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1 Introduction

This is the final report for the research project,

“A Posteriori Analysis of Interface Effects in the Discretization of Multi-
Scaled and Multi-Physics Problems by Decomposition Techniques,” Office of
Science, Department of Energy, $940,972, 2004-2008, ending October 30,
2009.

1.1 Fundamental issues arising in multiscale, multiphysics models

This project was concerned with the solution of multiphysics, multiscale systems that couple dif-
ferent physical processes acting across a large range of scales relevant to the interests of the DOE.
Multiscale, multiphysics models are characterized by intimate interactions between different physics
across a wide range of scales. This poses significant computational challenges, e.g.

Accurate and efficient computation Computing information that depends on solution behav-
ior occurring at very different scales is problematic. It is rarely possible to simply use a
discretization sufficiently fine to resolve the finest scale behavior.

Complex stability A multiphysics problem generally offers a complex stability picture that re-
sults from a fusion of the stability properties of different physics, for example, consider a
reacting fluid that combines fluid flow with the dynamical properties of reaction-diffusion
equations.

Linking different physics Understanding the significance of linkages between physical compo-
nents and how those affect model output is another complicated issue. In many situations, the
output of one physical component must be transformed and/or scaled to obtain information
relevant to the other components.

1.2 Multiscale operator decomposition

The research in this project focussed on Multiscale Operator Decomposition (MOD) methods
for solving multiphysics problems. The general approach is to decompose a multiphysics problem
into components involving simpler physics over a relatively limited range of scales, and then to seek
the solution of the entire system through some sort of iterative procedure involving solutions of the
individual components. This approach is appealing for several reasons;

e Many multiphysics models are built component-by-component, and the level of physical un-
derstanding and detail often varies enormously between components,

e It provides a way to accommodate multiple scales and multiple discretization methods in one
problem,

e [t provides a way to seamlessly combine multiple levels of description of physical phenomena,

e There is generally a good understanding of how to solve a broad spectrum of single physics
problems accurately and efficiently, especially on high performance platforms,

e [t provides a way to utilize the enormous investment in code developed for single physics
problems.



MOD is a very widely used technique for solving multiphysics, multiscale problems; it is heavily
used throughout the DOE computational landscape.

Example 1.2.1 A classic example of MOD is operator splitting for a reaction-diffusion equation,

0

S = V- (ale,u)Vu) + flz,u), we0<t,

sustable boundary conditions, x € 00,0 <t, (1)
u('a 0) = UO()

where a and f are smooth functions with a(-,-) > ag > 0 and Q C R? is a spatial domain. The
generic picture is a relatively fast, destabilizing reaction component interacting with a relatively slow,
stabilizing diffusion component. Accuracy considerations dictate the use of relatively small steps to
integrate the reaction component. On the other hand, stability considerations over moderate to long
time intervals suggests the use of implicit, dissipative numerical methods for integrating diffusion
problems. Such methods are expensive to use per step, but relatively large steps can be used on a
purely dissipative problem. If the reaction and diffusion components are integrated together, then
the small steps required for accurate resolution of the reaction lead to an expensive computation. In
a high performance setting, operator decomposition means that the reaction solves are completely
local.

If we discretize in space using a continuous, piecewise linear finite element method with M
elements, we obtain the initial value problem: find y € RM such that

{yzAmw+F@u» 0<t<T, @

y(0) = yo,

where A is an I X1 constant matriz representing a “diffusion component” and F(y) = (F1(y), Fa(y),
, Fl(y))T is a vector of nonlinear functions representing a “reaction component”.
We first discretize [0,T] into 0 = tg < t1 < ty < --- < ty = T with diffusion time steps
{Atn}ﬁll, Aty =ty —th—1, and At = max;<,<n(At,). We define a piecewise continuous approz-
imate solution §(t) with nodal values {§,} obtained from the procedure described in Alg. 1.

Algorithm 1 Operator Decomposition for Reaction-Diffusion Equations
Set 9o = yo
forn=1,--- ,N do
Compute y"(t,,) satisfying the reaction component

") = g 3)

Yn—
Compute y¢(t;) satisfying the diffusion component

{y = (y()) tyog <1< t,
)=

gl = Ayd(t), tn1 <t <ty
yd(t:{—l) =y"(t,)

Set n = y?(t;,)
end for




This algorithm has the potential to be a multiscale solution procedure since we can now resolve
the solution of each component on independent scales. We consider the time steps introduced
above, {Atn}N to be diffusion time steps. For each diffusion step, we choose a (small) time step

n=1’
Asy, = Aty /My, with As = maxij<,<n Asy, and the nodes t,—1 = sop < sS10 < -+ < SMpn = tn
(see Fig. 1). We associate the time intervals I, = [tp—1,tn] and Iy pn = [Sm—1n, Sm,n] with these

discretizations. In practice, it is not uncommon to use reaction steps significantly smaller (e.g.
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Figure 1: Left: Discretization of time used for MOD. Right: Plots of the approximation Y and
the true solution for Ex. 1.2.2. The nodal values of Y are denoted by the larger points while the
smaller points denote node values of the reaction component Y.

factor of 1075) than the diffusion steps. We use a numerical scheme of order q, to solve the
reaction component (3) on each diffusion interval using steps As,, then use a numerical scheme
of order qq to solve the diffusion component 4) using step At,. We let ?(t) denote the piecewise
continuous, linear approzimation of the MOD solution that joins the nodal values Y. Adapting
standard convergence analysis techniques, we can show that if f is Lipschitz continuous, on a fized
time interval, there are constants C1,Co, C3 such that,

|yN — Y/N| < C1At + Co At + C3As7.
If we use a higher order splitting method, the first term on the right is O(At?).

Moving past this example, we use “multiscale operator decomposition” to denote a very general
class of discretization methodologies for coupled physics problems. Computational procedures
including

e Solving a coupled physics problems using different discretization methods and discretization
scales for the different components,

e Incomplete iteration and the use of approximate Jacobians in nonlinear and fully implicit
methods,

e Processing solution information from one component for use in other components,

are all procedures that may seriously affect both error and stability in similar ways, and, viewed in
this way, are examples of MOD.

The ability to use different discretization methods and scales for different components is a key
benefit of MOD. It allows for truly efficient solution of complex problems. Unfortunately, MOD
can have unforseen effects on both accuracy and stability of solutions. The reason is that we have
discretized the instantaneous interaction between the different physical components.



Example 1.2.2 We consider a problem in which the reaction component exhibits finite time blow
up when undamped by the diffusion component. The problem is

y+dy =y, >0, A
{ = y(t) < oAt for A # 0. (5)

y(0) = yo € R, Cyo—(yo—A)

The exact solution exists for all time and tends to zero ast — oo when A > yg. On the other hand,
there is finite time blow up, e.g. y — oo at a finite time, if X < yq.

Applying MOD to (5), the solutions of the two components and the MOD solution are,
e_AAtngnfl
1- A7er gnfl ’

d—
Yn—1

_ d _ 7}\(t7tn,1) r— ~
- _ ’ Yy (t) =€ Y ) Yn =
1 *yZ—l(t*tnfl) "

y" (1)

when the reaction component is defined. We see that decoupling the smoothing effect provided by
instantaneous interaction with the diffusion component means that the reaction component can blow
up in finite time. This affects the numerical solution.

We solve the components (3), (4) using the forward and backward Euler method respectively,

YT’;L,n = YT;’L—l,n + f( 7"’;L—l,n) Asn’ Ydr: = Yd'r:—l + AYd'r: Atn
We compute a piecewise linear discrete approzimation Y using the nodal values of Y.

In Fig. 1, we show the results obtained for a sequence of numerical solutions with increasing
diffusion steps and correspondingly an increase in the number of reaction steps per diffusion step.
With one reaction step per diffusion step, we obtain reasonable accuracy. As we increase the scale
differences in the integration of the components, the effects of MOD become increasingly important,
eventually to the point of ruining convergence altogether.

Note that we are not advocating the use of operator splitting for reaction-diffusion equations.
Our point of view is that because splitting is frequently used in DOE-related computations, it is
important to conduct an analysis of its effects. In general, we emphasize that the error in this
example is just one example of the kinds of instability that can be introduced by MOD and we
show below that MOD commonly affects both accuracy and stability in a wide variety of contexts.
Given the benefits and dangers of MOD, our assertion is that

It is absolutely essential to quantify the effects on accuracy and stability in-
troduced by multiscale operator decomposition solution of multiphysics prob-
lems.

2 Progress Report on Current Project

After briefly describing a posteriori error estimation using adjoint operators and variational analysis,
we present three examples of MOD solution of multiphysics problems and the related a posteriori
error analysis. These three examples (all three are papers in SINUM [7, 2, 17]) represent a major
advance in the analysis of the solution of multiscale, multiphysics problems. Together, these three
examples set the general picture for the proposed research project.

We then give a brief survey of the results obtained in the current project, the people involved,
and the ways in which the project team contributed to the DOE mission.



2.1 A posteriori analysis using adjoint operators

The proposed research relies on a posterior: analysis involving computable residuals to measure
local introduction of error and the generalized Green’s function solving the adjoint problem that
measure the global effects of accumulation and propagation of error on a quantity of interest.
Duality and adjoint operators have a long history in the analysis of models. Applying these tools
to error estimation was originally pioneered by Estep, Johnson and collaborators .

We describe the ideas formally. We assume that the goal is to compute a quantity of interest
(z,7) from the solution x of a linear system Ax = b, where 1 is a specified data vector, A is
an invertible operator, and b is given data. If X ~ z denotes an approximate solution, then the
unknown error is e = X — z and the residual is R = AX —b. Since the residual of the true solution
is zero, the error is related to the residual by the perturbation relation

Ae = R. (6)
The generalized Green’s vector ¢ satisfies the dual or adjoint problem
AT =1 (7)
A variational argument shows that
e-p=ec-A'p=Ae-¢p=R- .
This gives the a posteriori error estimate on a projection of the error

le- Pl =|R-g|. (8)

The generalized Green’s vector ¢ provides quantitative information on relevant stability prop-
erties of the computed information obtained from the solution. To use (8), we numerically approx-
imate the generalized Green’s function, which yields extremely accurate estimates in general.

The analysis for nonlinear problems is more complicated because there is not a unique definition
of an adjoint operator. The most useful definition depends on the goal of the analysis and the
properties of the operators involved. There is a standard approach that is useful under certain
limitations. Suppose the problem is f(z) = b, so that the perturbation relation for the approximate
solution X = z is

f(X) = f(@) = R= f(X) =0 (9)

We use the integral mean value theorem to write the perturbation relation as

1
Ae—/ f(sX+(1—s)x)dse= f(X)— f(x) =R,
0

where f’ is the Frechet derivative of f. Introducing the linear adjoint problem associated to the
average derivative A, the analysis proceeds as above. In practice, under the assumption that the
error is small, A is replaced by f'(X).

We briefly describe the a posteriori estimate for the continuous Galerkin space-time finite
element method for a nonlinear reaction-diffusion equation,

4 — V- (a(u,x,t)Vu) = f(u,z,t) (10)

with homogeneous Dirichlet boundary conditions and suitable initial conditions. We emphasize



Our approach is to analyze the specific numerical methods used by our en-
gineering and scientific collaborators in universities, national laboratories,
and industry working on DOE-related projects.

We generally represent these numerical methods in the finite element-variational analysis framework
so that we can apply tools such as adjoint operators. But, the analysis is altered specifically to
treat the methods used in practice.

The time axis is partitioned ¢ty < t1 < to < --- with intervals I,, = [t,,—1,%,]. On each interval,
the space domain is triangulated by 7, in the usual way. The approximation U is a continuous
piecewise linear polynomial in time with coefficients in the space of continuous piecewise linear
functions V;, associated to 7,,. On each interval, U solves

/ (U, W)dt +/ (a(U)VU,VW)dt = / (f(U),W)dt, (11)
I, In I,

for all W € V,,, where ( , ) denotes the Ly inner product in space. The data at t,_; is the
last value of U from the previous interval projected on the new mesh. With appropriate choices
of quadrature to evaluate the integrals in (11) on a uniform mesh in two dimensional space, this
method is equivalent to the standard finite difference scheme using the trapezoidal difference method
in time and five point stencil difference method in space.

The generalized Green’s function solves the adjoint problem corresponding to data 1,

—p—V-eVo+B-Vo=fh, t,>t>0, (12)
¢(tn) =1,
where we have linearized € = fol e(us+U(1—3))ds, = fol €(us+U(1—s))V(us+U(1—s))ds, and
f= fol f'(us +U(1 — s))ds. In this case, the boundary conditions are the same as for the original
problem. Carrying out a straightforward variational analysis, entirely analogous to the standard
analysis for a Green’s function, yields the error representation formula,

(e(tn)y ) = Y (U, 7P¢ — ) + (e(U)VU,V(7Pd — ¢)) — (f(U),7Pd — ¢)) dt,  (13)

m=1"tm-1

where P and 7 denote projections into the space and time finite element spaces respectively. We
can use (13) directly to compute accurate error estimates. This involves computing an approximate
solution of the adjoint problem formed typically by linearizing around the computed solution. We
can also further manipulate (13) to get an estimate more suitable for adaptive error control in
which different sources of error are distinguished.

2.1.1 Computing the information that is desired and needed

A fundamental aspect of this analytic approach is the focus on the precise information, or quantity
of interest, that is to be computed in the model. This includes both the overall quantities to be
obtained from the model as well as auxiliary information that are passed between components of a
multiphysics problem.

The sensitivity of particular information obtained from a solution of a dif-
ferential equation can be much different than the the sensitivity of the solu-
tion as a whole, i.e. in some global norm.



Goal-oriented a posteriori error estimates can translate to a tremendous gain in computational
efficiency. This is a particularly important consideration in multiscale, multiphysics problems
in which it may be computationally infeasible to obtain solutions that are accurate uniformly
everywhere in space-time.

Example 2.1.1 To illustrate, we consider the chaotic Lorenz problem,

’lll = —10U1 + 10U2,
o = 28u] — ug — ujug, 0<t, (14)

U3 = —%u;; + uiusg.

Nearly all solutions exhibit the same qualitative behavior. There are two non-zero steady state
solutions and a generic solution is either “orbiting” one of these solutions or transitioning between
orbits, see Fig. 2. Chaos is often described as “sensitivity to initial conditions”, which means that
solutions that begin close by to each other eventually move apart.

The chaotic behavior affects numerical solutions as well, see Fig. 2. The pointwise numerical
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Figure 2: Left: Two numerical approximations of the same Lorenz solution with different accu-
racies. Middle: The pointwise difference between the numerical solutions. Right: The pointwise
error/estimate ratios for each component versus time at many time points for the inaccurate solu-
tion.

error follows an increasing trend, but actually decreases during some short periods of time. Typical
convergence analysis does not take into account the potential cancellation of error and changing
stability of a solution, hence tends to greatly overestimate the actual error. Using the a posteriori
error estimation techniques described above, we can compute robustly accurate estimates of the error
i specific quantities of interest. In Fig. 2, we demonstrate the accuracy of the a posteriori error
estimate.

A little reflection suggests considering the pointwise behavior of Lorenz solutions is not physi-
cally motivated. Originally derived to explain the unpredictability of the weather, the Lorenz problem
is certainly not a pointwise model! Rather, it is more reasonable to consider a quantity of interest
that better represents qualitative behavior of all solutions.

This is important because it turns out that the effect of perturbations depends strongly on
the information being computed. Motivated by the fact that all solutions must remain in a large
neighborhood of the origin, we consider the average distance and its variance from a solution of the
Lorenz problem to the origin. In Fig. 8, we compare results for numerical solutions with a coarse
time step .001 and fine time step .0001 along with results obtained from an ensemble of 100 accurate
solutions computed using time step .0001 for 15 time units. Similar results are obtained over any
time interval checked from 15 to 320. The accuracy of the numerical solution appears to have little
effect on the accuracy of the average distance and its variance.



Coarse Solution | Fine Solution | Ensemble Average
End Time Ave Var Ave  Var Ave Var
320 263 837 263 83.0 263 837
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Figure 3: Left: The quantity of interest is the average distance from the solution to the origin.
Middle: the average distance for solutions with time steps .001 and .0001. Right: Average and
variance of distance for the two solutions and an ensemble average of accurate solutions.

2.1.2 Difficulties with analysis of MOD for nonlinear problems

The underlying assumption in the analysis for nonlinear problems outlined in Sec. 2.1 is that the
residual of the approximate solution is very small, i.e. the approximate solution X is very nearly
a solution of the nonlinear problem. This argument breaks down if the procedure to produce X
involves significant perturbation of the original operator f, e.g. as a consequence of multiscale op-
erator decomposition. One of the main achievements of the current project is to develop techniques
for dealing with this issue.

To give a rough idea of the issues, we consider again the finite dimensional example in Sec. 2.1.
Let = solve

f(z) =1,
and suppose that Z solves a perturbed problem
f(&@) =b. (15)

Such a perturbation might be introduced by a MOD decomposition. We let X ~ Z denote a
computed solution of (15). We have the perturbation relation for the perturbed problem,

FX) = f@) =fX)-b=R,

and we can apply the a posteriori analysis for nonlinear problems in Sec. 2.1 to the perturbed
problem to estimate X — Z. 3
However, we wish to estimate X — x. We can write

f(X) = f(z) = fF(X)—b=R,
but we can no longer apply the integral Mean Value Theorem to linearize the left hand side as we
did above.

2.2 Three examples of analysis of MOD methods

We present MOD solution methods and the analysis for three examples. The examples illustrate
the general approach to analyzing the effects of MOD developed under the current project, as well
as the particular difficulties that must be overcome in specific cases.



2.2.1 Reaction-diffusion problems

A reaction-diffusion-convection problem (1) combines three physical effects, i.e. diffusion, convec-
tion, and reaction, in a single system of equations. MOD is used when these three components are
treated independently in some fashion, e.g. the classic operator splitting algorithm 1.

In Ex. 1.2.2, we present a simple example in which MOD affects the stability. Such effects can
take a myriad of forms.

Example 2.2.1 We illustrate another kind of instability resulting from MOD applied to the Brus-
selator model of chemical dynamics,

%_kl%ﬁg:a—(ﬁ—f—l)ul—l-u%l@, $6(071)7t>07
%—kg%igfzﬁul_u%u% $6(0,1)7t>07

ul(oat) - ul(lat) = aQ, u2(0at) - u2(17t) = 6/0&, >0, (16)

u1(x,0) = uio(x), uz(z,0) = ugo(x) r € (0,1),

where w1 and ug are the concentrations. Solutions exhibit a wide range of behavior depending on
parameter values. Below, we use a = 2, 8 = 5.45, k1 = 0.008, ko = 0.004 and initial conditions
ui(z,0) = a+ 0.1sin(mz) and uz(z,0) = B/a + 0.1sin(wz), which yields an oscillatory, mildly
unstable solution.

Operator Split Solution
L,norm of error

0 02 04 06 08 1
Spatial Location

10” 10
Time Step Size

Figure 4: The lefthand plot illustrates typical instability that can arise from MOD applied to
Brusselator problem. Solution is shown at time 80. On the right, we show plots of the error in the
Lo norm versus time step size at different times.

We discretize in space using a second order finite element method with 500 elements, and apply
a standard first order splitting scheme using the trapezoidal rule for the diffusion with time step
of .2 and backward Euler for the reaction with time step of .004. In Fig. 4, we show a numerical
solution that exhibits nonphysical oscillations that develop after some time. We also show plots of
the error versus time steps at different times, which show there is a critical time step above which
the instability develops. It turns out that refining the space discretization actually makes the error
accumulation worse.

The a posteriori analysis distinguishes the effects of MOD from the effects of numerical dis-
cretization of the components. The numerical error arising in each component can be treated with
the standard a posterior: analysis discussed above applied componentwise. Estimating the error
arising from the MOD requires a new approach.

A main technical issue is the definition of a suitable adjoint problem because the standard
approach used for nonlinear problems described in Sec. 2.1 fails. Indeed, the adjoint operator

10



corresponding to the solution operator for a MOD discretization is typically different than the
adjoint operator associated with the true solution operator. This difference takes the form of
“residuals” between certain adjoint operators associated with the fully coupled problem and the
discretization. A practical difficulty is that solving the adjoint for the fully coupled problem poses
the same multiphysics challenges as solving the original forward problem. We develop a new hybrid
a priori - a posteriori estimate that combines a computable leading order expression obtained using
a posteriori arguments with a provably higher order remainder, see [7].
We begin with the decomposition

Y—y= -9+ G-y, (17)

where y solves (2), § is computed via the abstract operator splitting Alg. 1 and Y is the numerical
counterpart.

The first expression on the right of (17) is the error of Y as a solution of the operator split
problem. This expression can be estimated using the standard a posteriori error analysis. To this
purpose, we let ¢ denote solution of the adjoint associated with the diffusion component (4),

—9d = ATYd(t), t, >t>t, 1,
{W(tn) = Y.
Furthermore, we let 1" denote the solution of the the adjoint associated with the reaction component
(3)7 . A~
=0 = (F'(y", Y") T (t), Smn >t > Sm—1n,
{ﬁr(sm,n) = Yrn

for m = M,,---,1, with "y, , = ﬁd:_l, Y = Uy for m < My, and

1
F'(y",Y") = /0 F'(sy" + (1 —3s)Y")ds.

Thus 9" is continuous across the internal reaction time nodes s, ,, m =1,--- , M,, — 1.

The second expression on the right of (17) is the analytic error of MOD. The nonlinearity
complicates the analysis because we have to use linearization to define unique adjoint problems,
which raises the issue of choosing a trajectory around which to linearize. We cannot use the standard
approach of linearizing the error representation described in Sec. 2.1 because of MOD. Instead, we
assume that both the original problem and the MOD version have a common solution and we
linearize each problem in a neighborhood of this common solution. For example, we assume that
y = 0 is a steady state solution of both problems, which can be achieved by assuming that F'(0) = 0,
and we linearize in a region around 0. In terms of applications to reaction-diffusion problems, there
are mathematical reasons for making the homogeneity assumption and it is satisfied in a great
many applications. However, we can modify the analysis to allow for linearization around any
known common solution.

On time interval (t,—1,t,), we consider the linearized problem,

y=Ayt) +F'(y)y(t), th1 <t <ty
y(tn—l) - yn—17

where

1
P = | Fleyas

11



We note that F'(y)y = F(y) because F(0) = 0. The generalized Green’s function ¢ satisfies the
adjoint problem

{“? = ATo(t) + F'(y) @(t), ta>t >ty , (18)
o(tn) = @(t}),

-
where AT and F'(y) denote the transpose of A and F’(y), respectively. The local adjoint problems
are coupled by the choice of data, resulting in a simple representation of the solution values

(yna ¢n) = (ynfla Qpnfl)) n=12.- N = (yNa '(Z)N) = (yO’ QON)' (19)

We use analogs for (19) for solutions of each component in the MOD discretization. For

n=1,---,N, we define the three adjoint problems. The diffusion problem is simpler because it is
linear,

{_@'d = ATpdt), t,>t>t, 1, (20)

d(p— d
It is convenient to let ®¢ denote the solution operator, so p%(t,_1) = &2,

We require two adjoint problems to treat the reaction component. The difference between the
problems is the function around which they linearized,

. 7~T . 71—

{—so'{ =F'Y) ¢i(t), tn >t 2>t {—sos = P07 (), >t taon g
Pitn) = ¥, ¥a(tn) = v,

where 9], = @fil. If ®](z) denotes the solution operator for the problem linearized around a

function z, then we have ¢/ (t,_1) = ®7 (V) and @h(t, 1) = ®7 (Y ).

Theorem 2.2.1 (Computable a posteriori error estimate) A hybrid a posteriori - a priori
error estimate for the MOD dG finite element method is

N My,
(YN —ynon) =Y Y (/1 (Y7 = F(Y"),0" = TW") dt + (Y |10, 9" 115 — Hﬁr%q,ﬁ)
n=1m=1 m,n

N
+3 </ (Yd — Ay 9% — T19%) dt + ([VY,_q, 0%, — Hﬁd:1)>
n=1 In

+) (Yoo, (Br + Ba)hn) + O(At9T2) + O(At As™ 1),

M=

n=1

where

By = %Atn (ATf(if) - f(if)AT> , F(Y) = /I FI(Y) dt,
By = (,(¥) - @}(Y")) @,

and and qq and q, are the degrees of the methods for the numerical solutions of the diffusion and
reaction components respectively.

12



The first expression on the right is the error introduced by the numerical solution of the
reaction component. Likewise, the second expression on the right is the error introduced by the
numerical solution of the diffusion component. The third expression on the right measures the
effects of MOD. The expression F; is a leading order estimate for the effects of MOD while Es
accounts for issues arising from the differences in linearizing around the global computed solution
as opposed to the solution of the reaction component. Both of these quantities are scaled by the
solution itself. Finally, the higher order terms represent bounds on terms that are not computable
but are higher order. In practice, we neglect those terms when computing an estimate.

Using the estimate requires the solution of five adjoint problems. But we avoid the need to
solve an adjoint problem corresponding to linearization around the true solution by deriving the
hybrid estimate.

Example 2.2.2 The first example is partial differential equation version of Ex. 1.2.2,

9 0.052% =u?, xe(0,1),t>0,
u(0,t) =u(l,t) =0, t>0,
u(z,0) =4z(l —x), x€(0,1).

The solution of the reaction component exhibits finite time blow up when undamped by the diffusion
component. This is perhaps the most extreme form of instability. Table 1 shows the ratio of the
error to the estimate computed at the final time T = 1. We used 20 elements in space. We see that
the estimate is very accurate for a range of time steps.

At | M | Exact Err (%) | Error/Estimate
1] 100 11.07 1.0286
01| 10 1.35 1.0067
.001 1 0.45 1.0020

Table 1: Error estimate for the blow up problem at T' = 1, reaction time step = 1073

Example 2.2.3 We next consider the Brusselator problem (16) with o =2, 8 = 5.45, k1 = 0.008,
ko = 0.004 and initial conditions ui(x,0) = a+0.1sin(mz) and uz(z,0) = f/a+0.1sin(7rz), which
yields an oscillatory solution. In this case, the reaction is very mildly unstable. We note that in
original form, the reaction terms do not satisfy the requirement F(0) = 0 so we linearize around the
steady state solution ¢ with with ¢; = « fori=1,--- N —1 and ¢; = 8/a fori = Ng,- -+ , 2N, — 2,
so that F(c) = 0.

Fig. 5 compares the exact errors computed using At = 0.01 and M = 10 reaction time steps to
the hybrid a posteriori error estimates for a 32 node spatial finite element discretization. We show
results for [0, 2], when the solution is still in a transient stage, and at T = 40 when the solution
has become periodic. All the results show that the exact and estimated errors are in remarkable
agreement.

2.2.2 Systems of elliptic problems coupled through parameters

Another example are systems of elliptic equations coupled through “parameter passing”, in which
the solution of each component equation is used to create parameters for the other component
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equations. Such a system can be written on a domain {2 as

Li(x,ur, Duy, -+ Uy, Duy) =0
: , x € (22)
Ly(x,u1, Duy,- -, up, Duy) =0

A natural form of MOD is to split the global multi-physics problem into n “single-physics” compo-
nents that are solved individually. In general, the solution of each component requires knowledge
of the solutions of all the other components; the full problem requires some form of iteration to
obtain the solution.

Example 2.2.4 Our work is motivated by a model of a MEMS thermal actuator investigated by
engineers at Sandia National Laboratory. A contact rests on thin braces composed of a conducting
material. When a current is passed through the braces, they heat up and consequently expand to
close the contact. The system is modeled by a system of three coupled equations. The first is an
electrostatic current equation

V- (oVuy) =0, (23)
governing potential uy (where the current is J = —oVuy), the second is a steady-state energy
equation

V - (k(u2)Vug) = o(Vuy - Vuy), (24)

for the governing temperature uo, and a linear elasticity equation giving the steady-state displace-
ment us,
V- (A tr(E) 4 2uE — B(us — ugpep)l) =0, E = (Vuz+ Vug)/2. (25)

Using MOD, the complete system (23-25) is decomposed into three components, each of which is
solved with a code specialized to the particular type of physics.

We can capture the essential features of the thermal actuator model using a two component
“triangular” system

-V - a1Vuy + by - Vug + cug = fi(x), T €€,
—V - asVug + by - Vug + coug = fg(:l:, Ui, Dul), r € Q, (26)
up = ug =0, x € 01,
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where a;, b;, ¢;, fi are smooth functions, with ai,as > a > 0 on a bounded domain Q in RY with
boundary 912, and « is a constant. The problems are coupled through fo and the “lower triangular”
form of this system means that we can either solve it as a coupled system or we can solve the first
equation and then use the solution to generate the parameters for the second problem.

The weak form of the first component of (26) reads: find u; € WJ (Q) satisfying

Al(ul,vl) = (alvm,vm) + (b1 . Vul,vl) + (clul,vl) = (fl,vl), for all NS H&(Q), (27)

where H}(Q2) is the subspace of functions in H!({) that are zero on 9. Likewise the weak
formulation of the second component of (26) reads: find us € H} () satisfying

AQ(UQ,UQ) = (CLQVUQ, VUQ) + (bg - Vus, Uz) + (CQUZ, U2) = (fg(ﬂ:,u1, Dul), UQ), for all vy € H&(Q)
(28)
We introduce the finite element space Sy, 1(Q2) C H} (), corresponding to a discretization 7T, 1
of Q for the first component, and another finite element space Sy, 2(Q2) C H(£2), on a different mesh
Th,2, for the second component. We introduce projections II;_,; from Sy ; to Sy j, e.g. interpolants
or an L? orthogonal projection, and apply these in order to evaluate the equations defining the
approximations.

Algorithm 2 Multiscale Operator Decomposition for Triangular Systems of Elliptic Equations

Construct discretizations Ty 1, Tp2 and corresponding spaces Sp 1, Sp 2
Compute Uy € Sp1(92) satisfying

Al(Ul,Ul) = (fl,vl), for all v € Sh’l(Q). (29)

Compute Us € Sy, 2(12) satisfying

{AQ(UQ, UQ) = (f2(x7H1*)2U17H1*>2DU1)’/02)7 for all V9 € S}LQ(Q). (30)

We observe that any errors made in the solution of the first component affect the solution of
the second component. This turns out to be a crucial fact for a posteriori error analysis.

Example 2.2.5 We solve a system

—Auy = sin(4rx) sin(nwy), x €

2 (25sin(4
“Aug = bV, zeQ, b= = ( sin ”)) (31)
7\ sin(mx)
uy = ug =0, x € 09,
using a standard piecewise linear, continuous finite element method, where Q = [0,1] x [0,1], in

order to compute the quantity of interest uz(.25,.25) involving the second component. We allow for
independent meshes for Uy and Us.

Using the same mesh for both components and evaluating the standard a posteriori error
estimate for the second component problem, ignoring error in the first component solution,
yields an error estimate of = .0042. The true error is =~ .0048 and there is discrepancy of ~ .0006
(=~ 13%). This is a consequence of MOD, which effects we have not estimated.

If we adapt the mesh for the solution of the second component based on the standard a poste-
riori error estimate, again neglecting any error inherited from the first component, the discrepancy
becomes alarmingly worse. For example, we can refine the mesh until the estimate of the error in
the second component is ~ .0001. But, we find that the true error is ~ .2244/
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Figure 6: Left two plots: First component solution and pointwise error in the second component
solution after refining mesh using estimate of the error only in the second component. Right two
plots: Solutions obtained from adaptive refinement using the full estimate (36).

We assume that the goal is to compute a functional (ug, wgl)) of the solution of the second
component. For the a posteriori analysis, we define the weak residuals for component, namely

Ri(Ui,U) = (fi(v),v) - AZ‘(UZ',U), 1= 1,2,

for a test function v.
The primary adjoint problem, reflecting the stability of each component with respect to its
discretization, is

{56 v2) = (040, 0n),  for all vy € W3 (), (32)
where
Ai(91 v1) = (@ Ve, Vor) = (div(brg), 0n) + <cl¢1 b
A3(95) v2) = (a2V04", Vuz) — (div(bagh), v2) + (20, v2).
We next account for the effect that error in u; has on the second component. We use the
approximation

( 52),61) = (617Df2(U1)H2—>1¢§1)) ~ (fal,u1, Dur) — fo(x, Uy, DU, Tla105Y),  (33)

to define a new quantity of interest that describes the effect of errors in U; on the quantity of
interest, and we construct a secondary adjoint problem to estimate the transfer error,

As (612, 01) = (1 vy for all vy € W), (34)

Note that using different discretizations for the components affects both the forward solution and
the definition of the adjoint problems.

Finally, we define an adjoint problem to estimate the error arising from projecting solutions
between the discretizations of the two component. The quantity of interest is defined

(%3),(31) = (DfZ(Ul) x e1, (I — H2H1)¢g1))’

and the adjoint problem is
As(61P, 1) = (8 01 for all vy € W(€). (35)
The error representation is finally
(05", €2) = Ra(Un, (I )6 s Ur) + Ra (U, (I =~ M) (67 + 64”))
+ (M52 fo(Ur) — fz(H1—>2U1),¢§1)) + ((I - H1—>2)f2(U1),¢§1))-
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The first term on the right measures the contribution to the error from the numerical solution of
the second component. The second term measures the contribution arising from transferring error
in the first component into the second component. Finally, the last two terms measure the effects
of projecting between different discretizations.

Example 2.2.6 We consider the problem in Fx. 2.2.5 with the quantity of interest equal to the
average value of us over the whole domain and initial coarse meshes as before, but now use the
full estimate (36) to adapt the mesh for both Uy and Uz so that the estimated error is smaller than
10~%. The complete a posteriori estimates the true error very accurately, and the true error is
controlled. The resulting meshes are shown in Fig. 6. Note that the mesh for Uy is actually more
refined than the mesh for Us.

Space limitations preclude a description of the a posteriori analysis for a fully coupled problem
(22). Given an iterative scheme for the solution, the analysis has two aspects, the transfer of
information between the components during each iteration and the transfer of information between
subsequent iterations. The first aspect is treated as described for the one-way coupled system.
Similarly, the error passed between iterations is treated by defining suitable functionals for the
information that is passed between iterations and solving auxiliary adjoint problems. However, the
errors from all the previous iterations generally affect the solution at the current iteration level,
and so the estimate has a “history” of estimates for errors from previous iterations. The effect of
the error at any given iteration level decays in influence as the iteration converges in general, but
may still be a persistent effect in some circumstances.

2.2.3 Coupling through boundaries: Conjugate heat transfer

The next class of problems we discuss involve models posed on domains consisting of distinct
components that are joined at an interface boundary. There is a differential equation model posed
on each component of the domain and the solutions on the different components are related through
the boundary conditions imposed on the interface boundary.

Example 2.2.7 Consider a model of heat in an object 2 composed of two materials occupying

regions Q1, Qo with Q@ = Q1 U Qs and T denoting the common boundary 21 N Q. The stationary

model for conjugate heat transfer between the components is
—V-(a1Vu1):f1, 1‘691, ule, xE@Ql\F, (37)
*V'(CLQV’LLQ) = fo, x € Qa, wug =0, SUE@QQ\F,

where the solutions are coupled by imposing continuity of value and normal flux on the interface

boundary,
u; =u2, a1Vup-n=aVus-n, xcl.

Other important examples of such coupling are fluid-solid conjugate heat transfer [21] and models
of fusion reactors involving coupling of the “core” and “edge” dynamics.

We can implement a MOD method for this problem using an iterative approach where boundary
values are passed back and forth between the components during the solution.

Example 2.2.8 For simplicity, we describe one iterative algorithm for a stationary problem
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Algorithm 3 Multiscale Operator Decomposition for Conjugate Heat Transfer
Construct space discretizations 77, 72 and finite element spaces &1, 87 for Q1,9
Choose an initial value US,)Q) onT
fori=1,---,1 do

Compute a finite element approximation Ul(i) € Sp,1 for

V- (@Vu)=f, 7€, u=0zedU\T, w=U"" zel.
Compute a finite element approximation UQ(i) € Sp 2 for
—V - (aaVug) = fa, x € Qo, up =0, z € 0%\ T, aVuz-n= a1VU1(i) -n, rel.

end for

There are many other ways to iterate between components of course, and these different approaches
have different convergence properties. We may also employ relaxation in order to yield more robust
convergence. When solving an evolution problem, we employ an iteration such as Alg. 3 on each
time step.

We attack the analysis of such problems using the same approach as used for MOD for elliptic
systems outlined in Sec. 2.2.2. We identify the information that is passed between components
as auxiliary quantities of interest and solve the corresponding adjoint problems in addition to the
adjoint problem associated with the information to be computed from the solution of the model.
The analysis includes estimates of the contributions of the error in the computed information
transferred between components, the effects of using different discretizations in the components,
and the effects of iteration error in the solution, resulting in very accurate estimates. The analysis
has some special features because the auxiliary quantities of interest involve boundary values.

An interesting consequence of transferring gradient information is that the MOD solution
suffers a loss of one order of convergence. If we simply apply the a posteriori error estimate to
guide adaptive mesh refinement, the algorithm “compensates” by refining heavily near the interface
boundary so as to reduce that source of error, which is inefficient. However, a careful examination
of the a posteriori error estimate reveals that there is one expression that causes the loss of order.
We adapt the “boundary flux recovery” technique developed by Wheeler and Carey to postprocess
the finite element solution as to remove the offending term in the estimate, and this turns out to
restore the order of convergence of the numerical approximation at a very low computational cost.

Example 2.2.9 We illustrate using (37) with Q1=[0, 1] x [0,1] and Q2 = ([1,2] x [0,1]), a1 =1,
az = 3, and f1 and fa chosen so the true solutions are ug = sin(2mx)sin(27wy) and u; = 3ug. The
quantity of interest equal to the value of us at the point (1.75,0.25). In Fig. 7, we show a typical
adapted mesh after three refinement steps. We also show the first order convergence for the MOD
solution on a sequence of uniform meshes along with the second order convergence of the “flux
corrected” solutions on the same meshes.

2.3 Overview of results obtained in current project

We present a brief overview of the activity and results obtained in the current project. We divide
the research papers into three large groups.
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Figure 7: Adaptive mesh for the quantity of interest equal to the value of ug at the point (1.75,0.25)
for the MOD solution and orders of convergence for the MOD solution and the flux corrected
solution on a sequence of uniform meshes.

2.3.1 Analysis of multiscale, operator decomposition solution of multiphysics prob-

lems

The central achievement of the current project is the development of a systematic approach to
a posteriori error analysis of MOD solutions of multiphysics problems. This represents a major
contribution to the solution of multiscale, multiphysics problems. We applied this analysis to three
particular problems.

An a posteriori-a priori analysis of multiscale operator splitting [7]. In this paper, we analyze
a multiscale operator splitting method for reaction-diffusion equations. We present a new type
of hybrid a priori— a posteriori error analysis pinpoints the effects that MOD has on accuracy
and stability.

A posteriori analysis and adaptive error control for multiscale operator decomposition solution
of elliptic systems I: Triangular systems [2]. We conduct an a posteriori analysis of a MOD
finite element method for the solution of a triangular system of coupled elliptic problems.
We focus on the propagation of errors arising from the solution of one component to another
and the transfer of information between different representations of solution components. We
discuss the use of Monte-Carlo integration for transferring information between solutions on
different meshes.

A posteriori analysis and adaptive error control for multiscale operator decomposition solution
of elliptic systems II: Fully coupled systems [3]. We extend the analysis in Part I to fully
coupled problems, focusing on issues related to solving a nonlinear system and the effects on
accuracy.

A posteriori analysis and improved accuracy for an operator decomposition solution of a con-
jugate heat transfer problem [17]. We conduct an a posteriori analysis of a MOD method
for a conjugate heat transfer problem consisting of two materials coupled through a common
boundary. We use boundary flux correction to improve accuracy in an efficient way.

A posteriori error analysis for a transient conjugate heat transfer problem [20]. We conduct
an a posteriori analysis of a MOD method for a time-dependent conjugate heat transfer
problem consisting of two materials coupled through a common boundary. We use boundary
flux correction to improve accuracy in an efficient way.
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o A posteriori error estimation and adaptive mesh refinement for a multi-discretization operator
decomposition approach to fluid-solid heat transfer [21]. We analyze a MOD finite element
method for a conjugate heat transfer problem consisting of a fluid and a solid coupled through
a common boundary.

o Error estimation for multiscale methods to appear in in Bridging the Scales in Science and
Engineering, J. Fish, Ed., Oxford University Press [6]. We present a general introduction to
the newly developed approach to a posteriori error estimation for multiscale, multiphysics
problems.

e A posteriori error analysis for elliptic problems with rough data [9]. In this article we develop
a number of a posteriori error estimates for elliptic problems with extremely rough data, using
both standard Galerkin formulations as well as H ~!-type formulations. This work is based on
a supporting rough data analysis framework for nonlinear elliptic systems recently developed
in [23].

2.3.2 Nonparametric density estimation for partial differential equations with ran-
domly perturbed parameters

The current project was initially focussed on a posteriori error estimation for coupled physics
problems. The project had to expand to tackle broader questions of uncertainty quantification in
order to keep the project relevant to our laboratory partners for several reasons, including

e Using multiphysics models to address practical scientific and engineering work always involves
data, and hence any attempt to quantify error must include the effect of measurement error
and uncertainty in data.

e In a MOD solution, each component inherits numerical errors transferred from the other
components. These inherited errors resemble modeling error, e.g. they cannot typically be
corrected by refinement in the current component.

Adjoint-based analysis provides powerful tools for sensitivity analysis that are foundational for
uncertainty quantification. In this sequence of papers, we derive new methods for nonparametric
density estimation. We focus on nonparametric density estimation because our experience sug-
gests that the probability distributions associated with quantities of interest computed from many
physical models tend to be highly complex and hence accessible only through sampling. Reasons
include for example the effects of nonlinearity and the inclusion of multiple bifurcation points in
typical parameter domains. Since physical models are often very expensive to evaluate, developing
methods for density estimation that require minimal sampling is an important problem.

We explore two approaches in the work below. One approach uses the fact that the adjoint
operator provides a relatively inexpensive way to compute the gradient of a quantity of interest
with respect to parameters. This approach provides an elegant representation of the distribution
associated with a random output quantity in terms of convolution of the corresponding adjoint
solution with the distributions placed on the input data and parameters. Furthermore, the deriva-
tive information provides the basis for several adaptive sampling and variance reduction procedures.
The second set of papers deal with elliptic problems in which the diffusion coefficients are randomly
perturbed by a variable for which very limited information is known.

o Fast and reliable methods for determining the evolution of uncertain parameters in differential
equations [14]. We use derivative information about a quantity of interest obtained by solving
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the adjoint problem to devise new, fast methods for nonparametric density estimation. These
include a higher order representation of the response surface (HOPS) and an error estimate
for a representation that can be used to guide adaptive sampling (FAPS). Both the higher
order method and the adaptive sampling method are generally orders of magnitude faster
than Monte-Carlo methods in the case that the parameter space is not too high dimensional.

e Fust methods for determining the evolution of uncertain parameters in reaction-diffusion equa-
tions [15]. We extend the previous work to systems of reaction-diffusion problems and use
the new methods to analyze the parameter sensitivity of a predator-prey model with a Holling
IT functional response that has six parameters.

o Nonparametric density estimation for elliptic problems with random perturbations I: Com-
putational method and a posteriori analysis [12]. We develop two efficient methods for
computing solutions to the Poisson equation with randomly perturbed data and coefficient.
The first method is designed to treat random right hand side and boundary condition and
is based on solving a single corresponding adjoint problem, then constructing realizations of
a linear functional of the solution by multiplying the adjoint solution with the data. The
second method deals with a piecewise constant random perturbation in the coefficient. The
Monte Carlo finite element method is combined with a domain decomposition algorithm such
that the random perturbation is constant on the domains. Then a power series is used to
approximate the inverse matrix on each domain, yielding a very fast method. We provide
analysis of both techniques.

e Nonparametric density estimation for elliptic problems with random perturbations II: Adaptive
computation [12]. We devise an adaptive computation procedure for nonparametric density
estimation for elliptic problems with random perturbations. The procedure balances the
computational work between sampling, error in representation of the effects of variation, and
the numerical error in the solution of the differential equation.

e Nonparametric density estimation for elliptic problems with random perturbations III: Con-
vergence analysis [11]. The nonparametric density estimation technique in Part I of this series
relies a non-overlapping domain decomposition. In this paper, we examine the convergence
properties of this domain decomposition.

2.3.3 General results in the solution and analysis of differential equations

We pursued a number of smaller projects to support the primary research of the project.

e [terative techniques for the solution of coupled multi-physics problems [19]. We investigate the
iterative solution of multiphysics problems using a MOD approach. We derive an approach
based on an inner Newton-Krylov iteration and the solution of a variational system, and
show that this approach is a generalization of a preconditioning technique used in domain
decomposition. We demonstrate that this approach can significantly reduce the overall cost.

e A posteriori error estimation of approzimate boundary fluzes [18]. We derive an a posteriori
estimate of the error in the flux of a finite element solution of an elliptic problem on a piece of
the boundary of the domain. We investigate the effects of smoothing the data corresponding
to the quantity of interest and explore the effective domain of dependence of the quantity.
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Generalized Green’s functions and the effective domain of influence [8]. We use the general-
ized’s Greens function to develop a new approach to domain decomposition for the efficient
solution of elliptic problems when the goal either involves multiple quantities of interest or
quantities of interest corresponding to global information such as average values over the
domain.

Global error estimation and adaptive error control for ordinary differential equations [16].
We design and implement new global error control mechanisms based on a posterior: error
estimates for quantities of interest for evolution problems. These approaches allow for the
effects of cancellation of errors, resulting in greatly improved reliability and efficiency in many
situations.

Adaptive error control for an elliptic optimization problem [10]. We consider optimization
of parameters of elliptic problems and derive a posteriori error estimates for the error in the
gradients used in search algorithms that are computed from finite element solutions of the
problem. We devise an adaptive algorithm to refine and unrefine the finite element mesh at
each step in the descent search algorithm.

Analysis techniques for weak solutions to coupled nonlinear elliptic problems with rough data
[23]. We analyze the Joule heating problem, which is modeled as a coupled nonlinear elliptic
system with rough data. We first develop a number of supporting results such as a priori L°°-
bounds for the individual potential and temperature fields. Based on these results, we then
develop a topological fixed-point argument giving the first existence result for this system
in the 3D case with mixed boundary conditions. The results required the development of
techniques for dealing with rough data, which we are now employing in the development of
adaptive numerical techniques for such problems [9].

New convergence proof techniques for adaptive methods [4, 5]. In [4], we analyze the conver-
gence properties of an adaptive finite element method (AFEM) applied to a coupled indefinite
linear elliptic system, and establish one of the first convergence (and optimality) results using
quasi-orthoginality and differential complex techniques. In [5], we do a similar convergence
analysis for adaptive finite element methods applied to a nonlinear elliptic problem with su-
percritical monotone nonlinearity and rough data. We first derive a number of supporting
results such as a priori L>° and other estimates for a multiscale splitting of the solution.
These results, together with some simple and realizable mesh conditions, then allow us to
establish analogous discrete estimates. The AFEM algorithm we employ is then described,
and convergence is shown using energy arguments. We have since improved this convergence
proof technology to allow for non-monotone nonlinearities [24].

Multiresolution geometric meshing algorithms and software for multiscale modeling [30, 28,
29, 1]. In this work, we have developed a number of surface and volume geometric modeling
and meshing algorithms for producing (or improving) surface and volume simplex mesh mod-
els of geometric data with multiscale features. The algorithms, which are all implemented
in the GAMer module in the FETK software package [22], allow for a large variety of input
data (point sets, distance functions or other level set information, boundary triangulations, or
molecular data in PDB format) and produce high-fidelity surface and volume triangulations
with low memory and computational complexity. Features of the algorithms include the abil-
ity to produce quality volume simplex meshes which match complex surface triangulations,
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and the ability to produce multiresolution mesh hierarchies using quality mesh decimation
algorithms.

2.4 Personnel involved in the current project

The following people were supported in the current project.

2.4.1 Principal Investigators

e Donald Estep, Department of Mathematics and Department of Statistics, Colorado State
University

e Michael Holst, Department of Mathematics, University California San Diego

e Simon Tavener, Department of Mathematics, Colorado State University

2.4.2 Postdocs

e Varis Carey, in progress
e Victor Ginting, currently Assistant Professor, University of Wyoming
e Axel Malqvist, currently Assistant Professor, University of Uppsala

e Jeff Sandelin, in progress

2.4.3 Graduate Students

e D. Neckels, Thesis, 2005: “Variational Methods for Uncertainty Quantification”. Currently,
National Center for Atmospheric Research

J. Sandelin, Thesis, 2006: “Global Estimate and Control of Model, Numerical, and Parameter
Error”. Currently, PRIMES postdoc, Colorado State University

T. Wildey, Thesis, 2007: “A Posteriori Analysis of Operator Decomposition on Interface
Problems”. Currently, ICES Postdoctoral Fellow, University of Texas at Austin.

e T. Butler, Department of Mathematics, Colorado State University, in progress

S. Lee, Department of Mathematics, Colorado State University, in progress
e R. Mckeown, Department of Forestry, Rangeland, and Watershed Stewardship, Colorado
State University, in progress
2.5 Software developed in the current project

As part of the current project, the Estep group developed two software packages that have the
capability to compute a posteriori error estimates based on solving adjoint problems and include
adaptive mesh refinement.
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e GAASP (Globally Accurate, Adaptive Sensitivity Package [13])
Authors: Estep, Mckeown, Neckels, Sandelin

This package has two parts: an adaptive ordinary differential equation solver that uses adjoints
and includes both probabilistic and optimization error control mechanisms and a wrapper that
allows for sensitivity analysis of an ordinary differential equation. The solver incorporates a
number of sophisticated features to facilitate the formation and solution of adjoint problems.
The user need only supply a righthand side, data, and quantities of interest. The sensitivity
package employs both HOPS and FAPS || density estimation techniques. GAASP is a C++
code.

e ACES (Adaptive Coupled Equation Solver [27])
Author: Wildey

ACES is a MATLAB/C software package designed to solve stationary and time-dependent
multiphysics systems with a flexible framework that handles both coupling through parame-
ters and coupling through boundary values for problems posed on multiple domains. It allows
different numerical methods to be used for different components of the multiphysics system.
ACES incorporates a number of error estimation and adaptive refinement techniques as well
as boundary flux corrections.

Estep’s group has also established strong working collaborations with code developers at
Sandia. We have collaborated in particular with developers of STIERRA, CALORE, ARIA, and
RHYTHMOS.

The Holst group has continued to develop and extend the FETK [22] software package. The
FETK project is based at UCSD, but is developed collaboratively by personnel involved in this
proposal and by other colleagues around the world. As described in detail on the FETK website [22],
FETK consists of several independent packages which are developed using a common “object-
oriented C” programming framework provided by one of the FETK libraries called MALOC. The
libraries forming FETK are primarily: MALOC (Minimal Abstraction Layer for Object-oriented
C); PUNC (Portable Understructure for Numerical Computing); SG (Socket Graphics); and MC
(Manifold Code). As part of the current project, the Holst group developed a new library for FETK
called GAMer, and further extended the core finite element library MC.

e GAMer (Geometry-preserving Adaptive MeshER)
Author: Yu, Holst

GAMer is a Geometry-preserving Adaptive MeshER that produces high-quality simplex
meshes of surfaces and volumes, given a number of different types of input data. It is built on
top of two state-of-the-art mesh generators: Triangle (for 2D constrained Delaunay meshes
in the plane) and Tetgen (for 3D constrained Delaunay meshes in space), combined with a
collection of algorithms for generating, improving, refining, and decimating surface triangula-
tions of imbedded interior or exterior domain surfaces. GAMer and the algorithms it employs
are described in detail in [30, 28, 29, 1].

e MC (Manifold Code)
Author: Holst and collaborators

MC (Manifold Code) is a parallel adaptive multilevel finite element software package designed
to be used collaboratively with several related research FETK tools such as MALOC, GAMer,
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2.6

and SG. MC is designed to numerically approximate the solutions of covariant divergence-
form second-order nonlinear elliptic systems of partial differential equations with multiscale
features on domains with the structure of Riemannian two- and three-manifolds. To accom-
plish this task as accurately and efficiently as possible, MC employs simplex triangulations
of the domain manifold, Petrov-Galerkin finite element methods, a posteriori error estima-
tion, adaptive mesh refinement and un-refinement, continuation, Newton methods, multilevel
methods, and a recently-developed low-communication approach in parallel adaptive finite
element methods. Extensions made to MC as part of the current project include the ability
to form and solve large sparse linearized dual problems for producing duality-type a posteri-
ori error indicators, and the development and implementation of new types of error indicator
and marking algorithms as derived in [4, 5, 24] that guarantee AFEM convergence. In addi-
tion, a collection of decoupling iteration-type algorithms for multiphysics problems have been
developed and implemented; cf. [1, 25, 32, 26, 31].

Exposure and service related to the current project

The research in the current project has garnered significant attention. This is an overview of
activity relevant to the project during the period of the current project.

2.6.1 D. Estep

Computational and Mathematical Methods in Sciences and Engineering (CMMSE) Prize,
2005

Invited short course, 4th Montreal Scientific Computing Days, University of Montreal, Mon-
treal, Canada, 2007

15 invited lectures at professional meeting, including two plenary talks and one keynote lecture
17 seminars and colloquia at universities and DOE laboratories
Co-organizer of six professional workshops and minisymposia

Served on two DOE review panels

Co-Organizer, Second DOE Workshop on Multiscale Mathematics, 2004, with J. Shadid and
S. Tavener. Co-editor and co-author for final report

Panel Co-Leader, Panel on Validation, Verification, Uncertainty Analysis and Decision Op-
timization, Department of Energy Computational Subsurface Sciences Workshop, 2007. Co-
ordinator for Priority Research Direction report ”Uncertainty Representation, Uncertainty
Propagation, and Sensitivity Analysis for Subsurface System”. Contributor on two other
Priority Research Direction reports.

Department of Energy, Office of Advanced Scientific Computing, Applied Mathematics Strate-
gic Plan Recommendation Panel, 2007.
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2.6.2 M. Holst

e 25 invited lectures at professional meetings, including three keynote and plenary lectures.
e 17 seminars and colloquia at universities, DOE laboratories, and industry

e Co-organizer of five professional workshops and minisymposia, including workshops at IPAM,
IMA, and MSRI.

e Served on DOE panel on Optimization and Complex Systems

2.6.3 S. Tavener

e Co-Organizer, Second DOE Workshop on Multiscale Mathematics, 2004, with D. Estep and
J. Shadid. Co-editor and co-author for final report.

e Served on one DOE review panel
e Attended Department of Energy Computational Subsurface Sciences Workshop, 2007

e Six seminars and lectures at professional meetings

2.6.4 D. Estep’s Research Group

Members of D. Estep’s research group presented over 26 talks at professional meetings and seminars
at universities and DOE laboratories.

2.6.5 Cooperation with and outreach to DOE laboratories

The research team has maintained an extremely active and close collaboration with personnel at
Sandia National Laboratories in Albuquerque, New Mexico. The chief collaborators include P.
Bochev, B. Carnes, T. Coffey, K. Copps, S. Domino, R. Lehoucq, C. Newman, J. Shadid, and J.
Stewart. This collaboration has been sustained by a program of frequent visits by the investigators,
postdocs, and students to Sandia and vice versa by periodic visits by Sandia researchers to Colorado
State University.

Highlights of these exchanges during the period of the current project include:

e D. Estep made at least seven visits to Sandia. These visits often included members of his
group

Members of D. Estep’s group made a number of visits to Sandia on their own, including a
summer long visit by T. Wildey

Sandia researchers made a number of visits to CSU

D. Neckels took a LTE position at Sandia after graduating

S. Tavener made 3 visits to Sandia

M. Holst made 2 visits to Sandia, and made multiple short and long-term visits to CSU

The First Colorado State Multiall Workshop (Fort Collins, 9/05) included 10 people from
Sandia
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e The Second Colorado State Multiall Workshop (Fort Collins, 9/06) included 14 people from
Sandia

D. Estep also established ties to researchers at other national laboratories. During the period

of this project, D. Estep visited Los Alamos, Lawrence Livermore and Idaho National Laboratories,
and he has active (funded) collaborations with researchers at LLNL, INL, and ANL.

References

[1]

2]

[3]

[4]

[5]

S. BonND, M. HoLsT, Z. YU, AND Y. ZHOU, Practical adaptive finite element modeling
techniques for the Poisson-Boltzmann equation. In preparation.

V. CAREY, D. ESTEP, AND S. TAVENER, A posteriori analysis and adaptive error control

for multiscale operator decomposition methods for coupled elliptic systems i: One way coupled
systems,, SINUM, 47 (2009), pp. 740-761.

—, A posteriori analysis and adaptive error control for operator decomposition methods for
coupled elliptic systems II: Fully coupled systems, 2009. in preparation.

L. CHEN, M. HoOLST, AND J. XU, Convergence and optimality of adaptive mized finite element
methods. Submitted to Math. Comp.

——, The finite element approximation of the nonlinear Poisson-Boltzmann Equation, 45
(2007), pp. 2298-2320.

D. EsTEP, Error Estimation for Multiscale Operator Decomposition for Multiphysics Problems,
Oxford University Press, Oxford, 2009, ch. 11.

D. EsTEP, V. GINTING, T. KING, D. RoPP, J. SHADID, AND S. TAVENER, A posteriori - a
priori analysis of multiscale operator splitting, SINUM, 46 (2008), pp. 1116-1146.

D. EsteEp, M. HoLST, AND M. LARSON, Generalized Green’s functions and the effective
domain of influence, STAM J. Sci. Comput., 26 (2005), pp. 1314-1339.

D. EsTeEP, M. HOLST, AND A. MALQVIST, A posteriori error analysis for elliptic problems
with rough data. Preprint.

D. ESTEP AND S. LEE, Adaptive error control for an elliptic optimization problem, 2009. in
revision.

D. ESTEP AND A. MALQVIST, Nonparametric density estimation for elliptic problems with
random perturbations III: Convergence analysis, 2008. in preparation.

D. EsTEP, A. MALQVIST, AND S. TAVENER, Nonparametric density estimation for randomly

perturbed elliptic problems i: Computational methods, a posteriori analysis, and adaptive error
control, 2009.

D. EsTeEp, B. MCKEOWN, D. NECKELS, AND J. SANDELIN, GAASP: Globally Accurate
Adaptive Sensitivity Package, 2006. write to estep@math.colostate.edu for information.

D. EsTEP AND D. NECKELS, Fast and reliable methods for determining the evolution of un-
certain parameters in differential equations, J. Comput. Physics, 213 (2006), pp. 530-556.

27



[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

—, Fast methods for determining the evolution of uncertain parameters in reaction-diffusion
equations, Computer Methods in Applied Mechanics and Engineering, 196 (2007), pp. 3967—
3979.

D. ESTEP AND J. SANDELIN, Global error estimation and adaptive error control for ordinary
differential equations, 2008. in preparation.

D. EsTEP, S. TAVENER, AND T. WILDEY, A posteriori analysis and improved accuracy for
an operator decomposition solution of a conjugate heat transfer problem, SINUM, 46 (2008),
pp. 2068-2089.

——, A posteriori error estimation of boundary fluxr, Comm. Num. Meth. Engin., 24 (2008),
pp. 421-434.

—, Iterative techniques for the solution of coupled multi-physics problems, (2008). in prepa-
ration.

—, A posteriori error analysis for a transient conjugate heat transfer problem, Finite Ele-
ments in Analysis and Design, 45 (2009), pp. 263-271.

— A posteriori error estimation and adaptive mesh refinement for a multi-discretization
operator decomposition approach to fluid-solid heat transfer, J. Comput. Phys., (2010). to
appear.

FETK, The Finite Element ToolKit. http://www.FETK.org.

M. HoLST AND A. MALQVIST, Existence of weak solutions to the coupled nonlinear Joule
heating problem. Submitted to Comm. Math. Sci.

M. HoLsT AND G. TSOGTGEREL, Adaptive finite element approximation of nonlinear geomet-
ric PDE. Preprint.

B. Lu, Y. Zaou, M. HoLsT, AND J. MCCAMMON, Recent progress in numerical methods

for the Poisson-Boltzmann equation in biophysical applications. Submitted to Comm. Comp.
Phys.

B. Lu, Y. ZHou, G. HUBER, S. BoND, M. HoLsT, AND J. MCCAMMON, FElectrodiffusion:

A continuum-modeling frame- work for biomolecular systems with realistic spatiotemporal res-
olution, Phys. J. Chem. Phys., 127 (2007), pp. 135102.1-135101.16.

T. WILDEY, ACES: Adaptive Coupled Equation Solver, 2008. write to twildeyQices.utexas.edu
for information.

Z. Yu, M. HoLsT, Y. CHENG, AND J. MCCAMMON, Feature-preserving adaptive mesh gen-
eration for molecular shape modeling and simulation. Accepted for Publication in Journal of
Molecular Graphics and Modeling.

Z. Yu, M. HoLsT, T. Havasui, C. Bajaj, M. ErLLISMAN, J. A. McCAMMON, AND
M. HosHLIMA, Multiscale geometric modeling of ventricular myocytes: bridging the gap be-
tween imaging and simulation. Submitted to Journal of Structural Biology.

28



[30]

31]

[32]

Z. Yu, M. HoLsT, AND J. McCAMMON, High-fidelity geometric modelling for biomedicine
and other applications. Submitted to Finite Elements in Analysis and Design.

Y. ZHou, M. HoLsT, AND J. McCAMMON, Nonlinear elastic modeling of macromolecular
conformational change induced by electrostatic forces. Accepted for Publication in J. Math.
Anal. Appl.

Y. Zuou, B. Lu, G. HUBER, M. HoLsT, AND J. MCcCAMMON, Continuum simulations
of acetylcholine consumption by acetylcholinesterase: A Poisson-Nernst-Planck approach, J.
Phys. Chem. B, 112 (2008), pp. 270-275.

29



