
1

Award Number: DE-FG02-04ER25600, DOE Early Career
Report Type: Final Report
Report Period: 07/01/2004 to 06/30/2007
PI Name: Beth Plale
PI E-mail: plale@cs.indiana.edu

DOE Early Career: Time-based Data Streams: Fundamental Concepts for Streaming Data
Resource

Participant Individual: Beth Plale, Ph.D., PI, Department of Computer Science, School of
Informatics, Indiana University

1. Overview

The time-based data streams research investigated concepts for understanding and acting on real
time streaming data. Real time data, which we call data streams, are readings from instruments,
environmental, bodily or building sensors that are generated at regular intervals and often, due to
their volume, need to be processed in real time. Often a single pass is all that can be made on the
data, and a decision to discard or keep the instance is made on the spot. Too, the stream is for all
practical purposes indefinite, so decisions must be made on incomplete knowledge. The data
generated by the Large Hadron Collider is of this nature, the large majority of the information
contained in the 1 billion atomic collisions per second are discarded immediately. This notion of
data streams has a different set of issues from a file, for instance, that is byte streamed to a reader.
The file is finite, so the byte stream is becomes a processing convenience more than a
fundamentally different kind of data.

Through the duration of the project we examined three aspects of streaming data: the first,
techniques to handle streaming data in a distributed system organized as a collection of web
services, the second, the notion of the dashboard and real time controllable analysis constructs in
the context of the Fermi Tevatron Beam Position Monitor, and third and finally, we examined
provenance collection of stream processing such as might occur as raw observational data flows
from the source and undergoes correction, cleaning, and quality control. The impact of this work
is evidenced by the publications and presentations. We were one of the first to advocate that
streams had little value unless aggregated, and that notion is now gaining general acceptance. We
were one of the first groups to grapple with the notion of provenance of stream data also.

2. Contributions

2.1 Data Streams in Web Service (Grid) Architecture

Bringing indefinite streams into a distributed Grid-based computational framework first required
framing the problem as one of understanding the critical operations. We developed a service
framework for stream processing based on the Global Grid Forum Data Access and Integration
(DAIS) specifications for grid service access to a database. Since a set of widely distributed data
streams cannot be collected into a single database without incurring additional latencies in
moving already large volumes of data, we built a custom grid service and query engine on top of
DAIS reference implementation OGSA-DAI (University of Edinburgh) to set up, manage, and
query a stream processing network. The interface is given in Figure 1. Through the SQL logical
interface the user adds and removes long running queries from the system. The Rowset logical
interface provides rowset to the data stream returned as a result of a long running query. The

2

Stream channel interface creates and removes channels. The administrative interface is used to
manage the stream processing resource. Additional details are given in [AxGrids04].

Subservice Operation
SQL logical interface SQLAccess:sqlQuery
 SQLAccess:dropQuery
 SQLFactory:createService
 SQLMgt:listQueryStatus
Rowset logical interface RowsetAccess:getTupleTi
 RowsetFactory:createService
Stream Channel Interface PublishAccess:createChannel
 PublishAccess:removeChannel
Admin logical interface AdminAccess:createVSS
 AdminAccess:dropVSS
 AdminAccess:addComputationalElement
 AdminAccess:dropComputationalElement
 AdminAccess:connectStreamSystem
 AdminAccess:describeVSS

Figure 1. Grid service interface to stream processing system. Each interface defines a separate
functionality, for adding a query to the stream network, retrieving the results, adding and removing
data streams from the stream network, and managing the logical collection of streams.

Deploying queries to a network of computation nodes can be costly, so we developed and
analyzed a query reuse strategy and threshold to determine when reuse can reduce deployment
costs. We argue in a couple of our papers that the right model for bringing data streams to the
grid is in the aggregate, that a single readout stream from a small sensor has maximum value
when available with spatial and temporal neighbors. To gain a better understanding of the
performance properties of the system, we experimentally evaluated several aspects of system
behavior: the overhead of deploying a new query to the computation network, the performance
under increasing query workload, and performance under increasing number of users in the
system. Calder extends the dQUOB system[TPDS03].

2.2 Fermi Beam Position Monitor (BPM)

Tevatron is a proton anti-proton accelerator collider operating at the Fermi National Accelerator
Laboratory. The machine delivers beam for the CDF and D0 experiments, which expect
increasing luminosity until the conclusion of Run II, planned for 2009. The Fermi lab Beam
Position Monitor (BPM) is an instrumentation device that takes measurements inside the Fermi
Tevatron accelerator. BPM measures beam intensity, orbit closure, orbit smoothing and Beta
function. We constructed a BPM stream simulator that simulates a configurable number of BPM
instruments and configured it to model 324 simultaneous BPM monitors.

The simulator generates data with meaningful physics. Specifically, BPM system works under
different data acquisition modes: Idle, Closed Orbit, Turn-by-turn, First turn, Asynchronous
Injection, Calibration, Diagnostic. The data types used in each mode are different. We model
Closed Orbit, Turn-by-turn, and First Turn modes. In applying the Calder system to BPM, we
viewed the BPM monitor data collected by each BPM monitor as a data stream. Users access the

3

data streams through the web service enabled Calder front-end. As shown in Figure 1, the BPM
data simulator communicates with Calder stream processing system.

Figure 2. Communication stack of Customizable BPM Dashboard

The Dashboard, see Figure 2, is a real-time graphical interface to the streaming system. It is
unique in that in addition to providing a visual depiction of default behavior of the BPM system
in real time, it also supports visual depiction of the results of a user’s own queries.

Two kinds of queries are supported: horizontal position monitoring query, and amplitude function
query. The horizontal position monitoring query monitors horizontal BPM data from a specified
BPM instrument. The query executes on every turn (i.e., turn-by-turn) of the instrument. At each
turn (each particle bunch), the vertical and horizontal positions are read. With the
horizontal/vertical position monitoring query, a user can monitor the particle’s horizontal/vertical
position from the stream in which the user is interested. The Amplitude function query describes
the maximum extent of transverse oscillations and slopes of trajectories at a point in an
accelerator. With this query, the user can check the amplitude function in the Interaction Regions.
In real physical experiment, Turn-by-turn BPM data totally have 8192 turns. Hence, our graph
refreshes for each 8192 turns. It is shown in Figure 3.

Figure 3. Snapshot of Amplitude Function Study

BPM
Data

Simulator

Calder:
Stream

Processing
System

Calder
Client

Dashboard

dQUOBEC (PBIO) Java RMI

TCP/IP transport

BPM
Data

Simulator

Calder:
Stream

Processing
System

Calder
Client

Dashboard

dQUOBEC (PBIO) Java RMI

TCP/IP transport

4

2.3 Provenance of streaming data

Provenance of a data object is the trace or lineage of the product. It carries information about the
processes and data objects that have influenced the creation of the data object in question.
Provenance is used in asserting the quality of a data object, so is instrumental in preservation and
sharing of data. A data stream is an indefinite sequence of time ordered events. Our research in
provenance of data streams began by asking the fundamental question of what is the equivalent of
a data object in a data stream? That is, identify the smallest unit for which provenance is collected
in a stream filtering system. A dataset, the data object that has first class citizenship in Grid
computing, corresponds to an event in a stream. An implication to granularity is that tracking
provenance of stream datasets has to be done without burdening the system.

Further, we studied a number of issues related to access and understanding of provenance. The
source of a stream must be traceable long after the filtering process has completed. The
environment in which a particular set of events needs to be identifiable. Since stream filtering
systems adapt themselves to changes in underlying resources, this involves changes in query
execution plans and approximations when streams are not available. Finally, the provenance
model needs to enable tracing the accuracy of a subset of the stream to a specific time period.
Deducing an accuracy value for a derived event based on the accuracy of the input streams and
stream filtering environment is a challenge in itself.

We defined a model for provenance tracking consisting of three atomic units of provenance
collection in streams: base streams, adaptive filters and derived streams. Base streams are streams
that are generated outside the stream filtering system. The generation source may be an
instrument, experiment, or any process. Adaptive filters are declarative queries or application
code that are associated with a life time and continuously execute on the data streams; Derived
streams are streams that are produced by executing adaptive filters on base streams or other
derived streams. We propose a timestamp based append only stack approach for collecting
provenance of streams and filters, and a bottom-up provenance tree to associate the base streams
and derived streams. By append only stack we mean a data structure in which information can
only be added not removed; and also that the latest information identified by the timestamp
represents the current status. The model is implemented and evaluated in [xx].

3 Training

This project involved intense engagement and effort by two graduate students Ying Liu who
graduated with her PhD, and Nithya Vijayakumar who also graduated with her PhD. Both took
positions at Cisco, having been recruited when attending a Grace Hopper Celebration of Women
in Computing conference sponsored by the Women in Computing group at Indiana University
that PI Beth Plale co-founded. The project also involved an undergraduate student A.J. Ragusa,
who went on to switch his major from music to computer science. At the time of graduation he
was seriously considering graduate school.

4 Publications and Talks

A number of publications have resulted from this work and this collaboration.

[1] Ying Liu, Nithya N. Vijayakumar, and Beth Plale, Stream Processing in Data-driven Computational

Science, 7th IEEE/ACM International Conference on Grid Computing, April 2006.

[2] Ying Liu and Beth Plale, Multi-model Based Optimization for Stream Query Processing, KSI

5

Eighteenth International Conference on Software Engineering and Knowledge Engineering (SEKE
06), San Francisco, July 2006.

[3] Ying Liu and Beth Plale, Query Optimization for Distributed Data Streams, ISCA 15th International

Conference on Software Engineering and Data Engineering (SEDE 06), Los Angeles, July 2006.

[4] Beth Plale, Framework for Bringing Data Streams to the Grid, Scientific Programming, IOS Press,

Amsterdam, Vol. 12, No. 4, 2004.

[5] Beth Plale, Using Global Snapshots to Access Data Streams on the Grid 2nd EUROPEAN ACROSS

GRIDS CONFERENCE (AxGrids 2004), Lecture Notes in Computer Science Series Springer Verlag,
Vol. 3165, 2004.

[6] Beth Plale, Dennis Gannon, Daniel A. Reed, Sara J. Graves, Kelvin Droegemeier, Bob Wilhelmson,

Mohan Ramamurthy, "Towards Dynamically Adaptive Weather Analysis and Forecasting in LEAD".
International Conference on Computational Science (ICCS), 2005.

[7] Beth Plale and Nithya Vijayakumar, Evaluation of Rate-based Adaptivity in Joining Asynchronous

Data Streams, ACM/IEEE 19th International Parallel and Distributed Processing Symposium
(IPDPS), Denver Colorado, April 2005.

[8] Nithya Vijayakumar, Ying Liu, and Beth Plale, Poster: Calder: Enabling Grid Access to Data Streams

IEEE High Performance Distributed Computing (HPDC), Raleigh North Carolina, July 2005.

[9] Nithya Vijayakumar, Ying Liu, and Beth Plale, Short Paper: Calder Query Grid Service: Insights and

Experimental Evaluation, IEEE Cluster Computing and Grid (CCGrid), May 2006.

[10] Nithya Vijayakumar and Beth Plale, Towards Low Overhead Provenance Tracking in Near Real-Time

Stream Filtering, International Provenance and Annotation Workshop (IPAW'06), May 2006.

[11] Nithya Vijayakumar, Beth Plale, Rahul Ramachandran, and Xiang Li, Dynamic Filtering and Mining

Triggers in Mesoscale Meteorology Forecasting,IEEE/IGARS 2006 International Geoscience and
Remote Sensing Symposium, Denver, CO, July 2006

Presentations related to this project include the following:

• Beth Plale, “Transforming the Sensing and Prediction of Intense Local Weather Through Dynamic
Adaptation”, NSF Dynamic Data Driven Application Systems (DDDAS) Workshop, January 19-20, 2006.

• Beth Plale, “Wringing Kilobytes of Knowledge from Petabytes of Data: Something Has to Change”,
School of Informatics, Indiana University, September 2005.

• Beth Plale, “Calder Continuous Query Grid Service”, Argonne National Labs, August, 2005.

Software and documentation for the software described here can be found at
http://www.cs.indiana.edu/dde/projects/Calder.html

