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Abstract

The imposition of a nonaxisymmetric magnetic perturbation on a rotating tokamak plasma re-

quires energy and toroidal torque. Fundamental electrodynamics implies that the torque is essen-

tially limited and must be consistent with the external response of a plasma equilibrium ~f = ~j× ~B.

Here magnetic measurements on National Spherical Torus eXperiment (NSTX) device are used

to derive the energy and the torque, and these empirical evaluations are compared with theoret-

ical calculations based on perturbed scalar pressure equilibria ~f = ~∇p coupled with the theory

of nonambipolar transport. The measurement and the theory are consistent within acceptable

uncertainties, but can be largely inconsistent when the torque is comparable to the energy. This

is expected since the currents associated with the torque are ignored in scalar pressure equilibria,

but these currents tend to shield the perturbation.
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I. INTRODUCTION

Tokamaks, such as International Thermonuclear Energy Reactor (ITER) [1], are sensi-

tive to magnetic perturbations caused by nonaxisymmetric currents external to the plasma.

These perturbations can lead to a significant degradation of confinement [2–4], but also can

be used to improve the performance [5, 6]. A tokamak plasma responds to a nonaxisym-

metric magnetic perturbation by producing perturbed plasma currents. These currents can

fundamentally change the magnetic perturbation as shown in the calculations of perturbed

scalar pressure equilibria using Ideal Perturbed Equilibrium Code (IPEC) [7], and in the

IPEC applications to plasma locking experiments [8, 9].

Magnetic perturbations are both amplified and phase shifted by the plasma response

[10], as has been demonstrated in a number of Resonant Field Amplification (RFA) mea-

surements [11–14]. The amplification and the phase shift by small perturbations are related

to the perturbed energy and toroidal torque, which thus can be derived from magnetic mea-

surements. These derived energy and torque can be compared with the calculations if any

relevant model exists. The study in this paper uses and simplifies the exact relation for

the plasma response to evaluate the energy and the torque from magnetic measurements

on National Spherical Torus eXpeiment (NSTX) device [15]. The empirically evaluated en-

ergy and torque are compared with the theoretical calculations based on perturbed scalar

pressure equilibria coupled with the theory of nonambipolar transport [16–19].

This paper shows that magnetic perturbations are shielded in the presence of a torque in

comparison to perturbed scalar pressure equilibria, which do not include the torque. The

exact relation for the plasma response to the energy and the torque [10] will be discussed to

illustrate the fundamental implication of the shielding by the torque (Sec. II). The plasma

response can be measured by magnetic sensors, but one needs to include the currents at

the wall if the sensors close to the wall are used to derive the energy and the torque from

the measurements (Sec. III). The presented method in Sec. III is based on the extensive

work in [10, 20], but is different since this paper describes the relation that is directly

applicable to RFA measurements. Using the relation in Sec. III, the energy and the torque

are empirically derived from NSTX n = 1 RFA measurements (Sec. IV), and are compared

with the calculations using IPEC coupled with the theory of nonambipolar transport (Sec.

V). The comparison between experiment and theory indicates that the shielding by torque
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becomes important in high βN plasmas, and so the tensor pressure must be included in the

calculations of perturbed equilibria.

II. EXACT RELATION FOR PLASMA RESPONSE AND IMPLICATION

Any plasma equilibria obeys ~f = ~j × ~B, and the fundamental electrodynamics gives [10]

2δW + i
τϕ

n
= ~Φ† · L↔−1

p · ~Φx (1)

at the plasma boundary surface with the surface inductance L
↔

p. Equation (1) provides the

exact relation of interaction between the plasma and small external perturbations. The

relation implies that the energy δW and the toroidal torque τϕ determine the amplification

and the toroidal phase shift of the plasma response, which is the ratio of the total flux ~Φ to

the applied external flux ~Φx at the boundary.

The Equation (1) is independent of the model ~f . The energy δW = (1/2)
∫

δ~j ·δ ~Ad3x and

the toroidal torque τϕ = −ẑ · ∫ ~x× (δ~j × δ ~B)d3x are produced by external perturbations,

where δ~j is the perturbed current, δ ~A is the perturbed vector potential, δ ~B is the perturbed

field, and ẑ is the symmetry axis of the tokamak. By integrating by parts for δW and τϕ,

the perturbed energy and torque can be related to the total normal field at the boundary

and the external currents producing the total normal field. The total normal field can be

represented by the total flux

Φmn =
1

(2π)2

∮
dϑ

∮
dϕJ (δ ~B · ~∇ψ)e−i(mϑ−nϕ), (2)

where J is the Jacobian of magnetic coordinates (ψ, ϑ, ϕ). The expansion coefficients in

Equation (2) can be taken to be the elements of a matrix vector ~Φ. A matrix vector for

the external flux ~Φx can be defined in the same way, but without the plasma response.

The external currents driving the flux can be represented by an equivalent surface current

~K = ~∇κ(ϑ, ϕ)× ~∇ψ. The surface current potential κ(ϑ, ϕ) can be decomposed as

Imn =
1

(2π)2

∮
dϑ

∮
dϕκ(ϑ, ϕ)e−i(mϑ−nϕ), (3)

and a matrix vector ~I can be defined with Imn. The external current ~I supports the

perturbed equilibrium, and produces the external flux in vacuum through ~Φx = L
↔

p ·~I. Using

the representations of the normal field and the external current, one can derive Equation

(1) [10, 20].
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External magnetic measurements can determine ~Φ and ~Φx, so they can determine δW

and τϕ. If a model for ~f exists, then one can also theoretically calculate δW and τϕ. While

making comparisons between experiment and theory, it is useful to normalize the energy

and the torque as

s + iα ≡ −
~Φ† · L↔−1

p · ~Φx

~Φ† · L↔−1
p · ~Φ

, (4)

and so

2δW + i
τϕ

n
= −(s + iα)~Φ† · L↔−1

p · ~Φ. (5)

That is, magnetic measurements in an experiment can determine (sE, αE), which would be

consistent with theoretical (sT , αT ) if the equilibrium model of ~f is correct. This is what is

studied in this paper, with RFA measurements in NSTX and the calculations of perturbed

scalar pressure equilibria ~f = ~∇p coupled with the theory of nonambipolar transport.

Note that knowledge of two independent magnetic quantities such as ~Φ and ~Φx are re-

quired to determine both the energy and the torque in experiments. For instance, a torque

analysis of the internal plasma instability [21] requires the measurements of two quantities

such as the normal and the tangential components of the total field δ ~B(θ, ϕ). Also, one can

use the two different sensors as illustrated in [20], but our experiments are easier since the

applied ~Φx is known and thus only the plasma response ~Φ needs to be measured using the

same set of magnetic sensors.

The derived relations for the plasma response indicate that the torque in the perturbed

plasma is essentially limited given an external flux ~Φx [22]. Equations (1) and (5) imply,

using the well known Schwartz inequality

(~Φ† · L↔−1
p · ~Φx)(~Φx† · L↔−1

p · ~Φ)

(~Φ† · L↔−1
p · ~Φ)(~Φx† · L↔−1

p · ~Φx)
≤ 1, (6)

that (~Φ† · L↔−1
p · ~Φ)/(~Φx† · L↔−1

p · ~Φx) ≤ 1/(s2 + α2). Equation (6) gives the limitation of the

torque by
∣∣∣τϕ

n

∣∣∣ ≤ |α|
s2 + α2

~Φx† · L↔−1
p · ~Φx ≤

~Φx† · L↔−1
p · ~Φx

2|s| . (7)

Equation (7) shows that the maximum possible torque at a given |s| occurs at |α| = |s|.
When s2 + α2 << 1, the toroidal phase shift between the applied field ~Φx and ~Φ is n∆φ =

arcsin(α/
√

s2 + α2) and becomes 45◦ when |α| = |s|. When α = 0, the plasma can minimize

δW , which makes |s| as small as possible, by distorting the equilibrium currents in such a
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way that they amplify the perturbation. When the phase shift reaches 45◦, the perturbation

is so distorted that it is no longer optimally amplified. That is, the torque is expected to

cause shielding unless |α| << |s|. This shielding reduces the torque, and hence |α|, and

increases the energy, and hence |s|, required to perturb the plasma.

III. RELATION BETWEEN PLASMA RESPONSE AND RFA MEASUREMENT

The empirical values (sE, αE) can be determined using Equation (4) if one can directly

measure ~Φ and ~Φx at the plasma boundary. However, the magnetic sensors are not located

at the plasma boundary, but instead are close to the chamber walls. That is, measured

quantities in practice are much closer to ~Φw and ~Φx
w at the walls, rather than ~Φ and ~Φx at

the plasma boundary. Note that here the wall is an approximate projection of complicated

conducting structures that would require the full numerical modeling, as in VALEN3D code

[23], to be more precise.

The two measurements at the walls can be related as ~Φw = S↔ · ~Φx
w, where S↔ should

include the effects of the currents at the wall. The ratio, ~Φw/~Φx
w, is called Resonant Field

Amplification (RFA) [10] in this paper, while (~Φw/~Φx
w)− 1 is used in other articles [11–14].

The relation between S↔ and (sE, αE) can be expressed in terms of inductance coefficients

and so-called the permeability of the plasma
↔
P . The plasma permeability

↔
P is defined by

noting that in any plasma state the magnetic field normal to the boundary surface δ ~B · n̂
and the externally produced magnetic field normal to the boundary surface δ ~Bx · n̂ can be

related as

~Φ =
↔
P · ~Φx. (8)

Equation (5) implies that the characteristic permeability is given by P−1 ≡ (~Φ† ·L↔−1
p · ↔P−1 ·

~Φx)/(~Φ† · L↔−1
p · ~Φ) = −(s + iα).

To derive S↔, note that the flux through the chamber walls ~Φw is proportional to the

currents at the walls ~Iw, the currents in circuits outside the wall ~Io, and the currents that

represent the plasma response ~Ip. If we assume the currents outside the walls are just

outside,

~Φw = L
↔

w · (~Iw + ~Io) +
↔
Mwp · ~Ip, (9)

where L
↔

w is the surface inductance of the wall and
↔
Mwp =

↔
Mpw is the mutual surface

inductance between the plasma and the wall. Using the relation for the currents by plasma
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response, ~Ip = L
↔−1

p · (~Φ − ~Φx), with ~Φ =
↔
P · ~Φx in Equation (8), and the relation for the

external flux on the plasma, ~Φx =
↔
Mpw · (~Iw + ~Io), one can rewrite Equation (9) as

~Φw = σ↔−1 · L↔w · (~Iw + ~Io), (10)

where

σ↔ ≡ (L
↔

w ·
↔
M−1

pw) · ↔P−1 · ↔Π · (L↔w ·
↔
M−1

pw)−1, (11)

↔
Π−1 ≡ (1

↔− ↔
C) · ↔P−1 +

↔
C, and (12)

↔
C ≡ ↔

Mpw · L
↔−1

w · ↔Mwp · L
↔−1

p . (13)

The
↔
C is a positive matrix and provides the wall-plasma coupling. The plasma is unstable

even with a perfectly conducting wall unless all the eigenvalues of
↔
Π−1 have positive real

parts, and is unstable with a resistive wall, by the Resistive Wall Mode (RWM), unless all

the eigenvalues of
↔
P−1 have positive real parts. In the absence of a plasma,

↔
P =

↔
Π = σ↔ = 1

↔
.

The external flux through the wall due to the currents in circuits outside the wall is

~Φx
w ≡ L

↔
w ·~Io, so one can relate the ~Φw and ~Φx

w using Equation (10) if the currents at the walls

~Iw is known. The evolution equation for the flux through the wall is d~Φw/dt = −↔
Rw · ~Iw,

where the
↔
Rw is the resistance matrix of the wall. If applied perturbations are rotating,

d~Φw/dt = inωa
~Φw and so ~Iw = −inωa

↔
R−1

w · ~Φw, where ωa = 2πfa is an angular frequency.

Therefore, again one can rewrite Equation (10) by replacing ~Io and ~Iw, and can obtain

~Φw = S↔ · ~Φx
w, (14)

where

S↔−1 ≡ σ↔+ inωaL
↔

w ·
↔
R−1

w . (15)

This is the generalized relation for RFA, ~Φw/~Φx
w.

The relations in Equations (14) requires the complete knowledge of all the matrices.

Instead, here a simplified relation will be used by assuming that only a single dominant

mode is perturbed. This is a good approximation unless the applied field greatly deviates

from the dominant external field. The midplane coils and sensors in NSTX are located in

the outboard section, so they can effectively produce and measure the dominant external

field [8, 24]. The dominant external field is the least stable mode in the sense of stability

analysis. Since even the second least stable mode has much higher δW than the least stable

mode, mostly up to an order of magnitude, other modes except the least stable mode have
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much smaller contributions to RFA if the applied field is reasonably close to the least stable

mode. This dominance of the least stable mode may become weaker if a plasma has very

low or very high pressure, but this is not the case for plasmas studied in this paper.

In the approximation with a single dominant mode,
↔
C ≈ c, L

↔
w ·

↔
R−1

w ≈ γ−1
w and Equation

(14) becomes

Φw

Φx
w

= −
(

s + iα

c− (1− c)(s + iα)
− inωa

γw

)−1

. (16)

This equation can be used to determine (s, α) through RFA measurements. The determi-

nation of (sE, αE) using this equation is essentially identical to the determination of the

complex growth rates for RMW [14], which is a function of (s, α).

IV. RFA MEASUREMENT IN NSTX AND EMPIRICAL DERIVATION

The measurements of plasma response ~Φw, called RFA measurements, have been per-

formed assuming a single dominant mode for a toroidal harmonic n, since the number of

magnetic sensors are not sufficient to determine the detailed shape of the plasma response.

That is, Equation (16) is directly applied to the typical RFA measurements of Φw/Φx
w. In

the previous RFA measurements, it has been found that a dominant parameter is the nor-

malized plasma pressure, βN ≡ 40π(aB/µ0I)〈2µ0p/B
2〉, where the a is the minor radius, and

the I is the toroidal plasma current. This is consistent with the expectation from an ideal

MagnetoHydrodynamic (MHD) theory since βN is the dominant parameter to determine

δW , or equivalently s. So, our experiments in NSTX also measured the plasma response as

a function of βN , (Φw/Φx
w)(βN).

The determination of four parameters, s(βN), α(βN), c(βN), and γw(βN) requires more

information than the amplification and the toroidal phase shift at each βN . In principle, such

information with two different frequencies can provide the same number of equations as the

number of unknowns at each βN , but even it does not guarantee the complete determination

of the four parameters due to the nonlinear feature of Equation (16). Also, it is difficult

to interpret the absolute value of the toroidal phase shift between Φw and Φx
w due to their

different φ = 0 locations, which may be also sensitive to the poloidal location of magnetic

sensors. Since the amplitude of RFA is the more reliable information than the phase of RFA,

our experiments used the two different frequencies fa = ±30Hz for a rotating magnetic field

in order to make the amplitude of RFA stronger. This is based on the previous observations
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in NSTX, which have indicated that the peak of RFA can be found in the co-rotating field

with the range of frequency fa = +30 ∼ +60Hz [12, 13].

Fig. 1 shows an example of performed experiments in NSTX, with an n = 1 rotating

magnetic perturbation with fa = +30Hz using midplane coils outside the chamber walls.

The RFA signals are measured by BR sensor arrays located slightly off the midplane. The

plasmas are quiescent without any significant indication of tearing activity, which could

produce additional torques and introduce nonideal layer responses.

The RFA measurements for Φw/Φx
w through these experiments are shown in Fig. 2 for

(a) the amplitude and (b) the toroidal phase shift. Each point indicates the average over

100ms, with the standard deviations represented by lines. The resulting RFA amplitudes

almost linearly increase along with βN , and are larger with the co-rotating magnetic field,

as consistent with other RFA observations [11–14].

In the range of the standard deviations, various linear fits for the amplitude as a function

of βN , (Φw/Φx
w)(βN) can be found for each frequency fa = ±30Hz. Using the information

for the amplitudes, the best fitting parameters for s(βN), α(βN), c(βN) and γw(βN) can be

investigated by the least square method, that is, by minimizing the errors in Equation (16).

It is found that the procedure becomes more robust when one of c(βN) and γw(βN) is given

by a constant independent of βN , and so when using three parameters in the minimization.

Since the coupling coefficient c is easier to assume an approximate value, c(βN) ∼ c is used

in our investigation. Note that it is also possible to take both c(βN) ∼ c and γw(βN) ∼ γw,

since they are dependent only on the shape of the dominant mode Φw, which is not expected

to have large variations in the investigated range of βN .

Another consideration is that the measured RFA in vacuum is not exactly Φx
w, but is

Φx
w/(1 − inωa/γw0). As discussed later, the results indicate |ωa/γw| < 0.3, but also γw0 ≡

γw(βN = 0) may be largely different from γw. Therefore, here the possibility |1−inωa/γw0| >
1 is also considered.

The discussed uncertainties can result in nonphysical or inconsistent parameters, so it is

essential to discriminate relevant cases. So, three additional constraints are introduced in the

fitting procedure, based on the previous observations for the peak of RFA in NSTX [12, 13],

and also based on the range in the measured RFA phases in Fig. 2 (b). The absolute values

of RFA phases can not be directly used due to the unknown φ = 0 location, as previously

mentioned, but the range of the toroidal phase shift is independent of the φ = 0 location.
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In summary, the derivation of the four parameters s(βN), α(βN), c(βN) and γw(βN) from

RFA measurements is done with

1. The various linear fits for the RFA amplitudes at each frequency fa = ±30Hz are used

within the standard deviations.

2. The c(βN) ∼ c > 0.1 is assumed and scanned.

3. The measured Φx
w is scanned within 1.0 ≤ |1 − inωa/γw0| ≤ 1.5 in order to allow

uncertainties up to 50%.

4. With the various combinations of 1 to 3, the three parameters s(βN), α(βN), and

γw(βN) are found by least square method using Equation (16).

5. The determined four parameters are used to reconstruct the RFA amplitudes at the

highest βN ≈ 4.7 as a function of fa, and are retained when the peak is found within

fa = +30 ∼ +60Hz.

6. The determined four parameters are used to reconstruct the RFA phases at the two

frequencies fa = ±30Hz, and are retained when the range of variations are consistent

with the measured RFA phases within the standard deviations, which are 10.7◦ <

∆φ(+30Hz) < 27.5◦ and 16◦ < ∆φ(−30Hz) < 32◦.

Fig. 3 shows the reconstructed RFA using the average values of the retained four parameters.

One can see that the constraints based on observations, as described in 5 and 6 of the fitting

procedure, are satisfied with the reconstructions.

The coupling coefficient is found as c = 0.18±0.05, and the effective wall time τw = 1/γw

as a function of βN is shown in Fig. 4. As previously mentioned, the resulting τw corresponds

to |ωa/γw| < 0.3, but also indicates that the τw0 = 1/γw0 may become larger. It is not

relevant to extend the results based on our linear analysis to a very low βN or to vacuum,

so it should be clarified by direct vacuum measurements in the future. The derived γw is

faster than the typical RWM growth rate γRMW ∼ (2.5 ∼ 5.0ms)−1, but slower than the

fast RWM growth rate γRMW ∼ (0.6ms)−1 in NSTX [12, 13, 25].

The energy and torque parameters derived from RFA measurements, (sE, αE), are shown

in Fig. 5. The standard deviations become larger in lower βN , indicating the sensitivity

of the results depending on the fitting procedure. The (sE, αE) becomes more robust in
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high βN values and are consistent with the increase of the amplitudes of RFA. The plasma

response at the boundary is Φ = −Φx/(s + iα), and so generally s and α must be decreased

to increase RFA although the precise results at the magnetic sensors are more complicated

by the wall-plasma coupling and wall constant represented by c and γw.

There are important implications in Fig. 5. If the currents associated with the torque

are ignorable, |sE| would cross zero around the marginally stable point. However, the |sE|
is far from zero even above the marginally stable point that can be found in 4.0 < βN < 4.5,

and this implies that the perturbations are no longer able to optimally tap energy from

the plasma. This is because |αE| in Fig. 5 (b) is not so small and becomes comparable to

|αE| ∼ |sE| ∼ 0.1 above the marginally stable point. That is, the currents associated with

the torque can change the perturbations, which is expected from the general relation of the

plasma response as explained with Eq. (7) in Sec. II. When the currents associated with

the torque become important, the energy |sE| would increase and |αE| decrease compared

to the expectations by scalar pressure equilibria as will be discussed in Sec. V. Also, the

results may indicate that |sE| and |αE| are adjusted similarly to each other, that is, to the

phase shift 45◦ between Φ and Φx, but no theoretical explanation exists for this speculation

yet.

V. COMPARISON WITH THEORETICAL CALCULATION

The theoretical evaluation for sT can be directly obtained by IPEC calculations since

IPEC is based on DCON stability code [26], which gives δW . However, even the funda-

mental values in scalar pressure equilibria, δW , can be sensitive to the reconstructions of

experimental equilibria, and would have greater impacts on the calculations of αT since the

torque is quadratically proportional to the variation in the field strength. The calculations

in this paper used the most advanced method for the reconstruction of NSTX equilibria, in-

cluding Motional Stark Effect (MSE) measurements of q profiles and the averaged rotational

effects, but it is still pending how to reconstruct experimental equilibria to be consistent

with all the measured kinetic profiles. In order to investigate the level of sensitivity in the

results, the calculations are performed based on a number of reconstructions in every 20ms,

and shown by mean values over 100ms with the standard deviations, Fig. 6.

A self-consistent calculation for the toroidal torque αT is not presently available in IPEC,
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since the currents associated with the torque and the shielding by the torque are not retained

in a scalar pressure IPEC analysis. Note the scalar pressure equilibria do not have a torque

since a mathematical identity implies the torque between any two constant pressure surfaces

vanishes,
∫

(~x× ~∇p)d3x = 0, which is equivalent to αT = 0. However, one can use the scalar

pressure IPEC for the field if |αT | << |sT |, that is, if the currents associated with the torque

can be ignorable.

The toroidal torque can be evaluated theoretically if one couples the IPEC field to a

relevant model for transport. Here the theory of nonambipolar transport [16–19] is used to

evaluate the radial currents and so the toroidal torque. In tokamaks, this is so called Neoclas-

sical Toroidal Viscoscity (NTV) torque [17, 18], which has been found as the dominant drive

for the torque [27] in the presence of nonaxisymmetric perturbations. Compared with the

previous theory, here the actual Lagrangian variation in the field strength δB = δBE+~ξ ·~∇B0

[28], where ~ξ is the plasma displacement, is used instead of the perturbed field δBE at a fixed

spatial point. The Lagrangian variation in the field strength obtained by IPEC is coupled

with recently derived general NTV formula [19], which includes the additional effects by

the resonance between bouncing orbits and precessions, to estimate the transport and the

torque. Although the precise assessment of NTV transport is still an active area of research,

any formula gives τϕ ∝ δB2. The variations of the torque, and so αT , are largely deter-

mined by the variations of δB2 in the studied range of βN , where the variations of kinetic

parameters related to the NTV theory are relatively small.

The calculated (sT , αT ) is shown in Fig. 6, and is compared with the empirically evaluated

(sE, αE). As can be seen, Fig. 6 shows the shielding by the torque is ignorable and IPEC

method is approximately valid when both |αE| < |sE| and |αT | < |sT |, as can be found in

low βN values, within acceptable deviations between each other. The deviations between

empirical and theoretical values at the lowest βN are not trivial and the reason is unclear, but

the large standard deviation in empirical values indicates that the results may be unreliable

due to the sensitivity in the fitting procedure. The obvious inconsistency occurs when

|α| ≥ |s| beyond the marginally stable βN . The differences between sE and sT in Fig. 6 (a)

seems small, but the relative ratio is very large since sT ≈ 0. The deviations of αT from αE

is apparent from in Fig. 6 (b).

The deviations between (sE, αE) and (sT , αT ) are due to the currents associated with the

torque that are missing in IPEC. The results indicate that the stabilizing effect in sE and
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the shielding effect in αE can occur by the torque, as expected in Sec. II. If the currents

associated with the torque are not included, the calculations of perturbed equilibria such

as the present IPEC can become largely inconsistent when |α| ≥ |s|, or equivalently when

plasma is close to the n = 1 marginal limit of ideal stability. The higher n has the higher

βN required to be marginal stable, so |α| << |s| can be expected and thus the scalar

pressure perturbed equilibria may be good approximations for most of applications with

n ≥ 3 perturbations, as should be studied in the future.

VI. CONCLUDING REMARKS

The exact relation of plasma response is described and the simplified relation based on a

single dominant mode with (s, α) is used to compare RFA measurements in NSTX with IPEC

calculations coupled with the theory of nonambipolar transport. Although the nontrivial

uncertainties are involved in both experimental and theoretical derivations of (s, α), it is

found that the currents associated with the torque can be ignored and the calculations

of perturbed scalar pressure equilibria are approximately valid when |α| < |s|, but can

be largely inconsistent when |α| ≥ |s|. It implies that the shielding currents associated

with the torque should be considered in perturbed equilibria when |α| ≥ |s|, and when

plasma is beyond the marginally stable limit. Therefore, the tensor pressure equilibria

~∇ · p↔ = ~j × ~B must be solved to give fully self-consistent descriptions of plasma response in

high βN plasmas, as will be important for many applications such as RWM feedback control.
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FIG. 1: (COLOR) The experiments for RFA, Φw/Φx
w, measurements in a rotating NSTX plasma.

(a) shows the plasma current Ip (black) and the Neutral Beam Injection power (blue). (b) shows
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FIG. 2: (COLOR) The measured Φw/Φx
w by applied n = 1 rotating fields at two frequencies,

fa = +30Hz (red, ¦) and −30Hz (green, ¤) as a function of βN . (a) shows the amplitudes of RFA

and (b) shows the toroidal phases of RFA in terms of normal angle (◦). The lines across each data

point indicate the standard deviations when averaged over 100ms.
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FIG. 3: (COLOR) The reconstructed RFA as a function of the applied frequency fa for (a) the

amplitude and (b) the toroidal phase (◦), using the mean values of s(βN ), α(βN ), c and γw(βN ).

Three reconstructions for βN ≈ 3.1 (blue), βN ≈ 3.9 (green), and βN ≈ 4.7 are shown. The peak of

the RFA at the highest βN ≈ 4.7 in (a) can be found around 38Hz, which is within 30Hz ∼ 60Hz

(indicated by dotted lines), as consistent with other observations. Also, the reconstructed phase

is consistent with the range of the measured phases at two frequencies fa = ±30Hz (indicated by

dotted lines), as described in 6 of the fitting procedure.
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that the wall constant may be largest in vacuum, but decrease along with βN due to the change

in the shape of the field distribution.
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FIG. 5: (COLOR) The empirical (a) sE(βN ) and (b) αE(βN ) derived from RFA measurements.

The large standard deviations in low βN values indicate the sensitivity of the results to the fitting

procedure, but the results become robust in high βN values. Note that the empirical energy sE

remains negative and never crosses zero even beyond the marginally stable point, and that the

empirical torque αE decreases along with βN .
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(blue). Note the reasonable agreement between the measurement and the theory when |α| < |s|,
and the large inconsistency when |α| ≥ |s| for both s and α. The point of discrepancy is indicated

by the lines at βN ∼ 4.3, which is within the marginally stable point, 4.0 < βN < 4.5. One can see

that sT → 0, but sE remains finite, so the relative ratio becomes very large. The deviations of αT

from αE are more apparent. This discrepancy is expected since the currents associated with the

torque are not included in scalar pressure equilibria. It can be seen the additional (a) stabilizing

effect in sE and (b) shielding effect in αE by the torque.
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