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Direct-current-like phase space manipulation using chirped alternating
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Waves in plasmas can accelerate particles that are resonant with the wave. A dc electric field also
accelerates particles, but without a resonance discrimination, which makes the acceleration
mechanism profoundly different. Whereas wave-particle acceleration mechanisms have been widely
discussed in the literature, this work discusses the direct analogy between wave acceleration and dc
field acceleration in a particular parameter regime explored in previous works. Apart from the
academic interest of this correspondence, there may be practical advantages in using waves to
mimic dc electric fields, for example, in driving plasma current with high efficiency.
© 2010 American Institute of Physics. �doi:10.1063/1.3298860�

I. INTRODUCTION

Accelerating waves can shift a particle distribution by a
fixed displacement in velocity space, regardless of the initial
configuration of the distribution, with a number of interesting
applications.1–5 Filled and unfilled phase space holes can be
used to accelerate particles for free electron laser applica-
tions: both by carrying filled buckets of phase space formed
by chirped rf fields to higher energies, or by using empty
buckets of virtual particles and displacing them through a
distribution.3,4 In the case of free electron lasers,5 the phase
space deceleration makes use of a ponderomotive hole in
phase space accelerated through a beam to slow it down.
Recently, an autoresonant mechanism, through self-
consistent Bernstein, Green, and Kruskal �BGK� modes, was
suggested to accelerate the full electron distribution, with
applications to current drive as well.1,2 The idea of producing
holes in phase space through BGK modes has been explored
further both experimentally and theoretically.6–8

There are of course in addition many specific wave
mechanisms that have been advanced to manipulate a par-
ticle distribution in phase space, such as recently pondero-
motive methods where particles exit a ponderomotive poten-
tial in an appropriate way,9–20 ratchet effects using a
cyclotron resonance,21–23 and wakefield acceleration effects24

including acceleration in plasma channels.25

The particle dynamics underlying all of these applica-
tions is by now well researched. In particular, single degree-
of-freedom Hamiltonians with slowly varying parameters
have been considered in detail using formal Hamiltonian per-
turbation theory.26–28 While the dynamics are well under-
stood, what is pointed out here is that waves can in fact
mimic dc-like acceleration to arbitrarily small discrepancy:
namely, each particle in the distribution receives an identical
impulse independent of its initial conditions. In other words,
a wave can produce an effect on a distribution of particles
indistinguishable from that of a uniform dc field. The regime
in which this occurs to arbitrarily small discrepancy is that in
which the waves form an adiabatically �slowly� accelerating
ponderomotive barrier. As the ponderomotive wave packets
are accelerated through a distribution of particles, nearly all

particles receive the same impulse, except that by phase
space conservation, some particles must be pushed ahead of
the wave packet. However, the particles that are pushed
ahead contain vanishingly small density, momentum, and en-
ergy in the limit of adiabatic acceleration. While this regime
can be anticipated from the mathematical literature, the full
correspondence to the dc limit has not yet been drawn.

We further propose here that it is of both academic and
practical interest that ac fields can mimic dc fields perfectly
in some limit. In particular, there is an interesting application
to current drive techniques. These fields are fundamentally
different: ac fields, or waves, penetrate plasma in ways that
dc fields cannot. Yet dc fields can drive electric currents with
much higher efficiency than ac fields, suggesting that dc-like
current drive efficiencies might be achievable with ac
fields.

Apart from the practical matter of current generation and
other effects associated with dc fields, the fact that there is a
limit in which ac fields perfectly mimic dc fields may be of
further academic interest. There is possibly a deeper under-
lying principle at play in that the ponderomotive packets of
waves, which are like particles, can produce dc force fields
much in the same way that force carriers mediate force fields
in quantum field theory.

Having pointed to the importance of the problem, we
describe here the extent to which one can accelerate a full
distribution of particles in a manner identical to a dc electric
field using ac fields. It is of interest to show not only that
each bit of phase space can be uniformly accelerated like a
dc electric field would do, but also to describe how those
regions of phase space that undergo further acceleration can
be kept vanishingly small. Section II briefly reviews the ac-
celeration of particles by waves in the particular regime of
interest. Section III confirms the existence of the dc-like
limit. Section IV compares driving currents with ac and dc
fields and points out the importance of this mechanism as a
potential means of current drive that incorporates advantages
from both the ac and dc methods. The main effects uncov-
ered here are summarized in Sec. V, and auxiliary calcula-
tions are presented in the Appendix for completeness.
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II. BRIEF REVIEW OF ACCELERATION
WITH ac FIELDS

To illustrate explicitly the limit in which ac fields can act
as dc fields, consider a potential of the form

��x,t� = �0 cos�k�x − ��t��� , �1�

acting on an arbitrary one-dimensional distribution of nonin-
teracting classical particles. This potential is similar to that
used by Friedland et al.1,2 as well as by Shneider et al.9 to
approximate the effects of an accelerating beat wave, or op-
tical lattice, generated by two counterpropagating frequency-
chirped electromagnetic waves. This potential can be formed
by counterpropagating waves, say of the form A1 sin�k1x
+�1t� and A2 sin�k2x+�2t�, with �1 /k1 of the opposite sign
of �2 /k2. With an appropriate choice of parameters for each
wave and time-averaging over the fast oscillations, one can
obtain an average ponderomotive potential taking on the spa-
tial profile of the envelope of the two sinusoidal waves �cf.
the discussion following Eq. �16��. Thus, by modulating the
underlying frequencies of the two drive waves, it could be
possible to vary the phase velocity of the envelope and create
an accelerating one-dimensional potential like that in Eq. �1�.
This is a specific case of the more general one-dimensional
time-dependent potentials studied by Chirikov, Cary, and
Neishtadt.26–28 However, in order to show the dc limit it
suffices to take the potential in this form rather than requir-
ing self-consistent fields or including more complicated time
dependencies.

The effect of the potential defined in Eq. �1� on a clas-
sical particle is illustrated in Fig. 1. Small fluctuations in the
particle velocity become larger as wave-particle resonance is
approached, at which point a resonance interaction occurs.
Afterward, the large fluctuations decay and the particle is left
with a net impulse. For adiabatic acceleration, the accelera-
tion is small enough so that for most of the duration of the
interaction the change in the wave phase velocity during the
time it takes the particle to traverse one period of the wave is
small compared with the relative velocity between the par-
ticle and the wave, vrel, or in other words,

2�a

kvrel

1

vrel
�

a

kvrel
2 � 1. �2�

In the limit of adiabatic acceleration of the waveform, the

wave phase velocity �̇ remains approximately constant over
time scales comparable to 2� /kvrel, the particle transit time
in the wave. On this time scale, all instantaneous phase space
trajectories are given by the equation

ẋ��t� = �̇�t� � �2�0

m
�� − cos�k�x − ��t����	1/2

, �3�

where

� 

1

�0
�1/2m�ẋ − �̇�2 + �0 cos�k�x − ���� �4�

is an approximately conserved quantity on this time scale
and represents the ratio of the energy of a particle in the rest
frame of the wave to the maximum strength of the potential.
Orbits with ��1 are topologically open, orbits with �	1

are topologically closed, and the orbit given by �=1 defines
the separatrix dividing phase space into regions of purely
untrapped versus purely trapped orbits. An example snapshot
of the various phase space trajectories for transit-time scales
is depicted in Fig. 2. Notice that trajectories for particles
traveling at a velocity substantially different from the instan-
taneous velocity of the waveform, i.e., �
1, can be repre-
sented as approximately straight, fixed-velocity lines, since
they are far out of resonance with the wave and hence barely
feel its effects.

Envision a particle distribution extending infinitely in
one-dimensional configuration space but only across a finite
range of velocity space, forming what is often called a
“waterbag” distribution. When the wave is far out of reso-
nance with the distribution, the waterbag is approximately
unchanged in time. Thus all particle orbits are open, and the
trapped-particle states confined within the wave’s separa-
trices start out unpopulated. Because the wave is adiabati-
cally accelerated, the trapped particle states remain essen-
tially inaccessible to particles in the distribution, which all
began on open orbits.

Now consider the situation where the wave has reso-
nantly interacted with one velocity-space boundary of the
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FIG. 1. �a� Net impulse delivered to initially stationary particle at the origin
in the laboratory reference frame vs time. �b� Close-up of impulse vs time
near the resonance. The dotted line shows predicted �ẋ according to time-
asymptotic conservation of action, cf. Eq. �7�.

013105-2 P. F. Schmit and N. J. Fisch Phys. Plasmas 17, 013105 �2010�



distribution such that the separatrices now lie in the middle
of the distribution. Resonance between the wave and a par-
ticle occupying the boundary is described in Fig. 3. Because
the waveform acceleration is presumed to be adiabatic, the
closed-orbit trajectories remain unpopulated and the separa-
trices form the boundaries of empty holes inside the distri-
bution. If the edges of the distribution in velocity space are
far enough apart that neither is resonantly interacting with
the wave, then they will both have the approximate
asymptotic form of a straight line. Only the boundary of the
distribution through which the separatrices came can be
changed from the original picture, while the other boundary
has yet to resonantly interact with the waveform. By Liou-
ville’s theorem, the phase space volume of the distribution

must be preserved, and so the boundary that has already
resonantly interacted with the wave must be displaced in
order to account for the empty volume inserted into the dis-
tribution by the empty trapped-particle states. The action, or
phase space volume �pdq, per unit wavelength �=2� /k of a
straight line, which describes the nonresonantly interacting
boundaries of the distribution, is given simply by Jsl=�mẋ,
while the phase space volume of the separatrices is found
to be

Jsep = �m�
0

�

�ẋ+ − ẋ−�dx	
�=1

= 16

m�0

k
�5�

�cf. Eq. �3��. Liouville’s theorem can be stated as a jump
condition

Jsl,f = Jsl,i + Jsep, �6�

yielding the final result for the distribution boundary,

��ẋ� =
8

�

�0

m
, �7�

with the direction of the impulse opposite the direction of
acceleration of the wave phase velocity. Similar arguments
suggest that the trailing boundary undergoes a shift in veloc-
ity space identical to the shift of the leading boundary fol-
lowing resonance, leaving another waterbag distribution dis-
placed in velocity space. This is the result stated by
Friedland et al.,1,2 and it led to their suggestion that this
phenomenon could be used as a viable current drive scheme
in plasmas.

However, a uniform acceleration appears to violate the
continuity of the solution with respect to initial conditions,
since some particles must be accelerated ahead of the wave
in order to maintain continuity. Numerical simulations show
the formation of tendrils of the distribution that are carried
away with the wave separatrices, opposite to the direction of
the adiabatic impulse, cf. Fig. 4. No matter how slow the
acceleration, these highly resonant tendrils never appear to
vanish completely.

FIG. 2. Snapshot of phase space trajectories during transit-time scales, for

which �̇�const. Separatrices are denoted by dashed line, instantaneous

wave phase velocity �̇ is denoted by the dotted line, and the direction of
translation of the orbits is indicated by arrows.
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FIG. 3. Graphic illustrating the different stages of the wave-particle inter-
action: preresonance, resonance, and postresonance.
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FIG. 4. Numerical simulations show the time-asymptotic impulse delivered
to one period of the initial distribution for I, 
=10−1 and II, 
=10−2, cf.
Eq. �9�. Line III shows the conserved action prediction for the impulse from
Eq. �7�.
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However, it can be shown that these tendrils become
negligible as the wave acceleration becomes increasingly
slow. Rewrite the nonlinear equation of motion for a particle
in the potential given by Eq. �1� in terms of a dimensionless
phase variable �
k�x−��t��,

�̈ = �̃�sin � − 
� = −
df

d�
, �8�

with

�̃ 
 acritk, 
 
 a/acrit, acrit 

�0k

m
, �9�

where we have assumed, for simplicity, that the rate of ac-
celeration is some constant a, i.e., ��t�= 1

2at2+v0t+x0. There
exists a static quasipotential with an added linear term in this
reference frame, and it is given by

f��� = �̃�cos � + 
�� . �10�

This quasipotential is plotted for �̃=1 and several values of

 in Fig. 5.

Notice in Fig. 5 that any time the wave is accelerated
such that 
�1, points of unstable equilibrium arise in the
quasipotential, i.e., df /d�=0 and d2f /d�2	0, representing
energies for which particles will resonantly interact with the
wave for as long as the wave exists. These particles are con-
nected to the bulk distribution by the continuous tendrils of
phase space observed in Fig. 4. The particles in these tendrils
lessen the efficiency of the uniform bucket displacement cal-
culated in the zeroth order picture, cf. Eq. �7�.

Using a method carried out in the Appendix, the impulse
delivered to an arbitrary particle can be shown to scale ap-
proximately as

�ẋ��t� �
2
�̃1/2

k
� ln�1 + �G + ��2G2 + 2�G�1/2�

�cos �t�1/2

+
1

�1/2 tan−1� ��/2�1/2�

�M − �/2�1/2	 −
�2M�1/2



� , �11�

with

���t� =
�t − �min

2
, � = �1 − 
2�1/2,

G��t� =
cos �t


 − sin �t
,

M��t� = cos �t + 
�t + � + 
�� + sin−1 
� ,

and the variable �t is the phase value corresponding to the
particle’s classical turning point in the quasipotential given
by Eq. �10� and �min is defined after Eq. �A7� in the Appen-
dix. As is shown in the Appendix, �t is constrained to values
with �t�1 whenever 
�1, so Eq. �11� can be expanded for
small 
 and small �t, and it takes the form

�ẋ �
2
�̃1/2

k �ln� �


 − �t
� + tan−1 �

2
3
−

2



−

�

2 	 . �12�

Taking the limit as 
→0, only one term survives,

lim

→0

�ẋ � −
4�̃1/2

k
= − 4��0

m
�1/2

, �13�

where Eq. �9� was used to get to the final representation.
Note that Eq. �13� predicts the same scaling as that demon-
strated in Eq. �7�.

III. THE EFFECTIVE dc LIMIT

Consider now the validity of the derivation of Eq. �13�
for the case when �t is very near 
; in fact, when �t=
 the
impulse is infinite, which was the result of the particle com-
ing to rest on the point of unstable equilibrium in the quasi-
potential. To see that the derivation remains valid, consider
the case �t=
−� and �=
�, so that the following holds:


 ln� 1


 − �t
� = 
 ln�1

�
� = �
 ln�1



� .

For any finite value of � the above expression goes to zero as

→0, which means no matter how close the particle comes
to the singularity at �t=
, the impulse will always be the
adiabatic result shown in Eq. �13�. Consequently, the density,
momentum, and energy content of the tendrils of the distri-
bution go to zero as the wave acceleration goes to zero, since
a particle would have to have an exact initial energy corre-
sponding to �t=2�m+arcsin 
 to get caught in the tendril,
and any infinitesimal fluctuation away from that energy
would immediately shift it to the adiabatically displaced
bulk.

Thus as a classical wave is adiabatically accelerated
through resonance with a noninteracting Hamiltonian distri-
bution of particles at a rate that becomes infinitely slow, its
time-asymptotic effect on the distribution becomes indistin-

FIG. 5. Quasipotential in dynamic variable � plotted for �̃=1 and several
values of 
, cf. Eq. �10�.
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guishable from the effect of a uniform dc field applied for a
finite amount of time; namely, the impulse delivered to each
particle is independent of the particle’s initial conditions in
phase space.

In the following the results of Sec. II, encapsulated in
Eqs. �7�, �11�, and �13�, are shown to be in agreement with
previous calculations of the impulse by Chirikov, Cary, and
Neishtadt.26–28 Chirikov’s work with general fixed ampli-
tude, variable phase velocity, one-dimensional sinusoidal
potentials26 and Cary and Neishtadt’s later work with vari-
able amplitude, variable phase velocity, one-dimensional
potentials27,28 using Hamiltonian time-dependent perturba-
tion theory similarly show the singularities in �ẋ to be loga-
rithmic in the small parameters describing the temporal evo-
lution of the potential. In Eq. �84� of their article, Cary et al.
refine Chirikov’s initial calculation of the change in mean
momentum, denoted by �p̄ and defined as the action integral
over one oscillation period divided by 2�m1/2, of a particle
in a fixed-amplitude sinusoidal potential accelerating with
arbitrary but slow acceleration. Cary’s result is stated in
terms of a parameter h0, which is defined as the particle
energy at the coordinate of the separatrix X-point at the part
of the trajectory nearest the separatrix crossing, calculated in
the reference frame where the X-point is stationary. In terms
of �t, h0=�0�cos �t+
�2�+�t�−1���0�
�2�+�t�−�t

2 /2�.
Plugging in the values for h0 and all other appropriate pa-
rameters, it is found that similar to the peak resonant impulse
calculated here, which is a different physical quantity than
�p̄, the change in average velocity �x̄̇= ��0 /m�1/2�−8 /�
+O�� ln ���, with �=h0 /�0�
 to lowest order in 
. The
zeroth order change matches the prediction from the bucket
displacement picture, Eq. �7�, while the next order terms
demonstrate a similar kind of logarithmic scaling as the cal-
culation of the peak resonant impulse in Eq. �11�. It is true
that the ac-dc correspondence could be fully predicted by the
complex and more general separatrix crossing calculations of
Cary, Chirikov, and Neishtadt,26–28 and so the calculation of
the peak resonant impulse in Sec. II is included to demon-
strate the dc limit in a more transparent manner for a simple
but still very illuminating scenario.

Thus the ac-dc correspondence shown in this paper is
robust and does not necessarily require potentials with fixed
amplitude and constant acceleration. For instance, if the am-
plitude of the wave were held fixed and the phase velocity
were varied monotonically, then a dc-like impulse still would
be imparted to the distribution as the slowness parameter
governing the rate of phase velocity modulation became in-
finitely small. If the amplitude were allowed to vary adiabati-
cally, then some degree of compression and expansion of the
distribution could occur as different parts of the distribution
experience varying resonant interactions. However, the end
result would still be an adiabatically displaced bulk distribu-
tion, perhaps stretched or compressed in velocity space, with
tendrils of highly resonant phase space disappearing as the
change in the time-varying parameters in the Hamiltonian
becomes infinitely slow.

Other periodic potential configurations, such as an infi-
nite train of widely spaced Gaussian wave packets, similarly
result in the dc limit as long as the periodic structure is

accelerated adiabatically. This result suggests that a viable
current drive scheme does not necessarily require an infinite
sinusoidal beat wave or optical lattice; rather, an identical
effect could be achieved using a series of pulsed, accelerat-
ing wave packets, each with some well-localized pondero-
motive interaction range much smaller than the spacing be-
tween adjacent wave packet centroids.

IV. IMPORTANCE OF THE EFFECTIVE dc LIMIT

In acting like a dc field, the packets of ac fields acquire
key properties of the dc field. For example, an important
property of a dc electric field is that it accelerates all particles
with uniform force regardless of the particle velocity. Be-
cause of this key property, the dc electric field can extract
energy from particles that it slows down. This makes the dc
field a very efficient generator of electric current; although it
takes field energy to accelerate electrons to higher velocity,
the energy flow is the opposite for electrons that are decel-
erated. In contrast, in wave-based acceleration schemes for
producing current, which are based on wave-particle diffu-
sion, the efficiency of current drive tends to be less to the
extent that current is only produced as waves diffuse par-
ticles to higher energy.29 If waves can only diffuse particles
to higher energy, the opportunity to drive current by losing
energy to the fields is absent, thereby diminishing the current
drive efficiency.

There is an exception to this rule, but only a minor one:
waves can diffuse particles to lower energy, but only when a
population inversion exists along the diffusion path, such as
in the presence of a density gradient.30 However, such a situ-
ation requires not only density gradients, but also wave-
particle diffusion paths that can exploit that gradient. There-
fore, in general, the current drive efficiency by waves tends
to be smaller than by a dc field.

To be specific, the total efficiency of generating current
can be put as the ratio of the current generated to the power
needed, J / Prf. The power needed is just the rf power dissi-
pated in the plasma, if all of the ac power is used. In general,
however, there will be inefficiency in the use of this power,
since some of this power will not be dissipated in the plasma
and may not be easily recaptured and reused, which is dis-
cussed further below. Thus, defining the efficiency of gener-
ating current in terms of the ratio of the induced current
density to the power dissipated in the plasma, J / PD, then the
total efficiency of the accelerating waves can be written as

J

Prf
= �

J

PD
, �14�

where �
 PD / Prf. Assuming dc-like displacement of the en-
tire distribution such that the induced current density
J=ne�v, the fields driving the acceleration relinquish energy
��Ufield�=nm��v�2 /2 to the particles. Assuming an average
90° collisional frequency ��v���c, the cost in power dissi-
pated in the plasma in order to maintain the current is ap-
proximately PD��c��Ufield�. If the ratio J / PD=2e /�cm�v

1 /Eeff, or in other words an effective dc electric field is
defined, then J=�SpEeff, where �Sp=2ne2 /�cm is just the
Spitzer conductivity. This result leads to the expression
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J

PD
=

�Sp

J
. �15�

Thus the important conclusion is reached that for small cur-
rent density, the efficiency scales inversely with J, making it
much more efficient as J→0 than conventional rf tech-
niques, where the efficiency does not vary with J. Collisional
dissipation during a sweep through resonance is neglected, as
it is assumed the sweeping occurs on a time scale �t
�1 /�c. Since the oscillatory energy 
osc is of the same order
as the energy 
 f acquired by the particle following a full
sweep, cf. Fig. 1, the constraint on �t ensures that the rate of
dissipation of oscillatory energy 
osc�c�t�
 f. The value of �
in Eq. �14� depends on the specific implementation of the rf
power and is strongly affected, for instance, by the ability to
recirculate and reuse power that is not dissipated in the
plasma on the first pass. The calculation of � is beyond the
scope of the present work, but the optimization of the com-
ponent of the efficiency going like J / PD is clear nonetheless.

In addition to the exchange of energy between the po-
tential packets and the particles, there could also then be an
exchange of energy between the packets or a redshifting of
the packets when the particles gain energy. From the stand-
point of entropy production, the energy remaining in the
packet can be fully convertible to do useful work, but the
practical implementation of that conversion needs to be ad-
dressed. The calculation of � in Eq. �14� will also depend on
these effects.

Making up in part for the inability of waves to produce
current by extracting energy from countercurrent going elec-
trons is the ability of waves to target specific populations of
charged particles through wave-particle resonance condi-
tions. For example, the ability to target specific populations
allows waves to interact selectively with electrons or with
one species of ions of a specific energy. Thus, the lower-
hybrid current drive efficiencies31 or the electron cyclotron
current drive efficiencies32 can be quite high by selective
acceleration of low-collisionality electrons, namely, super-
thermal electrons. Nonetheless, while rf current drive
schemes can be optimized by means of resonance conditions
to have high efficiency, they still produce efficiencies not
quite as high, in general, as for the Ohmic current drive
obtained by a dc electric field, specifically in the limit as
J→0, considering Eq. �15�.

This feature of species discrimination by waves is nota-
bly retained even as energy discrimination is importantly
lost. Referring to Eq. �9�, note that 
�m, and so while 

might be very small for electrons, ions encountering the
same waveform might see a much larger 
. Although the
analysis above focused mainly on the case of small 
, nu-
merical simulations have demonstrated that as 
 becomes of
order one, the time-asymptotic impulse becomes highly sen-
sitive to initial conditions, and as 
 gets much larger than
one, the impulse delivered to a particle becomes negligible.

Furthermore, the potential given in Eq. �1� can have an
implicit mass dependency. In the absence of a magnetic field,
the ponderomotive potential is given by

�P =
e2�E0�2

4m�2 �16�

for an electric field with amplitude E0 and characteristic fre-
quency �.33 The inverse mass dependence of the magnitude
of �P suggests that electrons will experience a much stron-
ger interaction with the optical lattice than the ion popula-
tions. However, in the presence of an approximately uniform,
static magnetic field, the ponderomotive potential becomes

�P = �
�

e2�E��2

4m��� − ���
, �17�

where the sum is over the values �= �1,0, with �= �1
corresponding to the left- and right-hand circularly polarized
transverse electric field components, respectively, and �=0
corresponding to the longitudinal electric field component.23

In the case of longitudinal current drive, the dynamics is still
approximately one-dimensional and the equation of motion
used in Sec. II is unchanged. The presence of a resonant
denominator in Eq. �17� suggests that it is possible in prin-
ciple to calibrate � near some �s for a particular species s,
ion or electron, such that s experiences a much larger re-
sponse than all other species, allowing for the possibility of
driving a single species in a dc-like manner while leaving all
other populations virtually unchanged. However, Eq. �17�
presumes the driven particle is far enough out of resonance
for adiabatic analysis to hold; as the singularity at resonance
is approached the particle dynamics becomes nonadiabatic,
and the form of the ponderomotive potential changes,34 so
the strength of �P cannot be increased without limit.

Thus, while the dc-like acceleration mechanism might
not be able to target a specific part of a particle distribution,
it can in principle discriminate between distributions corre-
sponding to different particle species. Note also that the driv-
ing of one species is accomplished without increase in en-
tropy of the driven species, as with a dc field, compared with
ponderomotive one-way wall effects, which do increase the
particle entropy.35

However, even as the acceleration may be efficient, gen-
erating current through rf fields still retains the advantages of
ac-like acceleration over acceleration with dc electric fields.
Most importantly, a dc electric field driving a toroidal current
has a nonvanishing curl, so there is necessarily a monotoni-
cally time-varying magnetic field, which means that the cur-
rent cannot be sustained in a purely steady state. This restric-
tion does not apply to rf waves, which can generate purely
steady state currents, thus enabling, for example, purely
steady state tokamak reactors producing nuclear fusion.

Note that the dc-like acceleration could be cycled indefi-
nitely, allowing a distribution to be repeatedly kicked in the
current-going direction. Multiple cycles within an electron
collisional time could ramp up the current to incrementally
higher levels without distorting the shape of the underlying
distribution; thus, an initially Maxwellian distribution would
remain a shifted Maxwellian, with all of the damped wave
energy going into directed, and not thermal, motion. Even as
different parts of the accelerated distribution relax collision-
ally at different rates, the amount of current generated by
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each successive pulse remains constant, proportional only to
the overall electron density, Jtot�ene�ẋ, with �ẋ fixed.
Diffusion-based ac acceleration schemes would instead bear
some proportionality to density and/or velocity-space gradi-
ents of the distribution, which are quantities that would not
remain constant during collisional relaxation. One potential
issue that could arise from the constancy of each successive
impulse is the production of runaway populations in the high
energy tail of an electron distribution, since relaxation rates
are proportional to 1 /v3, but such effects could be mitigated
simply by reducing the number of cycles per collisional time.

Waves can also be brought to bear on a plasma through
different technological means than can dc fields, with a com-
pact or remote apparatus, which is a technological advan-
tage. Thus, the possibility of using waves, which are not
restricted to pulsed operation and utilize different power
technology, to mimic the effects of dc fields could be, in
principle, of considerable practical interest. There might be
an opportunity to capitalize both on the high efficiency of
dc-driven currents and the advantages of wave generation
technology.

It is also curious that an exchange of wave packets mim-
ics in this limit the effect of a dc field. Note that the wave
packets forming the optical lattice behave in some ways like
particles. These packets are localized and conserve photons
�or the generalization of photons in the plasma medium�.
Thus, it takes counterpropagating wave packets to produce
what acts essentially as a force field, at least in the limit
identified here. It is worth noting that there is a structural
resemblance between the use of packets to mediate fields
here and say other particle exchanges that mediate force
fields in quantum field theory.

V. CONCLUSIONS

What is shown here is that waves can induce populations
of charged particles to behave like they do in dc fields, but
only in certain limiting cases of slowly accelerating coherent
wave structures. Moreover, the phase space conservation is
very different on a fine scale, and only in an averaged sense
do the two effects coincide. However, in the limit of slowly
accelerating waves, the portion of phase space not obeying
dc-like behavior becomes vanishingly small.

The bucket model for an adiabatically accelerating sinu-
soidal potential predicts that the resonant interaction with a
waterbag distribution essentially displaces the boundaries of
the distribution an equal amount in velocity space in order to
accommodate the empty volume moved through the distribu-
tion by the time-asymptotically unfilled bound states of the
system. This effect is confirmed by a more rigorous analysis
of the peak resonant impulse delivered to particles through-
out phase space, which shows that the parts of the distribu-
tion that are highly resonant with the wave and deviate sub-
stantially from the prediction established by the adiabatic
jump condition disappear in the limit of slow acceleration. If
the wave phase velocity is accelerated infinitely slowly, the
time-asymptotic effect of the wave on the whole distribution
scales exactly like the bucket displacement model predicts
and is, in fact, indistinguishable from the effect of a uniform

dc field applied for a finite period of time. Previous works
indicate that this effect is very robust and not simply limited
to potentials accelerated at a constant rate.26–28

The utility of ac fields for dc-like acceleration is that it
can retain important features of wave-based methods for cur-
rent drive and particle acceleration as well as important fea-
tures of dc-field acceleration. The adiabatically accelerated
wave method was noted to have the potential to exhibit near
dc-like efficiency, since the wave both gives energy to par-
ticles going in the desired direction and takes energy from
particles traveling in the other direction, exactly as a momen-
tarily applied dc field would do. Additionally, this dc-like
acceleration mechanism does not heat the distribution, allow-
ing all expended wave energy to be applied to directed, and
not thermal, motion. At the same time, there are opportuni-
ties for species selection, wave penetration, and quasisteady
state operation with no loss of current production over many
successive cycles.

Insofar as dissipation in the plasma is concerned, the
high efficiency in accelerating a particle distribution during
one cycle lends itself to sustained high efficiencies over
many cycles. However, the full energy efficiency depends on
whether the energy retrieved by the wave components of the
accelerating potential from the parts of the particle distribu-
tion that slow down can be recycled in such a way as to
make use of that recovered energy. The energy recovery will
depend on the specific implementation of accelerating wave
potentials.

Finally, it is an objective of this work to draw attention
to the purely academic interest that such a correspondence
between ac and dc fields could exist at all. Particularly in
view of the natural implementation of this effect through
counterpropagating wave packets, there appears to be more
than a casual similarity to quantum field theory, where fun-
damental forces between particles can be described in terms
of static force fields and exchanges of force carriers between
the particles.
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APPENDIX: CALCULATION OF PEAK
RESONANCE IMPULSE

The expression for �ẋ��t� shown in Eq. �11� can be de-
rived as follows. Consider a general accelerating one-
dimensional potential of the form ��x−��t��, with � an ar-
bitrary function of time. An ideal reference frame in which to
perform analysis would be the noninertial rest frame of the
potential, whose coordinate is defined by s
x−��t�. In this
coordinate system, the equation of motion becomes
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mẍ = m�s̈ + �̈� = −
��

�x
= −

��

�s
. �A1�

A conserved quasienergy E can be identified by multiplying
Eq. �A1� by ṡ,

d

dt
�1

2
mṡ2 + ��s� + m�̈s� 


dE

dt
= ms�� . �A2�

The term on the right-hand side of Eq. �A2� can be thought
of as a driving term for the quasienergy, but in the case of a
potential accelerating at the constant rate a, i.e., ��t�= 1

2at2

+v0t+x0, the quasienergy is conserved, since �� =0. Thus, the
dynamics arising from the accelerating potential is taken into
account by the introduction of an additional linear potential

m�̈s=mas into the quasienergy in the frame of reference
moving with the potential.

The impulse delivered to a classical particle by an accel-
erating potential is calculated as

�ẋ = �
ti

tf

ẍdt

= �
ti

tf

�s̈ + �̈�dt

= �
ti

tf

s̈dt + �
si

sf �̈

ṡ
ds = ṡ�tf� − ṡ�ti� + a�

si

sf ds

ṡ
,

where the coordinate representation s
x− �1 /2at2+v0t+x0�
is used for the constant acceleration case. s�ti�
si and s�tf�

sf are both defined. In this reference frame, the quasien-
ergy defined in Eq. �A2� is conserved, and so if ṡ�ti�
= ṡ�s�ti��
 ṡi is specified by an initial condition, ṡ�tf�
= ṡ�s�tf��
 ṡ f can be determined immediately. To simplify
notation, the quantity � is defined as

� 
 �
si

sf ds

ṡ
+

1

a
�ṡ f − ṡi� �A3�

with

ṡ = � 2

m
�E − ��s� − mas��1/2

,

and E is the conserved quasienergy in the noninertial frame
of reference. According to this definition,

�ẋ = a� . �A4�

Time asymptotic impulses can be calculated by setting one
bound of the integral at the classical turning point in the
quasipotential and the other at the infinity toward which the
potential becomes increasingly negative, due to the presence
of the extra linear term, and multiplying the result by 2. This
corresponds to the scenario where the wave starts with an
infinite phase velocity in one direction and accelerates until it
has an infinite phase velocity in the opposite direction.

Assuming 
�0, the time-asymptotic �-integral for a par-
ticle in the quasipotential f���, defined in Eq. �8�, is given by

�� = 2��
−�

�t d�

�̇
−

��̇−��
ka �

= 21/2�
−�

�t d�

�E − f����1/2 −
2��̇−��

ka
�A5�

with

�̇ = �2�E − f�����1/2. �A6�

Note that �t signifies the phase of the classical turning point
of the particle in the quasipotential, which itself depends on
the relationship between the particle quasienergy E, �̃, and 
.
This form of �� is justified by the observation from Eq. �A3�
that the “uphill” and “downhill” components of �� will be
symmetric and of the same sign. The integral in Eq. �A5�
corresponds to the amount of time it takes the particle to
move from minus infinity to the turning point or vice versa,
and ��̇−�� corresponds to the particle speed at minus infinity,
all in the rest frame of the wave. This is an inconvenient
form for ��, because the difference between two infinite
quantities must be calculated to get a finite result. However,
numerical simulations of particles interacting with an accel-
erating potential have shown that the majority of the net
impulse delivered to the particle occurs during the peak fluc-
tuation as the particle passes through exact wave-particle
resonance; cf. Fig. 1. The particle is in exact resonance with
the wave when it is traveling at the same instantaneous ve-
locity as the wave, which corresponds to when the particle is
at the classical turning point in the quasipotential picture.

Now postulate that the salient features of the time-
asymptotic wave-particle interaction will be demonstrated in
the peak resonant impulse delivered to the particle during the
strongest part of the resonant interaction, i.e., the largest
fluctuation depicted in Fig. 1. The most significant variations
in the outcomes of different interactions should be deter-
mined by the particle dynamics very near the turning point in
the quasipotential during this peak resonant fluctuation. On
the other hand, the remainder of the interaction far from the
turning point should not be strongly sensitive to the exact
energy of the particle and could be time averaged. The peak
resonant impulse can be calculated with the �-integral

�p = 2��
�min

�t d�

�̇
−

�̇��min�
ka 	 , �A7�

where �min is the local minimum of f��� nearest the turning
point, cf. Fig. 6. Specifically, looking ahead to Eq. �A8�, for
interval of validity Dm, �min=2�m−sin−1 
−�.

�p is calculated for the accelerating sinusoidal quasipo-
tential in Eq. �10� as follows. In order that a second order
expansion of the cosine term in f��� will provide sufficient
accuracy over the whole integration range, the integration
can be split into two separate parts,

�p = 2���
�min

��

+ �
��

�t �d�

�̇
−

�̇��min�

�̃

	 ,

where ��= ��t+�min� /2 and ka= �̃
. Now expand f��� to
second order in � about �min for the first integral and about
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�t for the second integral. Define new integration variables
x
�t−� and y
�−�min, at which point

�p � 2��
0

���t� dy

�2�f��t� − f��min�� − f���min�y2�1/2

+ �
0

���t� dx

�2f���t�x − f���t�x2�1/2 −
�̇��min�

�̃

� ,

where ���t�
��t−�min� /2 and E= f��t� was used. The
equation for �p above is general for arbitrary quasipotential
f��� and possesses an exact analytical solution that yields �p

as a function of the classical turning point �t. This form for
�p leads to the expression for �ẋ��t� found in Eq. �11� for the
sinusoidal quasipotential in Eq. �10�.

The domain of validity D of this expression for �p can
be extended over a countably infinite number of discontinu-
ous intervals in �, due to the fact that a particle must ener-
getically climb higher up a wave crest in the quasipotential
than the local maximum of the adjacent, lower wave crest in
order for that point to represent a valid turning point; other-
wise, the particle would have turned on the previous wave
crest instead. Figure 6 illustrates this concept. An arbitrary
interval of the domain of validity is calculated to be approxi-
mately

Dm = �2�m + �
 − �
2 + 2�1 − 
1 − 
2

+ 
�2� − arcsin 
���1/2�,arcsin 
 + 2�m� , �A8�

with m any integer; for instance, the representation given in
Eq. �11� is valid over the domain D0. The limit where the
wave acceleration approaches zero is of particular interest,
i.e., 
→0. Referring to Eq. �A8�, the interval D0 goes like

D0 � �
 − �4�
�1/2,
� . �A9�

Using Eqs. �A4� and �9�, �ẋp becomes

�ẋp = a�p =

�̃

k
�p. �A10�

Since Eq. �A9� states that over the valid domain for Eq.
�A10�, the value of �t�1, Eq. �11� can be expanded for
small 
 and small �t, and this leads eventually to the form of
�ẋ��t� shown in Eq. �12�.

Figure 7 illustrates the behavior of �ẋp��t�=a�p��t� over
three orders of magnitude in 
. The right limit of the domain
marks the location of �crit, the point of unstable equilibrium
in the quasipotential. Note that while the singularity in the
impulse is pronounced for 
=10−1, its presence is limited to
an almost trivial fraction of the domain when 
=10−3, so
small that it would not plot and had to be represented graphi-
cally using manual input of a vertical line at �crit. On the
other hand, the “bulk” behavior makes a smooth transition to
a nearly flat, adiabatic response as 
 is decreased.

FIG. 6. Example interval of domain of validity D1 for Eq. �11�, correspond-
ing to m=1 in Eq. �A8�.
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FIG. 7. Analytic approximation for �ẋ���=a�p��� �solid line, cf. Eqs. �A4�
and �11�� plotted against the quasipotential f��� �dashed line, cf. Eq. �10��
over the domain corresponding to m=0 in Eq. �A8� for �a� 
=10−1 and
�b� 
=10−3. Limits �min and �max are traced out by dotted lines.
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