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1 Overview

There are several reasons why the performance of current distributed and heterogeneous systems
is often disappointing. For example, the characteristics of the application may be input sensitive
and evolve during execution causing dramatic changes in memory reference patterns, resource
requirements, or degree of concurrency between different phases of the computation. Or, the
system may change dynamically with nodes failing or appearing, some network links severed and
other links established with different latencies and bandwidths.

Another important reason for poor performance is the fairlycompartmentalized approach to op-
timization: applications, compilers, operating systems and hardware configurations are designed
and optimized in isolation and without the knowledge of instance specific information and needs
of a running application. There is too little information flow across these boundaries and no global
optimization is even attempted. For example, most operating systems services like paging, virtual-
to-physical page mapping, I/O, or data layout in disks, provide little or no application customiza-
tion. Similarly, the off-the-shelf hardware used by most commercial systems is optimized to give
best average-case performance.

To address this problem, we have proposed application-centric computing, or SMART APPLI-
CATIONS (SMARTAPPS). In the SMARTAPPS executable, the compiler embeds most run-time
system services, and a performance-optimizing feedback loop that monitors the application’s per-
formance and adaptively reconfigures the application and the OS/system platform. At run-time,
after incorporating the code’s input and determining the system’s resources and state, the SMAR-
TAPPSperforms aninstancespecific optimization, which is more tractable than a globalgeneric
optimization between application, OS and system.

The overriding philosophy of SMARTAPPSis “measure, compare, and adapt if beneficial.” That
is, the application will continually monitor its performance and the available resources to deter-
mine if, and by how much, performance could be improved if theapplication was restructured.
Then, if the potential performance benefit outweighs the projected overhead costs, the applica-
tion will restructure itself and the underlying system accordingly. The SMARTAPPS framework
includes performance monitoring and modeling components and mechanisms for performing the
actual restructuring at various levels including: (i) algorithmic adaptation, (ii) run-time software
optimization (e.g., input sensitivity analysis, etc.), (iii) tuning reconfigurable OS services (schedul-
ing policy, page size, etc), and (iv) system configuration (e.g., selecting which, and how many,
computational resources to use).

SmartApps is being developed in the STAPL infrastructure. STAPL (the Standard Template
Adaptive Parallel Library) is a framework for developing highly-optimizable, adaptable, and portable
parallel and distributed applications. It consists of a relatively new and still evolving collection of
generic parallel algorithms and distributed containers and a run-time system (RTS) through which
the application and compiler interact with the OS and hardware.

The overall architecture of our system shown in Figures 1 and2, consists of a nested multi-level
adaptive feedback loop that monitors the application’s performance and, based on the magnitude
of deviation from expected performance, compensates with various actions. Such actions may be
run-time software adaptation, re-compilation, or operating system and system reconfiguration. The
system shown in Figure 1 uses techniques from a TOOLBOX shown in Figure 2. The TOOLBOX

contains application and system specific databases and algorithms for performance evaluation,
prediction and system reconfiguration. The tools are supported by architectural and performance
models. More details of this architecture can be found in [40].

In the following, we will report on the various research activities that were undertaken as part
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of this project and note some of our accomplishments. The document is organized according to the
major tasks of the project:

• the STAPL parallel programming infrastructure, includingalgorithmic adaptation and appli-
cations developed using STAPL;

• the ARMI run-time system, including its ability to exploit future operating systems such as
K42; and

• the compiler infrastructure.

2 STAPL Development

STAPL (the Standard Template Adaptive Parallel Library) is a framework for parallel C++ code
development [3, 2, 39, 48, 71]. Its core is a library of ISO Standard C++ components with inter-
faces similar to the (sequential) ISO C++ standard library [36]. STAPL offers the parallel system
programmer a shared object view of the data space. The objects are distributed across the mem-
ory hierarchy which can be shared and/or distributed address spaces. InternalSTAPL mechanisms
assure an automatic translation from one space to another, presenting to the less experienced user
a unified data space. For more experienced users the local/remote distinction of accesses can be
exposed and performance enhanced.STAPL supports the SPMD model of parallelism with es-
sentially the same consistency model as OpenMP. To exploit future petascale systems and current
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Figure 3: STAPL Overview

large systems such as IBM’s BlueGene/L,STAPL allows for (recursive) nested parallelism (as in
NESL [7]).

A key design goal ofSTAPL is to deliver so-called ‘portable performance’ – that is, the same
program performs well on all systems without any modification. This is a major challenge in gen-
eral, but is even more challenging on parallel systems because performance of parallel algorithms
is sensitive to system architecture (latency, topology, etc.) and to application data (data type, distri-
bution, density, etc.). We address this challenge inSTAPL by providing the infrastructure to make
STAPL applications SMARTAPPS. That is, theSTAPL framework provides the tools and mecha-
nisms that enableSTAPL SMARTAPPSto continually adapt to the system and the data at all lev-
els – from selecting the most appropriate algorithmic implementation to balancing communication
granularity with latency by self-tuning the message aggregation factor, etc. In particular, the library
must be capable of making intelligent and automated decisions to select concrete implementations
for each of its generic components, customizing the implementation for each application that uses
it. Although more experienced users may later choose to refine performance manually (explicitly
within STAPL), it is imperative that good performance be provided for even the novice parallel
programmer.

For users, STAPL provides three levels of abstraction appropriate to anapplication developer
(level 1), alibrary developer(level 2), and arun-time system developer(level 3). At the highest
level, STAPL offers the application developer an STL compatible interface to a generic parallel
machine. Parallel programs can be composed by non-expert parallel programmers using building
blocks from the core STAPL library. Users don’t have to (but can) be aware of the distributed
nature of the machine. At the intermediate level, STAPL exposes sufficient information to allow
a library developer to implement new STAPL-like algorithmsand containers, e.g., to expand the
STAPL base or build a domain specific library. This is the lowest level at which the “usual”
user of STAPL operates. The shared object view and abstract interface to the machine and RTS
result in platform independent portable code. Nevertheless, remote and local accesses may be
distinguished, and a new container class must specify the data types it stores to enable RMI to
pack/unpack container objects. For new pAlgorithms, the developer must (provide a method to)
define a DDG describing the algorithm’s dependences. At the lowest level, the RTS developer has
access to the implementation of the communication and synchronization library, the interaction
between OS, STAPL thread scheduling, memory management andmachine specific features such
as topology and memory subsystem organization.
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2.1 STAPL Components

The STAPL infrastructure consists of platform independent and platform dependent components
that are revealed to the programmer at an appropriate level of detail through a hierarchy of ab-
stract interfaces (see Figure 3). The platform independentcomponents include the core parallel
library, a view of a generic parallel/distributed machine,and an abstract interface to the commu-
nication library and run-time system. The coreSTAPL library consists ofpAlgorithms (paral-
lel algorithms) andpContainers (distributed data structures). Important aspects of allSTAPL

components areextendibilityand composability, e.g., thepContainers implemented within
the framework allow users to extend and specialize them, andto operate onpContainers of
pContainers, andpAlgorithms may themselves callpAlgorithms.

pContainers, the distributed counterpart ofSTL containers, are thread-safe, concurrent ob-
jects, i.e., shared objects that provide parallel methods that can be invoked concurrently. They are
composable and extendible by users via inheritance. Currently, STAPL provides counterparts of all
STL containers (e.g.,pArray, pVector, pList, pHashMap, etc.), and twopContainers
that do not haveSTL equivalents: parallel matrix (pMatrix) and parallel graph (pGraph). Anal-
ogous to STL iterators,views provide a generic access interface topContainer data for
pAlgorithms. While a pContainer’s data may be distributed,pContainers offer the
programmer ashared object view, i.e., they are shared data structures with a global addressspace.
This is provided by an internal object translation method which can locate, transparently, both local
and remote elements. The physical distribution ofpContainer data can be computed automat-
ically or user-specified. ApAlgorithm is the parallel equivalent of anSTL algorithm. STAPL

currently includes a large collection of parallel algorithms, including parallel counterparts of all
STL algorithms,pAlgorithms for important parallel algorithmic techniques (e.g., prefix sums,
the Euler tour technique), and some for use withSTAPL extensions to STL (i.e., graph traversals
for pGraph).

Parallel computations inSTAPL (e.g.,pAlgorithms) are represented bypRanges. Briefly,
a pRange consists of a set of tasks and the dependences, if any, between them. A task includes
bothwork (represented by work functions) anddata (from pContainers, generically accessed
throughviews). Theexecutor, itself a distributed shared object, is responsible for theparallel
execution of computations represented bypRanges; as tasks complete, theexecutor updates
dependences, identifies tasks that are ready for execution,and works with thescheduler to
determine which tasks to execute. Nested parallelism is created by composingpRanges, e.g.,
work functions that themselves callpAlgorithms. Some additional papers describing some of
the features of STAPL can be found in [10, 57, 58].

2.2 Algorithmic Adaptation in STAPL

For many important operations there exist multiple, functionally equivalent, algorithms that could
be used to perform them. Common examples include sorting (insertion sort, quicksort, mergesort,
etc.) or computing minimum spanning trees (Kruskal’s and Prim’s algorithms). When there exist
many functionally equivalent algorithmic options, the decision of which to use can depend on
many factors such as type and size of input, ease of implementation and verification, etc. These
factors make it difficult even for an experienced programmerto determine which algorithm should
be used in a given situation. Moreover, and perhaps more importantly, they make it very difficult
to write portable programs that perform well on multiple platforms or for varying input data sizes
and types, and this problem will only increase in difficulty and importance for petascale systems.
Ideally, the programmer should simply specify the desired operation (e.g., sort) and the decision
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if p ≤ 8 then
sort = “sample”

else
if presortedness ≤ 0.117188

then
sort = “sample”

else
if presortedness ≤ 0.370483

then
sort = “column”
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sort = “sample”

end if
end if

end if
(b)

Figure 4: (a) Adaptive Algorithm Selection and Tuning framework and (b) psort decision tree.

of which algorithm to use should be made later, possibly evenat run-time, once the environment
and input characteristics are known.

Toward this goal, we have developed a general framework for adaptive algorithm selection
for use in STAPL. Figure 4 shows the major components and flow of information in the adap-
tive framework. DuringSTAPL installation, the framework collects statically available information
from standard header files and vendor system calls about the architecture and environment, such
as available memory, cache size, and number of processors. Algorithm performance data is also
gathered from the installation benchmarks for the algorithmic options available inSTAPL. Next,
machine learning techniques are used to analyze the data in the repository and to determine tests
that will be used at run-time to select the appropriate algorithm from algorithmic options inSTAPL.
At run-time, any necessary characteristics are measured and then a decision about which algorith-
mic option to use is made.

We applied a prototype implementation of our framework inSTAPL to select among different
parallel algorithms for sorting and matrix multiplication[71]. In our validation tests on multiple
platforms, our framework provided run-time tests that correctly selected the best performing al-
gorithm from among several competing algorithmic options in 93-100% of the cases studied for
sorting and in 86-92% of the cases studied for matrix multiplication, depending on the system.
(See [71] for more detail.)

The adaptive algorithm selection framework inSTAPL is a generalization of previous work
done by our group for the adaptive selection among multiple algorithmic options for parallel sort-
ing [49, 2], for selecting among different motion planning methods [33, 35], and for performing
parallel reduction operations [83, 84]. To the best of our knowledge, our framework provides the
first general methodology for automatically developing a model for selecting among multiple algo-
rithmic options. All other work of which we are aware is limited to parameter tuning of a particular
algorithm (e.g., ATLAS [80]), relies upon some level of manual modeling (e.g., [9, 25, 80] or is
domain specific (e.g., [38]). More details can be found in [71].
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3 Adaptive Run-Time System (RTS)

The platform dependentSTAPL components are mainly contained in theSTAPL runtime system
(RTS), which provides the API to the OS and several importantfunctions. The RTS includes the
ARMI (Adaptive Remote Method Invocation) communication library that abstracts inter-processor
communication for the higher levelSTAPL components, theexecutor andscheduler mod-
ules that are responsible for allocating resources for the computation and for executing it, and the
performance monitor.

ARMI abstracts communication of data and work across the distributed memory machine by
providing a common remote method invocation (RMI) interfaceto all otherSTAPLcomponents [48,
70, 71]. There is also support in ARMI for collective operations common in parallel programming,
such as broadcasts and reductions. Its implementation is machine dependent and it can generate
synchronous or asynchronous messages (e.g., MPI messages)or synchronizations, e.g., OpenMP
synchronizations.

Theexecutor andscheduler provide support for an assortment of common scheduling
policies and load balancing strategies, and also provide mechanisms through which users can add
their own versions of these services.

We designed and implemented a multi-threaded version of ARMIand our RTS. TheSTAPL run-
time system will support nested parallelism if the underlying architecture allows nested parallelism
via a hierarchical native runtime system. Otherwise, the runtime system will serialize the nested
parallelism.

3.1 Application-specific Customization of the RTS

When the project was initiated, it was believed that K42 wouldbe a living project that could be
integrated into our work. For the first few years of the project, we worked actively towards this
goal. However, towards the end of the project, it became clear this would not be the case and hence
development using K42 slowed. In the following, we briefly report on the progress that was made.

We installed the K42 operating system on a dual processor Apple G5 and worked to port our
applications to this system. After several problems were solved we could run the full STAPL test
suite on this machine. We also worked to install and tested Mambo, the IBM simulator on a PC.
The objective was to give us more insight into the behavior ofapplications on K42. However, we
did not run Mambo for our experiments because it was too slow.

We have also developed several custom memory allocators:Defero [19] andTP [20]. The
ultimate objective was to interface to K42’named paging system. Deferoallows each object to
customize its memory allocation policy. We have established an interesting relationship between
our “closest neighbor” allocation policy and page size.TP exploits this allocation policy: It al-
locates “close” to a hint provided by the user. When using STL then these hints are provided
automatically. We believe that we will be able to improve even more memory management perfor-
mance when when operating systems will provide customization capabilities like those that were
present in K42.

4 Compiler for STAPL/C++

Our ultimate aim is to support high-level parallelism expressed in terms of C++ libraries by static
program analysis, program transformation, information tobe used at run-time extracted from
source code, and semantic information embedded in the program text. For that, we have built
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a static analysis and transformation system, the Pivot, which can handle all of C++ (eventually all
of C++0x). We place particular emphasis on the higher levels of abstraction, such as systematically
use of templates. We were major players in the ISO C++ standardization effort to provide direct
language support for generic programming (concepts) incl.a notation for semantic properties of
types (axioms).
Accomplishments:
(1) Design and implementation of the static analysis framework, the Pivot. This is now being
used for student projects related to code validation, code simplification, code rejuvenation, and
transformation to use new (C++0x) facilities. We found that the initial Pivot (relying on the visitor
pattern for traversal) was hard for students to use and have been working of facilities for simple
traversal and lowering of semantic levels (see Luke Wagner’s thesis). We plan further work to
simplify the use of the Pivot. (2) We took a major role in the design and implementation of
concepts for C++0x (See papers and technical reports by Stroustrup). Unfortunately, the ISO C++
standards committee decided to postpone further work on concepts (to a large extent because of
Bjarne Stroustrup’s analysis of usability problems. This leaves us with a major design effort done, a
fair bit of practical experience (incl. a complete rewrite of the C++ standard library using concepts
- remember STAPL is based on the C++ standard library), and no implementation to act as front-
end to the Pivot. We are now looking at ways to get an improved concepts design implemented
and interfaced with the Pivot. The design and implementation of the Pivot - our high-level analysis
and source code transformation system for C++ is progressingas planned. In particular, the design
of the IPR representation ofconceptsa type system for types aimed is complete. The IPR provides
a foundations for semantics-based optimization of high-level libraries using templates, such as
STAPL. The IPR is a fully typed abstract syntax tree representation of ISO Standard C++. The IPR
is designed with an eye on C++0x, the next revision of the ISO C++standard. Implementations
based on GCC and EDG compiler front-ends are being tested. We use two compiler front-ends to
avoid vendor lock-in. Some papers describing in more detailthe Pivot infrastructure can be found
here: [41, 56, 55].

To better adapt to input data we have developed a compiler infrastructure for F77 compilation
that uses bridges static and dynamic compilation in a seamless manner. The Hybrid Analysis de-
veloped during these years allows the compiler to perform the most sophisticated analysis currently
available and, in case of inconclusive results, to extract the minimum necessary information that
needs to (and can be) provided at run-time to perfrom aggressive optimization. We have used Hy-
brid Analysis to automatically parallelize many Perfect and SPECfp codes and obtained excellent
results. In Fig. 5,6 we show some of tehse results.

We have also directed our attention to dynamic compilation because we believe that it will
improve the performance of SMARTAPPSfor dynamic, input dependent codes. We have developed
a compilation system that can stop the execution of a code, for example after it has read all its
inputs, recompile with high levels of specialization and continue executing the remainder of the
code. The program can be stopped any time during execution and recompiled.

4.1 Applications Developed using STAPL

STAPL has been co-developed with domain specific libraries for some high-performance scientific
applications:

• PDT - Parallel Deterministic Transport: a parallel code built in STAPL implementing parallel
discrete ordinates particle transport.
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Figure 7: Strong scaling studies (fixed problem size). (a)pAlgorithm performance using
pArray containers on a IBM SP RS/6000. (b)STAPL particle transport computation on an IBM
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respectively; linear scaling is shown for reference.

• a new computational method based on motion planning for protein and RNA folding [74],
and

• Seismic Ray Tracing: a parallel code built in STAPL implementing a wavefront approach to
seismic ray tracing.

The PDT code is an ongoing project at Texas A&M. It is a software infrastructure developed in
STAPL for investigatingdiscrete-ordinates[21, 24, 30] methods for deterministic particle transport
in irregular problems with complex geometries. Each iteration of a discrete-ordinates method
involves multiple, but independent, sweeps through the spatial domain, one for each direction
of particle travel. Although each directional sweep is sequential in nature, all spatial cells in a
wavefront are independent. The efficiency and scalability of the parallelization depends on many
factors including the decomposition and distribution of the spatial domain, the scheduling of the
sweeps, the granularity of the parallelization, and the computational method applied to each cell.
Each of these steps can be implemented in several ways. OurSTAPL particle transport library PDT
provides a testbed for exploring these options.

The PDT project has been supported by the DOE and the NSF and the PDT code is currently
being utilized and further developed in the DOE PSAAP CRASH center (Michigan, with Texas
A&M collaborating, ‘Center for Radiative Shock Hydrodynamics’, DE-FC52-08NA28616). PDT
is also being utilized and further developed as part of the DNDO-NSF Academic Research Ini-
tiative SHIELD project (Texas A&M, ‘A Framework for Developing Novel Detection Systems
Focused on Interdicting Shielded HEU’, 2008-DN-077-ARI018-02). A strong scaling study for
the discrete-ordinates transport code PDT are shown in Figure 7. Note that the scaling is com-
puted relative to 64 and 32 processors, respectively; linear scaling is also shown on the figure for
reference. Here are some relevant papers [76, 74]



Final Report for DE-FG02-04ER25623, August 2009; PI: L. Rauchwerger, Parasol Lab, Texas A&M11

References

[1] M. L. Adams. ’I Have An Idea!’ an appreciation of Edward W.Larsen’s contributions to
particle transport.Annals of Nuclear Energy, 31(17):1963–1986, 2004.

[2] P. An, A. Jula, S. Rus, S. Saunders, T. Smith, G. Tanase, N. Thomas, N. Amato, and L. Rauch-
werger. STAPL: A standard template adaptive parallel C++ library. In Proc. of the Interna-
tional Workshop on Advanced Compiler Technology for High Performance and Embedded
Processors (IWACT), Bucharest, Romania, Jul 2001.

[3] P. An, A. Jula, S. Rus, S. Saunders, T. Smith, G. Tanase, N. Thomas, N. Amato, and L. Rauch-
werger. STAPL: An adaptive, generic parallel programming library for C++. InProceedings
14th Annual Workshop on Programming Languages and Compilersfor Parallel Computing,
Cumberland Falls, Kentucky, Aug 2001.

[4] T. E. Bailey, M. L. Adams, B. Yang, and M. R. Zika. A piecewise linear finite element
discretization of the diffusion equation for arbitrary polyhedral grids. InProc. Conf. Math-
ematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological
Applications, 2005.

[5] O. B. Bayazit, Jyh-Ming Lien, and N. M. Amato. Swarming behavior using probabilis-
tic roadmap techniques.Lecture Notes in Computer Science, 2005(3342):112–125, January
2005.

[6] O. B. Bayazit, Dawen Xie, and N. M. Amato. Iterative relaxation of constraints: A framework
for improving automated motion planning. InProc. IEEE Int. Conf. Intel. Rob. Syst. (IROS),
pages 3433–3440, Edmonton, Alberta, Canada, 2005.

[7] Guy E. Blelloch, Siddhartha Chatterjee, Jonathan C. Hardwick, Jay Sipelstein, and Marco
Zagha. Implementation of a portable nested data-parallel language. InPPOPP, pages 102–
111, 1993.

[8] C. Boyle, P. I. E. de Oliveira, C. R. E. de Oliveira, M. L. Adams,and J. M. Galan. GERALD:
a general environment for radiation analysis and design. InProc. Conf. Mathematics and
Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications,
2005.

[9] Eric A. Brewer. High-level optimization via automated statistical modeling. InProc. ACM
SIGPLAN Symp. Prin. Prac. Par. Prog. (PPoPP), pages 80–91, 1995.

[10] ”A. Buss, T. Smith, G. Tanase, N. Thomas, M. Bianco, N. Amato, and L. Rauchwerger”.
Design for interoperability in stapl. InProceedings 21th Annual Workshop on Programming
Languages and Compilers for Parallel Computing, Edmonton, Canada, Aug., 2008.

[11] Antal A. Buss, Timmie Smith, Gabriel Tanase, Nathan Thomas, Mauro Bianco, Nancy M.
Amato, and Lawrence Rauchwerger. Design for interoperability in STAPL: pMatrices and
linear algebra algorithms. InInternational Workshop on Languages and Compilers for Par-
allel Computing (LCPC), published in Lecture Notes in Computer Science (LNCS), volume
5335, pages 304–315, Edmonton, Alberta, Canada, July 2008.



Final Report for DE-FG02-04ER25623, August 2009; PI: L. Rauchwerger, Parasol Lab, Texas A&M12

[12] J. H. Chang and M. L. Adams. Effectiveness of various transport synthetic accelerationmeth-
ods with and without GMRES. InProc. Conf. Mathematics and Computation, Supercomput-
ing, Reactor Physics and Nuclear and Biological Applications, 2005.

[13] K. T. Clarno and M. L. Adams. Capturing the effects of unlike neighbors in single-assembly
calculations.Nucl. Sci. Eng., 149:182–196, 2005.

[14] M. Garzaran, M. Prvulovic, J. Llaberia, V. Vinals, L. Rauchwerger, and J. Torrellas. Tradeoffs
in buffering speculative memory state for thread-level speculation in multiprocessors.ACM
Transactions on Architecture and Code Optimization (TACO), 2006.

[15] Michael Gibbs and Bjarne Stroustrup. Fast dynamic casting. Software - Practice & Experi-
ence, 35(12), 2005.

[16] W. D. Hawkins and M. L. Adams. Consistent stretched transport synthetic acceleration of
one-dimensional Sn problems.Trans. Amer. Nucl. Soc., 91, 2004.

[17] H. Hiruta, D. Y. Anistratov, and M. L. Adams. Splitting method for solving the coarse-mesh
discretized low-order quasidiffusion equations.Nucl. Sci. Eng., 149:162–181, 2005.

[18] R. Iyer, J. Perdue, L. Rauchwerger, N. M. Amato, and L. Bhuyan. An experimental evalu-
ation of the HP V-Class and SGI Origin 2000 multiprocessors using microbenchmarks and
scientific applications.Int. J. Par. Prog., 33(4):307–350, 2005.

[19] A. Jula and L. Rauchwerger. Custom memory allocation for free: Improving data local-
ity with container-centric memory allocation. InProceedings 19th Annual Workshop on
Programming Languages and Compilers for Parallel Computing, New Orleans, Louisiana,
November 2006.

[20] A. Jula and L. Rauchwerger. Two memory allocators that use hints to improve locality.
In ACM SIGPLAN Int. Symposium on Memory Management(ISMM’09), Dublin, Ireland,
June, 2009.

[21] K. R. Koch, R. S. Baker, and R. E. Alcouffe. Solution of the first-order form of the 3D
discrete ordinates equation on a massively parallel processor. Transactions of the American
Nuclear Society, 65:198–199, 1992.

[22] B. D. Lansrud and M. L. Adams. A spatial multigrid iterative method for one-dimensional
discrete-ordinates transport problems. InProc. Conf. Mathematics and Computation, Super-
computing, Reactor Physics and Nuclear and Biological Applications, 2005.

[23] B. D. Lansrud and M. L. Adams. A spatial multigrid iterative method for two-dimensional
discrete-ordinates transport problems. InProc. Conf. Mathematics and Computation, Super-
computing, Reactor Physics and Nuclear and Biological Applications, 2005.

[24] E. E. Lewis and W. F. Miller. Computational Methods of Neutron Transport. American
Nuclear Society, LaGrange Park, IL, 1993.

[25] X. Li, M. J. Garzaran, and D. Padua. A dynamically tuned sorting library. In Proc. of
the International Symposium on Code Generation and Optimization, pages 111–124, March
2004.



Final Report for DE-FG02-04ER25623, August 2009; PI: L. Rauchwerger, Parasol Lab, Texas A&M13

[26] J.-M. Lien and N. M. Amato. Approximate convex decomposition of polygons. 2006.

[27] Jyh-Ming Lien, Samuel Rodriguez, Jean-Philippe Malric, and Nancy M. Amato. Shepherding
behaviors with multiple shepherds. InProc. IEEE Int. Conf. Robot. Autom. (ICRA), pages
3413–3418, April 2005.

[28] A. E. Maslowski and M. L. Adams. Behavior of continuous finite element discretizations of
the slab-geometry transport equation. InProc. Conf. Mathematics and Computation, Super-
computing, Reactor Physics and Nuclear and Biological Applications, 2005.

[29] A. E. Maslowski and M. L. Adams. A new approach to the iterative solution of transport
problems. InProc. Conf. Mathematics and Computation, Supercomputing, Reactor Physics
and Nuclear and Biological Applications, 2005.

[30] M. M. Mathis, N. M. Amato, and M. L. Adams. A general performance model for paral-
lel sweeps on orthogonal grids for particle transport calculations. InProc. ACM Int. Conf.
Supercomputing (ICS), pages 255–263, 2000.

[31] W. McLendon III, B. Hendrickson, S. Plimpton, and L. Rauchwerger. Finding strongly con-
nected components in distributed graphs.J. Par. Dist. Comp., 65(8):901–910, March 2005.

[32] Marco Morales, Roger Pearce, and Nancy M. Amato. Analysis of the evolution of C-Space
models built through incremental exploration. InProc. IEEE Int. Conf. Robot. Autom. (ICRA),
pages 1029–1034, April 2007.

[33] Marco Morales, Lydia Tapia, Roger Pearce, Samuel Rodriguez, and Nancy M. Amato. A ma-
chine learning approach for feature-sensitive motion planning. InAlgorithmic Foundations of
Robotics VI, pages 361–376. Springer, Berlin/Heidelberg, 2005. book contains the proceed-
ings of the International Workshop on the Algorithmic Foundations of Robotics (WAFR),
Utrecht/Zeist, The Netherlands, 2004.

[34] Marco A. Morales A., Roger Pearce, and Nancy M. Amato. Metrics for analyzing the evolu-
tion of C-Space models. InProc. IEEE Int. Conf. Robot. Autom. (ICRA), pages 1268–1273,
May 2006.

[35] Marco A. Morales A., Lydia Tapia, Roger Pearce, Samuel Rodriguez, and Nancy M. Amato.
C-space subdivision and integration in feature-sensitive motion planning. InProc. IEEE Int.
Conf. Robot. Autom. (ICRA), pages 3114–3119, April 2005.

[36] David Musser, Gillmer Derge, and Atul Saini.STL Tutorial and Reference Guide, Second
Edition. Addison-Wesley, 2001.

[37] S. J. Plimpton, B. Hendrickson, S. Burns, W. McLendon III,and L. Rauchwerger. Parallel
algorithms forsn transport on unstructured grids.J. Nucl. Sci. Eng., 150(7):1–17, 2005.

[38] Of Signal Processing. SPIRAL: A generator for platform-adapted libraries.

[39] L. Rauchwerger, F. Arzu, and K. Ouchi. Standard Templates Adaptive Parallel Library. In
Proc. of the 4th International Workshop on Languages, Compilers and Run-Time Systems for
Scalable Computers (LCR), Pittsburgh, PA, May 1998.



Final Report for DE-FG02-04ER25623, August 2009; PI: L. Rauchwerger, Parasol Lab, Texas A&M14

[40] Lawrence Rauchwerger and Nancy Amato. Smartapps: Middle-ware for adaptive applica-
tions on reconfigurable platforms. ACM SIGOPS Operating Systems Reviews, Special Issue
on Operating and Runtime Systems for High-End Computing Systems,40(2):73–82, 2006.

[41] Gabriel Dos Reis and Bjarne Stroustrup. Specifying C++ concepts. InProc. ACM Symp. on
Princ. of Prog. Lan. (POPL), 2006.

[42] S. Rodriguez, X. Tang, J.-M. Lien, and N. M. Amato. An obstacle-based rapidly-exploring
random tree. InProc. IEEE Int. Conf. Robot. Autom. (ICRA), 2006.

[43] Samuel Rodriguez, Jyh-Ming Lien, and Nancy M. Amato. Planning motion in completely
deformable environments. InProc. IEEE Int. Conf. Robot. Autom. (ICRA), pages 2466–2471,
May 2006.

[44] Samuel Rodriguez, Jyh-Ming Lien, and Nancy M. Amato. A framework for planning motion
in environments with moving obstacles. InProc. IEEE Int. Conf. Intel. Rob. Syst. (IROS),
2007.

[45] Samuel Rodriguez, Shawna Thomas, Roger Pearce, and NancyM. Amato. (RESAMPL): A
region-sensitive adaptive motion planner. InAlgorithmic Foundation of Robotics VII, pages
285–300. Springer, Berlin/Heidelberg, 2008. book containsthe proceedings of the Interna-
tional Workshop on the Algorithmic Foundations of Robotics (WAFR), New York City, 2006.

[46] S. Rus, G. He, and L. Rauchwerger. Scalable array SSA and array data flow analysis. InPro-
ceedings Annual Workshop on Programming Languages and Compilers for Parallel Comput-
ing, 2005.

[47] Silvius Rus, Dongmin Zhang, and Lawrence Rauchwerger. The value evolution graph and its
use in memory reference analysis. InProceedings of the 13-th International Conference on
Parallel Architectures and Compilation Techniques, Antibes Juan-les-Pins, France, October
2004.

[48] Steven Saunders and Lawrence Rauchwerger. Armi: an adaptive, platform independent com-
munication library. InProceedings of the Ninth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP), pages 230–241, San Diego, California, USA,
2003. ACM.

[49] Steven Saunders, Nathan Thomas, Nancy Amato, and Lawrence Rauchwerger. Adaptive
parallel sorting in the STAPL library. Technical Report TR01-005, Parasol Laboratory, Texas
A&M University, November 2001.

[50] H. G. Stone and M. L. Adams. New spatial discretization methods for transporton unstruc-
tured grids. InProc. Conf. Mathematics and Computation, Supercomputing, Reactor Physics
and Nuclear and Biological Applications, 2005.

[51] J. C. Stone and M. L. Adams. Adaptive discrete-ordinatesalgorithms and strategies. InProc.
Conf. Mathematics and Computation, Supercomputing, ReactorPhysics and Nuclear and
Biological Applications, 2005.

[52] B. Stroustrup. Abstraction and the C++ machine model. InInternat. Conf. on Embedded
Software and Systems (ICESS), December 2004.



Final Report for DE-FG02-04ER25623, August 2009; PI: L. Rauchwerger, Parasol Lab, Texas A&M15

[53] Bjarne Stroustrup. A brief look at C++0x. InModern C++ design and programming, Shang-
hai, China, November 2005.

[54] Bjarne Stroustrup. The design of C++0x.C/C++ Users Journal, May 2005.

[55] Bjarne Stroustrup. A rationale for semantically enhanced library languages. InWorkshop on
Library-Centric Software Design (LCSD), 2005.

[56] Bjarne Stroustrup and Gabriel Dos Reis. Supporting sell for high-performance computing.
In Workshop on Languages and Compilers for Parallel Computing (LCPC), October 2005.

[57] G. Tanase, M. Bianco, N. Amato, and L. Rauchwerger. The stapl parray. In Proceed-
ings of the 2007 Workshop on Memory Performance: Dealing with Applications, Systems
and Architecture (MEDEA’07) (Brasov, Romania). ACM, New York,NY, 73-80. DOI=
http://doi.acm.org/10.1145/1327171.1327180, 2007.

[58] G. Tanase, C. Raman, M. Bianco, N. Amato, and L. Rauchwerger.Associative parallel con-
tainers in stapl. InProceedings 20th Annual Workshop on Programming Languagesand
Compilers for Parallel Computing, Urbana-Chapmaign, IL, Oct, 2007.

[59] Gabriel Tanase, Mauro Bianco, Nancy M. Amato, and Lawrence Rauchwerger. The STAPL
pArray. In Proceedings of the 2007 Workshop on Memory Performance (MEDEA), pages
73–80, Brasov, Romania, 2007.

[60] Gabriel Tanase, Chidambareswaran Raman, Mauro Bianco, Nancy M. Amato, and Lawrence
Rauchwerger. Associative parallel containers in STAPL. InInternational Workshop on Lan-
guages and Compilers for Parallel Computing (LCPC), published in Lecture Notes in Com-
puter Science (LNCS), volume 5234, pages 156–171, Urbana-Champaign, 2008.

[61] X. Tang, B. Kirkpatrick, S. Thomas, G. Song, and N. M. Amato. Using motion planning to
study RNA folding kinetics.J. Comput. Biol., 12(6):862–881, 2005. Special issue of Int.
Conf. Comput. Molecular Biology (RECOMB) 2004.

[62] X. Tang, S. Thomas, and N. M. Amato. Planning with reachable distances: Fast enforcement
of closure constraints. InProc. IEEE Int. Conf. Robot. Autom. (ICRA), pages 2694–2699,
Roma, Italy, 2007.

[63] X. Tang, S. Thomas, and N. M. Amato. Planning with reachable distances. InProc. Int.
Workshop on Algorithmic Foundations of Robotics (WAFR), Guanajuato, Ḿexico, 2008.
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