Gibbs free energies at the temperature and 
pressure of interest (298 K and 1 atm). Following the discussion in ref. [27], we have chosen to set the 
basis for these to be consistent with the NIST webbook website, chemkin, and the JANAF tables 
(noted as scheme ,298

o
fH∆ -B basis), where the absolute values of the standard state Gibbs free energies 

are set to the following values: 

 ( ) ( ) ( )( ),
,298, , 298.15,1 baro o abs o

i i fT P T P H Hµ µ= − + ∆  (163) 

 is the standard heat of formation of the species at 298 K from its constitutive elements in their 
standard state at 298 K and 1 bar. And, the chemical potential, standard state molar volume, standard 
state entropy and enthalpy of the hydrogen ion in the liquid phase are set to zero. Table 1 provides the 
standard state Gibbs free energies of the species employed. Standard states for solutes in the liquid 
phase (whether they are charged or not) are on the molality basis. Standard states for all solids, gas 
species, and the liquid solvent (H2O(L)) are on the molar basis. 

With the standard states of all species specified, vcs was then used to calculate the equilibrium 
composition of the system consisting of the Pitzer fluid, the solid NaCl(s), and a gas consisting of N2, 
O2, H2, and H2O(g). Pitzer coefficients for the Na+ – Cl- interaction, the only important interaction in 
this example were as follows: (0) 0.0765β = , (1) 0.2664β = , 0.00127MXCφ = , and (1) 2.0α = . 

Table 1 contains the resulting concentrations predicted for the gas, liquid, and solid. For the current 
input conditions, a solid NaCl phase exists in equilibrium with the solution and the gas phase. The 
resulting concentrations are within acceptable agreement with the well-known equilibrium solution 
quoted in Pitzer’s paper and in the CRC. Pitzer’s paper quotes equilibrium at a molality of 6.146, a 
value of 0 9.042G∆ = − kJ gmol-1 and an activity coefficient of 1.008. 

,298
o
fH∆



    
  77 

Table 2:   Results from the vcs_Cantera NaCl equilibrium calculation at 298K 

Species Molality Mole 
Fraction 

Activity 
(Cantera) 

µ° 

(kJ gmol-1) 

µ 

(kJ gmol-1) 

Cl- 6.1934 .091220 6.2751 -183.974 -179.421 

H+ 5.3724E-08 7.913E-10 2.5709E-07 0 -37.6153 

Na+ 6.1934 .091220 6.2751 -257.752 -253.199 

OH- 5.3724E-08 7.9128E-10 2.9292E-08 -226.784 -269.784 

H2O(L) 55.5084 0.81756 0.74995 -306.686 -307.399 

NaCl(S) NA 1 1 -432.62 -432.62 

N2(g) NA .97628 0.97628 -57.128 -57.188 

H2O(g) NA .023718 .023718 -298.904 -307.399 

H2(g) NA 4.5731E-08 4.5731E-08 -38.9624 -80.858 

 

The vcs results above are a molality of 6.193, a value of 0 9.106G∆ = −  kJ gmol-1 and an activity 
coefficient of 1.013. Also note at equilibrium the activity of the water is 0.7499. Thus, the relative 
humidity above an NaCl saturated liquid phase has been reduced from 100% to 75%, by the presence 
of the salt. The 75% value agrees with the value given in the CRC [37] handbook. 

This problem serves as an “admiral’s test” to validate the vcs program, and the new HMWSoln modules. 
Recently, the equilibrium solver was generalized to handle non-ideal solutions, and to handle charge-
neutrality conditions for electrolyte phases. Additions to handle molality formulations for the new 
liquid electrolyte ThermoPhase objects were also added [28]. This test case serves as an example that 
the new capabilities work.  

The next two sections describe submodels that comprise the equilibrium calculation. Section 6.1 
describes the evaluation of the species standard states. Section 6.2 describes the evaluation of the 
solution activities.  
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7 Examples 

7.1 Details of the Binary NaCl Electrolyte Calculation 

The most important numbers for an accurate determination of the solubility of NaCl(s) in water are the 
standard state thermodynamic properties of the solution reaction, 

 + -NaCl(s) Na ( ) Cl ( )aq aq→ +  

If the solubility is to be accurately determined over an extended temperature range, then not only 
( )298o

rG K∆  but both the first derivative, i.e., related to ( )o
rH T∆ , and the second derivative, i.e., 

related to ( ),
o
p rC T∆ , must be known to be accurately calculated over the extended temperature range. 

Silvester and Pitzer [31] regressed on the original data for the reaction and found 
( )298 9.042 0.04oG K∆ = − ± kJ gmol-1 3, ( )298 3.843 0.1oH K∆ = ±  kJ gmol-1, 
( )298 31.25 0.5o

pC K∆ = − ±  J gmol-1 K-1. How well do the accepted general numbers from general 
sources come close to the regressed data [31] for this specific NaCl(s) solution reaction? 

To answer this question, temperature dependent polynomial representations were obtained for the 
three species in the reaction from general sources. A Shomate polynomial for the standard state 
thermodynamic properties of NaCl(s) was obtained from the NIST’s online database [24]. 

Shomate polynomial representations for Na+ and Cl- were obtained by fitting data in the SUPCRT92 
database [36]. Additionally, the CODATA values [29] for ( )298fH K∆  and ( )298S K  for Na+ and 
Cl- were thrown into the fitting process as well to weight the 298 K limit.  Then, the resulting values of 

( )o
rG T∆ , ( )298o

rH K∆ , and ( ), 298o
p rC K∆  for the NaCl(s) dissolution reaction were compared with 

Silvester and Pitzer [31] and Pitzer’s subsequent papers on the NaCl system [40, 41]. 

For the Cl- species case, the CODATA recommended values are ( )298 167.08 0.10fH K∆ = − ±  kJ 
gmol-1 and ( )298 56.60 0.20S K = ±  J gmol-1 K-1, resulting in a value of ( )298 183.95 0.11Kµ = − ±  
kJ gmol-1.  SUPCRT92 quotes an apparent standard partial molar Gibbs free energy of formation, 

( )298fG K∆  value of –131.29 kJ gmol-1. 

                                                       
3 Estimate for the uncertainty for ( )298oG K∆  came from a general discussion in ref. [31] and 

Table 4 in ref. [40]. 
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Table 3:   Standard State Properties at 298 K (25°C)  

Species 
( )298o Kµ  

(kJ/gmol) 

( )298o
fH K∆  

(kJ/gmol) 

( )298oS K  

(J/(gmol K)) 

( )298o
pC K  

(J/(gmol K)) 

H2O(l) –306.6858 –285.8287 69.9224 75.3275 

Cl-(shomate) –183.9736 –167.0967 56.6057 –114.5987 

Cl-( SPEQ06.dat) –184.0250 –167.1095 56.7350 –118.4659 

H+ 0 0 0 0 

OH- (shomate) –226.7839 –230.0320 –10.8944 –118.1955 

OH- (SPEQ06.dat)  –226.8420 –230.0355 –10.7110 –103.3277 

NaCl(s) –432.6201 –411.1207 72.1093 50.5012 

N2(g) –57.1282 0.0 191.6089 29.1242 

H2O(g) –298.140 –241.8249 188.8283 33.5876 

H2(g) –38.9642 0.0 130.6804 28.8362 

O2(g) –61.1650 0.0 205.1482 29.3782 

( )( )+Na o

rG T∆  –257.6881 –240.1801 58.7218 34.3048 

Na+ (SUPCRT92-

shomate) 
–257.6911 –240.5765 57.4026 74.3038 

Na+ (SUPCRT92-

CODATA-shomate) 
–257.7521 –240.3265 58.4456 –0.4415 

Na+ (SPEQ06.dat) –257.7409 –240.3264 58.4086 39.0321 

 

This may be converted (see previous memos [4, 3, 1]) into a Gibbs free energy of formation on an 
( )298o

fH K∆  elements basis (i.e., the NIST standard that we are using) of ( )298 184.03Kµ = − kJ 
gmol-1. Therefore, for Cl-, the SUPCRT92 database is marginally consistent with the CODATA 
values, at least up to the quoted uncertainty in the CODATA values. Also, the fit to SUPCRT92 
produced a Shomate polynomial with ( )298 167.10fH K∆ = − kJ gmol-1, in agreement with the 
CODATA ( )298fH K∆  value.  

For the Na+ species case, the CODATA recommended values are ( )298 240.34 0.06fH K∆ = − ±  kJ 
gmol-1 and ( )298 58.45 0.15S K = ±  J gmol-1 K-1, resulting in a value of ( )298 257.78 0.07Kµ = − ±  
kJ gmol-1.  SUPCRT92 quotes an apparent standard partial molar Gibbs free energy of formation, 

( )298KfG∆ , value of –261.877 kJ gmol-1. This may be converted into a Gibbs free energy of 
formation on an ( )298Ko

fH∆  elements basis of ( )298 257.69Kµ = −  kJ gmol-1. Therefore, for Na+, 
the SUPCRT92 database is on the edge of consistency with the CODATA values. The fit to 
SUPCRT92 produced a Shomate polynomial with ( )298 240.33fH K∆ = −  kJ gmol-1, in agreement 
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with the CODATA ( )298fH K∆  value. 

The NaCl(s) thermodynamics was obtained from the NIST website, in the form of a Shomate 
polynomial. Values of ( )298 432.62o Kµ = −  kJ gmol-1 and ( )298 411.12o

fH K∆ = − kJ gmol-1 were 
obtained from the Shomate polynomial. 

CODATA sources, alone, produces ( )298 9.110o
rG K∆ = −  kJ gmol-1 and SUPCRT92 alone produces 

( )298 9.100o
rG K∆ = −  kJ gmol-1, compared to Pitzer regressed experimental value of 
( )298 9.042 0.04o

rG K∆ = − ±  kJ gmol-1.  CODATA sources, alone, produces ( )298 3.700o
rH K∆ =  kJ 

gmol-1 and SUPCRT92 alone produces ( )298 3.698o
rH K∆ =  kJ gmol-1, compared to Pitzer regressed 

experimental value of ( )298 3.843 0.15o
rH K∆ = ±  kJ gmol-1. 

While the agreement is good considering the inherent uncertainties in the data, the predicted 
( )298o

rG K∆  and ( )298o
rH K∆  values from general sources are either on the edge or nominally out of 

range of the experimental values determined by Pitzer from the original data. Therefore, for the 
purposes of studying this one system, the Shomate polynomial for Na+ was reevaluated to match the 

( )o
rG T∆  values determined by Pitzer and Silvester. The resulting 298 K thermodynamic values, given 

in Table 3 in the row, ( )( )+Na oG T∆ , match the CODATA values for ( )298oS K  and ( )298o
fH K∆  

adequately, and were used throughout the remaining calculations. 

Table 3 also contains fits to Na+ from just the SUPCRT92 database (Na+(SUPCRT92)), and from fits 
to Na+ from  SUPCRT92 plus 298 K CODATA values (Na+(SUP-CODATA)). The resulting ( )oG T∆  
curves from the SUPCRT92-only data are plotted in Fig. 15. Of particular note is the wide disparity in 

( )298pC K  values predicted by the three different methods. This demonstrates that forcing fits to the 
298 K data may cause large changes in ( )o

pC T  to occur that are not physical and thus may be 
counterproductive. To reinforce this point, the Na+ standard state values produced by the HKFT 
standard state formulation with parameters from the SPEQ06.dat database [43] are provided in the last 
row of the table, entitled Na+(SPEQ06.dat). This row clearly demonstrates that the formulation of the 
HKFT standard state makes a difference in fitting the standard state polynomials, and that the resulting 
values for  ( )pC T  are much smoother with respect to their variation with temperature than the results 
using Shomate polynomials. Additionally, we have included rows for the standard states for Cl- and 
OH- calculated from the HKFT standard state using the SPEQ06.dat database within Table 3. The 
HKFT ( )298o

fH K∆  and ( )298oS K  values are close to the Shomate values for these species. 
However, the ( )298o

pC K
 
values again demonstrate significant deviations, again demonstrating the 

dangers and inaccuracies inherit in the fitting process, especially when evaluating quantities obtained 
from taking derivatives.  

The ( )o
rG T∆ values regressed from SUPCRT92 and from Silvester and Pitzer (1977) are plotted in  
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Fig. 15. Plot of ( )o
rG T∆  for the reaction NaCl(s) Na ( ) Cl ( )aq aq+ −→ +  

Fig. 15. Differences at higher temperature are in the 1 kJ gmol-1 range, and can be explained by dif-
ferences in ( ),

o
p rC T∆ , which controls the second derivative in ( )o

rG T∆ . With the changes made to the 
Na+ standard state, the ( )o

rG T∆  values used in these calculations follow the Silvester and Pitzer curve 
in Fig. 15. What is apparent is how sensitive the heat capacity value is when computing it from Gibbs 
free energy data. The lesson here is to seek out solution heat capacity data whenever possible if 
accurate thermodynamic data extrapolation to high temperatures is the goal. 

The neutral aqueous species NaCl(aq) was left out because it’s concentration was found not to be 
appreciable even at high molalities and at high temperatures. Also, the inclusion of ion pairs in the 
model should be avoided since the Pitzer interaction parameters for this binary electrolyte already 
captures the effect of ion pairing.  Therefore, any explicit use of ion pairs should be avoided unless ion 
pair constants are part of the Pitzer parameterization for a given electrolyte.  This is the case in 
systems containing weak acids where the non-dissociated aqueous species may have to be included in 
the calculation. A decision then has to be made whether to include the non-dissociated species with its 
associated ion pairing constant or to include the effects of the association on the activity of the ions, by 
adding in a nonzero value to the (2)

MXβ  interaction parameter. Pitzer argues that the latter may be more 
accurate and for practical purposes it behaves like an ion pairing constant. Of course, doing both, i.e., 
adding in the non-dissociated ion pair while at the same time adding in a nonzero (2)

MXβ  interaction, or 
even adding the ion pairing constant with the 1-1 Pitzer binary interaction parameters would be like 
“double counting” the effects of ion association and therefore it would lead to a wrong result.  It 
should be noted, however, that some forms of the Pitzer parameterization makes use ion pairing 
constants along with binary interaction parameters for the ions in the electrolyte of interest.  For 
example, the Pitzer parameterization used in the YMP database, and used here with Cantera, adopts a 
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form given by Sterner et al. (1998) [66] that includes Pitzer parameters for the complexes CaCl+ and 
CaCl2(aq) as well as ion pairing constants.  That is, the Pitzer parameterization for the CaCl2 electrolyte 
in this case was regressed consistent with the ion pairing constants as a function of temperature and 
ionic strength.  According to Sterner et al. (1998) [66], the inclusion of these ion pairs resulted in a 
much better fit to the osmotic coefficient data used to retrieved the ion interaction parameters. 

One of the problems with current basis approach is the large negative numbers for the absolute Gibbs 
free energy. Pertinent differences in the Gibbs free energy are on the order of 0.1 kJ / gmol. However, 
absolute Gibbs free energies are typically on the order of –300 kJ / gmol. Essentially, 3 significant 
digits of accuracy are given up with this approach. 

This loss of accuracy argues for a reevaluation of the basis used for liquid phase calculations. This is 
done in many other programs, where an elemental basis is replaced by a species basis. For example, if 
1/2 O2(g), the elemental basis for oxygen were replaced by H2O(L) as the basis species for oxygen, 
then formation reactions for all species containing oxygen would exhibit a smaller magnitude. The 
loss of accuracy would be stemmed. This approach will be considered for adoption in later work. 
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Fig. 16. Dependence of the mean activity coefficient with molality at 25°C.  

Experimental data from Robinson and Stokes [42]. 

7.1.1 NaCl Binary System at 25°C 

The NaCl-H2O system has been studied extensively in terms of salt solubilities and/or concentrated 
electrolytes where the thermodynamic properties of concentrated solutions as function of salt 
concentration and temperature have been well characterized (Pitzer et al. [41]; Clarke and Glew [69]).  
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Fig. 16 shows the dependence of the mean activity coefficient on NaCl molality at 25°C.  Notice the 
strong agreement between experiment and prediction using Pitzer parameter data from Greenberg and 
Møller [72].  These authors retrieved NaCl Pitzer parameters based mainly on the work by Pitzer et al. 
[41] for temperatures exceeding 200°C along Psat.   
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Fig. 17. Dependence of the water activity on the molality of a NaCl solution at 25°C.  

Experimental data from Robinson and Stokes [42]. 

Fig. 17 shows the dependence of the water activity on molality at 25°C. The points marked 
“Experiment” are actually taken from a compilation of the original data in Robinson and Stokes [42]. 

The Pitzer formulation should be considered a success, due to the fact that it only takes 3 adjustable 
parameters, (0)β , (1)β , and Cφ , to obtain a very accurate representation of the water activity and the 
mean activity coefficient over a wide range of concentrations. Other measures of success for the Pitzer 
formulation are its success in treating multicomponent electrolyte solutions with relatively small-in-
size cross terms. Further, the temperature dependency on the thermodynamic properties of various 
electrolytes has been evaluated successfully using the Pitzer approach.  The following sections will 
provide more examples of the applications of this approach to model thermodynamic properties of 
electrolyte solutions. 

7.1.2 Example Program for Excess Gibbs Free Energy 

In order to obtain a unit test for the excess Gibbs free energy calculation, the essential quantity in 
Pitzer’s treatment, weused Silvester and Pitzer’s paper [31], which models the binary NaCl system 
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from 25°C to 300°C. The excess Gibbs free energy is given by the following formula: 

 
( ) ( ) ( )( )

( )

3/2, 2 34
ln 1 2

3

1 ln

ex
M X MX M X MX

o o

G AI b I m B m C
M n RT b

m

φν ν ν ν

ν φ γ ±

⎛ ⎞= − + + +⎜ ⎟
⎝ ⎠

= − +

 (164) 

A key feature is the temperature dependence of the Pitzer coefficient. What coefficients need to be 
dependent on the temperature and what functional formalism will be used to describe that temperature 
dependence. Silvester and Pitzer [31] described one set of numerical fitting data where he fit much of 
the experimental data for NaCl over an extensive data range, below the critical temperature. He found 
a temperature functional form, Eqn. (165), for fitting the 3 coefficients that describe the Pitzer 
parameterization for a single salt that can adequately describe how those three coefficients change 
with respect to temperature. Additionally, there are temperature dependencies involved with 
specification of the standard states. The Pitzer coefficients only describe the evolving concentration 
effects. 

 ( ) ( )(0) 2 2
1 2 3 4 5

1 1
ln r r

r r

Tq q q q T T q T T
T T T

β
⎛ ⎞ ⎛ ⎞

= + − + + − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (165) 

 ( ) ( )(1) 2 2
6 9 10r rq q T T q T Tβ = + − + −  

 ( )11 12 13 14

1 1
ln r

r r

TC q q q q T T
T T T

φ ⎛ ⎞ ⎛ ⎞
= + − + + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

In Pitzer’s cumulative paper [18], he presents tables of derivatives of these three quantities at the 
reference temperature of 25°C for a range of binary salt systems. Therefore, it seems prudent to 
generate functional dependencies which parameterize the temperature dependence of the three Pitzer 
coefficients, , , , as a way to handle the general case. 

Also, in later papers, Pitzer has added additional temperature dependencies to all of the other 
remaining second and third order virial coefficients. Some of these dependences are justified and 
motivated by theory. Therefore, a formalism wherein all of the coefficients in the base theory have 
temperature dependences associated with them. We will denote the temperature derivative of these 
coefficients with a superscript “L”.  

A small program was written to directly calculate exG ,  γ ± , and φ  at 50°C and 200°C, and was then 
used to validate the results from HMWSoln’s implementation. The small program produced these values 
for a fixed molality of 6.146. 

 50°C (323.15 K): 8.930005exG = −  kJ / kg Water, ln 0.004969γ ± = , and 1.2753φ =  

200°C (473.15 K): 35.9022exG = −  kJ / kg Water, ln 0.71353γ ± = , and 1.0289φ =  

(0)β (1)β Cφ
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Table 4  Excess Gibbs Free Energy as a function of temperature for the NaCl-H2O System 

Temperature Pressure Aφ ∆G° ∆G Gex mean 
activity 

φ - 1 

Kelvin (bars) sqrt(kg/gmol) (kJ/gmol) (kJ/gmol) kJ/kgWater dimensionless dimensionless 

293.15 1.01325 0.388193 -8.81994 0.0278395 -8.55678 0.999211 0.28481472 

298.15 1.01325 0.391469 -9.04161 -0.0048679 -8.48944 1.006910 0.28549018 

303.15 1.01325 0.394908 -9.2523 -0.040418 -8.47584 1.011634 0.2851374 

313.15 1.01325 0.402277 -9.64279 -0.120008 -8.60387 1.012999 0.2817495 

323.15 1.01325 0.4103 -9.99482 -0.210642 -8.93001 1.004982 0.275359 

333.15 1.01325 0.41898 -10.311 -0.311754 -9.44534 0.989198 0.2665432 

343.15 1.01325 0.428325 -10.593 -0.422564 -10.1429 0.967101 0.2557636 

353.15 1.01325 0.438348 -10.8421 -0.542127 -11.0177 0.940003 0.2433916 

363.15 1.01325 0.449067 -11.0585 -0.669359 -12.0665 0.909013 0.2297206 

373.15 1.01418 0.460504 -11.2422 -0.803071 -13.2879 0.875070 0.2149790 

383.15 1.43379 0.472673 -11.3928 -0.942158 -14.6808 0.838989 0.1993502 

393.15 1.98674 0.485612 -11.5087 -1.08514 -16.248 0.801381 0.1829576 

403.15 2.7028 0.499358 -11.5883 -1.23069 -17.993 0.762764 0.1658911 

413.15 3.61539 0.513953 -11.6294 -1.3775 -19.9212 0.723550 0.1482070 

423.15 4.76165 0.529446 -11.6295 -1.52436 -22.0399 0.684065 0.129932 

433.15 6.18235 0.545895 -11.5858 -1.67018 -24.3584 0.644568 0.111067 

443.15 7.92187 0.563366 -11.4949 -1.81407 -26.8882 0.605261 0.091588 

453.15 10.0281 0.581938 -11.3534 -1.9554 -29.6436 0.566304 0.071452 

463.15 12.5524 0.601705 -11.1573 -2.09391 -32.6414 0.527821 0.0505913 

473.15 15.5493 0.622777 -10.9025 -2.22983 -35.9022 0.489913 0.0289190 

483.15 19.0767 0.645286 -10.5846 -2.36401 -39.4503 0.452662 0.0063259 

493.15 23.1959 0.669394 -10.199 -2.49814 -43.3151 0.416138 -0.017321 

503.15 27.9709 0.695296 -9.74073 -2.63502 -47.5323 0.380399 -0.042186 

513.15 33.4693 0.723235 -9.20474 -2.77892 -52.1456 0.345501 -0.0684628 

523.15 39.7617 0.753518 -8.58571 -2.93612 -57.2088 0.31149 -0.0963907 

533.15 46.9226 0.786537 -7.87817 -3.11562 -62.7901 0.278422 -0.126265 

543.15 55.0299 0.822801 -7.07643 -3.33028 -68.9765 0.246341 -0.158457 

553.15 64.1658 0.862992 -6.17465 -3.59848 -75.8829 0.215298 -0.193448 

563.15 74.4178 0.908045 -5.16684 3.9468 -83.664 0.185348 -0.231878 

573.15 85.879 0.959282 -4.04685 -4.41438 -92.5358 0.156552 -0.274627 
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HMWSoln’s implementation used a pressure of 1 atm, until the vapor pressure curve advanced past 1 
atm at 100°C. Above 100°C, the pressure was set equal to the pure water vapor pressure. Table 4 
contains the results for a fixed molality of 6.146. Table 4 also contains results for the calculation of 
Aφ , the Debye-Hückel parameter for the osmotic coefficient. This result closely agrees with Silvester 
and Pitzer’s numbers over the entire temperature range.  
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Fig. 18. Osmotic coefficient of NaCl solutions as a function of molality at various 
temperatures. 

Fig. 18 depicts the dependency of osmotic coefficient on solution molality for a wide range of tem-
perature. These values closely agree with those given in Figure 7 in ref. [31]. 

7.1.3 Expressions for the Mixture Enthalpy 

Partial molar enthalpies, iH , are related to the derivative of the Gibbs free energy by the following 
Eqn. (166). iµ is the partial molar Gibbs free energy for the ith species. iS is the partial molar entropy 
of the ith species. n  is the total number of moles in solution, and in is the number of moles of species i 
in the solution. 
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The total enthalpy of the system may be related also to the total Gibbs free energy via the following 
similar formula: 
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 (167) 

The change in enthalpy due to the non-ideality of the mixing is encapsulated in the definition of the 
relative enthalpy of mixing, L, Eqn. (168). iX is the mole fraction of species i in solution. 

 oL H H= −     (168) 

 where 
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L  is on a “per mole of solution” basis. A more useful expression is to put the enthalpy of mixing 
expression on a “per mole of salt” basis. The resulting expression is called the apparent relative molal 
enthalpy of mixing, Lφ , Eqn. (169). 
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Because the ideal component of the mixing Gibbs free energy doesn’t contribute to the total enthalpy, 
formulas for expressing the relative enthalpy of mixing, , may be directly related to the 
excess Gibbs free energy. 
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Therefore, 
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The expressions for partial molar enthalpy of species i may all be related to the derivatives of the 
molality-based activity coefficients added to the standard state enthalpy by the following Eqns. (172)
and (173). 

oL H H= −
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The general expression for the temperature derivative of the log of the activity coefficient is not given 
in Pitzer’s papers. It is presented below. Note the L superscript refers to a partial derivative with 
respect to temperature. 
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The following definition for the enthalpy Debye-Hückel coefficient, LA , 
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Was made in the previous equations. Eqn. (176) may be combined with the following equation, 
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to create an expression for the temperature derivative of the water activity coefficient. This may be 
plugged into the expression for the partial molar enthalpy expression to yield an expression for the 
partial molar enthalpy for water in terms of the derivative of the osmotic coefficient, Eqn. (179).  
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The mixture excess Enthalpy, which Pitzer calls the relative enthalpy, L, may be obtained by taking 
the derivative with respect to the temperature (Eqn. (171) at constant p and n) applied to Eqn. (65) to 
yield Eqn. (180). 
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(180) 

This expression may be used directly to calculate the relative enthalpy contribution, and may further 
be used as an alternative calculation to check the consistency of the calculations of the partial molar 
enthalpies if the total enthalpy is calculated via two routes: 
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H X H=∑   and  oH H L= +  (181) 

7.1.4 Relative Enthalpy for a Binary Electrolyte 

We may use the definition of L directly in Eqn. (173) to obtain the relative enthalpy of a binary 
electrolyte solution. For the single electrolyte case, exG  is given by Eqn. (94). We will make the 
following definition for the enthalpy Debye-Hückel coefficient, LA : 
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where ln /o d V dTα = is the coefficient of thermal expansion of water. Then,  
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where 
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An expression for the apparent relative molal enthalpy, Lφ , Eqn. (169), may be obtained using the 
relation, 2 M XI mz zν= : 
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This last equation agrees with Pitzer, Eqn. (81), p. 95, ref [18], after using i iZ m z=∑  and after 
substitution into Eqn. (184) to yield Eqn. (185). 
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Lφ  is directly related to the concentration effects of the heat of solution of a salt. Lφ  decreases to zero 
as the salt concentration decreases to zero. 
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Table 5 Excess Enthalpy for the NaCl system at a fixed 6.146 molality 

Temperature Pressure AL/RT ∆H° ∆Hs φL 

(Kelvin) bar sqrt(kg/gmol) (kJ/gmolSalt) (kJ/gmolSalt) (kJ/gmolSalt) 

273.15 1.01325 0.553549 7.43878 2.95801 -4.48077 

298.15 1.01325 0.80117 3.84389 2.07339 -1.77051 

323.15 1.01325 1.0806 0.789801 1.5597 0.769897 

348.15 1.01325 1.39756 -2.05146 1.1928 3.24426 

373.15 1.01418 1.76347 -5.00826 0.77393 5.78219 

398.15 2.32238 2.19377 -8.41039 0.129084 8.53947 

423.15 4.76165 2.71154 -12.5861 -0.868498 11.7176 

448.15 8.92602 3.35214 -17.8642 -2.2714 15.5928 

473.15 15.5493 4.17423 -24.5734 -3.99291 20.5805 

498.15 25.4972 5.28282 -33.0422 -5.6694 27.3728 

523.15 39.7617 6.88318 -43.599 -6.33484 37.2642 

548.15 59.4639 9.42389 -56.5718 -3.55165 53.0202 

573.15 85.879 14.0453 -72.2884 9.33798 81.6264 

598.15 120.51 24.3899 -91.0764 54.3933 145.47 

623.15 165.294 57.1522 -113.263 234.925 348.189 

 

7.1.5 Mixture Enthalpy Sample Problem 

To check the implementation of the enthalpy functions within the HMWSoln object, the NaCl binary 
electrolyte problem was solved as a function of temperature, for a fixed molality of 6.146. Table 5 
contains a sample of the results. The value of LA  is also presented in the table. It closely agrees with 
the results given in ref. [31]. 

A small program was written to directly calculate  at 50°C and 200°C, and was then used to val-
idate the results from HMWSoln’s implementation. The small program produced these values for a fixed 
molality of 6.146. 

 50°C (323.15 K):    0.76990Lφ =  kJ / gmolSalt,  

 200°C (473.15 K): 20.581Lφ =    kJ / gmolSalt 

These numbers agree with the more elaborate calculation presented in the table. 

The validity of Eqn. (185) was checked 2 ways in order to ensure internal consistency at 323.15 K. 

Lφ
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The following values resulted from the first method: 269.556oH −  kJ gmolSoln-1, 0.6979L =  kJ 
gmolSoln-1, 269486H = −  kJ gmolSoln-1.  

The partial molar enthalpies were -284.104 kJ gmol-1, -238.453 kJ gmol-1, and -168.502 kJ gmol-1 for 
H2O(L), Na+, and Cl-. Their mole fractions are 0.818703, 0.090648, and 0.090648. When summed up 
the molar solution enthalpy again produces 269.486H = −  kJ gmolSoln-1, passing the check for 
internal consistency. 

An even more encompassing test for the calculation of excess enthalpy was carried out as a function of 
temperature and NaCl molality.  The result of these code runs were compared to the extensive 
tabulations for the thermodynamic properties NaCl solution given by Pitzer et al. (1984), and Clarke 
and Glew (1985).  Fig. 19 shows the excellent agreement obtained from the Cantera predictions and 
the tabulated excess enthalpies given by the above-mentioned authors.  There is a slight deviation from 
the tabulated data at NaCl concentrations of 3 and 6 molal at T > 280°C but these are considered to be 
relatively small within the bounds of the overall standard error given by Clarke and Glew (1985) 
tabulations.  Moreover, the Pitzer parameters used in this calculation have an upper limit of 250°C so 
any computed value beyond this temperature limit is an extrapolation. Still, these extrapolated values 
beyond this temperature are in very good agreement with the tabulated data. 

 

Fig. 19. Plot of excess Enthalpy as a function of temperature (along Psat) and NaCl molality.  
Data from the tabulations of Pitzer et al.[68], and Clarke and Glew [69]. 
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7.1.6 Expressions for the Mixture Heat Capacity 

The total heat capacity at constant pressure is given by 
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The partial molar heat capacity for species i is given by the following equation: 
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Plugging the expression into Eqn. (172) results in 
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The total relative heat capacity, J  an analog to the total relative enthalpy, is given by 

 o
p pJ C C= −     (189) 

And, it is related to the total relative enthalpy by 

 
, kp m
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dT

=     (190) 

An apparent molal heat capacity, pCφ , may also be defined in Eqn. (191). 
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n
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The derivations of the previous section mostly go through unchanged. The Debye-Hückel constant 
used for the expression for heat capacity is named JA , and it is defined as 

 L
J

dAA
dT

=     (192) 

Also note that: 
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To evaluate the heat capacity by Eqn. (188), the second derivative in the activity coefficient and 
osmotic coefficients with respect to temperature must be evaluated. The general expression for this is 
given below. Second derivatives with respect to temperature for the Pitzer parameters are denoted by a 
superscript LL.  
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where 
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7.1.7     Excess Heat Capacity for a Binary Electrolyte 

Starting from the expression for L  for a binary electrolyte, Eqn. (183), and then taking another tem-
perature derivative, the following expression may be derived for the apparent molal heat capacity for a 
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binary electrolyte: 
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where 
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Table 6 Mixture Heat Capacities Evaluated for the NaCl-H2O System at a fixed 6.146 NaCl 
Molality 

Temperature Pressure AJ/(RT) ∆Cp° ∆Cps J φJ 

Kelvin bar sqrt(kg/gmol) kJ/gmolSal kJ/gmolSalt kJ/gmolSoln kJ/gmolSalt 

273.15 1.01325 4.08571 -0.158977 -0.0364738 0.0111047 0.122503 

298.15 1.01325 4.61251 -0.130795 -0.0199542 0.0100476 0.110841 

323.15 1.01325 5.50274 -0.115719 -0.0105879 0.00952996 0.105131 

348.15 1.01325 6.72519 -0.113771 -0.00869599 0.00952492 0.105075 

373.15 1.01418 8.35345 -0.124962 -0.0135842 0.0100962 0.111378 

398.15 2.32238 10.5422 -0.14929 -0.0237735 0.0113779 0.125517 

423.15 4.76165 13.5794 -0.186752 -0.0365059 0.0136196 0.150246 

448.15 8.92602 17.9948 -0.237338 -0.0467077 0.0172803 0.19063 

473.15 15.5493 24.8263 -0.301036 -0.0444412 0.0232599 0.256595 

498.15 25.4972 36.2771 -0.377833 -0.00862773 0.0334679 0.369205 

523.15 39.7617 57.5281 -0.467713 0.110286 0.0523947 0.578 

548.15 59.4639 102.55 -0.570661 0.445904 0.09215 1.01657 

573.15 85.879 217.096 -0.68666 1.43571 0.192389 2.12237 

598.15 120.51 603.91 -0.815692 5.01831 0.528843 5.834 

623.15 165.294 2810.91 -0.957741 25.9944 2.44317 26.9522 

 

Table 6 contains the results for evaluating Jφ  for the NaCl binary electrolyte problem. In that cal-
culation, J was evaluated from o

p pJ C C= −  and pC  was obtained from ,p i p iC X C=∑ . The table 
also contains calculated JA  values. In contrast to the previous results, there was a discrepancy with 
Pitzer values of JA  on the order of about 12%. My values were consistently higher. No resolution has 
yet been found. 

A small program directly calculates Jφ  from Eqn. (198) at two temperatures for a fixed molality of 
6.146. The following results are obtained. 

 50°C (323.15 K):    0.10513Jφ =   kJ / gmol Salt,  

 200°C (473.15 K): 0.25659Jφ =   kJ / gmol Salt 

The results from the small program agree with the more elaborate calculations presented in the table. 

7.1.8 Expressions for the Excess Volume of Mixing 

The change in volume due to mixing is also affected by the pressure derivatives of the Pitzer coef-
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ficient for the activity coefficients as well as the pressure dependence of the Debye-Hückel constant. 
The partial molar volume of species i in solution is given by the following relation: 

 2

,

ln

k

oi i
i i

T T m

dG dV V RT
dP dP

γ
= = +  (202)

    

Also, the net excess volume due to mixing, ,exV , is given by Eqn. (203). 

 

0,

,
,

, k N

exo
ex

T m

dG
V V V

dP
=

= − =   where 
0

N
o o

i i
i

V X V
=

= ∑  (203) 

The apparent molal volume, Vφ , can then be defined via Eqn. (204) as the excess volume per mole of 
added salt. 

 ,ex

salt

nV
V

n
φ =     (204) 

The derivations of the previous sections having to do with the temperature derivative of the activity 
coefficient mostly go through unchanged for pressure derivatives. The Debye-Hückel constant used 
for the expression for the excess liquid volume is named VA  and is defined by Eqn. (205). 

 ( ) lnln
4 2 3 w

V
T TT

dA d VdA RT A RT
dP dP dP

φ
φ

ε⎛ ⎞
⎜ ⎟= − = +
⎜ ⎟
⎝ ⎠

 (205) 

The first derivative involves the dependence of the dielectric constant on pressure, which is nonzero, 
while the second derivative is the isothermal compressibility of water. To evaluate the excess volume, 
the first derivative of the activity coefficient and osmotic coefficients with respect to pressure must be 
evaluated. The general expression for this is given below. Derivatives with respect to pressure are 
denoted by a superscript V. 
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2 2
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where 
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7.1.9 Excess Volume of Mixing for a Binary Electrolyte 

Eqn. (209) may be derived for the apparent molal volume for a binary electrolyte by starting with Eqn. 
(94) and then using Eqn. (203) and Eqn. (204). Eqn.’s (99) and Eqn. (95) are also needed. 

 ( ) ( )2ln 1 2
2

M X V V V
M X MX M m MX

z z A
V b I RT mB m z C

b
φ

ν
ν ν ν

⎛ ⎞
⎜ ⎟= + + +
⎜ ⎟
⎝ ⎠

 (209) 

where 

 V MX
MX

dBB
dP

=   and V MX
MX

dCC
dP

=  

Under the current implementation, 0V V
MX MXB C= = . Therefore, the only pressure dependence exhibited 

by the excess volume of mixing is due to the pressure dependence of the dielectric constant and the 
water density. Pitzer has gone on to add the pressure dependence into the Pitzer parameters for the 
NaCl system in a later series of papers [40, 41]. We have not implemented the pressure 
parameterizations for MXB  and MXC  used in those papers at this time.  It should be noted, however, 
that some Pitzer parameters have been retrieved for several electrolytes at 25°C (see the work of 
Monnin [88] and references therein) to calculate partial molal volume of solutes at elevated 
concentrations.  Moreover, the work of Monnin [89] extended this approach to evaluate the effect of 
pressure on the activity coefficients of a mixed solute system at temperatures up to 200°C and a 
pressure of one kilobar.  Implementation of these pressure-dependent parameters is left as a topic of 
future work.   
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Table 7  Excess Volume Properties for NaCl Solutions at a fixed molality of 6.146 as a 
function of Temperature 

T 

(Kelvin) 

Pres 

(bar) 

AV 

cm3kg1/2gmol-3/2 

Vex 

m3/gmolSoln 

φV 

cm3/gmol Salt 

MolarV 

kg/gmolSoln 

MolarV0  

kg/gmolSoln 

273.15 1.01325 1.50618 0.157014 1.73212 16.4205 16.2635 

298.15 1.01325 1.87445 0.195404 2.15563 16.5003 16.3049 

323.15 1.01325 2.37356 0.247435 2.72961 16.6872 16.4398 

348.15 1.01325 3.06967 0.320001 3.53014 16.9618 16.6418 

373.15 1.01418 4.05119 0.422321 4.65889 17.3245 16.9022 

398.15 2.32238 5.4505 0.568194 6.26811 17.7871 17.2189 

423.15 4.76165 7.48 0.779762 8.60205 18.3758 17.596 

448.15 8.92602 10.4881 1.09335 12.0614 19.1351 18.0417 

473.15 15.5493 15.0766 1.57168 17.3382 20.1415 18.5698 

498.15 25.4972 22.3411 2.32898 25.6925 21.5312 19.2022 

523.15 39.7617 34.437 3.58993 39.6028 23.5639 19.974 

548.15 59.4639 56.041 5.84206 64.4475 26.7863 20.9443 

573.15 85.879 98.8083 10.3004 113.63 32.5236 22.2232 

598.15 120.51 198.394 20.6818 228.155 44.7348 24.053 

623.15 165.294 494.718 51.5725 568.929 78.7484 27.1758 

 

Table 7 presents Vφ calculations for the binary NaCl system as a function of temperature. In these 
calculations, the standard state volume for both Na+ and Cl- was set equal to one half the standard state 
volume at 25°C for NaCl(aq) quoted in ref. [41], 17.49 cm3 gmol-1. No attempt was made to adjust for 
the large temperature and pressure dependence of o

Na+V  and/or o
Cl-V . VA  is also printed out in Table 6. It 

agrees well with the values presented in pg. 99, ref [18]. A small program directly calculates Vφ  from 
Eqn. (209) at two temperatures for a fixed molality of 6.146. The following results are obtained. 

 50°C (323.15 K):    2.7296Vφ =   cm3 / gmolSalt,  

 200°C (473.15 K): 17.3382Vφ =   cm3 / gmolSalt 

These values from the small program agree with the more elaborate calculations presented in Table 6. 
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7.2 Analysis of a 2-2 Electrolyte 

Predicted values of osmotic coefficients by Cantera for a MgSO4(aq) 2-2 electrolyte were compared to 
those reported by Rard and Miller [73], Holmes and Mesmer [74], and Archer and Rard [75]. Selected 
results from the Cantera code runs at 298 K are listed in  Table 8.  The comparisons between code 
predictions and literature values are depicted in Fig. 20 and they indicate good agreement with 
experimental data and values from other models.  The values reported by Archer and Rard [75] are the 
result of a variant of the Pitzer model that modifies the binary parameter MXCφ  to have an ionic strength 
dependency and therefore is not consistent with the standard Pitzer formalism.  The model presented 
by these authors is parameterized by a comprehensive evaluation of existing thermodynamic data for 
MgSO4(aq) plus isopiestic measurements at 298 K conducted in that study.  

 

Table 8 Selected Properties of MgSO4(aq) at 298 K computed using Cantera. 

 

Ionic Strength 

(m) 

Activity of 

Water 

Osmotic 

Coefficient 

0 1.0 1.0 

0.0010203 0.999967 0.893758 

0.0255076 0.999375 0.679756 

0.10203 0.997812 0.595962 

0.539741 0.989789 0.527751 

1.04479 0.980095 0.534094 

2.06612 0.950818 0.677467 

2.55076 0.929929 0.79046 

3.08642 0.900617 0.941276 

3.55168 0.869646 1.09143 

4.04959 0.830883 1.26974 

 

The source of Pitzer parameters adopted in Cantera for these code runs are retrieved from the model 
presented by Pabalan and Pitzer [77].  These authors retrieved Pitzer parameter mainly by evaluating 
excess Gibbs energy of aqueous electrolytes and experimental solubility data for solids.  The Cantera 
predictions are compared to the ion-interaction model results listed in Table VI of Rard and Miller 
[73], Table 3 of Holmes and Mesmer [74], and Table 7 of Archer and Rard [75].  The agreement of 
these results as depicted in Fig. 20 is very good considering that we are comparing different sets of 
data and also different models.  There is a slight deviation with the reported values of Holmes and 
Mesmer [74], particularly within the MgSO4(aq) molal concentration between 0.5 to 1.5 molal and 
above ~2.5 molal.  Somewhat similar deviations where found by Archer and Rard [75] between their 
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model and some osmotic coefficient data from Holmes and Mesmer [74].  Overall, the resulting good 
correspondence can be extended to reported measurements and model results of up to 5 molal 
MgSO4(aq) and temperatures of up to 423.15 K.  

 

 

Fig. 20. Plot of osmotic coefficient versus MgSO4(aq) molality for various temperatures.  
Solid lines are the Cantera predictions whereas symbols represent data from either 
experiments or models given in the literature.. 

7.3 Analysis of a 2-1 Electrolyte 

All the examples presented so far are for symmetrical electrolytes of the type 1-1 or 2-2.  The 
following example is for the 2-1 electrolyte Na2SO4(aq).  We compare the Cantera code predictions to 
the work of Rard et al. [76] which is a comprehensive evaluation of thermodynamic data for 
Na2SO4(aq) and provides a robust model to represent the thermodynamic properties of this electrolyte 
as a function of temperature.  Selected results from the Cantera code runs at 298 K are listed in 
 Table 9.   
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Table 9  Selected Properties of Na2SO4(aq) at 298 K Computed Using Cantera. 

 

Ionic Strength 

(m) 

Activity of 

Water 

Osmotic 

Coefficient 

0 1.0 1.0 

0.0010203 0.999947 0.960757 

0.0255076 0.998816 0.859637 

0.10203 0.995644 0.791635 

0.539741 0.980329 0.681046 

1.04479 0.964955 0.631762 

2.06612 0.933271 0.618453 

2.55076 0.916149 0.635267 

3.08642 0.894861 0.665953 

Fig. 21 depicts the behavior of this salt as a function salt concentration at 298 K and 373.15 K.  The 
Pitzer parameters adopted for the Cantera code runs are based on the work by Greenberg and  
Møller [72].   

Similar to the comparison presented in Section 7.2, there is a very good agreement between the 
osmotic coefficient values predicted by Cantera and those given by the extended Pitzer model reported 
in Rard et al. [76].  Again, this comparison not only indicates the consistency with more recent critical 
evaluations and their associated models but also the validity of Pitzer parameters obtained from earlier 
studies. 

7.4 Analysis of the Calcite Equilibria 

Carbonate equilibria in natural systems is inherently important to carbon mass fluxes that are to a large 
extent controlled by biogeochemical cycles.  In particular, calcite (CaCO3) formation plays an 
important role on natural processes as well as in others of industrial interest where, for example, scale 
formation in geothermal wells can be deleterious to the efficiency of geothermal energy exploitation 
(Møller et al. [85]). Also, a better understanding of CO2 solubility in brines is needed in the accurate 
modeling and application of subsurface carbon sequestration in geological formations (Kervévan et al. 
[86]).  This example involves the prediction of calcite solubility as a function of NaCl concentration at 
298 K at a given PCO2.  Calcite equilibrium is sensitive to PCO2, temperature, and ionic strength so this 
problem is a good test of multiphase-multicomponent equilibria in the system Ca-CO3-CO2-Na-Cl-
H2O.  The experimental data used in this comparison is from Wolf et al. [87] where calcite solubility 
experiments were conducted at three different temperatures (10, 25, and 60 °C) at a PCO2 of ~1 kPa. 
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Fig. 21. Plot of osmotic coefficient versus Na2SO4(aq) molality for 298 K and 373.15 K.  
Solid lines are the Cantera predictions whereas symbols represent data reported by 
Rard et al. [76].   

 
The YMP Pitzer database developed in [43] is used in these simulations.  The gas mole fractions 
between N2(g) and CO2(g) were set in the code to be consistent with the PCO2 reported in Wolf et al. 
[87] experiments.  The mole fractions of N2(g) and CO2(g) used in these runs are 0.99 and 0.0091, 
respectively, assuming a total pressure of 101325 Pa or one atm.  The selected experimental data at 
298 K were obtained at a PCO2 of ~0.92 kPa according to Table I of Wolf et al. [87]. The results shown 
in Fig. 22 indicate a very good agreement with the experimental data from the dilute concentration 
range up to 6 molal NaCl. The thermodynamic data for calcite used in this example is from the YMP 
Pitzer thermodynamic database.  These data is to a large extent consistent with recent calcite solubility 
data and, the Pitzer parameters and aqueous species therein for a wide range of temperatures.  The log 
K values calculated from the calcite solubility reaction (i.e., CaCO3 + H+ = Ca++ + HCO3

-) at 298 K 
using thermodynamic data consistent with SPEQ06 or the YMP Pitzer databases would yield almost 
identical values at this temperature.  The only observable differences in log K values from the two 
databases would be at temperatures above 100°C.  The activity coefficients calculated by Cantera for 
Ca++ and CO3

-- are in excellent agreement with those reported in Table IV of Wolf et al. [87].  The 
only significant discrepancy in the computed activity coefficient values is for Ca++ at 6.14 molal NaCl.  
The difference exceeds about 20% and the reason for such discrepancy, which is restricted to the 
maximum ionic strength of the experiments, cannot be resolved at this point.  However, it was noted in 
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a sensitivity analysis of Pitzer parameter for CaCl2 that data this 2-1 binary could play an important 
role in the computation of activity coefficients of Ca++ at 298 K.  It should also be noted that the Pitzer 
parameter data adopted by Wolf et al. [87] for CaCl2 and carbonate species are from different sources 
compared to those in the YMP Pitzer thermodynamic database, so minor discrepancies should be 
expected.  Overall, the agreement between solubility and activity coefficient predictions can be 
considered excellent within the uncertainties in the experimental data and the different sources of 
Pitzer parameter data used in this test relative to those adopted in the source [87]. 

 

Fig. 22. Plot of calcite (CaCO3) solubility as a function of NaCl concentration at 298 K and 
PCO2 fixed at 0.92 kPa or at the equivalent XCO2 of 0.0091.  The solid line connecting 
the data points of Wolf et al. [87] is just a guide for the eye. 

7.5 Verification of the HKFT Standard State 

Agreement of Cantera’s calculation of o
fG∆ , the Gibbs free energy of formation reaction for ions and 

aqueous species with respect to the SUPCRT92 formulation is displayed in Fig. 23 (a) to (d). The 
formulas are from Eqn. (39) and Eqn. (29). The Gibbs free energies of formation reactions for these 
reactions are listed below. 
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 2

1
Na(s)  H Na    + H ( )

2
g+ ++ →  (210) 

 2 2

1 1
Cl (g)  H ( ) Cl    +H

2 2
g − ++ →  

 2 2 4 9 2

1 1
4C(s)  5 H ( ) N ( ) C H NH (aq)

2 2
g g+ + →

 

 
2 2 4 9

1
4C(s)  5H ( ) O ( ) C H OH(aq)

2
g g+ + →  

Eqn. (29) must be used to evaluate the Gibbs free energy of formation reported in Fig. 23 (a) to (d). 
Cantera’s element database has been modified to include the entropy at 298 K and 1 bar for each 
element in its standard state. That allows for the easy conversion between ( ), ,f j r rG T P∆  and 

( ),j r rG T P  within the code. The following entropies are used within Fig. 23 (a) to (d). 

 ( )
2 ( )

1
, 65.34

2
o
H g r rS T P =  J gmol-1 K-1      ( )( ) , 51.455o
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1
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2
o
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2
o
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2
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Fig. 23. Agreement of  for various ions and aqueous species between Cantera  

and other formulations. 

 

7.6 Multicomponent Salt System – an Example 

The NaCl-KCl system has been studied extensively [71, 72, 79, 80, 81, 82].  We present detailed 
comparisons of Cantera’s results on this system at 100°C compared with both EQ3NR code results 
and experimental data to validate Cantera’s implementation of the multicomponent Pitzer equations. 
In these comparisons, “EQ3/Pitzer” in Tables Table 10 and Table 11 refers to EQ3NR code runs with 

o
fG∆
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data from the YMP Pitzer database developed in [43].  Eqn. (211) provides the two solution reactions 
within the system. The solubility of the two salts is mainly driven by the standard state values of Gibbs 
free energies of solution of these reactions, o

rG∆ . 

 KCl(s) K Cl  + −→ +
  

              ( ) ( ) ( )+ -K Cl KCl(s)o o
rG µ µ µ∆ = + −  (211) 

 
NaCl(s) Na Cl  + −→ +

 
             ( ) ( ) ( )+ -Na Cl NaCl(s)o o

rG µ µ µ∆ = + −  

The value of 10log K  quoted in the table is from the following equation, Eqn. (212). 

 10log
ln10

o
rGK

RT
−∆

=    (212) 

Table 10   Breakdown of the Calculation of the KCl Equilibrium Constant at the Stationary 
Point  

(kJ gmol-1) EQ3/Pitzer Cantera/SPEQ06 Cantera/NIST 

( )+
,298 KfH∆  -252.1359 -252.1359 -252.1359 

( )+K ,25 Cµ °  -282.262 -282.2621 -282.2621 

( )+K ,100 Cµ °  -289.9583 -289.9583 -289.9583 

( )-
,298 ClfH∆  -167.1095 -167.1095 -167.1095 

( )-Cl ,25 Cµ °  -184.0250 -184.0250 -184.0250 

( )-Cl ,100 Cµ °  -187.321 -187.321 -187.321 

( )o
,298 KCl(s)fH∆  NA -436.8464 -436.6819 

( )o KCl(s),25 Cµ °  NA -461.4588 -461.2969 

( )o KCl(s),100 Cµ ° (1) -467.6936 -468.0997 -467.9404 

( )o KCl,25 CrG∆ ° (2) -5.2216 -4.8283 -4.9902 

( )10log KCl,25 CK ° (2) 0.9148 0.8459 0.8742 

( )o KCl,100 CrG∆ ° (2) -9.5856 -9.1800 -9.3393 

10log (KCl,100 )K C° (2) 1.3418 1.2850 1.3073 

(1) Calculated from the EQ3NR computed ion activities for the equilibrium at the stationary point using 
thermodynamic from [43]. 

(2) Log K and o
rG∆  values calculated from the tabulated parameters for standard chemical potentials in 

Greenberg and Møller [72] and adopted in the YMP Pitzer database developed in [43].   
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The PDSS_HKFT pressure dependent standard state was used for the aqueous phase in this section. All 
data for aqueous phase species are consistent with the YMP Pitzer database developed in [43]. There 
is consistency in the thermodynamic data for the relevant aqueous species between the considered 
databases.  However, there are some discrepancies with the thermodynamic data for the solids and the 
effects of this on the computed solubilities are discussed below. 

We have used various sources for the solid salt, NaCl and KCl, phases to show the relative effects of 
variations in thermodynamic properties on the agreement with solubility data. Table 10 contains a 
breakdown of the calculation of ( )o KClrG∆  from the various sources of data. The stationary or 
invariant point refers to the condition where the brine is coexistent with as many solid phases as is 
thermodynamically possible; in this case halite and sylvite. The ( )10log KCl,100 CK  value used in the 
EQ3NR code run is 1.3418. For EQ3NR, the thermodynamics of salts are actually specified in the 
form of 10log K  values in a dabase file with respect to dissolution reactions with aqueous brine and not 
in terms of their Gibbs free energies of formation. For the specific purpose of matching experimental 
data on solubilities, this is a superior representation, as the 10log K values determine solubilities 
directly. However, it’s not very general. The values for ( )o KCl, 100 CrG∆ ° , ( )o KCl,100 Cµ ° , and 

( )o
,298 KCl(s)fH∆  reported in Table 10 are backcalculated from the value of ( )10log KCl,100 CK ° .  The 

Cantera/NIST column is calculated assuming the NIST shomate polynomial formulation for the 
KCl(s) salt from NIST”s web page [24].  The Cantera/SPEQ06 column is calculated using the 
MineraEQ3 standard state assuming species data from the SPEQ06 database [67]. The differences in 

( )10log KCl,100 CK ° create a demonstrable difference in the solubility of KCl in the mixed brine 
solution (see Fig. 24). Calculations indicate that the majority of the difference in the calculated 
saturation molality in a pure KCl solution between EQ3NR and Cantera lies in the calculated values 
for 10log K . These differences stem from taking different sources of data that may not be entirely 
internal consistent, as input to Cantera. Of particular note is the disagreement between the EQ3/Pitzer 
column, which is expressed as log K values at a set of temperatures, and the Cantera/SPEQ06 column, 
which is calculated from the PDSS_HKFT standard state object, with inputs from the SPEQ06 
thermodynamic database. It is clear that the EQ3NR calculations using the YMP Pitzer data fits the 
experimental data best. However, the SPEQ06 inputs are widely used. Resolution of the discrepancy 
lies in the need for refitting the SPEQ06 parameters used in the HKFT equation of state to the 
solubility data.  Indeed, the 10log K  values adopted in the YMP Pitzer database developed in [43] are 
consistent with the source of Pitzer parameters for the Na-Cl-KCl-H2O system by Greenberg and 
Møller [72].  These authors fitted solubility data for various salt systems as a function of temperature 
using the Pitzer equations.   
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Table 11  Breakdown of the Calculation of the NaCl Equilibrium Constant at the Stationary 
Point 

(kJ gmol-1) EQ3/Pitzer Cantera/SPEQ06 Cantera/ NIST 

( )+
,298 NafH∆  -240.3264 -240.3264 -240.3264 

( )+Na ,25 Cµ °  -257.7409 -257.7409 -257.7409 

( )+Na ,100 Cµ °  -262.5284 -262.5284 -262.5284 

( )-
,298 ClfH∆  -167.1095 -167.1095 -167.1095 

( )Cl-,25 Cµ °  -184.0250 -184.0250 -184.0250 

( )-Cl ,100 Cµ °  -187.321 -187.3214 -187.321 

( )o
,298 NaCl(s)fH∆  NA -411.2097 -411.1207 

( )o NaCl(s),25 Cµ °  NA -432.7159 -432.6201 

( )o NaCl(s),100 Cµ ° (1) -438.5614 -438.5728 -438.4735 

( )o NaCl,25 CrG∆ ° (2) -9.0511 -9.0500 -9.1458 

( )10log NaCl,25 CK ° (2) 1.5857 1.5855 1.6023 

( )o NaCl,100 CrG∆ ° (2) -11.2086 -11.1974 -11.2966 

( )10log NaCl,100 CK ° (2) 1.5690 1.5674 1.5813 

(1) Calculated from the EQ3NR computed ion activities for the equilibrium at the stationary point using 
thermodynamic from [43]. 

(2) Log K and o
rG∆  values calculated from the tabulated parameters for the standard chemical potentials in 

Greenberg and Møller [72] and adopted in the YMP Pitzer database developed in [43].   

 

Table 11 contains a breakdown of the calculation of ( )o NaClrG∆  at the stationary point from the 
various sources of data considered in these code runs. The value of ( )10log NaCl,100 CK °  used by 
EQ3NR is 1.5690, in much closer agreement with the SPEQ06 database. The NIST database is in 
surprisingly good agreement for NaCl as well. 

 

In Fig. 24 we display the agreement between Cantera, EQ3NR, and various experimental data on the 
system from de Lima and Pizter (1983). The blue curve represents Cantera’s calculations of the 
solubility curve when the SPEQ06 database is used for the NaCl(s) and KCl(s) phases, respectively. 
It’s observed that there is a noticeable deviation from agreement with experiment due to the lack of 
agreement with the ( )10log KCl,100 CK  value, previously mentioned. 
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Fig. 24. Agreement between Cantera, EQ3NR, and various experimental data from de Lima 
and Pitzer (1983).  The Cantera/EQ3 runs were conducted using log K values 
consistent with those in YMP Pitzer database developed in [43].  See text for 
explanation. 

 

Pointwise comparisons were also made between EQ3NR outputs, Table 13, and Cantera outputs, 
Table 12. These results are the predicted equilibrium concentrations and single-ion activity 
coefficients at the stationary point in the system. In order to carry out the comparisons, we have 
matched the log K values for NaCl and KCl exactly before carrying out the calculation by adjusting 
the 298 K heats of formation of NaCl(s) and KCl(s). We have also had to add small amounts of HCl to 
the mixture in order to match the H+ molality used by EQ3NR. H+ concentrations (or equivalently the 
pH) are specified by an input option to EQ3NR, while they are calculated from equilibrium principles 
within Cantera. By adding small amounts of HCl, we can iterate until we have matched a desired pH 
within Cantera. All results are given on the NBS pH scale. Note, the pH scale matters a great deal in 
this nondilute solution case. 
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Table 12  Pointwise Comparison of molality and activity coefficient data at the Stationary 
point (NBS pH Scale): Cantera Results 

Species olality Activity Coefficient 

H2O(l) X=0.7459 0.897586 

Cl- 9.4535 0.469079 

Na+
 

4.5835 1.82376 

K+ 4.8701 1.01725 

OH-
 

9.794E-8 0.4859 

H+ 8.856E-7 8.956 

 

Table 13  Pointwise Comparison of molality and activity coefficient data at the Stationary 
point (NBS pH Scale): EQ3NR Results using the YMP Pitzer database. 

Species Molality Activity Coefficient  

H2O(l) X=0.7460 0.8856 

Cl- 9.4522 0.46914 

Na+ 
4.5829 1.8239 

K+ 4.8693 1.0174 

OH- 8.093E-8 0.4536 

H+ 8.856E-7 11.293 

 

Comparison between EQ3NR code results and Cantera demonstrates that Cantera exhibits about 3 
significant digits of agreement with EQ3NR on the major ions. However, the activity coefficient for 
H+ remains about 25% underpredicted by Cantera, and the molar activity coefficient is 1% 
overpredicted by Cantera. The number in the molalities column for H2O(l) is the predicted mole 
fraction of H2O(l) in the brine. Reasons for these discrepancies have yet to be found. 

7.7 The Standard Hydrogen Electrode (SHE) 

In order to fully understand the intricacies of implementing electrode reactions within Cantera, there’s 
no substitute for actually carrying the process out on a sample reaction. 

The standard hydrogen electrode is the reference electrode used for electrode reaction. Therefore, it’s 
the obvious choice. However, as will be shown in the discussion below, the implementation of the 
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electrode reaction is by no means a simple task, and the actually kinetic parameters to be used in the 
elementary steps that comprise the reaction are not generally agreed upon, possibly due to their severe 
dependence on surface preparation issues. 

Cantera, however, is demonstrated to have all of the tools necessary to successfully implement what’s 
known about the elementary steps of the reaction and to produce a global reaction rate in the Butler-
Volmer format (where it’s the appropriate form) that may be used for comparison against experiment. 
Additionally, with its emphasis/reliance on elementary steps, Cantera is a good vehicle for providing 
robust and reproducible links between experimental data and models attempting to reproduce 
experiment (see ref. [55] for a good example of this). 

Below the thermodynamic treatment of the various phases needed to provide a treatment of electrode 
reactions within Cantera is reviewed. wethen present the three reversible elementary reactions which 
are thought to comprise the Standard Hydrogen Electrode (SHE) electrode kinetics, populate the 
model with reasonable data, and present the resulting Butler-Volmer global reaction and polarization 
curves for the reaction.  

How this is all implemented within the Cantera framework [44] is the emphasis of this section. 
Nothing necessarily new has been developed within Cantera to handle electrode reactions. This 
capability to model Butler-Volmer electrode reactions has previously been used extensively within 
Cantera to model solid oxide fuel cells [45]. An explaination for how this functionality is used within 
liquid water electrolyte systems is provided, however. 

7.7.1 SHE Electrode Reaction  

The half-cell reaction for the standard hydrogen electrode reaction, written in the cathodic direction as 
required by recent conventions, is defined to be 

 22H ( ) 2e H ( )aq g+ −+ →                  0oE =  volts (SHE) (213) 

oE , the standard electrode potential to be defined below, is set to zero by convention at all temperature 
and pressures for this reaction. The potential difference between two phases cannot be readily 
measured. This is because the measurement always introduces other interfaces which have their own 
potential difference. Therefore, the (SHE) convention mitigates this problem by creating a relative 
interphase potential standard against which to compare other electrodes against. Eqn. (213) involves a 
single-ion activity coefficient. Therefore, the specification of the SHE electrode reaction rate involves 
the specification of a the correct pH scale given by the NBS standard, Eqn. (113). 

The hydrogen evolution reaction occurs on various electrode materials at greatly varying rates of 
progress. The fastest and therefore most non-polarizable surfaces on which this reaction occurs are 
platinum surfaces. One of the slowest surfaces on which this reaction occurs (and therefore most 
polarizable) is Hg.  
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The reaction is thought to occur via the following reversible intermediate steps, each of which only 
involves the transfer of at most one electron. An intermediate of adsorbed hydrogen atoms (on 
platinum surface sites) is assumed, and calculation of the overall reaction), involves solving for the 
adsorbed hydrogen atom concentration assuming a pseudo-steady state. 

The Volmer reaction, 

 H ( ) e +Pt*( ) H( )aq s s+ −+ →  ,  (214) 

involves the transfer of a proton across the electric double layer to an adsorbed position on the 
platinum surface, where it combines with an electron. It is considered to be the rate limiting 
elementary step on platinum-like surfaces. 

The Tafel reaction, 

 22Pt*( ) H ( ) H( ) H( )s g s s+ → + , (215) 

involves the reversible recombination of adsorbed hydrogen to form molecular gas-phase Hydrogen. 
The Heyrovsky reaction, Eqn. (216), is a competitor to the Tafel reaction, and involves the direct 
transfer of 

 2H ( ) e +H( )=Pt*( ) H ( )aq s s g+ −+ +  (216) 

a proton across the electric double layer where it reacts with a previously adsorbed hydrogen adatom 
and an electron from the metal to form molecular hydrogen. It’s considered to be the rate limiting step 
for the hydrogen evolution reaction on some other metals such as Hg. There is an extensive discussion 
of these reactions in Chapter 8 of Newman’s book [23]. Depending upon the identity and construction 
of the electrode, Newman states that different elementary reactions will be rate limiting. Reaction rate 
constants for the elementary steps and thermodynamic properties of absorbates are not given, 
however.  

7.7.2 General Formulation for Equilibrium 

Let’s say we have an electrode reaction that produces electrons. We will write this in the cathodic 
direction as Eqn. (217). 

 
1 1

M M
s sN N

r p
i i i i

i i

neν ν−

= =

+ =∑ ∑   (217) 

p
iν   and r

iν  (both defined to be always positive) are the stoichiometric coefficients for the products 
and reactants. The overall stoichiometric coefficient for species i in the reaction is equal to 

p r
i i iν ν ν= − . M i  is the chemical symbol for species i. 
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The condition for chemical equilibrium is given by the equilibration of the electrochemical potentials, 
which we denote by the symbol, iζ : 

  
1 1

s sN N
r p
i i i i

i i

neν ζ ν ζ−

= =

+ =∑ ∑   (218) 

For uncharged species, iζ  reduces to the value of the chemical potential, ( ),i T Pµ . If all species 
participating in the reaction are in the same phase, then the equation above reduces to the standard 
chemical potential equation, due to charge conservation within the phase. However, if the reaction 
involves net charge transfer across the interface, then the equation above will also include the potential 
difference across the interface in its equilibrium expression. 

The chemical potential of an electron in a metal, 
e

ζ −  (actually any metal), is equal to 

 electrode
o

e e e
z Fζ µ− − −= + Φ  ,    where  1

e
z − = −  (219) 

In this equation, o
e

µ −  is nonzero, and because of the SHE potential convention of 0oE =  at standard 
state conditions, it must be equal to one half the hydrogen gas standard state chemical potential, a 
point that is discussed in a very convoluted way in Newman’s Chap 2, ref.[23]. Note, this implies that 
the electron chemical potential is equal to one-half the hydrogen gas chemical potential at arbitrary 
temperature and one bar pressure in order to be consistent with the SHE reference electrode 
convention. 

 ( ) ( )H2(g)

1
, ,1 bar

2
o o
e

T P Tµ µ− =   (220) 

Also, the electron chemical potential ( ),o
e

T Pµ − for electrons in metals is the same for all metals and 
electrodes, despite the fact that work functions for electrons have values that vary with the identity of 
the metal, due to the SHE reference electrode convention which encompasses these effects.  A key 
reason for the necessity of Eqn. (220) is that the standard state chemical potential of the hydrogen ion 
is defined by convention to be equal to zero at all temperatures and pressures, 

 ( )H+ , 0T Pµ =  ,   (221) 

due the charge neutrality constraint creating an essential immeasurable degree of freedom in liquid 
phase electrochemistry. The Eqn. (221) convention is sometimes called Latimer’s convention. This 
degree of freedom is satisfied by arbitrarily assigning the hydrogen ion to have a zero standard state 
chemical potential, where the standard state is defined to be the unit molality condition, assuming an 
ideal molal solution. Therefore, writing down the standard state Gibbs free energy change of reaction 
for the reaction Eqn. (213), 

 1 H2(g) H+2 2o o
e

G µ µ µ −∆ = − −  , (222) 
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and applying the relationship between the standard electrode potential and the Gibbs free energy of 
reaction, 

 1 1 0o o oG nFEζ∆ = ∆ + =     →     SHE 1 0o onFE G= −∆ = , (223) 

Eqn. (220) is derived. The electron is assumed to be in its own “electron electrode phase” within 
Cantera, because of the form of Eqn. (220).  

 
<phase dim="3" id="electronPhase">  
  <elementArray datasrc="elements.xml"> E </elementArray>  
  <speciesArray datasrc="#species_PtH2electrode"> Pt_electron </speciesArray>  
  <thermo model="electrodeElectron">  
    <referenceInterface> SHE </referenceInterface> 
  </thermo> 
  <transport model="None" />  
  <kinetics model="none" />  
</phase>  
<!--  species definitions    -->  
<speciesData id="species_PtH2electrode">  
  <species name="Pt_electron">  
    <atomArray> E:1 </atomArray>  
    <charge> -1 </charge>  
    <thermo>  
      <NASA Tmax="1000.0" Tmin="200.0" P0="100000.0">  
        <floatArray name="coeffs" size="7">1.172165560E+00, 3.990260375E-03, -9.739075500E-06,  
          1.007860470E-08, -3.688058805E-12, -4.589675865E+02, 3.415051190E-01</floatArray>  
      </NASA>  
      <NASA Tmax="6000.0" Tmin="1000.0" P0="100000.0">  
        <floatArray name="coeffs" size="7">1.466432895E+00, 4.133039835E-04, -7.320116750E-08,  
          7.705017950E-12, -3.444022160E-16, -4.065327985E+02, -5.121644350E-01</floatArray>  
      </NASA>  
    </thermo>  
  </species>  
</speciesData>  
 

Fig. 25. XML format for the electron phase within Cantera 

Fig. 25 provides the Cantera implementation of this electron phase within a metal relative to the SHE 
interface. The phase itself is named electronPhase, and is defined as a stoichiometric phase, 
meaning that it consists of one species. It contains one species named Pt_electron, with the 
nontrivial NASA polynomial form necessary to duplicate the one half of the standard state of the 
hydrogen gas chemical potential, defined using the “zero enthalpy of elements in their natural state” 
basis (Ho(298 K, H2(g), 1 bar) = 0.0) used by NIST [24], CODATA [29], Chemkin [56] and the 
JANAF [57] tables. See previous memos for a more complete explanation of the specification of 
consistent bases [3] for presentation of the chemical potentials of species in gas and electrolyte phases 
and for an explanation of how to convert between the NIST convention and other conventions such as 
those used in SUPCRT92 [36]. 

The chemical potential of species i in phase a, where a may be the electrode, the solution, or the 
interface between the two, is equal to 

 ( ), ,i i i i aT P x z Fζ µ= + Φ   (224) 



116 

( ), ,i iT P xµ  may have multiple formats. For example it may be a stoichiometric phase, such as an 
oxide, it may be an ideal solution on the mole fraction basis, or it may be an electrolyte solution, 
whose activities are defined on the molality scale [53] and whose solute standard states are defined at 
unit molality assuming an ideal molal solution: 

 ( ), ln i i
i i

mT P RT
m
γµ µ

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
, where i

i
o o

nm
M n

=  and 
1000

o
o

MM =
 (225)

 

1m = gmol (kg solvent)-1. The  symbol signifies that the standard state and the activity coefficients 
are on the molality scale. 

 
 
<phase dim="3" id="h2gas">  
  <elementArray datasrc="elements.xml">H</elementArray>  
  <speciesArray datasrc="#species_data">H2</speciesArray>  
  <state>  
    <temperature units="K">300.0</temperature>  
    <pressure units="Pa">101325.0</pressure>  
  </state>  
  <thermo model="IdealGas" />  
  <kinetics model="none" />  
  <transport model="Mix" />  
</phase>  
<speciesData id="species_data">  
  <species name="H2">  
    <atomArray>H:2</atomArray>  
    <thermo>  
      <NASA Tmax="1000.0" Tmin="200.0" P0="100000.0">  
        <floatArray name="coeffs" size="7">2.344331120E+00, 7.980520750E-03, -1.947815100E-05,  
          2.015720940E-08, -7.376117610E-12, -9.179351730E+02, 6.830102380E-01</floatArray>  
      </NASA>   
      <NASA Tmax="6000.0" Tmin="1000.0" P0="100000.0">  
        <floatArray name="coeffs" size="7">2.932865790E+00, 8.266079670E-04, -1.464023350E-07,  
         1.541003590E-11, -6.888044320E-16, -8.130655970E+02, -1.024328870E+00</floatArray>  
      </NASA>  
    </thermo>  
  </species> 
</speciesData> 
 
 

Fig. 26. XML description of the Hydrogen Gas Phase 

The hydrogen gas phase is given by Fig. 26. It’s a pure ideal gas with one species. Let’s expand the 
electrochemical potentials in Eqn. (224) using Eqn. (218) to develop an expression for equilibrium of 
the electrode reaction. 

 electrode
1 1 1 1

s s s sN N N N
r r o p p
i i i i i i i i i ie

i i i i

z F n nF z Fν µ ν µ ν µ ν−

= = = =

+ Φ + − Φ = + Φ∑ ∑ ∑ ∑  (226) 

Collecting terms results in 

 electrode
1 1 1 1

s s s sN N N N
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The rhs of Eqn. (227) is G∆ , the Gibbs free energy of reaction. iΦ  is the potential of the phase in 
which species i belongs. However, to simplify the lhs of Eqn. (227), we will may the assumption that 
all charged species are reactants are located in the electrolyte solution phase. Therefore, 

1

sN
r
i i

i

z nν
=

=∑ . 
And, we may define the potential difference between the electrode and solution phase as E: 

 electrode solnE = Φ −Φ    (228) 

Then, Eqn. (227) simplifies to 

 
1 1

s sN N
p r o

i i i i e
i i

nFE n Gν µ ν µ µ −

= =

− = − − = ∆∑ ∑  (229) 

We may separate the Gibbs free energy of reaction out into it’s standard state contribution, oG∆ , 
defining an equivalent standard potential, oE , based on oG∆ , 

 
1 1

s sN N
o p o r o o o

i i i i e
i i

nFE n Gν µ ν µ µ −

= =

− = − − = ∆∑ ∑ , (230) 

and the deviation from the standard state contribution,: 

 ( )o onF E E G G− − = ∆ −∆   (231) 

The later may be rewritten as Eqn. (232). 

 
o

o G GE E
nF

∆ −∆
= −  ,  (232) 

Eqn. (232) is recognized as the Nernst equation for the reaction, after oG G∆ − ∆  is written out in terms 
of the logs of the activity coefficients. For the SHE, the Nernst equation reduces to 

 2( )ln ln
2 1 bar

o
H go

H

pG G RT RTE E a
nF F F+

⎛ ⎞∆ − ∆
= − = − ⎜ ⎟⎜ ⎟

⎝ ⎠
 (233) 

oE   for aqueous electrodes is ubiquitously tabulated in standard references such as the CRC. There are 
several issues to note, in using these tabulations. o

e
µ −  must be appropriately recognized as being equal 

to 1/2 ( )2( ) ,1 baro
H g Tµ . Also, the standard state for species in the aqueous electrolytes is defined to be 

one at which the species is at unit molality in an ideal molal solution state.  is used as an alternative 
tabulation of the standard-state Gibbs free energy of formation for ionic species, albeit at only one 
temperature and pressure. 

 may be thought of as the barrier in voltage that must be built up in order for a reaction, which 
would normally want to go forwards spontaneously, i.e., 0G∆ < , to instead be at equilibrium. For 

oE

oE
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example, the noble metals have very high values of oE . Eqn. (234) is an example of a noble metal 
standard electrode potential reaction. 

 2Pt 2 Pte+ −+ →       1.118oE = volts (SHE) (234) 

In the reaction, there is a very strong driving force in the cathodic reaction, i.e., the direction involving 
the reduction of the metal and the consumption of the electron. Therefore, in order for the reaction to 
be at equilibrium a very high compensating potential E must be built up in the metal, which tends to 
drive the creation of electrons in metals, because it makes the chemical potential of electrons lower -
see Eqn. (219). 

Typically,  values are tabulated in terms of the overall global reaction stoichiometry, which may 
hide the fact that there are intermediate elementary reaction steps and intermediate species that must 
be defined. The hydrogen electrode reaction is found to occur via an adsorbed intermediate, which 
forms a Langmuir-Hinshelwood adsorbate on the platinum catalyst. The Cantera implementation of 
this surface phase is given in Fig. 27. 

The phase is called platinum_surface, and consists of two species, pt_site, and H*_site. The 
thermodynamics model is named Surface, which implements an ideal solution model for the 
adsorbate phase. This surface model is similar to models which have been used in Cantera to treat 
surface site compositions for solid oxide fuel cells and diamond growth in CVD systems. The surface 
site density must be specified. Here, we use a typical value used in the analyses above, 93 10−× gmol 
cm-2, to fill in this number, not having an actual estimated number to go by. The thermodynamics of 
the absorbates must also be specified. Again, we must guess at the numbers. We use the const_cp 
formulation for the standard states of the adsorbate species, because it is the simplest. 

With this formulation we only need to specify ( )o
oH T , ( )o

oS T , and ( )o
p oC T  at a single temperature 

oT . Because we don’t know the thermodynamics of these adsorbate species, using the simplest 
formulation is prudent. The thermodynamics of adsorbate species will affect the Gibbs free energies of 
reaction of the reactions in the mechanisms, and thus the reverse rate constants of these reactions. The 
relative values between the H*_site species, a single hydrogen adatom adsorbed onto a base site, and 
the pt_site species, a bare site, will determine the degree of binding energy of hydrogen adsorbed 
onto the bare platinum metal. An early literature value of 10 kcal gmol-1 for the hydrogen molecular 
adsorption on Hg motivates the magnitude of the relative differences in enthalpies between the 
pt_site and H*_site values [65]. The binding energy has a large effect on the observed Tafel slope 
when the H*_site surface site fractions become significant. The numbers, however, should be 
considered to be speculative without a thorough investigation. 

 

oE
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<phase dim="2" id="platinum_surface">  
  <elementArray datasrc="elements.xml">H E</elementArray>  
  <speciesArray datasrc="#species_PtH2electrode">pt_site H*_site</speciesArray>  
  <state>  
    <temperature units="K">300.0</temperature>  
    <coverages>pt_site:0.9 H*_site:0.1</coverages>  
  </state>  
  <thermo model="Surface">  
    <site_density units="mol/cm2"> 3e-09 </site_density>  
  </thermo>  
  <kinetics model="Interface" />  
  <reactionArray datasrc="#reaction_data" />  
  <transport model="None" />  
  <phaseArray>Pt_H2electrons NaCl_electrolyte h2gas</phaseArray>  
</phase> 
 
<speciesData id="species_PtH2electrode">  
  
<!--  species pt_site -->  
  <species name="pt_site">  
    <atomArray />  
    <thermo>  
      <const_cp Tmax="5000.0" Tmin="100.0">  
        <t0 units="K">298.15</t0>  
        <h0 units="kJ/mol">0.0</h0>  
        <s0 units="J/mol/K">0.0</s0>  
        <cp0 units="J/mol/K">0.0</cp0>  
      </const_cp>  
    </thermo>  
  </species>  
 
<!--  species H*_site   -->  
  <species name="H*_site">  
    <atomArray>H:1</atomArray>  
    <thermo>  
      <const_cp Tmax="5000.0" Tmin="100.0">  
        <t0 units="K">298.15</t0>  
        <h0 units="kJ/mol">-21.0</h0>  
        <s0 units="J/mol/K">63.0</s0>  
        <cp0 units="J/mol/K">10.0</cp0>  
      </const_cp>  
    </thermo>  
  </species>  
</speciesData> 
 
 

Fig. 27. Data for the platinum_surface phase, the location for the interfacial reaction  

7.7.3 Cantera’s Implementation of Interfacial Kinetics 

The interfacial kinetics object is initiated in the XML element called phase by the addition of the 
kinetics XML element (see Fig. 27). The attribute model id of Interface indicates that the object 
InterfaceKinetics should be constructed to handle the calculation of the rates of progress of 
reactions defined on the interface and the species source terms for species in bulk and surface phases 
at or adjacent to the interface. The object automatically includes the interface species in its list of 
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species that may be reactants and products of reactions defined in it, as all reactions may be considered 
to be located on the interface. In addition, the XML element called phaseArray defines other phases 
which are present at the interface (or on either side of it) and whose species may also be reactants 
and/or products in reactions. For the particular case of Hydrogen evolution on a platinum electrode, 
three additional bulk phases are needed to be present at the electrode and defined within the 
InterfaceKinetics object: Pt_H2electrons which are electrons in the platinum metal, 
NaCl_electrolyte which is the name of the liquid water electrolyte obeying the Pitzer formulation 
for specification of the molality-based activities, and H2gas which corresponds to pure Hydrogen gas 
bubbles injected over the platinum metal. The species in these phases are all added into the species 
vector within the InterfaceKinetics object. The actual platinum metal isn’t involved in the reaction.  

In Fig. 27, the reactionArray XML object defines where to look in the XML file for the reactions 
defined at the interface. The attribute datasrc defines the id of the reactionData XML element to 
look for the reactions.  

 
<reactionData id="reaction_data">  
 <!--  reaction 0001  Volmer reaction - rate limiting -->  
  <reaction reversible="yes" type="surface" id="0001">  
    <equation>H+ + Pt_electron + pt_site [=] H*_site</equation>  
    <rateCoeff>  
      <electrochem beta="0.5" />  
      <Arrhenius>  
        <A>1.1180000E+5</A>  
        <b>0.0</b>  
        <E units="kJ/mol">40.000000</E>  
      </Arrhenius>  
    </rateCoeff>  
    <reactants>H+:1.0 Pt_electron:1.0 pt_site:1.0</reactants>  
    <products>H*_site:1.0</products>  
  </reaction>  
 <!--  Tafel reaction - fast -->  
  <reaction reversible="yes" type="surface" id="0002">  
    <equation>2 pt_side + H2 [=] 2 H*_site</equation>  
    <rateCoeff>  
    <Arrhenius> 
      <A>1.900000E+13</A>  
      <b>0.0</b>  
      <E units="kJ/mol">10.000000</E>  
    </Arrhenius>  
    </rateCoeff>  
    <reactants>pt_site:2.0 H2:1.0</reactants>  
    <products>H*_site:2.0</products>  
  </reaction>  
<!--  Heyrovsky reaction - set to slow here -->  
  <reaction reversible="yes" type="surface" id="0003">  
    <equation> pt_side + H2 [=] H*_site + H+ + Pt_electron</equation>  
    <rateCoeff>  
      <Arrhenius>  
        <A>6.000000E-5</A>  
        <b>0.0</b>  
        <E units="kJ/mol">30.000000</E>  
      </Arrhenius>  
    </rateCoeff>  
    <reactants>pt_site:1.0 H2:1.0</reactants>  
    <products>H*_site:1.0 H+:1.0 Pt_electron:1.0</products>  
  </reaction>  
</reactionData> 
 

Fig. 28. Cantera’s XML description of the rate constants for the Hydrogen electrode 
reaction 
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Fig. 28 contains the reactionData XML element with the matching id of reaction_data, where the 
three Hydrogen electrode reactions are listed. The reactions are in standard Cantera format (see 
http://www.cantera.org). One addition is the electrochem XML element with the attribute beta. The 
next section will describe how this eβ  changes the reaction rates. 

7.7.4 Formulation of the Kinetics in Terms of Elementary Steps 

Cantera’s implementation of kinetics involving charge transfer reaction is based on the following 
equation for the forward and reverse reaction rate coefficients for the reaction ) given by Eqn. (235). 
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c
fk  is the “chemical part of the rate coefficient. e

k k k
k

F zβ ν⎛ ⎞Φ⎜ ⎟
⎝ ⎠
∑ , which includes the electron term, 

may be thought of as the change in the activation energy barrier (or the relative transition state energy 
level) due to the potential energy difference between the products and reactants in the reaction. The 
motivation for the form is based on transition state theory applied to electron transfer reactions and is 
supplied in several standard electrochemistry books (see ref.64,62). eβ  is the symmetry factor for the 
transition state, and is an additional input parameter for electron transfer reactions. 

 Let’s take a look at this term for the case of the Volmer Reaction, Eqn. (214). In this case 

 ( )metal solnk k kz n nEν Φ = Φ −Φ =∑
 (236)

 

The forward reaction, which is the cathodic direction, is reduced for positive values of E, and 
enhanced for negative values of E. This makes sense, because high values of metalΦ  stabilize the 
presence of electrons in the metal by reducing the chemical potential of electrons. 

The reverse reaction rate may be calculated from the electrochemical equilibrium constant, which 
includes the electrical potential energy term in Eqn. (236): 

 0k kν ζ =∑ .    (237) 
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Expanding the terms in Eqn. (238), 
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where o
RG∆  is the standard Gibbs free energy of the reaction, the last term on the rhs may be solved 

for E, the equilibrium value of the potential drop across the interface that would induce an equilibrium 
condition for the elementary reaction. Eqn. (239) can be rewritten as 
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  where metal soln
eq eqE = Φ −Φ  

The numerator in Eqn. (240) is a multiplication over the products of the reaction, while the 
denominator is a multiplication over the reactants of the reaction. We may formulate the reverse rate 
constant by considering Cantera’s treatment of the forward rate of progress of the reaction as 
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where a
kc  are the activity concentrations of the reactant species k, ( a s

k k kc c a= , where s
kc  is the standard 

concentration and ka  is the activity of species k), with the expression for the reverse rate of progress 
of the reaction based on mass action kinetics, 
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to generate an expression for rk  that is consistent with electrochemical equilibrium, Eqn. (240). 
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When the electric potential drop across the interface is at the equilibrium value, eq
k k knE zν= Φ∑ , the 

forward rate of progress and reverse rate of progress are equal. However, the potential drop across the 
interface may not be at equilibrium and will not be for finite currents crossing the interface electrode. 
Define this difference as the surface overpotential sη  

 ( ) ( )metal soln s k k kn n E zη νΦ −Φ = + = Φ∑  (245) 

The surface overpotential sη  represents the departure from the equilibrium potential at the specific 
conditions of the electrode (including the calculation of the activities) and it is also given by the 
expression: 
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Note, we have defined  away from the standard state conditions where all unity activities are 
assumed, and even irrespective of equilibrium conditions. Therefore it’s valid under any circumstance, 
especially one in which there is a net current flowing across the interface. 

The forward and reverse rates of progress may be reorganized so that the Butler-Volmer form of the 
equation is generated. Following the derivation in [55], the forward rate of progress is expressed as: 

 

( ) ( )

( )

exp

exp exp

r
k

r
k

e r
sc a

f f k
k

ee r
c a s
f k

k

Fn E
ROP k c

RT

FnFnEk c
RT RT

ν

ν

β η

β ηβ

⎡ ⎤− +
⎢ ⎥=
⎢ ⎥⎣ ⎦

⎡ ⎤⎡ ⎤ −−
= ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

∏

∏
 (247) 

Then, 

sη
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Then, the net rate of progress for the reaction may be written as 
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 may be used to eliminate E from the Eqn. (250). 
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Eqn. (240) may be used to eliminate E from the Eqn. (250). 
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to yield 
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Now the net rate of electron generation may be calculated from netROP : 
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and the current through the electrode and into the solution may be defined in terms of the electron 
generation rate as 
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Then, the rate of progress for elementary electrode reactions may be defined in terms of the current 
density, i, in the traditional Butler-Volmer form as 
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where oi , the exchange current density, is given by: 
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Therefore, for elementary kinetics steps, Cantera’s implementation leads to the Butler-Volmer format 
given by Eqn. (255) and (256), a point that has already been made in ref. [55]. However, for sets of 
interfacial electrode reactions, especially when they are intermixed with non-electrode reactions, the 
resulting global current density may or may not be reducible to Butler-Volmer form. A more general 
approach is needed. 

7.7.5 Formulation of the Global Reaction Rates 

There are few elementary steps in Electrodics that involve the transfer of more than a single electron. 
The hydrogen evolution reaction is not one of those. It is a combination of steps. 

While each individual elementary electron-transfer reaction step obeys the Butler-Volmer, the overall 
reaction mechanism on a surface may not obey the Butler-Volmer formulation, Eqn. (257).  
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In this equation, oi  is the exchange current density and has units of A cm-2. ni  is the current density of 
electrons stemming from the electrode reaction.  

Yet, a lot of the electrochemical reaction rate data is presented in a Butler-Volmer format representing 
a global result. How are these issues reconciled? 

They are reconciled by introducing the concept of a Global Overall Reaction, that may be defined to 
calculate the net rate of progress of a single reactant or product. The stoichiometry of the Global 
reactions are further defined via a linear combination of elementary reaction steps, such that 
intermediates drop out of the formulation, in order to make sure that global reactions conserve 
elements. However, global reaction rates are calculated using the entire reaction network and 
assuming intermediate quantities are at their pseudo steady-state values. 

For example, below is the half-cell reaction for the standard hydrogen cell. 

 22H ( ) 2e H ( )aq g+ −+ →    (258) 

This may be considered to be a linear combination of two times the Volmer reaction: 

  

added to -1 times the Tafel reaction: 

  

Together with the specification of a special species, in this case, Pt_electron, the speciation allows 
us to calculate a specific rate of progress for the global reaction. The concept of global reaction rates 

H ( ) e +Pt*( ) H( )aq s s+ −+ →

22Pt*( ) H ( ) H( ) H( )s g s s+ → +
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has been introduced into the program cttables. Fig. 29 contains a sample input deck for the SHE 
system.  

For a given global reaction the product and reactant stoichiometry are uniquely specified. Therefore, 
the potential complication of having separate values for sη  defined for each elementary reaction in a 
complicated mechanism goes away. The equilibrium value of E is distinctly defined in terms of 
reaction products and reactants for that global reaction. The fact that there may be multiple pathways 
for getting to the products from the reactants is irrelevant to the value of E.  

Newman [23] has an extensive section on the SHE kinetics. However, what’s revealing is that 
nowhere are the rate constants or energetics of the Langmuir-Hinshelwood adsorption system that 
comprises the inner workings actually provided. This is true for all of the other secondary sources that 
we have found that discuss electrode reactions [23, 61, 62, 63, 64]. It may be, as is discussed in many 
of these texts, that variations due to the surface preparation of the electrode make this reaction (and 
many other electrode reactions) inherently irreproducible, and therefore, these sources have found it 
difficult to provide consistent numbers. It also may be the case that the lack of a sufficient 
rigorousness in the analysis, especially in earlier work before the widespread use of numerical 
modeling, may have hampered the derivation of the rate constants and energetics in these elementary 
steps.  

While it may be possible to go back to the more primary literature [65] and analyze the reaction 
system, in putting together this sample problem, weonly resorted to grossly fitting the reaction rates so 
that the global reaction as calculated by cttables fit one of Newman’s Tafel plot curves for the 
reaction on a platinum electrode. 
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Number of Cantera Files = 3 
Cantera File Name = Pt_electrode.xml 
Cantera File Name = HMW_NaCl_sp1977_alt.xml 
Cantera File Name = h2gas.xml 
Bath Temperature = 300. 
Bath Pressure =  1 atm 
Add Chemical Potential Column = true 
START BLOCK Temperature Table Format 
  Number of Points = 8 
  Delta Temperature = 20. 
  Low Temperature = 300. 
  Added Temperatures = 333.15 273.15 373.15 
 END BLOCK Temperature Table Format 
 start block Bath Specification for Phase H2gas 
  Bath Species ID = H2 
   start block Bath Species Mole Fraction 
     H2 =  1.0 
   End block Bath Species Mole Fraction 
end block Bath Specification for Phase H2gas 
start block Bath Specification for Phase NaCl_Electrolyte 
   Bath Species ID = H2O(L) 
   start block Bath Species Molalities 
       Na+ = 1.0 
       Cl- = 1.8 
       H+ =  0.8 
   End block Bath Species Molalities 
end block Bath Specification for Phase NaCl_Electrolyte 
 
Start block Extra Global Reaction 
   Special Species = Pt_electron 
   Start block Elementary Reaction Specification 
     Reaction Index = 0 
     Reaction multiplier = 2.0 
   End block Elementary Reaction Specification 
   Start block Elementary Reaction Specification 
     Reaction Index = 1 
     Reaction multiplier = -1.0 
   End block Elementary Reaction Specification 
End block Extra Global Reaction 
 
 

Fig. 29. Sample input deck for the cttables program 

An additional problem was that Newman’s Fig. 8.6 p. 220 did not fully specify the electrolyte 
concentrations, which the value of the exchange current density depends on. Fig. 29 specifies the 
composition of the solution that weused in the cttables calculation. The equilibrium electric 
potential for the reaction for this particular bath gas conditions turned out to be equal to 0.00494E = −
volts, as the solution pH calculated from the Pitzer-based activity coefficients was 0.0839. 

Over most of the curve voltages surveyed, except for extremely cathodic conditions, the surface 
remains dominated by free sites. This is observed in experiments. This puts a requirement on the upper 
bound on the heat of adsorption of hydrogen molecules on the surface. For cathodic conditions, the 
Tafel slope is reduced below the 0.5 limit produced by the Volmer reaction, whenever there are 
significant concentrations of adsorbed hydrogen; this curvature shows up a little bit in Fig. 30 at the 
lowest voltages. The fact the reduction in the Tafel slope is not readily seen (at least up to the voltage 
value of -0.6 on Pt - see p., 220 [23]) indicates, from the model, that the binding energy of Hydrogen 
on the surface is below a certain value. For the numbers we have used this value is 15 kJ/gmol, not a 
terribly large number.  
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Fig. 30. Polarization Plot for the Hydrogen electrode reaction The current, which 

represents the charge flowing into the electrolyte from the electrode, is positive 
for voltages > E (anodic conditions) and negative for voltages < E (cathodic 
conditions) 

Fig. 30 contains the net polarization plot for the hydrogen reaction network discussed above and 
calculated by cttables. Cathodic voltages, i.e., negative voltages, produce negative values of the 
current, i.e., there is a net current from the electrolyte into the electrode, which in turn means that 
electrons are consumed at the interface. The cathodic and the anodic side of the polarization curve are 
not symmetric, reflecting the fact that the reaction network even for this seemingly simple reaction, is 
not an elementary single-step reaction. In particular, on the anodic side (high voltage where electrons 
are created at the interface), the reaction eventually becomes independent of the voltage. The is 
because the reaction becomes rate limited by adsorption rate of H2(g) onto the bare platinum surface. 
In other words, the branching ratio between the reverse reaction where H2(g) is reformed from 
adsorbed hydrogen and the forward step where it dissociates into H+ and an electron in the metal is 
skewed towards heavily towards the later, the electrodic reaction step.  

The Butler-Volmer form of this equation is calculated by cttables to be equal to 

 4 0.5 0.5
1.1157 10 exp exps sF Fi

RT RT
η η− ⎛ ⎞⎡ ⎤ ⎡ ⎤−

= × −⎜ ⎟⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎝ ⎠

 (259) 

At the equilibrium potential of E = -0.00494 Volts, the parameters have been adjusted so that a simple 
Butler-Volmer (BV) form is generated at low overpotentials, as is observed in experiment. In 
particular the value of the BV form agrees on the cathodic side with one of Pt-metal curves in 
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Newman’s Fig. 8.6 on p.220 of ref. [23]. However, setting different parameters in the elementary 
reaction mechanism may lead to significantly different behavior. In particular, asymmetric Butler-
Volmer behavior, where 0.5a cα α≠ ≠ , may be generated when there is significant hydrogen 
adsorption on the Platinum. 

All of this behavior can be captured by Cantera’s reaction mechanism framework. However, the most 
important take-home point should be that the level of experimental data that is required to fully take 
advantage of Cantera’s framework may or may not be available.  
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8 Nomenclature 

8.1    Subscripts  

   Represents aqueous electrolytes in solution (e.g., NaCl) 

    Represents individual ions in solution 

 , e   Represents elements  

8.2 Superscripts 
o   Refers to the molar scale 

  Refers to the molality scale 

G   Intrinsic partial molal quantities ( i.e., derivatives with respect to jm ) 

∼ or -  Intrinsic partial molar quantities 

 ∧  Intrinsic specific quantities ( i.e., derivatives with respect to
 
kg of species) 

8.3 Regular 

  oα   Coefficient of thermal expansion of water, ln /d V dT  

 kγ   Molar based activity coefficient for species k 

 kγ   Molality based activity coefficient for species k 

 Mγ   Molality based activity coefficient for the cation M 

 Xγ   Molality based activity coefficient for the anion X 

 γ ±   Mean activity coefficient on the molality scale 

sη   Surface overpotential 

φ   Osmotic coefficient 

l

j

i
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 pΦ   Electric potential of phase p 

 r
iν   Reactant stoichiometric coefficient for species i 

 ( ),o
o T Pµ  Standard state of the solvent (J per kmol) 

 ( ),o
k T Pµ  Standard state for the solute k (J per kmol) 

 ( ),k T Pµ  Molality based standard state for the solute k (J per kmol) 

 kζ   Electrochemical potential of species k 

 oa   Molar based activity of the solvent 

 LA   Debye-Huckel coefficient for the Mixture Enthalpy (Eqn. (177)) 

 b  Coefficient in the extended Pitzer parameterization of the long range Debye-
Huckel term 

 MXB   Pitzer binary activity coefficient between cation M and anion X 

 L
MXB   Derivative with respect to temperature of the Pitzer binary activity coefficient 

between cation M and anion X 

 F  Faraday’s constant 

 ,p kC   Partial molar heat capacity for species k 

 ,p kC   Standard state molar heat capacity for species k on the molality scale 

 pCφ   Apparent molal heat capacity 

 , ( , )abs
kG T P∆  Absolute standard partial molal Gibbs free energies of species k. Units of  

(J (kg solvent) gmol-1). 

 ( , )kG T P∆  Apparent standard partial molal Gibbs free energies of formation for species k. 
Species k is assumed to have a standard state on the molality scale. Units of (J 
(kg solvent) gmol-1). 

 , ( , )f kG T P∆  Apparent standard partial molar Gibbs free energies of formation for species k 
from its elements in their stable forms at the reference pressure ( rP ) and 
temperature rT  of 1 bar and 298 K. Species k is assumed to have a standard 
state on the molality scale. Units of (J kmol-1). 

 , ( , )f k r rG T P∆  Standard partial molar Gibbs free energies of formation of species k from its 
elements in their stable forms at the reference pressure ( rP ) and temperature rT  
of 1 bar and 298 K. Species k is assumed to have a standard state on the molality 
scale. Units of (J kmol-1). 

 



    
  133 

 ( ), ,o
f k r rG T P∆ Standard partial molar Gibbs free energies of formation of species k from its 

elements in their stable forms at the reference pressure ( rP ) and temperature rT  
of 1 bar and 298 K. Species k is assumed to have a standard state on the molar 
scale. Units of (J kmol-1). 

 ( ),o
kG T P  Molar standard state Gibbs free energies based on ( ), ,298 , 0o

f e r rH T P∆ =  
standard. That standard, followed by NIST and the JANAF tables, sets the 
Enthalpy of formation of the elements, e, at rT  and rP  to zero. Standard state is 
assumed to be on the molar scale. 

 ( ),kG T P  Molar standard state Gibbs free energies based on ( ), ,298 , 0o
f e r rH T P∆ =  

standard. That standard, followed by NIST and the JANAF tables, sets the 
Enthalpy of formation of the elements, e, at rT  and rP  to zero. Standard state is 
assumed to be on the molality scale. 

 G   Total Gibbs free energies of the solution. Extensive quantity. nG denotes the 
same quantity. 

 G   Total Gibbs free energies of the solution (J kmol-1). Extensive quantity but 
presented on a per kmol basis. 

 ,exG   Excess Gibbs free energy of a solution based on the deviation from the ideal 
molality solution approximation (J) 

 
mod

,exG   Excess Gibbs free energy of a solution based on the deviation from the ideal 
molality solution approximation (J), modified to remove the singularity that 
occurs as the solvent mole fraction goes to zero. 

 ,exG   Excess Gibbs free energy of a solution based on the deviation from the ideal 
molality solution approximation on a per kmol basis (J kmol-1). 

 ,id
exG   Excess Gibbs free energy of a solution based on the “normal” ideal solution 

approximation for a solution which obeys the ideal molality solution 
approximation. Note, this is not zero, and actually exhibits a singularity as the 
solvent concentration goes to zero. 

 mod, ,id
exG   Excess Gibbs free energy of a solution based on the “normal” ideal solution 

approximation for a solution which obeys a modified ideal molality solution 
approximation. Note, this is not zero, and the modification is introduced to 
remove the singularity that occurs in the limit of the solvent concentration going 
to zero. 

 ,
,

id
mixG∆  Ideal Gibbs free energy of mixing based on the ideal molality solution 

approximation 
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 ,mixG∆  Gibbs free energy of mixing based on the difference between the Gibbs free 
energy and the sum of the standard state Gibbs free energies on the molality 
scale. 

 
o
rG∆

 
 Standard state Gibbs free energy of reaction. This is used regardless of whether 

the species standard states are on the molality scale. 

 H   Total Enthalpy of the solution (J kmol-1), presented on a per kmol basis. nH  or 
H denotes the extensive quantity. 

 kH   Molar enthalpy of the molality-based standard state for species k. (J kmol-1). 

 kH   Partial molar Enthalpy of species k (J kmol-1). 

 ( )o ,k r rH T P  Absolute standard state Enthalpy under the NIST conditions for species k. 

 ( )o
, 298K,1 barf kH∆  Standard heat of formation of species k at 298.15 K and 1 bar 

 I  Total ionic strength 

 J  Total relative heat capacity of the solution (J kmol-1 K-1) 

 L  Mixture excess enthalpy or relative enthalpy (J kmol-1). 

  Apparent relative molal enthalpy of mixing, Eqn. (169). 

 km   Molality of the solute k, (gmol (kg solvent)-1 

 m   constant equal to 1 gmol (kg solvent)-1 

 oM   Conversion between number of gmol of solvent and the number of kg of solvent 
(kg solvent gmol-1) 

 n  Total number of electrons transferred in a chemical reaction 

 on   Total number of moles of the solvent 

 kn   Total number of moles of the solute k 

 R  Gas Constant 

 T  Temperature (Kelvin) 

 o
kV   Standard state molar volume of species k 

 ,exV   Excess volume of mixing for the solution, based on the deviation from the ideal 
molality solution basis on a per kmol basis (m3 kmol-1). 

 Vφ   Apparent excess molal volume of mixing for the solution (m3 (kmol salt)-1) 

Lφ
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 kX   Mole fraction of species k 

 iz   Charge of species i 
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