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I. DERIVATION

In this note I will prove that the impedance calculated for a small-angle collimator or

taper, of arbitrary 3D profile, has a scaling property that can greatly simplify numerical

calculations. This proof is based on the parabolic equation approach to solving Maxwell’s

equation developed in Refs. [1, 2]

We start from the parabolic equation formulated in [3]. As discussed in [1], in general

case this equation is valid for frequencies ω � c/a where a is a characteristic dimension of

the obstacle. However, for small-angle tapers and collimators, the region of validity of this

equation extends toward smaller frequencies and includes ω ∼ c/a.

The parabolic equation is formulated for the envelope part of the electromagnetic field

Ê(x, y, z, ω) =

∫ ∞
−∞

dt eiωt−ikz E(x, y, z, t), (1)

where k = ω/c. It is written in terms of the transverse component Ê⊥ = (Êx, Êy) of the

vector Ê⊥,

k
∂

∂z
Ê⊥ =

i

2

(
∇2
⊥Ê⊥ −

4π

c
∇⊥ ĵz

)
, (2)

where z is the coordinate in the direction of motion of the beam, and ĵz is the Fourier

transformed projection of the beam current along z

ĵz(x, y, z, ω) =

∫ ∞
−∞

dt eiωt−ikz jz(x, y, z, t). (3)

The longitudinal electric field Êz is expressed in terms of Ê⊥

Êz =
i

k

(
∇⊥ · Ê⊥ −

4π

c
ĵz

)
. (4)

We assume perfect conductivity of the walls. The boundary condition for the electric

field requires vanishing tangential component on the wall

n× Ê|w = 0, (5)



where n is the normal vector to the surface of the wall.

The current ĵz in Eqs. (2) and (4) corresponds to a unit point charge moving with the

speed of light along the axis of the system x = y = 0, jz = qcδ(x)δ(y)δ(z − ct). It is given

by the following expression

ĵz = qδ(x)δ(y). (6)

The longitudinal impedance on the z-axis at frequency ω is given by

Z(ω) = −1

q

∫ ∞
−∞

dzÊz(0, 0, z, ω). (7)

An equivalent formulation of the impedance problem which avoids singular terms associ-

ated with the current ĵz is the following. We introduce the vacuum electric field Êvac of the

current ĵz (which satisfies the same Eq. (2), but does not satisfy the boundary condition (5))

and subtract it from Ê

Ê = Ê − Êvac. (8)

The equation for the field Ê , which we call the radiation field is

k
∂

∂z
Ê⊥ =

i

2
∇2
⊥Ê⊥,

Êz =
i

k
∇⊥ · Ê⊥, (9)

with the boundary condition

n× Ê|w + n× Êvac|w = 0. (10)

The vacuum electric field is perpendicular to the direction of motion (because we consider

an ultrarelativistic point charge), and does not contribute to the impedance. Note also that

the vacuum field does not depend on z, Êvac(x, y).

Let us assume that the geometry of a given surface of the metallic wall is determined by

the equation U(x, y, z) = 0 with some given function U . Instead of considering one particular

shape of the pipe, we consider a family of such pipes, which are defined by various scale

lengths L in the longitudinal direction. This means that U is also a function of the parameter

L, and it has a special dependence on L:

U(x, y, z;L) = V
(
x, y,

z

L

)
. (11)
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Varying the parameter L in Eq. (11) we extend or contract the pipe in the z-direction

without changing its transverse shape.

We now define the normal vector to the surface of the pipe, n = ∇U or

n = ex
∂V

∂x
+ ey

∂V

∂y
+ ez

1

L

∂V

∂ζ
, (12)

where we introduced the dimensionless scaled coordinate ζ = z/L, and use notations ex,

ey, and ez for unit vectors in respective directions. We will indicate the dependence of

fields versus the parameter L by adding L to the list of arguments and separating it by the

semicolon, e.g. Ê⊥(x, y, z, ω;L).

Our goal now is to prove that a solution to the parabolic equation depends on the coor-

dinate z only through the dimensionless variable ζ; more precisely, we will prove that

Ê⊥(x, y, z, ω;L) = F⊥

(
x, y,

z

L
,
ω

L

)
,

Êz(x, y, z, ω;L) =
1

L
G
(
x, y,

z

L
,
ω

L

)
, (13)

where F⊥ and G are functions of four arguments. To prove this statement, first we need

to show that substituting Eqs. (13) into our equations and the boundary condition results

in expressions which involve the coordinate z, the parameter L, and the wavenumber k as

combinations z/L and k/L only. Indeed, substituting into Eqs. (9) we find

k

L

∂

∂ζ
F⊥ =

i

2
∇2
⊥F⊥,

G =
iL

k
∇⊥ · F⊥, (14)

which clearly satisfies our requirement.

We now take a close look at the boundary condition (10). Rewriting it in terms of

perpendicular and transverse components of the field we obtain (remember that Êvac has

only perpendicular components)

nzez × Ê⊥|w + n⊥ × Ê⊥|w + n⊥ × ezÊz|w

+ nzez × Êvac|w + n⊥ × Êvac|w = 0. (15)

The first, third and fourth terms in this equation are perpendicular to ez, and the second

and fifth terms are directed in the z-direction. Hence they can be split into two separate
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equations. The first one is

nzez × Ê⊥|w + n⊥ × ezÊz|w + nzez × Êvac|w =

1

L

∂V

∂ζ
ez × F̂⊥|w +

1

L
n⊥ × ezG|w +

1

L

∂V

∂ζ
ez × Êvac|w = 0. (16)

The last line, after cancellation of the factor 1/L, clearly shows that the parameter L does

not enter explicitly into it. The second boundary equation is

n⊥ × Ê⊥|w + n⊥ × Êvac|w =

n⊥ × F̂⊥|w + n⊥ × Êvac|w = 0, (17)

and it again does note explicitly contain the parameter L . Our statement is therefore

proved.

Substituting the second of Eqs. (13) into (7), we find the scaling property for the longi-

tudinal impedance

Z(ω;L) = R
(ω
L

)
, (18)

where R is a function of one variable. Making the Fourier transformation that related the

impedance to the wakefield, we also find that the wake has the following scaling property

w(z;L) = Lu (zL) , (19)

where u is a function of one variable.
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