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1 Overview

There are several reasons why the performance of currégnbdied and heterogeneous systems
is often disappointing. For example, the characteristidh® application may be input sensitive
and evolve during execution causing dramatic changes inaneneference patterns, resource
requirements, or degree of concurrency between differeasgs of the computation. Or, the
system may change dynamically with nodes failing or appgasome network links severed and
other links established with different latencies and badtive.

Another important reason for poor performance is the faidmpartmentalized approach to op-
timization: applications, compilers, operating systemd hardware configurations are designed
and optimized in isolation and without the knowledge of amete specific information and needs
of a running application. There is too little informationvilacross these boundaries and no global
optimization is even attempted. For example, most opagatystems services like paging, virtual-
to-physical page mapping, 1/O, or data layout in disks, jevittle or no application customiza-
tion. Similarly, the off-the-shelf hardware used by mosthooercial systems is optimized to give
best average-case performance.

To address this problem, we have proposed applicatioriceamputing, or IART APPLI-
CATIONS (SMARTAPPS. In the SUARTAPPSexecutable, the compiler embeds most run-time
system services, and a performance-optimizing feedbaxgktlmat monitors the application’s per-
formance and adaptively reconfigures the application aadd/system platform. At run-time,
after incorporating the code’s input and determining th&eay’s resources and state, theAR-
TAPPsperforms arinstancespecific optimization, which is more tractable than a glapeeric
optimization between application, OS and system.

The overriding philosophy of SARTAPPSIs “measure, compare, and adapt if beneficial.” That
is, the application will continually monitor its performaa and the available resources to deter-
mine if, and by how much, performance could be improved ifdpgplication was restructured.
Then, if the potential performance benefit outweighs thgegted overhead costs, the applica-
tion will restructure itself and the underlying system adwagly. The S1ARTAPPSframework
includes performance monitoring and modeling componemiisnaechanisms for performing the
actual restructuring at various levels including: (i) algunic adaptation, (ii) run-time software
optimization (e.qg., input sensitivity analysis, etc.)) funing reconfigurable OS services (schedul-
ing policy, page size, etc), and (iv) system configuratiog.(eselecting which, and how many,
computational resources to use).

SmartApps is being developed in the STAPL infrastructur€ArRL (the Standard Template
Adaptive Parallel Library) is a framework for developinghly-optimizable, adaptable, and portable
parallel and distributed applications. It consists of atreély new and still evolving collection of
generic parallel algorithms and distributed containesanun-time system (RTS) through which
the application and compiler interact with the OS and hardwa

The overall architecture of our system shown in Figures 12aednsists of a nested multi-level
adaptive feedback loop that monitors the application’sgearance and, based on the magnitude
of deviation from expected performance, compensates witiows actions. Such actions may be
run-time software adaptation, re-compilation, or opeasystem and system reconfiguration. The
system shown in Figure 1 uses techniques fromo@IBox shown in Figure 2. The doLBox
contains application and system specific databases andthitgs for performance evaluation,
prediction and system reconfiguration. The tools are sup@dyy architectural and performance
models. More details of this architecture can be found if}.[40

In the following, we will report on the various research aitiges that were undertaken as part
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Figure 1: Smart Application. Figure 2: ToolBox.

of this project and note some of our accomplishments. Thameat is organized according to the
major tasks of the project:

¢ the STAPL parallel programming infrastructure, includalgorithmic adaptation and appli-
cations developed using STAPL;

e the ARMI run-time system, including its ability to exploittfire operating systems such as
K42; and

e the compiler infrastructure.

2 STAPL Development

STAPL (the Standard Template Adaptive Parallel Library) is a #aork for parallel C++ code
development [3, 2, 39, 48, 71]. Its core is a library of ISOn8t&rd C++ components with inter-
faces similar to the (sequential) ISO C++ standard libraB}.[3TAPL offers the parallel system
programmer a shared object view of the data space. The slgeetdistributed across the mem-
ory hierarchy which can be shared and/or distributed addspaces. InterngTAPL mechanisms
assure an automatic translation from one space to anotiesemting to the less experienced user
a unified data space. For more experienced users the louatealistinction of accesses can be
exposed and performance enhancedAPL supports the SPMD model of parallelism with es-
sentially the same consistency model as OpenMP. To expiiitd petascale systems and current
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large systems such as IBM’s BlueGenedTAPL allows for (recursive) nested parallelism (as in
NESL [7]).

A key design goal oETAPL is to deliver so-called ‘portable performance’ — that i® #ame
program performs well on all systems without any modifiaatidhis is a major challenge in gen-
eral, but is even more challenging on parallel systems tsecpearformance of parallel algorithms
is sensitive to system architecture (latency, topology) @nd to application data (data type, distri-
bution, density, etc.). We address this challengsTinPL by providing the infrastructure to make
STAPL applications SIARTAPPS That is, thesTAPL framework provides the tools and mecha-
nisms that enablsTAPL SMARTAPPSto continually adapt to the system and the data at all lev-
els — from selecting the most appropriate algorithmic imm@atation to balancing communication
granularity with latency by self-tuning the message agafieg factor, etc. In particular, the library
must be capable of making intelligent and automated dewdimselect concrete implementations
for each of its generic components, customizing the impheat®n for each application that uses
it. Although more experienced users may later choose toagkmformance manually (explicitly
within STAPL), it is imperative that good performance be provided fornetlee novice parallel
programmer.

For users, STAPL provides three levels of abstraction gpfate to amapplication developer
(level 1), alibrary developer(level 2), and aun-time system developéevel 3). At the highest
level, STAPL offers the application developer an STL conipatinterface to a generic parallel
machine. Parallel programs can be composed by non-expaittgd@rogrammers using building
blocks from the core STAPL library. Users don’'t have to (bah)xbe aware of the distributed
nature of the machine. At the intermediate level, STAPL egscsufficient information to allow
a library developer to implement new STAPL-like algoritharsd containers, e.g., to expand the
STAPL base or build a domain specific library. This is the Istvevel at which the “usual”
user of STAPL operates. The shared object view and abstrstace to the machine and RTS
result in platform independent portable code. Nevertlselemsmote and local accesses may be
distinguished, and a new container class must specify theetgpes it stores to enable RMI to
pack/unpack container objects. For new pAlgorithms, theeldger must (provide a method to)
define a DDG describing the algorithm’s dependences. Atalest level, the RTS developer has
access to the implementation of the communication and sgn&ation library, the interaction
between OS, STAPL thread scheduling, memory managememhaakine specific features such
as topology and memory subsystem organization.



2.1 STAPL Components

The sTAPL infrastructure consists of platform independent and ptatfdependent components
that are revealed to the programmer at an appropriate |éwdtail through a hierarchy of ab-
stract interfaces (see Figure 3). The platform independemponents include the core parallel
library, a view of a generic parallel/distributed machiaad an abstract interface to the commu-
nication library and run-time system. The ca@eapL library consists opAl gori t hns (paral-

lel algorithms) angpCont ai ner s (distributed data structures). Important aspects ofallPL
components arextendibilityand composability e.g., thepCont ai ner s implemented within
the framework allow users to extend and specialize them,tamgerate orpCont ai ner s of
pCont ai ner s, andpAl gori t hnms may themselves caliAl gori t his.

pCont ai ner s, the distributed counterpart sfrL containers, are thread-safe, concurrent ob-
jects, i.e., shared objects that provide parallel methloaisdan be invoked concurrently. They are
composable and extendible by users via inheritance. ClyyemipL provides counterparts of all
STL containers (e.gpArray, pVect or, pLi st, pHashMap, etc.), and twgCont ai ner s
that do not haveTL equivalents: parallel matrip{vat r i x) and parallel graphaG- aph). Anal-
ogous to STL iteratorsyi ews provide a generic access interfaceg@ont ai ner data for
pAl gorit hnms. While apCont ai ner’s data may be distributeqgCont ai ner s offer the
programmer &hared object view.e., they are shared data structures with a global addpes=.
This is provided by an internal object translation methodbivlcan locate, transparently, both local
and remote elements. The physical distributiop@bnt ai ner data can be computed automat-
ically or user-specified. Al gori t hmis the parallel equivalent of asTL algorithm. STAPL
currently includes a large collection of parallel algoni including parallel counterparts of all
STL algorithms,pAl gor i t his for important parallel algorithmic techniques (e.g., prefims,
the Euler tour technique), and some for use vatiAPL extensions to STL (i.e., graph traversals
for pGr aph).

Parallel computations ieTAPL (e.g.,pAl gori t hns) are represented lppRanges. Briefly,
apRange consists of a set of tasks and the dependences, if any, bethves. A task includes
bothwork (represented by work functions) addta (from pCont ai ner s, generically accessed
throughvi ews). Theexecut or , itself a distributed shared object, is responsible forphellel
execution of computations representedai3anges; as tasks complete, tlexecut or updates
dependences, identifies tasks that are ready for execarmmhworks with theschedul er to
determine which tasks to execute. Nested parallelism @tedeby composingRanges, e.g.,
work functions that themselves c@lAl gori t hnms. Some additional papers describing some of
the features of STAPL can be found in [10, 57, 58].

2.2 Algorithmic Adaptation in STAPL

For many important operations there exist multiple, fumaaily equivalent, algorithms that could
be used to perform them. Common examples include sortingrfina sort, quicksort, mergesort,
etc.) or computing minimum spanning trees (Kruskal’s anchBralgorithms). When there exist
many functionally equivalent algorithmic options, the idemn of which to use can depend on
many factors such as type and size of input, ease of impletentand verification, etc. These
factors make it difficult even for an experienced programtaeletermine which algorithm should
be used in a given situation. Moreover, and perhaps moreriaqity, they make it very difficult
to write portable programs that perform well on multipletfdams or for varying input data sizes
and types, and this problem will only increase in difficultydamportance for petascale systems.
Ideally, the programmer should simply specify the desirpération (e.g., sort) and the decision
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of which algorithm to use should be made later, possibly etemn-time, once the environment
and input characteristics are known.

Toward this goal, we have developed a general framework daptive algorithm selection
for use in STAPL. Figure 4 shows the major components and flbimformation in the adap-
tive framework. DuringsTAPL installation, the framework collects statically avaibiformation
from standard header files and vendor system calls aboutrt¢héexture and environment, such
as available memory, cache size, and number of processtgsritAm performance data is also
gathered from the installation benchmarks for the algorithoptions available irsTAPL. Next,
machine learning techniques are used to analyze the ddta mepository and to determine tests
that will be used at run-time to select the appropriate algorfrom algorithmic options irsTAPL.

At run-time, any necessary characteristics are measuikthan a decision about which algorith-
mic option to use is made.

We applied a prototype implementation of our frameworlsAPL to select among different
parallel algorithms for sorting and matrix multiplicatipnl]. In our validation tests on multiple
platforms, our framework provided run-time tests that eotly selected the best performing al-
gorithm from among several competing algorithmic optiam93-100% of the cases studied for
sorting and in 86-92% of the cases studied for matrix mudtiion, depending on the system.
(See [71] for more detalil.)

The adaptive algorithm selection frameworksmAPL is a generalization of previous work
done by our group for the adaptive selection among multijgerghmic options for parallel sort-
ing [49, 2], for selecting among different motion planningtimods [33, 35], and for performing
parallel reduction operations [83, 84]. To the best of owvkiedge, our framework provides the
first general methodology for automatically developing aleidor selecting among multiple algo-
rithmic options. All other work of which we are aware is lied to parameter tuning of a particular
algorithm (e.g., ATLAS [80]), relies upon some level of mahmodeling (e.g., [9, 25, 80] or is
domain specific (e.g., [38]). More details can be found in.[71



3 Adaptive Run-Time System (RTS)

The platform dependergTAPL components are mainly contained in tBeAPL runtime system
(RTS), which provides the API to the OS and several imporfiamttions. The RTS includes the
ARMI (Adaptive Remote Method Invocation) communicatiorréity that abstracts inter-processor
communication for the higher leveltapL components, thexecut or andschedul er mod-
ules that are responsible for allocating resources for dneputation and for executing it, and the
performance monitor.

ARMI abstracts communication of data and work across thigiliged memory machine by
providing a common remote method invocation (RMI) interfacall othersTAPL components [48,
70, 71]. Thereis also supportin ARMI for collective opeoats common in parallel programming,
such as broadcasts and reductions. Its implementationahinedependent and it can generate
synchronous or asynchronous messages (e.g., MPI messaggsichronizations, e.g., OpenMP
synchronizations.

Theexecut or andschedul er provide support for an assortment of common scheduling
policies and load balancing strategies, and also providshamesms through which users can add
their own versions of these services.

We designed and implemented a multi-threaded version of A&MIour RTS. TheTAPLrun-
time system will support nested parallelism if the underdyarchitecture allows nested parallelism
via a hierarchical native runtime system. Otherwise, thgime system will serialize the nested
parallelism.

3.1 Application-specific Customization of the RTS

When the project was initiated, it was believed that K42 wdadda living project that could be
integrated into our work. For the first few years of the projee worked actively towards this
goal. However, towards the end of the project, it became themwould not be the case and hence
development using K42 slowed. In the following, we brieflpoe on the progress that was made.

We installed the K42 operating system on a dual processoleApp and worked to port our
applications to this system. After several problems weheesiwe could run the full STAPL test
suite on this machine. We also worked to install and testechba the IBM simulator on a PC.
The objective was to give us more insight into the behaviapylications on K42. However, we
did not run Mambo for our experiments because it was too slow.

We have also developed several custom memory allocaidesero[19] and TP [20]. The
ultimate objective was to interface to K42’named pagingesys Deferoallows each object to
customize its memory allocation policy. We have estabtiskie interesting relationship between
our “closest neighbor” allocation policy and page sidd? exploits this allocation policy: It al-
locates “close” to a hint provided by the user. When using Sidntthese hints are provided
automatically. We believe that we will be able to improvereagore memory management perfor-
mance when when operating systems will provide custonaizatapabilities like those that were
present in K42.

4 Compiler for STAPL/C++

Our ultimate aim is to support high-level parallelism exgz@d in terms of C++ libraries by static
program analysis, program transformation, informatiorb&used at run-time extracted from
source code, and semantic information embedded in the grogext. For that, we have built



a static analysis and transformation system, the Pivotlwtan handle all of C++ (eventually all
of C++0x). We place particular emphasis on the higher levigdbstraction, such as systematically
use of templates. We were major players in the ISO C++ staimddi@h effort to provide direct
language support for generic programming (concepts) imclotation for semantic properties of
types (axioms).

Accomplishments:

(1) Design and implementation of the static analysis fraorkwthe Pivot. This is now being
used for student projects related to code validation, cadelgication, code rejuvenation, and
transformation to use new (C++0x) facilities. We found tiet initial Pivot (relying on the visitor
pattern for traversal) was hard for students to use and ha®e Wworking of facilities for simple
traversal and lowering of semantic levels (see Luke Wagrteesis). We plan further work to
simplify the use of the Pivot. (2) We took a major role in thesida and implementation of
concepts for C++0x (See papers and technical reports bysstum). Unfortunately, the ISO C++
standards committee decided to postpone further work onegia (to a large extent because of
Bjarne Stroustrup’s analysis of usability problems. Thévks us with a major design effort done, a
fair bit of practical experience (incl. a complete rewrifelee C++ standard library using concepts
- remember STAPL is based on the C++ standard library), andhptementation to act as front-
end to the Pivot. We are now looking at ways to get an improwetepts design implemented
and interfaced with the Pivot. The design and implementaifdhe Pivot - our high-level analysis
and source code transformation system for C++ is progressipdanned. In particular, the design
of the IPR representation abnceptsa type system for types aimed is complete. The IPR provides
a foundations for semantics-based optimization of higlelléibraries using templates, such as
STAPL. The IPR is a fully typed abstract syntax tree repregem of ISO Standard C++. The IPR
is designed with an eye on C++0x, the next revision of the ISO &afdard. Implementations
based on GCC and EDG compiler front-ends are being tested sé&/auwe compiler front-ends to
avoid vendor lock-in. Some papers describing in more d#taiPivot infrastructure can be found
here: [41, 56, 55].

To better adapt to input data we have developed a compilexsinticture for F77 compilation
that uses bridges static and dynamic compilation in a sesm@nner. The Hybrid Analysis de-
veloped during these years allows the compiler to perfoemtbst sophisticated analysis currently
available and, in case of inconclusive results, to extiaetminimum necessary information that
needs to (and can be) provided at run-time to perfrom aggeegptimization. We have used Hy-
brid Analysis to automatically parallelize many Perfead &PECfp codes and obtained excellent
results. In Fig. 5,6 we show some of tehse results.

We have also directed our attention to dynamic compilatiecalbise we believe that it will
improve the performance ohM\RTAPPsfor dynamic, input dependent codes. We have developed
a compilation system that can stop the execution of a codeexfample after it has read all its
inputs, recompile with high levels of specialization anahtbaue executing the remainder of the
code. The program can be stopped any time during executtbnegompiled.

4.1 Applications Developed using STAPL

STAPL has been co-developed with domain specific libraries foresbigh-performance scientific
applications:

e PDT - Parallel Deterministic Transport: a parallel coddtmiSTAPL implementing parallel
discrete ordinates particle transport.
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e a new computational method based on motion planning foepr@nd RNA folding [74],
and

e Seismic Ray Tracing: a parallel code built in STAPL implenege wavefront approach to
seismic ray tracing.

The PDT code is an ongoing project at Texas A&M. Itis a sofenafrastructure developed in
STAPL for investigatingdiscrete-ordinatef?1, 24, 30] methods for deterministic particle transport
in irregular problems with complex geometries. Each iterabf a discrete-ordinates method
involves multiple, but independent, sweeps through thdiapdomain, one for each direction
of particle travel. Although each directional sweep is sdial in nature, all spatial cells in a
wavefront are independent. The efficiency and scalabifityhe parallelization depends on many
factors including the decomposition and distribution ¢ #patial domain, the scheduling of the
sweeps, the granularity of the parallelization, and thematational method applied to each cell.
Each of these steps can be implemented in several wayss1@eL particle transport library PDT
provides a testbed for exploring these options.

The PDT project has been supported by the DOE and the NSF ariedfi code is currently
being utilized and further developed in the DOE PSAAP CRASHare(Michigan, with Texas
A&M collaborating, ‘Center for Radiative Shock HydrodynasiidE-FC52-08NA28616). PDT
is also being utilized and further developed as part of thdDDNNSF Academic Research Ini-
tiative SHIELD project (Texas A&M, ‘A Framework for Developy Novel Detection Systems
Focused on Interdicting Shielded HEU’, 2008-DN-077-ARIGEB. A strong scaling study for
the discrete-ordinates transport code PDT are shown inr&igu Note that the scaling is com-
puted relative to 64 and 32 processors, respectively;diseaing is also shown on the figure for
reference. Here are some relevant papers [76, 74]
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