Final Report for DE-FG02-04ER25623
Operating/Runtime Systems for Extreme Scale Scientific Computation
Program Notice 04-13
August 2009

SmartApps: Middle-ware for Adaptive Applications on Reconfigurable
Platforms

Principal Investigator:
Lawrence Rauchwerger
Parasol Lab
Dept. of Computer Science
Texas A&M University
http://parasol.tamu.edu/people/rwerger
rwerger@cs.tamu.edu
tel: +1-979-845-8872
fax: +1-458-0718

Co-Investigators:

Texas A&M University

Marvin L. Adams Nancy M. Amato Bjarne Stroustrup

Dept. of Nuclear Engineering Parasol Lab Parasol Lab

Texas A&M University Dept. of Computer Science Dept. of CongpBcience

mladams@tamu.edu Texas A&M University Texas A&M Univeysit
amato@cs.tamu.edu bs@cs.tamu.edu

IBM T. J. Watson Research Center

Orran Y. Krieget Jose M. Moreira Vivek Sarkar

Manager Manager Senior Manager
Advanced Operating Systems Modular System Software Pmogmag Technologies
IBM T.J. Watson Research Center IBM T.J. Watson Research Center IBNVatson Research ¢
okrieg@us.ibm.com jmoreira@us.ibm.com vsarkar@usabm.

Lawrence Livermore National Laboratory
Dan Quinlan

Staff Scientist

Lawrence Livermore National Laboratory
dquinlan@linl.gov

*Please note that Orran Krieger and Vivek Sarkar both left IBidrahe project began.

1 Overview

There are several reasons why the performance of currégnbdied and heterogeneous systems
is often disappointing. For example, the characteristidh® application may be input sensitive
and evolve during execution causing dramatic changes inaneneference patterns, resource
requirements, or degree of concurrency between differeasgs of the computation. Or, the
system may change dynamically with nodes failing or appgasome network links severed and
other links established with different latencies and badtive.

Another important reason for poor performance is the faidmpartmentalized approach to op-
timization: applications, compilers, operating systemd hardware configurations are designed
and optimized in isolation and without the knowledge of amete specific information and needs
of a running application. There is too little informationvilacross these boundaries and no global
optimization is even attempted. For example, most opagatystems services like paging, virtual-
to-physical page mapping, 1/O, or data layout in disks, jevittle or no application customiza-
tion. Similarly, the off-the-shelf hardware used by mosthooercial systems is optimized to give
best average-case performance.

To address this problem, we have proposed applicatioriceamputing, or IART APPLI-
CATIONS (SMARTAPPS. In the SUARTAPPSexecutable, the compiler embeds most run-time
system services, and a performance-optimizing feedbaxgktlmat monitors the application’s per-
formance and adaptively reconfigures the application aadd/system platform. At run-time,
after incorporating the code’s input and determining th&eay’s resources and state, theAR-
TAPPsperforms arinstancespecific optimization, which is more tractable than a glapeeric
optimization between application, OS and system.

The overriding philosophy of SARTAPPSIs “measure, compare, and adapt if beneficial.” That
is, the application will continually monitor its performaa and the available resources to deter-
mine if, and by how much, performance could be improved ifdpgplication was restructured.
Then, if the potential performance benefit outweighs thgegted overhead costs, the applica-
tion will restructure itself and the underlying system adwagly. The S1ARTAPPSframework
includes performance monitoring and modeling componemiisnaechanisms for performing the
actual restructuring at various levels including: (i) algunic adaptation, (ii) run-time software
optimization (e.qg., input sensitivity analysis, etc.)) funing reconfigurable OS services (schedul-
ing policy, page size, etc), and (iv) system configuratiog.(eselecting which, and how many,
computational resources to use).

SmartApps is being developed in the STAPL infrastructur€ArRL (the Standard Template
Adaptive Parallel Library) is a framework for developinghly-optimizable, adaptable, and portable
parallel and distributed applications. It consists of atreély new and still evolving collection of
generic parallel algorithms and distributed containesanun-time system (RTS) through which
the application and compiler interact with the OS and hardwa

The overall architecture of our system shown in Figures 12aednsists of a nested multi-level
adaptive feedback loop that monitors the application’sgearance and, based on the magnitude
of deviation from expected performance, compensates witiows actions. Such actions may be
run-time software adaptation, re-compilation, or opeasystem and system reconfiguration. The
system shown in Figure 1 uses techniques fromo@IBox shown in Figure 2. The doLBox
contains application and system specific databases andthitgs for performance evaluation,
prediction and system reconfiguration. The tools are sup@dyy architectural and performance
models. More details of this architecture can be found if}.[40

In the following, we will report on the various research aitiges that were undertaken as part

Application

Tool Box
Static Conpiler N Database
Predictor & — =
augment ed with Optimizer Application-specific database)
runtime techniques) Statistical info from previous runs

Phase Transition info fromthis run

partially compiled
code with unknowns
and runtime hooks

System-specific database
Statistical info regarding reliability
avail ability, load characteristics

information for
rapid simulation

Smart Application

Get Runtime |Information
(sanmpl e input, systeminfornation
Predictor
predict perfornance
Conput e Opti mal) Appl i .cati on (" predictor & l
and System Configuration Optimizer Optimizer
conmpute "optimal" Models
Reconpi | e Application and/or i configuration (arch,
Reconfigure System Configurer Cs, data layout in 1/Q
and nenory, etc) Architectural
Models
Configurer
configure architecture ¢
Execute Application Performance ; 170, and OS systems
Rl Adaptive Software (E-EI wo{k, v ca)che,
runtime tunin irectories
conti nuously moni tor - (W o reconpil g Pelz\;lfolgmlance
performance and adapt | Predictor& or reconfigure) odels
as necessary Optimizer Performance Evaluator
)) measur e perf or mance
small adaption (tuning) T using HW & GS. T
conmpare with predicted
large adaption (failure, phase change) val ues.

detect HWSWfailures

Figure 1: Smart Application. Figure 2: ToolBox.

of this project and note some of our accomplishments. Thameat is organized according to the
major tasks of the project:

¢ the STAPL parallel programming infrastructure, includalgorithmic adaptation and appli-
cations developed using STAPL;

e the ARMI run-time system, including its ability to exploittfire operating systems such as
K42; and

e the compiler infrastructure.

2 STAPL Development

STAPL (the Standard Template Adaptive Parallel Library) is a #aork for parallel C++ code
development [3, 2, 39, 48, 71]. Its core is a library of ISOn8t&rd C++ components with inter-
faces similar to the (sequential) ISO C++ standard libraB}.[3TAPL offers the parallel system
programmer a shared object view of the data space. The slgeetdistributed across the mem-
ory hierarchy which can be shared and/or distributed addspaces. InterngTAPL mechanisms
assure an automatic translation from one space to anotiesemting to the less experienced user
a unified data space. For more experienced users the louatealistinction of accesses can be
exposed and performance enhancedAPL supports the SPMD model of parallelism with es-
sentially the same consistency model as OpenMP. To expiiitd petascale systems and current

User Application Code

Views

pContainers

Run-time System

ARMI Communication Scheduler Executor Performance
Library Monitor

Pthreads OpenMP

Figure 3: STAPL Overview

X
=
o
=
[
£
©
=
L
—
0
<
L

large systems such as IBM’s BlueGenedTAPL allows for (recursive) nested parallelism (as in
NESL [7]).

A key design goal oETAPL is to deliver so-called ‘portable performance’ — that i® #ame
program performs well on all systems without any modifiaatidhis is a major challenge in gen-
eral, but is even more challenging on parallel systems tsecpearformance of parallel algorithms
is sensitive to system architecture (latency, topology) @nd to application data (data type, distri-
bution, density, etc.). We address this challengsTinPL by providing the infrastructure to make
STAPL applications SIARTAPPS That is, thesTAPL framework provides the tools and mecha-
nisms that enablsTAPL SMARTAPPSto continually adapt to the system and the data at all lev-
els — from selecting the most appropriate algorithmic imm@atation to balancing communication
granularity with latency by self-tuning the message agafieg factor, etc. In particular, the library
must be capable of making intelligent and automated dewdimselect concrete implementations
for each of its generic components, customizing the impheat®n for each application that uses
it. Although more experienced users may later choose toagkmformance manually (explicitly
within STAPL), it is imperative that good performance be provided fornetlee novice parallel
programmer.

For users, STAPL provides three levels of abstraction gpfate to amapplication developer
(level 1), alibrary developer(level 2), and aun-time system developéevel 3). At the highest
level, STAPL offers the application developer an STL conipatinterface to a generic parallel
machine. Parallel programs can be composed by non-expaittgd@rogrammers using building
blocks from the core STAPL library. Users don’'t have to (bah)xbe aware of the distributed
nature of the machine. At the intermediate level, STAPL egscsufficient information to allow
a library developer to implement new STAPL-like algoritharsd containers, e.g., to expand the
STAPL base or build a domain specific library. This is the Istvevel at which the “usual”
user of STAPL operates. The shared object view and abstrstace to the machine and RTS
result in platform independent portable code. Nevertlselemsmote and local accesses may be
distinguished, and a new container class must specify theetgpes it stores to enable RMI to
pack/unpack container objects. For new pAlgorithms, theeldger must (provide a method to)
define a DDG describing the algorithm’s dependences. Atalest level, the RTS developer has
access to the implementation of the communication and sgn&ation library, the interaction
between OS, STAPL thread scheduling, memory managememhaakine specific features such
as topology and memory subsystem organization.

2.1 STAPL Components

The sTAPL infrastructure consists of platform independent and ptatfdependent components
that are revealed to the programmer at an appropriate |éwdtail through a hierarchy of ab-
stract interfaces (see Figure 3). The platform independemponents include the core parallel
library, a view of a generic parallel/distributed machiaad an abstract interface to the commu-
nication library and run-time system. The ca@eapL library consists opAl gori t hns (paral-

lel algorithms) angpCont ai ner s (distributed data structures). Important aspects ofallPL
components arextendibilityand composability e.g., thepCont ai ner s implemented within
the framework allow users to extend and specialize them,tamgerate orpCont ai ner s of
pCont ai ner s, andpAl gori t hnms may themselves caliAl gori t his.

pCont ai ner s, the distributed counterpart sfrL containers, are thread-safe, concurrent ob-
jects, i.e., shared objects that provide parallel methloaisdan be invoked concurrently. They are
composable and extendible by users via inheritance. ClyyemipL provides counterparts of all
STL containers (e.gpArray, pVect or, pLi st, pHashMap, etc.), and twgCont ai ner s
that do not haveTL equivalents: parallel matrip{vat r i x) and parallel graphaG- aph). Anal-
ogous to STL iteratorsyi ews provide a generic access interfaceg@ont ai ner data for
pAl gorit hnms. While apCont ai ner’s data may be distributeqgCont ai ner s offer the
programmer &hared object view.e., they are shared data structures with a global addpes=.
This is provided by an internal object translation methodbivlcan locate, transparently, both local
and remote elements. The physical distributiop@bnt ai ner data can be computed automat-
ically or user-specified. Al gori t hmis the parallel equivalent of asTL algorithm. STAPL
currently includes a large collection of parallel algoni including parallel counterparts of all
STL algorithms,pAl gor i t his for important parallel algorithmic techniques (e.g., prefims,
the Euler tour technique), and some for use vatiAPL extensions to STL (i.e., graph traversals
for pGr aph).

Parallel computations ieTAPL (e.g.,pAl gori t hns) are represented lppRanges. Briefly,
apRange consists of a set of tasks and the dependences, if any, bethves. A task includes
bothwork (represented by work functions) addta (from pCont ai ner s, generically accessed
throughvi ews). Theexecut or , itself a distributed shared object, is responsible forphellel
execution of computations representedai3anges; as tasks complete, tlexecut or updates
dependences, identifies tasks that are ready for execarmmhworks with theschedul er to
determine which tasks to execute. Nested parallelism @tedeby composingRanges, e.g.,
work functions that themselves c@lAl gori t hnms. Some additional papers describing some of
the features of STAPL can be found in [10, 57, 58].

2.2 Algorithmic Adaptation in STAPL

For many important operations there exist multiple, fumaaily equivalent, algorithms that could
be used to perform them. Common examples include sortingrfina sort, quicksort, mergesort,
etc.) or computing minimum spanning trees (Kruskal’s anchBralgorithms). When there exist
many functionally equivalent algorithmic options, the idemn of which to use can depend on
many factors such as type and size of input, ease of impletentand verification, etc. These
factors make it difficult even for an experienced programtaeletermine which algorithm should
be used in a given situation. Moreover, and perhaps moreriaqity, they make it very difficult
to write portable programs that perform well on multipletfdams or for varying input data sizes
and types, and this problem will only increase in difficultydamportance for petascale systems.
Ideally, the programmer should simply specify the desirpération (e.g., sort) and the decision

Installation Benchmarks

DataRepository 7 | ___
i \
!| Architecture & Algorithm !
! Environment Performance) !

if p < 8then
sort = “sample”
else
if presortedness < 0.117188
then
sort = “sample”
else
if presortedness < 0.370483
then
sort = “column”
else

sort = “sample”

! I

User || Run-Time | Parallel Run-Tim !

Code] || Tests Algorithms) | System !
end if

end if
(a) end if

(b)
Figure 4. (a) Adaptive Algorithm Selection and Tuning framoeek and (b) psort decision tree.

of which algorithm to use should be made later, possibly etemn-time, once the environment
and input characteristics are known.

Toward this goal, we have developed a general framework daptive algorithm selection
for use in STAPL. Figure 4 shows the major components and flbimformation in the adap-
tive framework. DuringsTAPL installation, the framework collects statically avaibiformation
from standard header files and vendor system calls aboutrt¢héexture and environment, such
as available memory, cache size, and number of processtgsritAm performance data is also
gathered from the installation benchmarks for the algorithoptions available irsTAPL. Next,
machine learning techniques are used to analyze the ddta mepository and to determine tests
that will be used at run-time to select the appropriate algorfrom algorithmic options irsTAPL.

At run-time, any necessary characteristics are measuikthan a decision about which algorith-
mic option to use is made.

We applied a prototype implementation of our frameworlsAPL to select among different
parallel algorithms for sorting and matrix multiplicatipnl]. In our validation tests on multiple
platforms, our framework provided run-time tests that eotly selected the best performing al-
gorithm from among several competing algorithmic optiam93-100% of the cases studied for
sorting and in 86-92% of the cases studied for matrix mudtiion, depending on the system.
(See [71] for more detalil.)

The adaptive algorithm selection frameworksmAPL is a generalization of previous work
done by our group for the adaptive selection among multijgerghmic options for parallel sort-
ing [49, 2], for selecting among different motion planningtimods [33, 35], and for performing
parallel reduction operations [83, 84]. To the best of owvkiedge, our framework provides the
first general methodology for automatically developing aleidor selecting among multiple algo-
rithmic options. All other work of which we are aware is lied to parameter tuning of a particular
algorithm (e.g., ATLAS [80]), relies upon some level of mahmodeling (e.g., [9, 25, 80] or is
domain specific (e.g., [38]). More details can be found in.[71

3 Adaptive Run-Time System (RTS)

The platform dependergTAPL components are mainly contained in tBeAPL runtime system
(RTS), which provides the API to the OS and several imporfiamttions. The RTS includes the
ARMI (Adaptive Remote Method Invocation) communicatiorréity that abstracts inter-processor
communication for the higher leveltapL components, thexecut or andschedul er mod-
ules that are responsible for allocating resources for dneputation and for executing it, and the
performance monitor.

ARMI abstracts communication of data and work across thigiliged memory machine by
providing a common remote method invocation (RMI) interfacall othersTAPL components [48,
70, 71]. Thereis also supportin ARMI for collective opeoats common in parallel programming,
such as broadcasts and reductions. Its implementationahinedependent and it can generate
synchronous or asynchronous messages (e.g., MPI messaggsichronizations, e.g., OpenMP
synchronizations.

Theexecut or andschedul er provide support for an assortment of common scheduling
policies and load balancing strategies, and also providshamesms through which users can add
their own versions of these services.

We designed and implemented a multi-threaded version of A&MIour RTS. TheTAPLrun-
time system will support nested parallelism if the underdyarchitecture allows nested parallelism
via a hierarchical native runtime system. Otherwise, thgime system will serialize the nested
parallelism.

3.1 Application-specific Customization of the RTS

When the project was initiated, it was believed that K42 wdadda living project that could be
integrated into our work. For the first few years of the projee worked actively towards this
goal. However, towards the end of the project, it became themwould not be the case and hence
development using K42 slowed. In the following, we brieflpoe on the progress that was made.

We installed the K42 operating system on a dual processoleApp and worked to port our
applications to this system. After several problems weheesiwe could run the full STAPL test
suite on this machine. We also worked to install and testechba the IBM simulator on a PC.
The objective was to give us more insight into the behaviapylications on K42. However, we
did not run Mambo for our experiments because it was too slow.

We have also developed several custom memory allocaidesero[19] and TP [20]. The
ultimate objective was to interface to K42’named pagingesys Deferoallows each object to
customize its memory allocation policy. We have estabtiskie interesting relationship between
our “closest neighbor” allocation policy and page sidd? exploits this allocation policy: It al-
locates “close” to a hint provided by the user. When using Sidntthese hints are provided
automatically. We believe that we will be able to improvereagore memory management perfor-
mance when when operating systems will provide custonaizatapabilities like those that were
present in K42.

4 Compiler for STAPL/C++

Our ultimate aim is to support high-level parallelism exgz@d in terms of C++ libraries by static
program analysis, program transformation, informatiorb&used at run-time extracted from
source code, and semantic information embedded in the grogext. For that, we have built

a static analysis and transformation system, the Pivotlwtan handle all of C++ (eventually all
of C++0x). We place particular emphasis on the higher levigdbstraction, such as systematically
use of templates. We were major players in the ISO C++ staimddi@h effort to provide direct
language support for generic programming (concepts) imclotation for semantic properties of
types (axioms).

Accomplishments:

(1) Design and implementation of the static analysis fraorkwthe Pivot. This is now being
used for student projects related to code validation, cadelgication, code rejuvenation, and
transformation to use new (C++0x) facilities. We found tiet initial Pivot (relying on the visitor
pattern for traversal) was hard for students to use and ha®e Wworking of facilities for simple
traversal and lowering of semantic levels (see Luke Wagrteesis). We plan further work to
simplify the use of the Pivot. (2) We took a major role in thesida and implementation of
concepts for C++0x (See papers and technical reports bysstum). Unfortunately, the ISO C++
standards committee decided to postpone further work onegia (to a large extent because of
Bjarne Stroustrup’s analysis of usability problems. Thévks us with a major design effort done, a
fair bit of practical experience (incl. a complete rewrifelee C++ standard library using concepts
- remember STAPL is based on the C++ standard library), andhptementation to act as front-
end to the Pivot. We are now looking at ways to get an improwetepts design implemented
and interfaced with the Pivot. The design and implementaifdhe Pivot - our high-level analysis
and source code transformation system for C++ is progressipdanned. In particular, the design
of the IPR representation abnceptsa type system for types aimed is complete. The IPR provides
a foundations for semantics-based optimization of higlelléibraries using templates, such as
STAPL. The IPR is a fully typed abstract syntax tree repregem of ISO Standard C++. The IPR
is designed with an eye on C++0x, the next revision of the ISO &afdard. Implementations
based on GCC and EDG compiler front-ends are being tested sé&/auwe compiler front-ends to
avoid vendor lock-in. Some papers describing in more d#taiPivot infrastructure can be found
here: [41, 56, 55].

To better adapt to input data we have developed a compilexsinticture for F77 compilation
that uses bridges static and dynamic compilation in a sesm@nner. The Hybrid Analysis de-
veloped during these years allows the compiler to perfoemtbst sophisticated analysis currently
available and, in case of inconclusive results, to extiaetminimum necessary information that
needs to (and can be) provided at run-time to perfrom aggeegptimization. We have used Hy-
brid Analysis to automatically parallelize many Perfead &PECfp codes and obtained excellent
results. In Fig. 5,6 we show some of tehse results.

We have also directed our attention to dynamic compilatiecalbise we believe that it will
improve the performance ohM\RTAPPsfor dynamic, input dependent codes. We have developed
a compilation system that can stop the execution of a codeexfample after it has read all its
inputs, recompile with high levels of specialization anahtbaue executing the remainder of the
code. The program can be stopped any time during executtbnegompiled.

4.1 Applications Developed using STAPL

STAPL has been co-developed with domain specific libraries foresbigh-performance scientific
applications:

e PDT - Parallel Deterministic Transport: a parallel coddtmiSTAPL implementing parallel
discrete ordinates particle transport.

I intel autopar 1 thread [Intel autopar 2 threads [Polaris/SA 1 thread] Polaris/SA 2 mreads‘

0 L I
& o N > & & A« o &L & Y v 2 & & <
S & & o*& K kS C)Q(Oo & & Q\@Qo @é&\\k o S & S @\“& /\oéy
PERFECT SPEC89-92

Figure 5:Speedups relative to the sequential version of automatically parallelizetifank applications
on 1, 2 processors of a Core Duo Intel system. CT = speedups obtaimegdonly compile-time methods.
The applications are from the PERFECT and previous SPEC 89-92menkisuites respectively.

T
I Intel 1 thread
I \ntel 2 threads
3.5 || I Intel 4 threads
[Intel 8 threads
[SA 1 thread

3

[sA 2 threads
51| C_IsA4threads
2L C__1SA8threads
5
1

i

APPLU APSI MGRID SWIM WUPWISE BWAVES

SPEC 2000, SPEC 2006

Figure 6:Speedups relative to the sequential version of automatically parallelizetifank applications
on 1, 2, and 4 processors on a SUN quad socket, AMD dual coremsy€l@ = speedups obtained using
only compile-time methods. The applications are from the SPEC2000 and ®P&6G&nchmark suites.

N = 400000000

35 - , "
linear —+— | -
30 P generate
p accumulate ¥ =
25 p for each g) 12}
2 p find |
Z 20t R
I s .
S 15t :
n I
10
o
ST
L= ‘ ‘ ot
64 256 512 1024 2048 o o -
Num Procs Processors
(a) (b)

Figure 7: Strong scaling studies (fixed problem size). fA) gor i t hm performance using
PAr r ay containers on a IBM SP RS/6000. (B)APL particle transport computation on an IBM
BlueGene/L and a linux cluster. Note that the scaling is caegbtelative to 64 and 32 processors,
respectively; linear scaling is shown for reference.

e a new computational method based on motion planning foepr@nd RNA folding [74],
and

e Seismic Ray Tracing: a parallel code built in STAPL implenege wavefront approach to
seismic ray tracing.

The PDT code is an ongoing project at Texas A&M. Itis a sofenafrastructure developed in
STAPL for investigatingdiscrete-ordinatef?1, 24, 30] methods for deterministic particle transport
in irregular problems with complex geometries. Each iterabf a discrete-ordinates method
involves multiple, but independent, sweeps through thdiapdomain, one for each direction
of particle travel. Although each directional sweep is sdial in nature, all spatial cells in a
wavefront are independent. The efficiency and scalabifityhe parallelization depends on many
factors including the decomposition and distribution ¢ #patial domain, the scheduling of the
sweeps, the granularity of the parallelization, and thematational method applied to each cell.
Each of these steps can be implemented in several wayss1@eL particle transport library PDT
provides a testbed for exploring these options.

The PDT project has been supported by the DOE and the NSF ariedfi code is currently
being utilized and further developed in the DOE PSAAP CRASHare(Michigan, with Texas
A&M collaborating, ‘Center for Radiative Shock HydrodynasiidE-FC52-08NA28616). PDT
is also being utilized and further developed as part of thdDDNNSF Academic Research Ini-
tiative SHIELD project (Texas A&M, ‘A Framework for Developy Novel Detection Systems
Focused on Interdicting Shielded HEU’, 2008-DN-077-ARIGEB. A strong scaling study for
the discrete-ordinates transport code PDT are shown inr&igu Note that the scaling is com-
puted relative to 64 and 32 processors, respectively;diseaing is also shown on the figure for
reference. Here are some relevant papers [76, 74]

References

[1] M. L. Adams. 'l Have An Idea!’” an appreciation of Edward Warsen’s contributions to
particle transportAnnals of Nuclear Energyd1(17):1963—-1986, 2004.

[2] P.An, A. Jula, S. Rus, S. Saunders, T. Smith, G. Tanasehbiris, N. Amato, and L. Rauch-
werger. STAPL: A standard template adaptive parallel C+ralp InProc. of the Interna-
tional Workshop on Advanced Compiler Technology for Highfd?erance and Embedded
Processors (IWACTBucharest, Romania, Jul 2001.

[3] P.An, A. Jula, S. Rus, S. Saunders, T. Smith, G. Tanasehbiris, N. Amato, and L. Rauch-
werger. STAPL: An adaptive, generic parallel programmibgary for C++. InProceedings
14th Annual Workshop on Programming Languages and ComgdeRarallel Computing
Cumberland Falls, Kentucky, Aug 2001.

[4] T. E. Bailey, M. L. Adams, B. Yang, and M. R. Zika. A piecewigadar finite element
discretization of the diffusion equation for arbitrary ypeédral grids. InProc. Conf. Math-
ematics and Computation, Supercomputing, Reactor PhysidsNaiclear and Biological
Applications 2005.

[5] O. B. Bayazit, Jyh-Ming Lien, and N. M. Amato. Swarming beiwa using probabilis-
tic roadmap technigued.ecture Notes in Computer Scien@905(3342):112-125, January
2005.

[6] O.B. Bayazit, Dawen Xie, and N. M. Amato. Iterative relaratof constraints: A framework
for improving automated motion planning. Rroc. IEEE Int. Conf. Intel. Rob. Syst. (IRQS)
pages 3433-3440, Edmonton, Alberta, Canada, 2005.

[7] Guy E. Blelloch, Siddhartha Chatterjee, Jonathan C. Hatkiwday Sipelstein, and Marco
Zagha. Implementation of a portable nested data-paraltgjuage. IiPPOPP, pages 102—
111, 1993.

[8] C.Boyle, P. 1. E. de Oliveira, C. R. E. de Oliveira, M. L. Adanasd J. M. Galan. GERALD:
a general environment for radiation analysis and designPréc. Conf. Mathematics and
Computation, Supercomputing, Reactor Physics and NuclearBaological Applications
2005.

[9] Eric A. Brewer. High-level optimization via automatedsstical modeling. IProc. ACM
SIGPLAN Symp. Prin. Prac. Par. Prog. (PPoRBages 80-91, 1995.

[10] "A. Buss, T. Smith, G. Tanase, N. Thomas, M. Bianco, N. Amatnd L. Rauchwerger”.
Design for interoperability in stapl. IRroceedings 21th Annual Workshop on Programming
Languages and Compilers for Parallel Computifgimonton, Canada, Aug., 2008.

[11] Antal A. Buss, Timmie Smith, Gabriel Tanase, Nathan ThspMauro Bianco, Nancy M.
Amato, and Lawrence Rauchwerger. Design for interopetghili STAPL: pMatrices and
linear algebra algorithms. Imternational Workshop on Languages and Compilers for Par-
allel Computing (LCPC), published in Lecture Notes in Computézr®e (LNCS)volume
5335, pages 304-315, Edmonton, Alberta, Canada, July 2008.

[12] J. H. Chang and M. L. Adams. Effectiveness of variousspamt synthetic accelerationmeth-
ods with and without GMRES. IRroc. Conf. Mathematics and Computation, Supercomput-
ing, Reactor Physics and Nuclear and Biological Applicasid2005.

[13] K. T. Clarno and M. L. Adams. Capturing the effects of ualikeighbors in single-assembly
calculations Nucl. Sci. Eng.149:182-196, 2005.

[14] M. Garzaran, M. Prvulovic, J. Llaberia, V. Vinals, L. Rdwverger, and J. Torrellas. Tradeoffs
in buffering speculative memory state for thread-levelcsgegtion in multiprocessorsACM
Transactions on Architecture and Code Optimization (TACDD6.

[15] Michael Gibbs and Bjarne Stroustrup. Fast dynamic ngstboftware - Practice & Experi-
ence 35(12), 2005.

[16] W. D. Hawkins and M. L. Adams. Consistent stretched tpanissynthetic acceleration of
one-dimensional Sn problems$tans. Amer. Nucl. Soc91, 2004.

[17] H. Hiruta, D. Y. Anistratov, and M. L. Adams. Splittingethod for solving the coarse-mesh
discretized low-order quasidiffusion equatioiucl. Sci. Eng.149:162-181, 2005.

[18] R. lyer, J. Perdue, L. Rauchwerger, N. M. Amato, and L. BimuyAn experimental evalu-
ation of the HP V-Class and SGI Origin 2000 multiprocessomgusicrobenchmarks and
scientific applicationslnt. J. Par. Prog, 33(4):307-350, 2005.

[19] A. Jula and L. Rauchwerger. Custom memory allocation feef Improving data local-
ity with container-centric memory allocation. Rroceedings 19th Annual Workshop on
Programming Languages and Compilers for Parallel Computidgw Orleans, Louisiana,
November 2006.

[20] A. Jula and L. Rauchwerger. Two memory allocators tha hisits to improve locality.
In ACM SIGPLAN Int. Symposium on Memory Management(ISMM’'Q®ublin, Ireland,
June 20009.

[21] K. R. Koch, R. S. Baker, and R. E. Alcouffe. Solution of thetfiosder form of the 3D
discrete ordinates equation on a massively parallel psate$ransactions of the American
Nuclear Society65:198-199, 1992.

[22] B. D. Lansrud and M. L. Adams. A spatial multigrid itersimethod for one-dimensional
discrete-ordinates transport problemsPhoc. Conf. Mathematics and Computation, Super-
computing, Reactor Physics and Nuclear and Biological Agpions 2005.

[23] B. D. Lansrud and M. L. Adams. A spatial multigrid itersimethod for two-dimensional
discrete-ordinates transport problemsPhoc. Conf. Mathematics and Computation, Super-
computing, Reactor Physics and Nuclear and Biological Ajapions 2005.

[24] E. E. Lewis and W. F. Miller. Computational Methods of Neutron TransporAmerican
Nuclear Society, LaGrange Park, IL, 1993.

[25] X. Li, M. J. Garzaran, and D. Padua. A dynamically tunedtiag library. InProc. of
the International Symposium on Code Generation and Optiinizgpages 111-124, March
2004.

[26] J.-M. Lien and N. M. Amato. Approximate convex decomios of polygons. 2006.

[27] Jyh-Ming Lien, Samuel Rodriguez, Jean-Philippe Malaied Nancy M. Amato. Shepherding
behaviors with multiple shepherds. Rroc. IEEE Int. Conf. Robot. Autom. (ICRAJages
3413-3418, April 2005.

[28] A. E. Maslowski and M. L. Adams. Behavior of continuoustirelement discretizations of
the slab-geometry transport equation.Pimc. Conf. Mathematics and Computation, Super-
computing, Reactor Physics and Nuclear and Biological Agpions 2005.

[29] A. E. Maslowski and M. L. Adams. A new approach to theatere solution of transport
problems. InProc. Conf. Mathematics and Computation, Supercomputing¢ct@e Physics
and Nuclear and Biological Application2005.

[30] M. M. Mathis, N. M. Amato, and M. L. Adams. A general pemieance model for paral-
lel sweeps on orthogonal grids for particle transport dateens. InProc. ACM Int. Conf.
Supercomputing (ICSpages 255-263, 2000.

[31] W. McLendon IlI, B. Hendrickson, S. Plimpton, and L. Raugrger. Finding strongly con-
nected components in distributed graphsPar. Dist. Comp.65(8):901-910, March 2005.

[32] Marco Morales, Roger Pearce, and Nancy M. Amato. Analg$ithe evolution of C-Space
models built through incremental exploration Aroc. IEEE Int. Conf. Robot. Autom. (ICRA)
pages 1029-1034, April 2007.

[33] Marco Morales, Lydia Tapia, Roger Pearce, Samuel Rodagand Nancy M. Amato. A ma-
chine learning approach for feature-sensitive motionmtag InAlgorithmic Foundations of
Robotics V] pages 361-376. Springer, Berlin/Heidelberg, 2005. bookabos the proceed-
ings of the International Workshop on the Algorithmic Foatidns of Robotics (WAFR),
Utrecht/Zeist, The Netherlands, 2004.

[34] Marco A. Morales A., Roger Pearce, and Nancy M. Amato. ristfor analyzing the evolu-
tion of C-Space models. IRroc. IEEE Int. Conf. Robot. Autom. (ICRAJages 1268-1273,
May 2006.

[35] Marco A. Morales A., Lydia Tapia, Roger Pearce, Samuelrigoez, and Nancy M. Amato.
C-space subdivision and integration in feature-sensitigéan planning. InProc. IEEE Int.
Conf. Robot. Autom. (ICRApages 3114-3119, April 2005.

[36] David Musser, Gillmer Derge, and Atul SainSTL Tutorial and Reference Guide, Second
Edition. Addison-Wesley, 2001.

[37] S. J. Plimpton, B. Hendrickson, S. Burns, W. McLendon dihd L. Rauchwerger. Parallel
algorithms fors,, transport on unstructured grid3. Nucl. Sci. Eng.150(7):1-17, 2005.

[38] Of Signal Processing. SPIRAL: A generator for platfoashapted libraries.

[39] L. Rauchwerger, F. Arzu, and K. Ouchi. Standard Tempgl@daptive Parallel Library. In
Proc. of the 4th International Workshop on Languages, Caanpénd Run-Time Systems for
Scalable Computers (LCRpittsburgh, PA, May 1998.

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Lawrence Rauchwerger and Nancy Amato. Smartapps: Middire for adaptive applica-

tions on reconfigurable platforms. ACM SIGOPS Operating @pstReviewsSpecial Issue

on Operating and Runtime Systems for High-End Computin@®@g3t0(2):73—-82 2006.

Gabriel Dos Reis and Bjarne Stroustrup. Specifying C++cepis. InProc. ACM Symp. on
Princ. of Prog. Lan. (POPL,)2006.

S. Rodriguez, X. Tang, J.-M. Lien, and N. M. Amato. An amdé-based rapidly-exploring
random tree. IProc. IEEE Int. Conf. Robot. Autom. (ICR&Z006.

Samuel Rodriguez, Jyh-Ming Lien, and Nancy M. Amato. nRiag motion in completely
deformable environments. FProc. IEEE Int. Conf. Robot. Autom. (ICRAsages 24662471,
May 2006.

Samuel Rodriguez, Jyh-Ming Lien, and Nancy M. Amato. &nfrework for planning motion
in environments with moving obstacles. Broc. IEEE Int. Conf. Intel. Rob. Syst. (IRQS)
2007.

Samuel Rodriguez, Shawna Thomas, Roger Pearce, and Naeyato. (RESAMPL): A
region-sensitive adaptive motion planner. Algorithmic Foundation of Robotics VIpages
285-300. Springer, Berlin/Heidelberg, 2008. book cont#iesproceedings of the Interna-
tional Workshop on the Algorithmic Foundations of RobotM#\FR), New York City, 2006.

S. Rus, G. He, and L. Rauchwerger. Scalable array SSA aag data flow analysis. IRro-
ceedings Annual Workshop on Programming Languages and Gashfor Parallel Comput-
ing, 2005.

Silvius Rus, Dongmin Zhang, and Lawrence Rauchwergeg.vEfue evolution graph and its
use in memory reference analysis. Rroceedings of the 13-th International Conference on
Parallel Architectures and Compilation Techniques, Argilaan-les-Pins, Frangéctober
2004.

Steven Saunders and Lawrence Rauchwerger. Armi: artigegplatform independent com-
munication library. IlProceedings of the Ninth ACM SIGPLAN Symposium on Principlds a
Practice of Parallel Programming (PPoPPpages 230-241, San Diego, California, USA,
2003. ACM.

Steven Saunders, Nathan Thomas, Nancy Amato, and baerBauchwerger. Adaptive
parallel sorting in the STAPL library. Technical Report TR0A5, Parasol Laboratory, Texas
A&M University, November 2001.

H. G. Stone and M. L. Adams. New spatial discretizatiogtimods for transporton unstruc-
tured grids. InProc. Conf. Mathematics and Computation, Supercomputing¢t@ePhysics
and Nuclear and Biological Application2005.

J. C. Stone and M. L. Adams. Adaptive discrete-ordinatgerithms and strategies. Rroc.
Conf. Mathematics and Computation, Supercomputing, Reddtgsics and Nuclear and
Biological Applications2005.

B. Stroustrup. Abstraction and the C++ machine modellnternat. Conf. on Embedded
Software and Systems (ICESBgcember 2004.

[53] Bjarne Stroustrup. A brief look at C++0x. Modern C++ design and programmin&hang-
hai, China, November 2005.

[54] Bjarne Stroustrup. The design of C++03/C++ Users Journal May 2005.

[55] Bjarne Stroustrup. A rationale for semantically entexhtibrary languages. IWorkshop on
Library-Centric Software Design (LCSP3005.

[56] Bjarne Stroustrup and Gabriel Dos Reis. Supporting selhfgh-performance computing.
In Workshop on Languages and Compilers for Parallel Computir@RC), October 2005.

[57] G. Tanase, M. Bianco, N. Amato, and L. Rauchwerger. Thplgiarray. In Proceed-
ings of the 2007 Workshop on Memory Performance: Dealingp Wipplications, Systems
and Architecture (MEDEAOQ7) (Brasov, Romania). ACM, New YorKY, 73-80. DOI=
http://doi.acm.org/10.1145/1327171.1327180, 2007.

[58] G. Tanase, C. Raman, M. Bianco, N. Amato, and L. Rauchwe#gsociative parallel con-
tainers in stapl. InProceedings 20th Annual Workshop on Programming Languages
Compilers for Parallel ComputingJrbana-Chapmaign, IL, Oct, 2007.

[59] Gabriel Tanase, Mauro Bianco, Nancy M. Amato, and LawegRauchwerger. The STAPL
pArray. InProceedings of the 2007 Workshop on Memory Performance @ Dpages
73-80, Brasov, Romania, 2007.

[60] Gabriel Tanase, Chidambareswaran Raman, Mauro Biancw)yN4. Amato, and Lawrence
Rauchwerger. Associative parallel containers in STAPLntarnational Workshop on Lan-
guages and Compilers for Parallel Computing (LCPC), publishretdacture Notes in Com-
puter Science (LNCSYolume 5234, pages 156-171, Urbana-Champaign, 2008.

[61] X. Tang, B. Kirkpatrick, S. Thomas, G. Song, and N. M. Amausing motion planning to
study RNA folding kinetics.J. Comput. Biol. 12(6):862—-881, 2005. Special issue of Int.
Conf. Comput. Molecular Biology (RECOMB) 2004.

[62] X. Tang, S. Thomas, and N. M. Amato. Planning with reddbalistances: Fast enforcement
of closure constraints. IRroc. IEEE Int. Conf. Robot. Autom. (ICRAJages 26942699,
Roma, Italy, 2007.

[63] X. Tang, S. Thomas, and N. M. Amato. Planning with redtéalistances. IrProc. Int.
Workshop on Algorithmic Foundations of Robotics (WARR)anajuato, Mxico, 2008.

[64] X. Tang, S. Thomas, L. Tapia, and N. M. Amato. Tools fanslating and analyzing RNA
folding kinetics. InProc. Int. Conf. Comput. Molecular Biology (RECOMBages 268—-282,
2007.

[65] Xinyu Tang, Shawna Thomas, Lydia Tapia, and Nancy M. gan&dools for simulating and
analyzing RNA folding kineticsJ. Comput. Biol.2008. Special issue of Int. Conf. Comput.
Molecular Biology (RECOMB) 2007. Submitted.

[66] Xinyu Tang, Shawna Thomas, Lydia Tapia, David P. Giedemd Nancy M. Amato. Simulat-
ing RNA folding kinetics on approximated energy landscagedlol. Biol,, 381:1055-1067,
2008.

[67] Lydia Tapia, Xinyu Tang, Shawna Thomas, and Nancy M. fgan&inetics analysis meth-
ods for approximate folding landscapes. li. Conf. on Intelligent Systems for Molecular
Biology (ISMB) pages 539-548, 2007.

[68] Lydia Tapia, Xinyu Tang, Shawna Thomas, and Nancy M. AanKinetics analysis methods
for approximate folding landscape®&ioinformatics 23(13):539-548, 2007. Special issue
of Int. Conf. on Intelligent Systems for Molecular Biology WB) & European Conf. on
Computational Biology (ECCB) 2007.

[69] Lydia Tapia, Shawna Thomas, Bryan Boyd, and Nancy M. AmAtounsupervised adaptive
strategy for constructing probabilistic roadmaps. Pimc. IEEE Int. Conf. Robot. Autom.
(ICRA), May 20009.

[70] N. Thomas, S. Saunders, T. Smith, G. Tanase, and L. Rargew Armi: A high level
communication library for stapParallel Processing Letterd,6(2):261-28Q 2005.

[71] Nathan Thomas, Gabriel Tanase, Olga Tkachyshyn, Jac#tue, Nancy M. Amato, and
Lawrence Rauchwerger. "a framework for adaptive algoritiefection in STAPL”. InProc.
ACM SIGPLAN Symp. Prin. Prac. Par. Prog. (PPoRPpages 277-288, 2005.

[72] S. Thomas, G. Song, and N. Amato. Protein folding by nroplanning.Physical Biology
2:5148-S155, 2005.

[73] S. Thomas, G. Tanase, L. Dale, J. Moreira, L.Rauchwesget N. Amato. Parallel protein
folding with stapl. Concurrency and Computation: Practice and Exprieri2@05.

[74] S. Thomas, G. Tanase, L. K. Dale, J. M. Moreira, L.Raudigee and N. M. Amato. Parallel
protein folding with STAPL Concurrency and Computation: Practice and Experieraa95s.

[75] Shawna Thomas, Marco Morales, Xinyu Tang, and Nancy khafo. Biasing samplers to
improve performance. IRroc. IEEE Int. Conf. Robot. Autom. (ICRAJages 1625-1630,
April 2007.

[76] Shawna Thomas, Gabriel Tanase, Lucia K. Dale, Lawrd&tmachwerger Jose E. Moreira,
and Nancy M. Amato. Parallel protein folding with stapl. Comency and Computation:
Practice and Experienc#7(14), pp. 1643-165&005.

[77] Shawna Thomas, Xinyu Tang, Lydia Tapia, and Nancy M. fan&imulating protein mo-
tions with rigidity analysis. IfProc. Int. Conf. Comput. Molecular Biology (RECOMBages
394-409, 2006.

[78] Shawna Thomas, Xinyu Tang, Lydia Tapia, and Nancy M. fan&imulating protein mo-
tions with rigidity analysis.J. Comput. Biol. 14(6):839—-855, 2007. Special issue of Int.
Conf. Comput. Molecular Biology (RECOMB) 2006.

[79] Aimée Vargas Estrada, Jyh-Ming Lien, and Nancy M. Amato. Vizioa visualization,
authoring, and educational tool for motion planning Piioc. IEEE Int. Conf. Robot. Autom.
(ICRA), pages 727-732, May 2006.

[80] R. Clint Whaley, Antoine Petitet, and J. Dongarra. Automclaémpirical optimizations of
software and the ATLAS projecParallel Computing27(1-2):3-35, January 2001.

[81] Dawen Xie, Marco Morales, Roger Pearce, Shawna Thomyasiviing Lien, and Nancy M.
Amato. Incremental map generation (IMG).Afgorithmic Foundation of Robotics Vipages
53-68. Springer, Berlin/Heidelberg, 2008. book contaiegitoceedings of the International
Workshop on the Algorithmic Foundations of Robotics (WAFRgwWNYork City, 2006.

[82] H. Yu and L. Rauchwerger. An adaptive algorithm selectfimmework.|IEEE Transactions
on Parallel and Distributed Systen2006.

[83] Hao Yu and Lawrence Rauchwerger. Adaptive reductiomlfeization techniques. II1CS
'00: Proceedings of the 14th International Conference onesapmputing pages 66—77,
New York, NY, USA, 2000. ACM Press.

[84] Hao Yu, Dongmin Zhang, and Lawrence Rauchwerger. An taga@algorithm selection
framework. InProc. Intern. Conf. Parallel Architecture and Compilatiorchaiques (PACT)
pages 278-289. IEEE Computer Society, 2004.

[85] Hao Yu, Dongmin Zhang, and Lawrence Rauchwerger. An taga@algorithm selection
framework. InProceedings of the 13-th International Conference on Patarchitectures
and Compilation Techniques, Antibes Juan-les-Pins, Fra@otober 2004.

