
SANDIA REPORT
SAND2009-4926
Unlimited Release
Printed April 2010

COYOTE - A Finite Element Computer
Program for Nonlinear Heat Conduction
Problems
Part I - Theoretical Background

David K. Gartling, Roy E. Hogan, and Micheal W. Glass

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Depeartment of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors, or their employees, make any warranty,
express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represent that its use
would not infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government,
any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Government, any agency thereof,
or any of their contractors.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

DE
PA

RTMENT OF ENERG
Y

• • U
N

ITED

STATES OF AM

ER
IC

A

ii

SAND2009-4926

Unlimited Release

March 2010

COYOTE -

A FINITE ELEMENT COMPUTER PROGRAM

FOR NONLINEAR HEAT CONDUCTION

PROBLEMS

PART I - THEORETICAL BACKGROUND

Version 5.00
Released May 1, 2009

Printed March 19, 2010

David K. Gartling, Roy E. Hogan, and Micheal W. Glass

dkgartl@sandia.gov, rehogan@sandia.gov, and mwglass@sandia.gov

Engineering Sciences Center

Sandia National Laboratories

P. O. Box 5800

Albuquerque, New Mexico 87185

ABSTRACT

The theoretical and numerical background for the finite element computer program,

COYOTE, is presented in detail. COYOTE is designed for the multi-dimensional analysis

of nonlinear heat conduction problems. A general description of the boundary value

problems treated by the program is presented. The finite element formulation and the

associated numerical methods used in COYOTE are also outlined. Instructions for use

of the code are documented in SAND2010-0714.

iii

iii

Preface

At the time of release of the first version of COYOTE in mid-1978, it was not anticipated that

the code would receive the usage and longevity that it currently enjoys. In response to user

needs, the original program under went several minor upgrades plus a major revision during the

late 1980’s. In addition, a preliminary three-dimensional version of COYOTE was developed

though it was not formally documented. Continued requests for additional capabilities combined

with the significant changes in computer hardware and improved numerical algorithms, dictated

the need for completely new versions of the older codes. In rewriting the COYOTE program,

the two and three-dimensional codes were combined into a single software package, COYOTE II,

that was released in 1994. The present series of reports describe the latest version (Version 5.0)

of the program package, which has reverted to its original name, COYOTE, to avoid confusion

in future releases.

In an effort to make the program more flexible and more generally applicable, a number of

new capabilities and features have been added to COYOTE to produce COYOTE, Version 5.0.

The major extension of the code is the capability to optionally include one or two additional

diffusion equations that may be coupled to the primary heat conduction equation. The variables

in these added equations are available to the boundary conditions, source terms and material

property functions in the conduction equation. Conversely, the temperature field is available

to the auxiliary diffusion equations. As part of this expansion, a time harmonic option for

heat transfer was also added. Two thermal diffusion equations are solved in this case for the

real and imaginary parts of the temperature field. Some changes to the sequential solution

algorithm for coupled conduction and radiation have been made to improve convergence of this

type of method. A fully coupled conduction/radiation solution method has been generalized

and reinstalled to allow operation in a parallel environment. The fully coupled algorithm was

made possible by a complete changeover to the use of the Finite Element Interface (FEI) with

the improved access to the solver libraries available in the Trilinos package. The code may

now be compiled using either a single or double precision word length. Some minor changes in

problem capability and control have also been added. Most notable among these changes are

the allowance of a time evolving mass flow to a bulk node (due to chemical reaction) and user

defined material parameters now being passed to user subroutines.

v

vi

Contents

Preface . v

1 Introduction 1

2 Formulation of the Basic Equations 3

2.1 Heat Conduction Equation . 3

2.2 Boundary and Interface Conditions . 5

2.3 Bulk Nodes . 8

2.4 Enclosure Radiation . 9

2.5 Chemical Kinetics . 11

2.6 Auxiliary Diffusion Equations . 13

2.7 Periodic Heat Conduction . 14

2.8 Front Tracking . 16

3 Finite Element Equations 17

3.1 Heat Conduction Equation . 17

3.2 Convection Equation . 20

3.3 Auxiliary Diffusion Equations . 21

3.4 Periodic Heat Conduction . 22

3.5 Front Tracking Equation . 23

4 Elements and Element Matrix Construction 25

4.1 Triangular Elements (2D) . 25

4.2 Quadrilateral Elements (2D) . 27

4.3 Hexahedral Elements (3D) . 28

4.4 Prism Elements (3D) . 30

4.5 Tetrahedral Element (3D) . 32

4.6 Bar Element (3D and 2D) . 33

vii

4.7 Shell Element (3D) . 33

4.8 Spatial Derivatives and Integrals . 37

4.9 Matrix Evaluation . 39

4.10 Boundary Conditions and Source Terms . 40

4.10.1 Volumetric Sources . 41

4.10.2 Surface Fluxes . 41

4.10.3 Internal Surface Fluxes . 44

4.10.4 Specified Temperature Boundary Conditions 46

4.10.5 Temperature Constraint Conditions . 46

4.11 Matrix Equation . 47

5 Solution Procedures 51

5.1 Steady-State Algorithms . 52

5.1.1 Successive Substitution Method . 52

5.1.2 Continuation Method . 53

5.1.3 Convergence Criteria . 53

5.2 Transient Algorithms . 54

5.2.1 Forward/Backward Euler Integration . 55

5.2.2 Adams-Bashforth/Trapezoid Rule Integration 55

5.2.3 Implicit Integration Procedures . 56

5.2.4 Time Step Control . 57

5.2.5 Initialization . 58

5.2.6 Forward Euler Integration . 58

5.2.7 Matrix Diagonalization . 59

5.2.8 Stability and Time Step Control . 59

5.3 Matrix Solution Procedures . 61

5.4 Radiation View Factor Algorithms . 61

5.5 Radiation Solution Algorithms . 62

5.5.1 Solution Strategies (Segregated) . 63

5.5.2 Solution Strategies (Coupled) . 65

5.6 Chemical Reaction Solution Algorithm . 66

5.7 Phase Change Algorithms . 67

5.8 Bulk Node Algorithms . 69

5.9 Contact and Multipoint Constraint Algorithms 70

5.10 Front Tracking Algorithm . 72

viii

5.11 Parallel Solution Methods . 72

6 Pre- and Post-Processing 75

6.1 Mesh Generation . 75

6.2 Flux Computation . 75

6.3 Time Harmonic Functions . 77

6.4 Heat Flow Function . 78

6.5 Error Estimation . 80

6.6 Species and Gas Fraction . 82

6.7 Element and Element Block Variables . 82

6.8 Graphical Output . 82

7 References 83

ix

x

List of Figures

2.1 Schematic for boundary condition definitions. 5

2.2 Nomenclature for enclosure radiation. 10

3.1 Finite element discretization of a region. 18

4.1 Two-dimensional triangular elements. 26

4.2 Two-dimensional quadrilateral elements. 27

4.3 Three-dimensional brick elements. 29

4.4 Three-dimensional prism elements. 31

4.5 Three-dimensional tetrahedral elements. 32

4.6 Three-dimensional bar elements. 34

4.7 Three-dimensional shell elements. 35

4.8 Nomenclature for element surface computations. 42

4.9 Nomenclature for contact resistance formulation. 45

5.1 Definition of material properties for phase change computation. 68

6.1 Definition of element boundary for heat function computation. 79

xi

xii

Chapter 1

Introduction

The need for the engineering analysis of systems in which the transport of thermal energy occurs

primarily through a conduction process is a common situation. For all but the simplest geome-

tries and boundary conditions, analytic solutions to heat conduction problems are unavailable,

thus forcing the analyst to call upon some type of approximate numerical procedure. A wide

variety of numerical packages currently exist for such applications, ranging in sophistication

from the large, general purpose, commercial codes, such as COMSOL [1], COSMOSWorks [2],

ABAQUS [3] and TSS [4] to codes written by individuals for specific problem applications.

The original purpose for developing the finite element code described here, COYOTE, was

to bridge the gap between the complex commercial codes and the more simplistic, individual

application programs. COYOTE was designed to treat most of the standard conduction prob-

lems of interest with a user-oriented input structure and format that was easily learned and

remembered. Because of its architecture, the code has also proved useful for research in nu-

merical algorithms and development of thermal analysis capabilities. This general philosophy

has been retained in the current version of the program, COYOTE, Version 5.0, though the

capabilities of the code have been significantly expanded. A major change in the code is its

availability on parallel computer architectures and the increase in problem complexity and size

that this implies.

The present document describes the theoretical and numerical background for the COYOTE

program. This volume is intended as a background document for the user’s manual found in

[5]. Potential users of COYOTE are encouraged to become familiar with the present report

and the simple example analyses reported in [5] before using the program.

In the following chapter the initial-boundary value problems treated by COYOTE are de-

scribed. Chapter 3 presents a brief description of the finite element method (FEM) and its

application to the current problem. Chapters 4 and 5 outline the computational techniques

that are involved in forming the individual element equations and the equation solution proce-

1

2 CHAPTER 1. INTRODUCTION

dures needed for the diffusion problem. Chapter 6 outlines the auxiliary calculation procedures

found in the code.

Chapter 2

Formulation of the Basic Equations

COYOTE was primarily developed for the solution of multi-dimensional, nonlinear heat conduc-

tion problems. However, exploiting the analogy between the general heat conduction equation

and other diffusion equations encountered in engineering and physics [6,7], COYOTE can also

be used for other applications. In conjunction with the thermal diffusion problem, COYOTE

was also structured to include solid phase chemical reactions and radiation heat transfer be-

tween surfaces of conducting regions. The coupling of COYOTE to other mechanics codes, in

a step to step manner, also allows phenomena other than conduction to be simulated. The

current version of the code allows one or two additional, nonlinear diffusion equations to be

defined and coupled to the thermal problem.

In the following section, the equation describing the basic heat conduction problem will

be outlined along with the limiting assumptions used in developing COYOTE. A subsequent

section will discuss all relevant boundary conditions for the heat transfer problem including

enclosure radiation. The general formulation for problems involving chemical kinetics is also

outlined. Other sections define the multiple auxiliary diffusion equations that may be added

to the thermal problem. The theoretical development in each section will treat the general

three-dimensional problem since the two-dimensional (plane or axisymmetric) case follows in a

straightforward manner.

2.1 Heat Conduction Equation

The appropriate mathematical description of the heat conduction process in a stationary ma-

terial region, Ω, is given by,

ρ C
∂T

∂t
=

∂

∂xi

(

kij
∂T

∂xj

)

+ Q (2.1)

3

4 CHAPTER 2. FORMULATION OF THE BASIC EQUATIONS

where ρ is the material density, C the specific heat, kij the thermal conductivity tensor, Q the

volumetric heat source, t the time, xi the spatial coordinates and T the temperature. Equation

(2.1) is written for a fixed, Cartesian reference frame with the i, j indices running between 1

and 3, and the usual summation conventions in effect.

For the present work, each material is allowed to be heterogeneous with the conductivity

tensor being at most, orthotropic (i.e., kij may have three distinct components, k11, k22 and k33

when written in terms of the principal material axes [6]). In the general case, the material prop-

erties may be functions of time, spatial location, chemical composition, and/or temperature.

The volumetric heat source may also depend on time, spatial location and/or temperature;

endothermic or exothermic energy release due to a chemical reaction is also included in the

variation of Q. When the conduction process is coupled to other physical phenomena (e.g.,

mechanical deformation) then the material properties may be functions of all other relevant

field variables.

Equation (2.1) describes the thermal conduction process within a single material. Conduc-

tion heat transfer between materials and convective and radiative energy exchange with the

surrounding environment depends on a set of interface and boundary conditions. These aspects

of the boundary value problem will be considered in the next section.

The partial differential equation given in (2.1) is in fact more generally applicable than indi-

cated above. If a material coordinate (Lagrangian) description is adopted for the region, Ω, in

place of the fixed frame Eulerian description, then Equation (2.1) is also valid for a translating,

rotating and/or deforming region, Ω(t). Because no equations of motion are included in the

present formulation, it is assumed that the kinematics for the material region are completely

specified. For rigid body motions such a prescription is relatively straightforward; new material

coordinates are directly defined by a translation and rotation of the region. Material defor-

mation is generally more complex and requires the solution of a solid mechanics problem and

consideration of density changes in the material. In the present formulation, deformation data

are assumed to be supplied from an external source; mass conservation, if required, is accounted

for within the code. Because the allowance of this type of material motion adds little to the

complexity of the boundary value problem, a Lagrangian description of the conduction problem

will be permitted as an optional form in the present development. One complication that does

arise in conjunction with solid body motion and deformation is the occurrence of contact. Due

to the fact that contact influences the specification of boundary conditions, this problem will

be addressed in a subsequent section.

Motion of a material under a fixed Eulerian coordinate description is also possible, though

the energy equation must be modified for this condition. If the material velocity field is specified

by the vector U with Cartesian components uj(xi, t), then the energy equation in (2.1) is altered

to

ρ C

(

∂T

∂t
+ uj

∂T

∂xj

)

=
∂

∂xi

(

kij
∂T

∂xj

)

+ Q. (2.2)

All of the conditions stated above for Equation (2.1) also pertain to Equation (2.2). Since a

2.2. BOUNDARY AND INTERFACE CONDITIONS 5

Figure 2.1: Schematic for boundary condition definitions.

momentum equation is not considered in the present formulation it is assumed that the velocity

field is completely prescribed as a function of time and space; the nonconservative form of the

energy equation also requires that the velocity field be divergence free. The additional advective

term present in (2.2) adds minimal complexity to the formulation and will be allowed as an

alternate energy equation when this type of material motion is prescribed. Note that Equations

(2.1) and (2.2) may occur in different regions of the same problem since they are both referenced

to the same coordinate system. Mixtures of Eulerian and Lagrangian descriptions are also

permissable.

2.2 Boundary and Interface Conditions

Boundary and interface conditions for the diffusion problem given by (2.1) or (2.2), are most

easily described by reference to Figure 2.1. The region Ω is generally composed of a number of

different materials, two of which are illustrated in Figure 2.1. The material interface is denoted

by Γm; the external boundary of the region Ω is defined by Γ. A two-dimensional representation

of the region is used for simplicity.

The heat conduction problem requires that either the temperature or the heat flux be

6 CHAPTER 2. FORMULATION OF THE BASIC EQUATIONS

specified at all points of the boundary, Γ. In equation form, these conditions are given by

T = fT (si, t) on ΓT (2.3)
(

kij
∂T

∂xj

)

ni + qc + qr = f q(si, t) on Γq. (2.4)

In Equations (2.3) and (2.4) the fT and f q functions are specified values of the known boundary

temperature and heat flux. Also, ni is the outward unit normal to the boundary Γq, si are

coordinates defined on the boundary and Γ = ΓT ∪ Γq. The functions fT and f q are generally

simple expressions for most boundaries of practical interest. The quantities qc and qr refer to

the convective and radiative components of the boundary heat flux and are given by

qc = hc(si, T, t)(T − Tc) (2.5)

qr = F(ǫ)σǫ(T 4 − T 4
r) (2.6)

where hc is the convective heat transfer coefficient, F is the radiation form factor, σ is the Stefan-

Boltzmann constant, and Tc and Tr are equilibrium temperatures for which no convection or

radiation occurs. The form factor, F , is related to the surface emissivity of the boundary, ǫ, and

the position of the boundary relative to surrounding surfaces (see e.g., [8]). This particular form

of the radiation condition is useful for approximating the effects of simple, black-body radiation

to a known temperature environment. More complex environments require the solution of

the radiation transfer problem between the surrounding surfaces and the conducting body or

between neighboring surfaces within the conducting region. This aspect of the problem is

considered in Section 2.4.

Along the material interface Γm, the usual assumption is that the temperature and heat

flux are continuous functions. That is,

T |
Γ

+
m

= T |
Γ
−

m
(2.7)

(

kij
∂T

∂xj

)

ni

∣
∣
∣
∣
Γ

+
m

=

(

kij
∂T

∂xj

)

ni

∣
∣
∣
∣
Γ
−

m

(2.8)

where the superscript +,− notation indicates properties or variables evaluated on either side of

Γm. The above assumption is altered when contact resistance is a factor or when the interface

is a phase boundary.

The problem of contact resistance between two stationary materials may be represented

by either of two methods. One approach to modeling this effect assumes that the contact

region is composed of a fictitious material, of small thickness, whose properties produce the

appropriate resistance to heat flow across the interface. Typically, this gap material will have a

negligible heat capacity and a nonlinear conductivity. In this case, the conditions in (2.7) and

(2.8) are appropriate for all of the interfaces between the gap and solid materials. A slightly

more mathematical representation of contact resistance provides that the heat flux across the

interface is described by an internal boundary condition of the form

qg = hg(si, T̂ , t)(Tm − Ts) (2.9)

2.2. BOUNDARY AND INTERFACE CONDITIONS 7

where hg is an effective heat transfer coefficient for the gap region and T̂ is an average tem-

perature between the surface temperatures, Tm and Ts. The subscripts m and s designate the

“master” and “slave” sides of the contact surface, a distinction that is important in the nu-

merical implementation of Equation (2.9). The above flux condition is a generalization of the

external boundary conditions presented in (2.5) and (2.6). In addition to representing contact

resistance, this particular form of heat transfer between regions can also be used to simplify

finite element mesh construction as shown in Section 4.10.3. Note that both of the above tech-

niques for representing contact resistance between fixed surfaces may be used with the numerical

methods considered here. When material motion or deformation is considered, the options for

thermal boundary conditions along contacting surfaces are limited to the specification shown

in (2.9) and the surface to surface radiation conditions described in a later chapter.

The conditions present at a phase boundary are somewhat more complex and require some

additional equations. The difficulties at a phase boundary stem mainly from the fact that the

location of the boundary Γm is not known a priori. Thus, the location of the moving interface

becomes a required part of the solution. For the present application only melt/solid phase

transitions will be considered. Also, it will be assumed that density changes upon change of

phase may be neglected. With these assumptions, conditions at the interface are given by

Tf |Γm
= Ts|Γm

(2.10)

kf
∂T

∂n

∣
∣
∣
∣
Γm

− ks
∂T

∂n

∣
∣
∣
∣
Γm

= ρL
∂Γm

∂t
(2.11)

where L is the latent heat and Γm(t) is the unknown spatial position of the phase boundary.

The subscripts f and s denote the fluid and solid phases; the conductivities are shown as

being isotropic though the solid phase tensor could be anisotropic. Basically, the melt/solid

interface is taken to be a continuous temperature boundary with a discontinuous heat flux.

This interface condition is not convenient for computational work when considering fixed grid

methods. Following the work of Bonacini, et al. [9] and others, [10,11,12] the jump condition

in (2.11) can be written in an alternate form using the so-called “enthalpy method.”

By observing that the latent heat, L, corresponds to the isothermal change in the enthalpy,

H, for a material at the transition temperature, Tt, the following relation can be introduced

H(T) =

∫ T

Tref

C(T)dT + Lη(T − Tt) (2.12)

with

η(∆) =

{
1 if ∆ ≥ 0

0 if ∆ < 0

where η is the Heaviside function with argument ∆. The equivalent specific heat, C∗, is then

introduced by

C∗(T) =
dH

dT
= C(T) + Lδ(T − Tt) (2.13)

where δ is the Dirac delta function. Through the use of (2.13) latent heat effects may be included

via the specific heat function and the jump in the heat flux (Equation (2.11)) eliminated from

8 CHAPTER 2. FORMULATION OF THE BASIC EQUATIONS

the problem formulation. This particular approach to the problem has a theoretically sound

basis as outlined in [9]. Moreover, it is a computationally effective modification because a

two region problem with a jump condition has been converted to a single region problem

with rapidly varying properties. For use in a finite element model, Equation (2.13) requires

additional modification. The details of this procedure are considered in references [9-12] and in

Section 5.7. Other methods for including phase change effects, such as the heat source method

or chemical kinetics approach [13], are possible and could be included in COYOTE with minor

code modifications.

Equations (2.1) through (2.13) provide a complete description of the boundary value prob-

lem for the temperature, T . When considering a time-dependent problem a suitable set of

initial conditions describing the initial spatial distribution of T is also required.

2.3 Bulk Nodes

The environment external to the continuum region modeled by COYOTE, influences the ther-

mal diffusion process through the flux boundary conditions given in (2.5) and (2.6) and in

particular through the specification of the reference temperatures, Tc and Tr. In some cases, a

zero-dimensional model for the external region is useful in accounting for changes in the con-

vective reference temperature, Tc. COYOTE treats such a region in terms of a bulk node. Note

that the radiation boundary condition cannot usually be included with the bulk node because

of its dependence on geometry.

A bulk node is characterized by a single temperature, Tb(t), and pressure, Pb(t) and is defined

as a general control volume, CV, bounded by a control surface, CS. Mass and energy may flow

across the control surface and the control volume may be time-dependent. Processes occurring

within the bulk node are assumed to be in quasi-equilibrium and be uniformly distributed

within the CV. At present, chemical reactions within the bulk node volume are not considered.

The statement of mass conservation for the CV is

dM

dt
=

d

dt

∫

CV
ρ dV =

∑

CS

δṁin −
∑

CS

δṁout = fM (t) (2.14)

where M is the total mass and the summations are over the segments of the control surface

with an incremental mass flux, δṁ. The energy conservation for the CV is

dE

dt
=

d

dt

∫

CV
ρ E dV =

∑

CS

(h0 δṁ + δq + δP)in −
∑

CS

(h0 δṁ + δq + δP)out (2.15)

where E is the total energy, E is the specific energy, h0 δṁ is the mass transfer energy rate and

h0 is the total enthalpy per unit mass, q is the thermal energy rate and P is the mechanical

energy rate. For the bulk node of interest here, the kinetic and potential energy changes in

the mass transfer rate can be neglected. Also, shaft work and shear forces are neglected in the

2.4. ENCLOSURE RADIATION 9

mechanical energy rate and conduction is neglected in the thermal rate. The bulk node energy

equation then is

dU

dt
= PbV̇ +

∑

CS

(h0 δṁ + δq)in −
∑

CS

(h0 δṁ + δq)out = fU (t) (2.16)

where Pb is the uniform pressure for the bulk node and V̇ is the time rate of change of the bulk

node volume. Also, for an ideal substance, the internal energy is U = MCvTb which allows

the recovery of the bulk node temperature from the energy equation. For use in COYOTE,

the summation over the control surface is replaced by a summation over the element surfaces

bounding the bulk node. The thermal energy rates in (2.16) are replaced by Equation (2.5)

as appropriate, where the reference temperature is now Tb. The mass flow terms in (2.14) and

(2.16) may be imposed on the bulk node to model vents or orfices associated with the geometry

or may be connected to the chemical decomposition of the materials surrounding the bulk node.

The decomposition reaction may add mass and energy to the bulk node during the reaction

and/or contribute to the bulk node through the removal of elements (element death). Element

removal also leads to changes in the volume of the bulk node as does the Lagrangian motion of

material surrounding the bulk node. The bulk node material is modeled as either an ideal gas

or a constant pressure liquid. The mass and energy equations for the bulk node are decoupled

from the finite element equations and are integrated in time with any of several time integration

methods. For closed cavities, a simple algebraic equation is used to update the time-dependent

volume, since the volume change is either prescribed or is incremental. Open cavities must have

a representative volume specified.

In time independent applications, the bulk node equations reduce to a surface energy balance

for the control surface surrounding the bulk node. A simple summation (surface integration) of

the control surface boundary condition given by (2.5) leads to a single energy equation for the

bulk node temperature. This equation is solved decoupled from the finite element equations

and thus requires an iterative solution procedure to equilibrate the bulk node temperature with

the temperature dependent, surface boundary conditions. A bulk node may be bounded by a

radiation enclosure, but its temperature is determined solely by satisfying Equation (2.5), since

the enclosure msut be transparent to any radiation considered.

2.4 Enclosure Radiation

Radiant energy exchange between neighboring surfaces of a region or between a region and its

surroundings can produce large effects in the overall heat conduction problem. Though the

radiation effects generally enter the conduction problem only through the boundary conditions,

the coupling may be especially strong due to the nonlinear dependence of the radiation on the

surface temperature. COYOTE allows a restricted class of radiation problems to be solved in

conjunction with the basic conduction problem.

10 CHAPTER 2. FORMULATION OF THE BASIC EQUATIONS

Figure 2.2: Nomenclature for enclosure radiation.

Enclosure or surface-to-surface radiation in COYOTE is limited to diffuse gray surfaces.

This assumption implies that all energy that is emitted or reflected from a surface is diffuse.

Further, surface emissivity, ǫ, absorbtivity, α, and reflectivity, ρ, are independent of wavelength

and direction so that ǫ(T) = α(T) = 1−ρ(T). Each individual area or surface that is considered

in the radiation process is assumed to be at a uniform temperature; emitted and reflected energy

are uniform over each such surface. Note that the definition of a surface is arbitrary and can be

based on geometry alone or be defined to specifically satisfy the uniform temperature criteria.

With the above assumptions the radiation problem can be approached using the net-

radiation method as described in [8]. For purposes of discussion, consider the two-dimensional

enclosure made up of N distinct surfaces as shown in Figure 2.2. Associated with each surface

is a uniform temperature Tj , an area Aj and a surface emissivity ǫj . An energy balance for

each surface, k, in the enclosure leads to the following system of equations

N∑

j=1

[

δkj

ǫj
− Fk−j

(

1 − ǫj

ǫj

)]

Qj

Aj
=

N∑

j=1

(δkj − Fk−j)σTj
4. (2.17)

Equation (2.17) relates the net radiation energy loss, Qj , from each surface to the surface

temperatures, where δkj is the unit tensor, σ is the Stefan-Boltzmann constant and Fk−j are

radiation view (configuration) factors. The view factor is defined as the fraction of energy leav-

ing a surface that arrives at a second surface. For surfaces with finite areas and an unobstructed

view of each other, the view factors are defined by

Fk−j =
1

Ak

∫

Ak

∫

Aj

cos θk cos θj

πS2
dAj dAk (2.18)

2.5. CHEMICAL KINETICS 11

where S is the distance from a point on surface Aj to a point on surface Ak. The angles θj and

θk are measured between the line S and the normals to the surface as shown in Figure 2.2 (see

also [8]). It is clear from (2.18) that the view factors are purely geometric quantities that can

in principle be evaluated for any given distribution of surfaces. Methods for evaluating Fk−j ,

including more general geometries with obstructions, will be outlined in a later chapter.

For purposes of computation it is convenient to rearrange (2.17) into the following series of

equations
N∑

j=1

[δkj − (1 − ǫk)Fk−j] q
o
j = ǫkσT 4

k (2.19)

and

qk = qo
k −

N∑

j=1

Fk−jq
o
j . (2.20)

Equations (2.19) and (2.20) are expressed in terms of the outgoing radiative flux for each

surface, qo
j , and the net flux from each surface qk = Qk/Ak. For known surface temperatures Tk

in the enclosure, Equation (2.19) can be solved for the outgoing radiative flux at each surface.

Equation (2.20) then allows the net flux at each surface to be evaluated and applied to the

conduction problem as a known flux boundary condition. The actual method of solution using

(2.19) and (2.20) in a finite element context will be discussed in Section 5.5.

2.5 Chemical Kinetics

The thermal diffusion problem outlined in Sections 2.1-2.4 is modified significantly when one

or more materials in the region Ω are allowed to undergo a chemical reaction. Each reactive

material must be considered a mixture of I species with thermophysical properties now being

a function of chemical composition. In addition, the J chemical reactions associated with a

reactive material will normally produce a significant change in internal energy that subsequently

provides a source term to the thermal diffusion problem. COYOTE has been designed to handle

a fairly general class of reaction-diffusion problems.

To describe a chemically reacting material, the stoichiometry, reaction kinetics and material

property behavior must be specified. Consider a material involving I species with J reactions.

The description of the allowed reactions (stoichiometry) is given by

I∑

i=1

ν ′

ijMi →
I∑

i=1

ν ′′

ijMi for j = 1, 2, . . . , J (2.21)

where ν ′

ij , ν
′′

ij are stoichiometric coefficients (usually integer values) and Mi is the chemical

symbol for the ith species. Generally, these expressions are given as reversible reactions; how-

ever, they are treated here as irreversible and the reversed reactions are specified as additional

12 CHAPTER 2. FORMULATION OF THE BASIC EQUATIONS

reaction steps. To accommodate expressions for global reactions, the stoichiometric coefficients

are allowed to be non-integer.

For each step of the reaction, a reaction rate rj , is usually defined in the form:

rj = kj(T)
I∏

i=1

[Ni]
µij for j = 1, 2, . . . , J (2.22)

where [Ni] is the concentration variable for species i (or mole fraction), and µij are the concen-

tration exponents (usually µij = ν ′

ij in kinetic theory, but here they are treated independently).

Typically, the expressions for the kinetic coefficients kj(T), are given in an Arrhenius form

kj(T) = T βj Aj exp(−Ej/RT) (2.23)

where βj is the coefficient for a steric factor, Aj is the pre-exponential factor, Ej is the activation

energy and the universal gas constant is R. It is convenient to define νij = (ν ′′

ij − ν ′

ij) and thus

the rate of change of the species (neglecting diffusion) are given as

d

dt
[Ni] =

J∑

j=1

νijrj for i = 1, 2, . . . , I (2.24)

The chemical reaction process is coupled directly to the thermal diffusion problem by the

volumetric source term

Qr =
J∑

j=1

qjrj (2.25)

where qj represents the known endothermic or exothermic energy release for reaction step j.

Though the reaction rate expression in (2.22) is standard, it is not universal. COYOTE also

permits reaction rates of an arbitrary form to be incorporated into the kinetics description

through a user-defined subroutine. Also, chemical species may be defined that are algebraically

related to other species and are not updated through the kinetics relations. These definitions

are implemented through a user subroutine.

The material properties for the mixture are usually represented as mole fraction weighted

averages of the I constituents. That is

(ρC)mix =
I∑

i=1

[Ni](ρC)i (2.26)

(kjk)mix =
I∑

i=1

[Ni](kjk)i (2.27)

where the constituent properties could still be functions of temperature. Another useful pa-

rameter for the mixture is the reacted gas fraction which is defined as the fraction of reacting

2.6. AUXILIARY DIFFUSION EQUATIONS 13

material that exists in gas phase and is represented by

Fc =

(1.0 − Xc)
I∑

i=1

[Ni](g)i

I∑

i=1

[Ni]

(2.28)

where (g)i is unity for gas phase species or zero for condensed phase species and Xc is the

condensed fraction for the reactive material.

The species equations in (2.24) must be solved for each reactive material in conjunction

with the thermal diffusion problem. This is a particularly difficult problem due to the disparity

in time scales among the reaction equations and especially between the chemical processes and

the thermal diffusion. In COYOTE, reactive materials are included via an operator splitting

method and the use of stiff, ordinary differential equation solvers for the species equations. This

methodology is outlined in Chapter 5.

2.6 Auxiliary Diffusion Equations

To generalize the application of the COYOTE code, one or two additional diffusion equations

can be defined and coupled to the thermal problem. For the material region Ω, the additional

time dependent diffusion processes are described by

ρ Ck ∂φk

∂t
=

∂

∂xi

(

Dk
ij

∂φk

∂xj

)

+ Qk (2.29)

where the superscript k varies from A to B and denotes the particular diffusion process. The

parameter Ck is an effective capacitance (that may or may not be required), Dk
ij is an anisotropic

conductivity or diffusivity tensor and Qk is the volume source. Note that these properties may

be functions of spatial location, time and the variable φk. The dependent variable φk is defined

by the particular application but is generally a function of position and time.

As a diffusion process, the partial differential equations in (2.29) require the same types of

boundary conditions as found in the conduction equation. Analogous to (2.3) and (2.4) the

appropriate boundary conditions are

φk = fφk

(si, t) on Γφk (2.30)

(

Dk
ij

∂φk

∂xj

)

ni + qφk

c = f qφk

(si, t) on Γφk

q . (2.31)

In Equations (2.30) and (2.31) the functions fφk
and f qφk

are specified values of the known

dependent variables and variable fluxes. The convective component of the flux is provided by

qφk

c = hφk

c (si, φ
k, t)(φk − φk

c) (2.32)

14 CHAPTER 2. FORMULATION OF THE BASIC EQUATIONS

where hφk

c is a convection coefficient and φk
c is the reference value of the variable φk. Note that

there is no radiation component for the general flux. If φk is used as a temperature variable, a

radiation component for the flux would be defined. Conditions for interfaces and contact may

also be defined for the auxiliary diffusion processes and are directly analogous to the conduction

definitions.

The properties and boundary conditions for (2.29) were initially defined to be functions of

spatial location, time and the dependent variable φk. To permit coupled diffusion processes,

the material properties, sources and boundary conditions are also allowed to be functions of

the temperature. Conversely, the thermal properties, sources and boundary conditions are

allowed to be functions of φk. For complete generality, functional dependencies on variable

derivatives should be considered. COYOTE does not generally allow this option, though its

implementation is relatively straightforward.

When the motion of the material is described in a fixed Eulerian coordinate system, the

auxiliary diffusion equations, if needed, must be modified to include the advective transport

term. Following the form of the energy equation in (2.2) the advection-diffusion equations for

the φk variables are

ρ Ck

(

∂φk

∂t
+ uj

∂φk

∂xj

)

=
∂

∂xi

(

Dk
ij

∂φk

∂xj

)

+ Qk. (2.33)

The material velocity components uj must again be divergence free. All of the boundary

conditions noted above for the auxiliary diffusion equations are applicable to the advection-

diffusion form of the equation.

2.7 Periodic Heat Conduction

The general heat conduction Equation (2.1) is applicable to any type of time varying diffusion

problem. A special form of the conduction problem occurs when the boundary conditions

and/or source term is periodic in time. Let the temperature and source be represented as

periodic functions given by

T (xi, t) = T0(xi)e
iωt = (TR + iTI)e

iωt (2.34)

Q(xi, t) = Q0(xi)e
iωt = (QR + iQI)e

iωt (2.35)

where

eiωt = cos (ωt) + i sin (ωt) (2.36)

and the subscript 0 refers to the amplitude function (which is complex) and the subscripts

R and I indicate real and imaginary components. The amplitudes are T0 = TR + iTI and

Q0 = QR + iQI . The circular frequency is ω = 2πf and the modulus and phase angle are

|T | =
√

T 2
R + T 2

I (2.37)

2.7. PERIODIC HEAT CONDUCTION 15

β = tan−1

(
TI

TR

)

(2.38)

With these definitions the temperature can be also rewritten as

T (xi, t) = |T (xi)| cos (ωt + β) (2.39)

Substituting (2.34) and (2.35) into the conduction equation leads to a time independent diffusion

equation

iωρ CT0 =
∂

∂xi

(

kij
∂T0

∂xj

)

+ Q0 (2.40)

where the common exponential factor has been dropped from the equation. The conductivity

and capacitance are assumed to be independent of temperature in this formulation. By consid-

ering the real and imaginary components separately, the conduction problem expands to a set

of coupled (real) equations for the components with the form

−ωρ CTI =
∂

∂xi

(

kij
∂TR

∂xj

)

+ QR (2.41)

ωρ CTR =
∂

∂xi

(

kij
∂TI

∂xj

)

+ QI (2.42)

The boundary conditions must also be defined in terms of the periodic functions. For a

specified temperature, the individual real and imaginary components may be defined

TR = fT
R (si) TI = fT

I (si) on ΓT (2.43)

where the boundary condition phase and modulus are defined by (2.38) and (2.37). The heat

flux boundary condition must also be periodic which when written by component is

(

kij
∂TR

∂xj

)

ni + hc(si)(TR − TcR
) = f q

R(si) on Γq. (2.44)

(

kij
∂TI

∂xj

)

ni + hc(si)(TI − TcI
) = f q

I (si) . (2.45)

The reference temperature for convection has been assumed to be periodic with the same fre-

quency as the temperature. Note that the radiation component has been neglected. Generally

the heat transfer coefficients must be independent of temperature, though some types of aver-

aging over the period may allow the inclusion of some nonlinearity.

The above equations define a periodic form of the boundary value problem for conduction.

This continuum problem can be cast in a finite element form to allow the computation of the

spatially varying temperature field; the time variation may be reconstructed from the periodic

relation given in (2.34) or (2.39).

16 CHAPTER 2. FORMULATION OF THE BASIC EQUATIONS

2.8 Front Tracking

In concert with the modeling of reactive materials, it may be necessary to follow the evolution

of a material interface, such as a reaction front. For an Eulerian representation of such a

problem, several methods exist to represent the interface and track its time-dependent motion.

COYOTE currently employs a level set algorithm [14] for this problem that is based on the

solution of the scalar advection equation

∂f

∂t
+ uj

∂f

∂xj
= 0. (2.46)

In (2.46) the variable f represents the level set function which is usually defined as the signed

distance function; the interface Γ is the zero level set of f . That is,

f(xi, t) =







< 0 if xi ∈ unreacted material

0 if xi ∈ Γ

> 0 if xi ∈ reacted material

The velocity of the interface, uj , must be specified and is always oriented normal to the interface.

The velocity would typically be a function of the field variables such as temperature and/or

species. It is generally assumed that the interface represents a steep or discontinuous transition

in material properties and behavior and Equation (2.46) describes the nondissipative motion of

the front.

Since (2.46) is a hyperbolic equation, initial conditions must be specified for f and this

would normally be a uniform field with f < 0. The initial appearance or specification of a

front (e.g.,f = 0) would typically be generated at one or more locations within the domain as

the reactive process reached a critical value in temperature or species. With a front defined

and a velocity field specified, Equation (2.46) is then integrated in time to follow the motion of

the interface. The numerical methods used to solve (2.46) in conjunction with the conduction

problem are outlined in Chapter 5.

Chapter 3

Finite Element Equations

The spatial discretization of the boundary value problem outlined in Chapter 2 by use of the

finite element method may be approached by either of two procedures. Historically, the first

and most popular approach consists of rewriting the boundary value problem in a variational

form for use with the finite element approximation. An equivalent method uses the Galerkin

form of the method of weighted residuals to create an integral form of the basic conservation

law. This latter method is employed here.

3.1 Heat Conduction Equation

Let the region of interest, Ω, be divided into a number of simply shaped regions called finite

elements, as shown in Figure 3.1. Within each element, a set of nodal points are established

at which the dependent variable (i.e., T) is evaluated. The variation of the temperature field

within each element is approximated by an expansion of the form

T (xi, t) =
Ne∑

n=1

Θn
e (xi)T

n
e (t) (3.1)

where Θe represents the Ne interpolation functions and Te are the Ne nodal point temperatures

in the element. The ability to define simple, local approximations to the dependent variable

is a primary feature of the finite element method. However, in order to develop a Galerkin,

weighted residual formulation which is valid over the entire (global) domain, Ω, the local tem-

perature variation in (3.1) must be extended to represent the temperature over the assemblage

of elements. Standard compatibility properties of the piecewise element approximations given

in (3.1) and the use of incidence relations (connectivity) for the assemblage of elements, allows

a global temperature representation to be constructed. Details of this process may be found in

17

18 CHAPTER 3. FINITE ELEMENT EQUATIONS

Figure 3.1: Finite element discretization of a region.

[13,15,16]. The global temperature field has a form similar to (3.1) and is expressed as

T (xi, t) =
N∑

n=1

Θn(xi)T
n(t) (3.2)

or in matrix notation,

T (xi, t) = ΘT (xi)T(t) (3.3)

where Θ is now a vector of basis or interpolation functions defined on Ω, T is a vector of nodal

point unknowns, superscript T denotes a vector transpose, and N is the number of nodal points

in the domain. Substitution of Equation (3.3) into the partial differential Equation (2.1) yields

a set of residual equations, due to the approximate nature of Equation (3.3). In functional form

then

fT (Θ,T) = RT . (3.4)

The Galerkin method guarantees the orthogonality of the residual vectors to the space spanned

by the interpolation functions. This orthogonality is expressed by the inner product,

〈Θ, fT 〉 = 〈Θ, RT 〉 = 0 (3.5)

where 〈a, b〉 denotes the inner product defined by

〈a, b〉 =

∫

Ω

a · b dΩ (3.6)

3.1. HEAT CONDUCTION EQUATION 19

Carrying out the above operations explicitly for the heat conduction Equation (2.1) yields

the following,

∫

Ω

ρCΘΘT ∂T

∂t
dΩ −

∫

Ω

Θ
∂

∂xi

(

kij
∂ΘT

∂xj
T

)

dΩ −

∫

Ω

ΘQ dΩ = 0. (3.7)

As is standard practice [13,15], the second-order diffusion term in (3.7) may be rewritten using

the divergence theorem to produce a first-order term plus a boundary integral.

∫

Ω

ρCΘΘT ∂T

∂t
dΩ +

∫

Ω

∂Θ

∂xi

(

kij
∂ΘT

∂xj
T

)

dΩ =

∫

Ω

ΘQdΩ +

∫

Γ

Θ

(

kij
∂ΘT

∂xj
T

)

ni dΓ. (3.8)

Recognizing the boundary integral in (3.8) as part of the boundary condition specification in

(2.4) allows this term to be reconfigured as

∫

Ω

ρCΘΘT ∂T

∂t
dΩ +

∫

Ω

∂Θ

∂xi

(

kij
∂ΘT

∂xj
T

)

dΩ =

∫

Ω

ΘQdΩ +

∫

Γ

Θ (f q − qc − qr) dΓ. (3.9)

Noting that the nodal point unknowns are independent of the spatial integration and may

be moved outside the integrals allows (3.9) to be written in the following matrix form

M(T)Ṫ + K(T)T = FQ(T) + F(T) (3.10)

where the superposed dot indicates a time derivative and the possible dependencies on the

dependent variable have been indicated. The individual matrices and vectors are defined by

M(T) =

∫

Ω

ρCΘΘT dΩ

K(T) =

∫

Ω

∂Θ

∂xi

(

kij
∂ΘT

∂xj

)

dΩ (3.11)

FQ(T) =

∫

Ω

ΘQdΩ

F(T) =

∫

Γ

Θ (f q − qc − qr) dΓ

In deriving the matrix Equation (3.10) from the Galerkin (weighted residual) method, it

was important to work with the globally defined temperature approximation or basis functions

to avoid mathematical difficulties [13,15]. However, for purposes of implementation, it is more

convenient to return to the local, element-level description of the equations. The process of

constructing (assembling) the global matrices M,K, and F from element level contributions is

generally termed the direct stiffness method and is based primarily on the decomposition of

the integrals defined for (3.11). Omitting the technical details [13,15,16], the global integrals

over Ω can be written as the sum of the integrals over individual elements, Ωe, which along

20 CHAPTER 3. FINITE ELEMENT EQUATIONS

with the appropriate incidence (or connectivity) relations between elements allows the following

fundamental property to be defined

M =
∑

e

Me ; K =
∑

e

Ke ; F =
∑

e

Fe (3.12)

The sums in (3.12) are sometimes represented in terms of an assembly operator that includes

the notion of a connectivity. In either case, the assemlby or sum is over all the elements in the

domain and the element matrices are defined by

Me =

∫

Ωe
ρCΘeΘe

T dΩ

Ke =

∫

Ωe

∂Θe

∂xi
kij

∂Θe
T

∂xj
dΩ (3.13)

FQe =

∫

Ωe
ΘeQdΩ

Fe =

∫

Γe
Θe(f

q − qc − qr)dΓ

Once the form of the element interpolation function, Θe, is known and the element geometry is

specified, the integrals in (3.13) can be evaluated. The global matrix problem is then constructed

through use of (3.12).

3.2 Convection Equation

The derivation in the previous section considered the boundary value problem for thermal diffu-

sion as described by Equation (2.1). For an Eulerian coordinate frame with a specified material

velocity, the advection-diffusion Equation (2.2) is the appropriate continuum description for

energy transport. The finite element form of this equation is derived by the same procedure as

outlined above.

The temperature field is again represented by an expansion of the form given in (3.3)

T (xi, t) = ΘT (xi)T(t)

and the known velocity field is represented by a similar interpolation given by

uj(xi, t) = ΦT (xi)uj(t). (3.14)

For generality, the interpolation function Φ in (3.14) is shown to be different from the interpo-

lation for the temperature, though in practice these are usually the same function. Substituting

(3.3) and (3.14) into (2.2) produces a residual equation of the form

fT (Θ,Φ,uj,T) = RT . (3.15)

3.3. AUXILIARY DIFFUSION EQUATIONS 21

Applying the Galerkin method with weight function Θ produces

∫

Ω

ρCΘΘT ∂T

∂t
dΩ +

∫

Ω

ρCΘΦTuj

∂ΘT

∂xj
T dΩ +

∫

Ω

∂Θ

∂xi

(

kij
∂ΘT

∂xj
T

)

dΩ =

∫

Ω

ΘQdΩ +

∫

Γ

Θ (f q − qc − qr) dΓ (3.16)

where the second-order diffusion terms have been integrated by parts. The boundary conditions,

being the same for this equation as Equation (2.1), have been used to redefine the boundary

integral. The matrix form of this equation is

M(T)Ṫ + C(uj,T)T + K(T)T = FQ(T) + F(T) (3.17)

which is directly analogous to (3.10). The global advection matrix is defined by

C(uj,T) =

∫

Ω

ρCΘΦTuj

∂ΘT

∂xj
dΩ (3.18)

while the element level matrix is

Ce =

∫

Ωe

ρCΘeΦe
Tuj

∂Θe
T

∂xj
dΩ. (3.19)

As before, assembly of the global system follows the format defined in (3.12). The only difference

between the convective-diffusive and diffusive forms of the energy equation is the occurrence

of the advective matrix defined by (3.18). This term requires that a divergence free velocity

field be defined as a function of space and time over the appropriate domain, Ω. Note that

the convective term is unsymmetric and the global equation system is therefore unsymmetric

when this formulation is employed. Also, this form of the energy equation is only available with

the continuum elements in the element library; the convection formulation cannot be employed

with bar or shell elements.

3.3 Auxiliary Diffusion Equations

The finite element form of the auxiliary diffusion equations is derived with the same procedure

as used for the conduction equation. The dependent variables are represented by

φk(xi, t) = ΥT (xi)φ
k(t)

where Υ is a vector of basis functions and φk is the vector of nodal point values of the unknowns.

Using the Galerkin form of the method of weighted residuals leads to

∫

Ω

ρCkΥΥT ∂φk

∂t
dΩ+

∫

Ω

∂Υ

∂xi

(

Dk
ij

∂ΥT

∂xj
φk

)

dΩ =

∫

Ω

ΥQk dΩ+

∫

Γ

Υ

(

f qφk

− qφk

c

)

dΓ (3.20)

22 CHAPTER 3. FINITE ELEMENT EQUATIONS

where the diffusion term has been transformed by integration-by-parts and the divergence

theorem; the boundary term is rewritten in terms of the specified natural boundary conditions.

This equation is recognized as a matrix equation of the following form

Mk(φk)φ̇k + Kk(φk)φk = Fk
Q(φk) + Fk(φk) (3.21)

where the correspondence with the energy equations is obvious. In practice the shape functions

Υ are taken to be the same as the temperature interpolation functions, i.e. Υ = Θ.

The advection-diffusion form of the auxiliary equations is derived with the same procedure

and results in a matrix equation that is of the same form as (3.17 or

Mk(φk)φ̇k + Ck(uj, φ
k)φk + Kk(φk)φk = Fk

Q(φk) + Fk(φk) (3.22)

Note that in writing (3.21) and (3.22) all of the possible functional dependencies have not been

shown. In particular, the matrices and vectors (properties and boundary conditions) may be

functions of the temperature when coupled to the energy equation.

3.4 Periodic Heat Conduction

The special case of periodic heat conduction is described by the complex partial differential

equation given in (2.40). The finite element form of this equation is most conveniently derived

using the component equations listed in (2.41) and (2.42) and the same weighted residual

process outlined above. The real and imaginary components of the temperature are defined by

the shape functions

TR(xi) = ΘT (xi)TR ; TI(xi) = ΘT (xi)TI

Using a Galerkin method with the component equations produces matrix equations of the form

−ωMTI + KTR = FQR
+ FR (3.23)

ωMTR + KTI = FQI
+ FI (3.24)

where the individual matrices and vectors are linear versions of the standard conduction versions

M =

∫

Ω

ρCΘΘT dΩ

K =

∫

Ω

kij
∂Θ

∂xi

∂ΘT

∂xj
dΩ (3.25)

FQR
=

∫

Ω

ΘQR dΩ

FQI
=

∫

Ω

ΘQI dΩ

FR =

∫

Γ

Θ
(

f qR − hc(Θ
TTR − TcR

)

dΓ

3.5. FRONT TRACKING EQUATION 23

FI =

∫

Γ

Θ
(

f qI − hc(Θ
TTI − TcI

)

dΓ

The component Equations (3.23) and (3.24) represent a coupled system of equations for the real

and imaginary components of the temperature in a time periodic problem. Material properties

and boundary condition parameters may be functions of spatial location but may not depend

on temperature.

3.5 Front Tracking Equation

The tracking of a material interface is provided by developing a discretized form of the level

set equation given in (2.46). The finite element form of this equation is derived in the same

manner as the convection equation with a similar result.

The front tracking or level set variable f is represented by an expansion of the form

f(xi, t) = ΨT (xi)f(t) (3.26)

and the known, divergence free velocity field is represented by a similar interpolation given

again by (3.14)

uj(xi, t) = ΦT (xi)uj(t).

Using these definitions in (2.46) and the standard weighted residual form, a matrix equation

for the front tracking variable can be written as

M̂ḟ + Ĉ(uj)f = 0 (3.27)

where the mass and advection matrices are defined by

M̂ =

∫

Ω

ΨΨT dΩ (3.28)

and

Ĉ(uj) =

∫

Ω

ΨΦTuj

∂ΨT

∂xj
dΩ (3.29)

As with the convection equation this system is unsymmetric and requires the specification of a

velocity field. Also, the front tracking equation is only available with the continuum elements

in the element library. The shape functions denoted by Ψ are usually the same functions as Φ

and Θ.

24 CHAPTER 3. FINITE ELEMENT EQUATIONS

Chapter 4

Elements and Element Matrix

Construction

The formulation of the equations for an individual element, as indicated by Equations (3.10),

(3.12), (3.13) and (3.19), requires the specification of the shape function vectors for the approx-

imation of the temperature. The form of the shape functions depend on the particular element

being used; COYOTE employs two basic elements for two-dimensional analyses and three ele-

ment types in the three-dimensional case. Special geometric elements, such as bars and shells,

are also available. The interpolation functions for each of these elements are described below.

For each element type both linear and quadratic interpolation is available; the higher-order

functions are generally of the “serendipity” type [13,16] and avoid the use of nodes located in

the interior of the element. Other element types, such as the higher-order Lagrange elements,

could be added to COYOTE with minor code modifications. When the convective form of the

energy equation is employed, the velocity interpolation is always constrained to be the same as

the temperature interpolation for the element, i.e. Φ = Θ.

4.1 Triangular Elements (2D)

The triangular elements used in two-dimensional applications of COYOTE consist of a straight-

sided, three-node element and a six-node element as shown in Figure 4.1. The linear interpo-

lation function for the three-node element is given by

Θl =







L1

L2

L3







(4.1)

25

26 CHAPTER 4. ELEMENTS AND ELEMENT MATRIX CONSTRUCTION

Figure 4.1: Two-dimensional triangular elements.

and the corresponding quadratic function for the six-node element is

Θq =







L1(2L1 − 1)

L2(2L2 − 1)

L3(2L3 − 1)

4L1L2

4L2L3

4L3L1







. (4.2)

The ordering of the functions in (4.1) and (4.2) corresponds to the ordering of the nodes shown

in Figure 4.1. The shape functions are expressed in terms of the area or natural coordinates,

Li, for a triangle [13,16] which range from 0 to 1, and are related by the auxiliary condition

L1 + L2 + L3 = 1 (i.e., there are only two independent area coordinates).

When the element interpolation functions are written in terms of the area coordinates, the

relationship between the physical coordinates x, y (or r, z in the axisymmetric case) and the

element coordinates is obtained from the parametric mapping concept originally developed by

Ergatoudis, et al. [17]. That is, the coordinate transformation is given by

x = ΥTx ; y = ΥTy (4.3)

where Υ is a vector of interpolation functions on the triangle and the x,y are vectors of

coordinates describing the geometry of the element (generally, nodal point coordinates). The

transformation given in (4.3) is quite general and allows for the description of curved-sided

elements. In the present case, if Υ = Θl, a linear interpolation of the element boundary is

4.2. QUADRILATERAL ELEMENTS (2D) 27

Figure 4.2: Two-dimensional quadrilateral elements.

possible. When Υ = Θq, a quadratic interpolation of the element geometry is allowed. Note

that when the functions defining the element geometry are the same as those defining the

dependent variable the element is termed isoparametric; a geometric description which is lower

order than the dependent variable is defined as subparametric. COYOTE directly supports only

isoparametric elements; straight-sided, higher order elements can be utilized by appropriately

locating mid-edge nodes.

4.2 Quadrilateral Elements (2D)

Two types of quadrilateral elements are used in COYOTE – a four-node and an eight-node

element. For the linear, four node element the interpolation functions are given by

Θl =







1/4(1 − s)(1 − t)

1/4(1 + s)(1 − t)

1/4(1 + s)(1 + t)

1/4(1 − s)(1 + t)







. (4.4)

The ordering of the functions in (4.4) corresponds to the nodal point ordering shown in Fig-

28 CHAPTER 4. ELEMENTS AND ELEMENT MATRIX CONSTRUCTION

ure 4.2. The interpolation functions are written in terms of the normalized or natural coordi-

nates for the element, s, t, which vary from −1 to +1 as shown in the figure.

The eight-node element uses the biquadratic, “serendipity” functions [13,16] given by

Θq =







1/4(1 − s)(1 − t)(−s − t − 1)

1/4(1 + s)(1 − t)(s − t − 1)

1/4(1 + s)(1 + t)(s + t − 1)

1/4(1 − s)(1 + t)(−s + t − 1)

1/2(1 − s2)(1 − t)

1/2(1 + s)(1 − t2)

1/2(1 − s2)(1 + t)

1/2(1 − s)(1 − t2)







. (4.5)

The parametric mapping concept described for the triangular element is also available for

use with the quadrilaterals. Therefore, to relate the global coordinates x, y (or r, z) to the local

s, t system, let

x = ΥTx ; y = ΥTy. (4.6)

where Υ may be either a linear or quadratic (“serendipity”) interpolation function. Again,

COYOTE only supports the formulation of isoparametric quadrilaterals, though subparametric

elements can be employed through the proper location of mid-edge nodes.

4.3 Hexahedral Elements (3D)

The hexahedral or brick elements available in COYOTE for three-dimensional analyses con-

sist of a straight-edged, linear, eight-node element and a curved-sided, quadratic, twenty-node

element as shown in Figure 4.3. The linear element has shape functions given by

Θl =







1/8(1 − s)(1 − t)(1 − r)

1/8(1 + s)(1 − t)(1 − r)

1/8(1 + s)(1 + t)(1 − r)

1/8(1 − s)(1 + t)(1 − r)

1/8(1 − s)(1 − t)(1 + r)

1/8(1 + s)(1 − t)(1 + r)

1/8(1 + s)(1 + t)(1 + r)

1/8(1 − s)(1 + t)(1 + r)







. (4.7)

4.3. HEXAHEDRAL ELEMENTS (3D) 29

Figure 4.3: Three-dimensional brick elements.

30 CHAPTER 4. ELEMENTS AND ELEMENT MATRIX CONSTRUCTION

The quadratic shape functions for the twenty-node element are given by

Θq =







1/8(1 − s)(1 − t)(1 − r)(−s − t − r − 2)

1/8(1 + s)(1 − t)(1 − r)(s − t − r − 2)

1/8(1 + s)(1 + t)(1 − r)(s + t − r − 2)

1/8(1 − s)(1 + t)(1 − r)(−s + t − r − 2)

1/8(1 − s)(1 − t)(1 + r)(−s − t + r − 2)

1/8(1 + s)(1 − t)(1 + r)(s − t + r − 2)

1/8(1 + s)(1 + t)(1 + r)(s + t + r − 2)

1/8(1 − s)(1 + t)(1 + r)(−s + t + r − 2)

1/4(1 − s2)(1 − t)(1 − r)

1/4(1 + s)(1 − t2)(1 − r)

1/4(1 − s2)(1 + t)(1 − r)

1/4(1 − s)(1 − t2)(1 − r)

1/4(1 − s)(1 − t)(1 − r2)

1/4(1 + s)(1 − t)(1 − r2)

1/4(1 + s)(1 + t)(1 − r2)

1/4(1 − s)(1 + t)(1 − r2)

1/4(1 − s2)(1 − t)(1 + r)

1/4(1 + s)(1 − t2)(1 + r)

1/4(1 − s2)(1 + t)(1 + r)

1/4(1 − s)(1 − t2)(1 + r)







. (4.8)

The functions in (4.7) and (4.8) are ordered according to the nodal point ordering shown in

Figure 4.3 and are written in terms of the local, normalized coordinates, s, t, r, which range

from −1 to +1. COYOTE allows only the isoparametric form of each three-dimensional element

where

x = ΥTx ; y = ΥTy ; z = ΥT z (4.9)

and Υ takes on the appropriate linear or quadratic form.

4.4 Prism Elements (3D)

COYOTE employs a linear and quadratic version of a triangular prism or wedge element.

The linear, straight-sided, six-node prism and curved-sided, fifteen-node quadratic element are

shown in Figure 4.4. The shape functions for these elements are given by

Θl =







1/2L1(1 − r)

1/2L2(1 − r)

1/2L3(1 − r)

1/2L1(1 + r)

1/2L2(1 + r)

1/2L3(1 + r)







(4.10)

4.4. PRISM ELEMENTS (3D) 31

Figure 4.4: Three-dimensional prism elements.

and

Θq =







1/2L1[(2L1 − 1)(1 − r) − (1 − r2)]

1/2L2[(2L2 − 1)(1 − r) − (1 − r2)]

1/2L3[(2L3 − 1)(1 − r) − (1 − r2)]

1/2L1[(2L1 − 1)(1 + r) − (1 − r2)]

1/2L2[(2L2 − 1)(1 + r) − (1 − r2)]

1/2L3[(2L3 − 1)(1 + r) − (1 − r2)]

2L1L2(1 − r)

2L2L3(1 − r)

2L3L1(1 − r)

L1(1 − r2)

L2(1 − r2)

L3(1 − r2)

2L1L2(1 + r)

2L2L3(1 + r)

2L3L1(1 + r)







. (4.11)

The functions in (4.10) and (4.11) use area coordinates, Li, for describing the triangular cross-

section and a normalized coordinate, r, for the axial coordinate. Note that L1 + L2 + L3 = 1;

the Li vary from 0 to 1 and r varies from −1 to +1. Only the isoparametric forms of this

element are employed in COYOTE.

32 CHAPTER 4. ELEMENTS AND ELEMENT MATRIX CONSTRUCTION

Figure 4.5: Three-dimensional tetrahedral elements.

4.5 Tetrahedral Element (3D)

The three-dimensional tetrahedron used in COYOTE may be either a four-node or ten-node

isoparametric element as shown in Figure 4.5. The linear element is defined by the functions

Θl =







L1

L2

L3

L4







(4.12)

while the quadratic element has shape functions of the form

Θq =







L1(2L1 − 1)

L2(2L2 − 1)

L3(2L3 − 1)

L4(2L4 − 1)

4L1L2

4L2L3

4L3L1

4L1L4

4L2L4

4L3L4







. (4.13)

4.6. BAR ELEMENT (3D AND 2D) 33

The functions in (4.12) and (4.13) are ordered as shown in the figure and are written in terms

of the volume coordinates [13,16] for the element, where L1 + L2 + L3 + L4 = 1. Again, only

the isoparametric forms of this element are considered.

4.6 Bar Element (3D and 2D)

The three-dimensional bar elements available in COYOTE may be either a two-node or three-

node, isoparametric element as shown in Figure 4.6. This element has a variable cross-sectional

area with conduction only allowed along the axis of the element. Note that the shape of the

cross-section need not be explicitly defined here, though for purposes of boundary condition

application, a circular cross-section is assumed. The shape function for the two-node element

is defined by

Θl =

{

1/2(1 − s)

1/2(1 + s)

}

. (4.14)

and the three-node element is described by

Θq =







1/2(s − 1)s

1/2(s + 1)s

(1 − s2)







. (4.15)

The functions in (4.14) and (4.15) are ordered as shown in the figure and are written in terms of

the normalized coordinate s that varies from −1 to +1. The parametric mapping given in (4.9)

relates the global coordinates x, y, z for the element to the local coordinate, s; the mapping

function Υ is defined by (4.14) and (4.15) for the two- and three-node elements, respectively.

The bar elements for two-dimensional, planar problems are also defined by the shape func-

tions in (4.14) and (4.15). In this case, the isoparametric mapping is carried out from the x, y

coordinates to the local coordinate s. The variable, cross-sectional area for the two-dimensional

case reduces to a variable thickness with unit depth. The axisymmetric, two-dimensional bar

is treated in a similar manner, though it is rotated through an angle of 2π about the z axis. In

both two-dimensional cases the bar element should be thought of as a one-dimensional conduc-

tion element in the plane of the problem. The two-dimensional versions of these elements are

equivalent to a two-dimensional shell element.

4.7 Shell Element (3D)

The three-dimensional shell elements defined in COYOTE are specialized elements that allow

conduction in the plane of the element but no transport through the thickness. Shells with

both triangular and quadrilateral planforms are available; all elements allow variations in the

34 CHAPTER 4. ELEMENTS AND ELEMENT MATRIX CONSTRUCTION

Figure 4.6: Three-dimensional bar elements.

4.7. SHELL ELEMENT (3D) 35

Figure 4.7: Three-dimensional shell elements.

36 CHAPTER 4. ELEMENTS AND ELEMENT MATRIX CONSTRUCTION

shell thickness. These elements are shown in Figure 4.7. The temperature shape function for

the three-node, triangular element is defined by

Θl =







L1

L2

L3







(4.16)

and the six-node, triangular shell has the following shape functions

Θq =







L1(2L1 − 1)

L2(2L2 − 1)

L3(2L3 − 1)

4L1L2

4L2L3

4L3L1







(4.17)

where the Li are the standard, in-plane area coordinates that vary from 0 to +1. The four-node,

quadrilateral shell has shape functions of the form

Θl =







1/4(1 − s)(1 − t)

1/4(1 + s)(1 − t)

1/4(1 + s)(1 + t)

1/4(1 − s)(1 + t)







(4.18)

while the eight-node, “serendipity” shell is defined by

Θq =







1/4(1 − s)(1 − t)(−s − t − 1)

1/4(1 + s)(1 − t)(s − t − 1)

1/4(1 + s)(1 + t)(s + t − 1)

1/4(1 − s)(1 + t)(−s + t − 1)

1/2(1 − s2)(1 − t)

1/2(1 + s)(1 − t2)

1/2(1 − s2)(1 + t)

1/2(1 − s)(1 − t2)







(4.19)

and the normalized s, t coordinates vary from −1 to +1. The shape functions defined in (4.16)-

(4.19) are recognized as being identical to the interpolation functions for the two-dimensional

triangular and quadrilateral elements from Sections 4.1 and 4.2. Though the interpolation of

temperature within the plane of the elements is similar, the geometric representation of the

planar elements and the shell elements is quite different. The parametric mapping for any of

the shell elements is accomplished with the following definitions

x = ΥTx + rΥT δ

2
e3 · ex

y = ΥTy + rΥT δ

2
e3 · ey (4.20)

4.8. SPATIAL DERIVATIVES AND INTEGRALS 37

z = ΥT z + rΥT δ

2
e3 · ez

where Υ is the appropriate linear or quadratic interpolation within the plane (e.g., equations

(4.16)-(4.19)), x,y, z are vectors of coordinates for the midplane nodes of the element, r is

the normalized coordinate along the normal to the element midplane and δ is a vector of

thickness values at the nodes. The vectors e1, e2 are defined as being tangent to the curvilinear

coordinates s, t on the element midplane; e3 is normal to the element midplane and is defined by

e3 = e2×e1. The unit vectors ex, ey, ez define the orientation of the global coordinate system.

Note that, in general, e3 varies over the planform of the element (e3(s, t) or e3(L1, L2)) and

this variation must be accounted for in the construction of the Jacobian entries for the element

mapping procedure. All of these vectors are more completely defined in a subsequent section.

4.8 Spatial Derivatives and Integrals

The construction of the various finite element coefficient matrices in (3.13) and (3.19) requires

the integration of combinations of the interpolation functions and their spatial derivatives over

the volume (area) of the element. The integration process is most easily carried out in the

normalized or natural coordinate system for each element because the limits of integration

are simple and independent of the global coordinates. The shape functions presented in the

previous sections were expressed in the natural coordinate system for each element. There

remains the task of expressing spatial derivatives of the shape functions in terms of the same

normalized coordinates. The following relations, based on the chain rule and the parametric

mapping ideas, are needed







∂Λ
∂s

∂Λ
∂t

∂Λ
∂r







=











∂x
∂s

∂y
∂s

∂z
∂s

∂x
∂t

∂y
∂t

∂z
∂t

∂x
∂r

∂y
∂r

∂z
∂r

















∂Λ
∂x

∂Λ
∂y

∂Λ
∂z







=











J11 J12 J13

J21 J22 J23

J31 J32 J33

















∂Λ
∂x

∂Λ
∂y

∂Λ
∂z







= J







∂Λ
∂x

∂Λ
∂y

∂Λ
∂z







(4.21)

where Λ represents any of the element interpolation functions (e.g., Θl,Θq) and J is the

Jacobian of the transformation from global coordinates x, y, z to the local element coordinates

s, t, r. The parametric mapping scheme defined in the previous sections (e.g., Equations (4.3),

(4.9) or (4.20)) can be used to define the components of J. That is,

J11 =
∂Υ

∂s

T

x ; J12 =
∂Υ

∂s

T

y ; J13 =
∂Υ

∂s

T

z

J21 =
∂Υ

∂t

T

x ; J22 =
∂Υ

∂t

T

y ; J23 =
∂Υ

∂t

T

z (4.22)

J31 =
∂Υ

∂r

T

x ; J32 =
∂Υ

∂r

T

y ; J33 =
∂Υ

∂r

T

z

38 CHAPTER 4. ELEMENTS AND ELEMENT MATRIX CONSTRUCTION

Inverting the transformation matrix in (4.21) provides the required definition of the spatial

derivatives of the shape functions in terms of the local element coordinates







∂Λ
∂x

∂Λ
∂y

∂Λ
∂z







= J−1







∂Λ
∂s

∂Λ
∂t

∂Λ
∂r







=
1

|J|











J11 J12 J13

J21 J22 J23

J31 J32 J33

















∂Λ
∂s

∂Λ
∂t

∂Λ
∂r







(4.23)

where |J| indicates the determinant of the Jacobian matrix J. The components Jij are complex

functions of the components of J that can be obtained by inverting the 3× 3 Jacobian matrix.

In practice, the Jacobian is usually inverted numerically. For the two-dimensional case the

above equations are simplified substantially and permit analytic manipulation of the resulting

2 × 2 matrix. The Jacobian for the transformation of the bar element is given by

∂Λ

∂r
= J−1∂Λ

∂s
=

1

∆

∂Λ

∂s
(4.24)

where

∆ =





(

∂ΥT

∂s
x

)2

+

(

∂ΥT

∂s
y

)2

+

(

∂ΥT

∂s
z

)2




1

2

(4.25)

and the coordinate r is the physical coordinate along the axis of the bar. The mapping for the

shell elements follows the definitions in (4.21)-(4.23) though some terms in the Jacobian are

slightly more complex due to the presence of a normal vector in the basis function definition

given by Equation (4.20).

In performing integrations over the element volume it is also necessary to transform the

integration variables and limits from the global coordinates to the local element coordinates.

The differential elemental volume transforms according to

dΩ = dx dy dz = |J| ds dt dr (4.26)

while for two-dimensional geometries the planar area is transformed by

dΩ = dx dy = |J| ds dt (4.27)

and

dΩ = r dΘ dr dz = 2π r |J| ds dt (4.28)

for axisymmetric geometries, where the circumferential dependence has been explicitly evalu-

ated to produce the 2π factor. In the axisymmetric case the radius r would be interpolated

by r = ΥT r. The integration limits for the integrals transform to the limits on the local

coordinates s, t, r, i.e., −1 to +1.

In the above equations the s, t, r variables for a brick element have been used for the purpose

of explanation. Similar relations for a tetrahedral element can be derived by replacing s, t, r with

4.9. MATRIX EVALUATION 39

L1, L2 and L3. The L4 variable does not enter the formulas due to the relation L1+L2+L3+L4 =

1. Hybrid coordinates, such as those used in the prism element, are treated in an analogous

manner. The two-dimensional case also follows the above procedures.

For the special case that involves the bar elements, the differential volume is rewritten to

allow for the explicit specification of cross-sectional areas and thicknesses. Thus for a bar the

volume transforms according to

dΩ = |J| ds = A(s)∆ ds (4.29)

where again

∆ =





(

∂ΥT

∂s
x

)2

+

(

∂ΥT

∂s
y

)2

+

(

∂ΥT

∂s
z

)2




1

2

and A(s) is the cross-sectional area of the bar as a function of normalized distance along the

bar. For two-dimensional bars, A(s) = δ(s) · 1 where δ(s) is the bar thickness. In the case of a

three-dimensional shell, the differential volume is expressed as shown in (4.26); the possibility

of a variable thickness in the shell requires a full mapping for the shell volume.

4.9 Matrix Evaluation

With the previous definitions it is now possible to derive a computational form for the matrix

coefficients involved in the finite element equations of Chapter 3. For purposes of discussion,

only a representative term from the matrix system will be considered in detail; the evaluation

of the remaining terms follows in a similar manner.

Consider a cross derivative component of the diffusion matrix given by Equation (3.13) as

K12 = Kxy =

∫

Ωe

kxy
∂Θ

∂x

∂Θ

∂y

T

dΩ (4.30)

which will be evaluated for a three-dimensional, twenty-node, brick element. From the previous

definitions in (4.23) and (4.26), Equation (4.30) can be written as

Kxy =

∫ +1

−1

∫ +1

−1

∫ +1

−1

kxy
1

|J|

[

J11

∂Θq

∂s
+ J12

∂Θq

∂t
+ J13

∂Θq

∂r

]

︸ ︷︷ ︸

∂Θq

∂x

·

[

J21

∂Θq
T

∂s
+ J22

∂Θq
T

∂t
+ J23

∂Θq
T

∂r

]

1

|J|
︸ ︷︷ ︸

∂Θq
T

∂y

|J| dsdtdr (4.31)

40 CHAPTER 4. ELEMENTS AND ELEMENT MATRIX CONSTRUCTION

where the Θq functions are given in (4.8). For an isoparametric (curve-sided) element the

components of Jij would be evaluated using Υ = Θq from Equation (4.8).

The above integral is of the general form

I =

∫ +1

−1

∫ +1

−1

∫ +1

−1

f(s, t, r) dsdtdr (4.32)

where f(s, t, r) is a rational function of the normalized coordinates. All of the element matrices

are of this form and can be conveniently evaluated using a numerical quadrature procedure.

That is, the integral in (4.32) can be evaluated by the formula

I =
n∑

i=1

n∑

j=1

n∑

k=1

WiWjWkf(si, tj , rk) (4.33)

where Wi are weighting coefficients, si, tj , rk are quadrature points in the integration interval

and n is the number of quadrature points in the formula. For linear and quadratic brick

elements, COYOTE generally employs a product Gauss quadrature rule as shown in (4.33)

with n = 2 and n = 3, respectively; the two-dimensional quadrilaterals employ a similar

scheme with a double sum used in (4.33) and n = 2 for a linear element and n = 3 for the

quadratic elements. Other elements in the library are also evaluated using quadrature formulas,

though the forms of (4.32) and (4.33) are slightly different in these cases. For elements using

volume or area coordinates, the limits on the definite integral in (4.32) run from 0 to 1. Also,

these elements typically do not use a product rule but rather a single summation over the total

number of quadrature points. In COYOTE, the tetrahedral elements are evaluated with a four

point or a five point formula and the triangular elements with a three point or a seven point

rule. The prism uses a three point or a seven point integration rule in the triangular plane and

a 2 or 3 point Gauss formula along the normalized axis. Integration rules for the bar and shell

elements follow these same procedures. Nonproduct Gauss rules [18] are also available for use

with the hexahedral elements and may offer some economic benefits over the product Gauss

rules.

Application of the quadrature formula in (4.33) to the integral in Equation (4.31) produces

the element coefficient matrix Kxy. Note that variable coefficients, such as the thermal con-

ductivity, must be evaluated at the integration points if they vary over the element. Constant

coefficients are of course removed from the integral and play no role in the quadrature procedure.

4.10 Boundary Conditions and Source Terms

In this section the construction of boundary conditions and volumetric source terms for the

element matrix equations is considered. Though the required flux vectors are numerically

evaluated in the same manner as the coefficient matrices, a number of additional assumptions

and details are necessary that require further comment.

4.10. BOUNDARY CONDITIONS AND SOURCE TERMS 41

4.10.1 Volumetric Sources

The flux vectors for the conduction equation consist of two parts: a part due to volumetric

sources and a part due to surface fluxes. Consider first the volumetric term,

FQ =

∫

Ωe

ΘQdΩ. (4.34)

The source term is allowed to vary over the element in an arbitrary manner, which is indicated

by Q(s, t, r). This volume source may contain an externally defined contribution as well as an

internally defined energy release from a chemically reactive material. As given previously in

Equations (4.26)-(4.28), the elemental volume can also be written in terms of the normalized

coordinates. Thus, in a computational form (4.34) becomes

FQ =

∫ +1

−1

∫ +1

−1

∫ +1

−1

ΘQ(s, t, r)|J| dsdtdr (4.35)

for a three-dimensional brick element; similar forms are derivable for the other elements in

two and three dimensions. The integral in (4.35) can be evaluated with a standard numerical

quadrature rule to produce the thermal load vector FQ. To accomplish the numerical inte-

gration, the volume source must be evaluated at the quadrature points. If the volume source

depends on other variables, such as the temperature, temperature rate, spatial location, etc.,

these quantities can be provided at the quadrature points through use of the element basis

functions.

A special form of volume source is the point source which can be written in a computational

form as

FQ =

∫ +1

−1

∫ +1

−1

∫ +1

−1

ΘQδ(so, t0, r0)|J| dsdtdr (4.36)

where δ is the Dirac delta function evaluated at some point (so, t0, r0) within the element.

Evaluating the integral in (4.36) produces the components of the heat source vector

FQ = Θ(so, t0, r0)Q̄ (4.37)

where Q̄ is the total energy per unit time for the point source and the shape function is

evaluated at the source location. The point source thus produces a response at all of the nodes

in the element even though its effect should be more localized. The inherent limitations and

inaccuracies in this type of singular source must be considered before using the point source

form of volume heating.

4.10.2 Surface Fluxes

The remaining flux vectors in the conduction equation arise from surface fluxes distributed along

element boundaries. These terms need only be considered for those element sides coinciding

42 CHAPTER 4. ELEMENTS AND ELEMENT MATRIX CONSTRUCTION

Figure 4.8: Nomenclature for element surface computations.

with the “exterior” boundaries of the problem domain. Due to material addition or deletion the

“exterior” surfaces of an element may change with time. An algorithm exists to allow elements

to inherit or loose flux boundary conditions as the element topology dictates. The surface flux

vector is given by

F =

∫

Γe

Θqini dΓ =

∫

Γe

Θ(f q − qc − qr) dΓ (4.38)

where Γe is the surface of the element, qini is the heat flux normal to the surface and the

remaining terms are defined in (2.4)- (2.6).

The computation of the indicated surface integrals are most easily carried out in the nor-

malized or natural coordinate system for the face (edge) of an element. This requires that the

elemental surface area (edge length) dΓ, be related to the local surface coordinates. Consider

the typical quadrilateral element face shown in Figure 4.8 where the vectors e1 and e2 are

defined as being tangent to the curvilinear coordinates, ss and ts. The e vectors are not nec-

essarily unit vectors; the ss and ts coordinates are assumed to be natural coordinates for the

element face. The elemental area dΓ in terms of the global coordinates x, y, z is related to an

elemental area in surface coordinates by

dΓ = |Js| dssdts (4.39)

where Js is the Jacobian of the coordinate transformation and | · | indicates the determinant.

4.10. BOUNDARY CONDITIONS AND SOURCE TERMS 43

The determinant of the Jacobian can be written in terms of the e vectors as

|Js| = |e1 × e2| =
[

(e1 · e1)(e2 · e2) − (e1 · e2)2
]1/2

. (4.40)

The e vectors can be expressed in terms of the global coordinates by

e1 =







∂x
∂ss

∂y
∂ss

∂z
∂ss







; e2 =







∂x
∂ts

∂y
∂ts

∂z
∂ts







(4.41)

Using the parametric mapping concept allows

x = Υ̂Tx ; y = Υ̂Ty ; z = Υ̂T z (4.42)

where the ˆ notation indicates the restriction of the interpolation function to an element face

(edge). The functions Υ̂ may be either linear or quadratic depending on the type of mapping

used to describe the element geometry. Using (4.42) in (4.41) then

e1 =







∂Υ̂T

∂ss
x

∂Υ̂T

∂ss
y

∂Υ̂T

∂ss
z







; e2 =







∂Υ̂T

∂ts
x

∂Υ̂T

∂ts
y

∂Υ̂T

∂ts
z







(4.43)

Equations (4.40) and (4.43) provide a means for computing |Js|, thus allowing the transforma-

tion in (4.39) to be employed. Note that in two dimensions the above relations simplify and

the elemental length of an element edge is given by

dΓ =





(

∂Υ̂T

∂s
x

)2

+

(

∂Υ̂T

∂s
y

)2




1

2

ds = ∆ ds (4.44)

where s is the coordinate along the edge of an element. Axisymetric geometries require inte-

gration over an element edge that is rotated through an angle of 2π and (4.44) should therefore

be expressed as

dΓ =





(

∂Υ̂T

∂s
r

)2

+

(

∂Υ̂T

∂s
z

)2




1

2

r dΘ ds = 2π∆ r ds (4.45)

where r is the radius for the element edge and would be interpolated by r = ΥT r. For most

three-dimensional surfaces on shell or bar elements, the Jacobian in (4.44) is modified to include

the z coordinate. The integration over the end of a bar is simplified because the cross-sectional

area normal to the axis of the bar is specified.

To complete the specification of the integrand in (4.38) the variation of qini with ss and ts
is required. From the boundary condition definitions in Equations (2.4)-(2.6) the normal heat

flux consists of three components

qini = f q − qc − qr = f q − hc(T − Tc) − hr(T − Tr) (4.46)

44 CHAPTER 4. ELEMENTS AND ELEMENT MATRIX CONSTRUCTION

For calculation of the boundary fluxes it is assumed that the applied flux, f q, convective and

radiative coefficients, hc, hr and reference temperatures Tc, Tr are known functions of the

surface (edge) coordinates, ss, ts. Then using the standard surface (edge) interpolation for the

temperature, the heat flux vector can be written for the three-dimensional case as

F(T) =

∫ +1

−1

∫ +1

−1

Θ̂f q(ss, ts)|Js| dssdts

−

∫ +1

−1

∫ +1

−1

Θ̂hc(ss, ts)Θ̂
T |Js| dssdts (T − Tc(ss, ts))

−

∫ +1

−1

∫ +1

−1

Θ̂hr(ss, ts)Θ̂
T |Js| dssdts (T − Tr(ss, ts)) (4.47)

or

F(T) = Fq − HcT + HcTc − HrT + HrTr. (4.48)

The integrals in (4.47) are evaluated using a numerical quadrature procedure over the element

surface; in two dimensions only integrals along an element edge need to be considered. Variable

coefficients, such as f q, hc, hr, etc., must be evaluated at the quadrature points and may depend

on interpolated variables such as temperature, spatial location, etc. Note that some of the terms

in F contain unknown element temperatures (HcT and HrT); for solution purposes these terms

are moved from the flux vector to the left-hand-side of the matrix equation in (3.10) and added

to the diffusion matrix K.

4.10.3 Internal Surface Fluxes

The flux vectors considered in the previous section were derived from boundary conditions that

are applied to the external boundaries of the heat conduction problem. As shown by Equation

(2.9), it is sometimes appropriate to consider “internal” flux conditions associated with surface

contact at a material interface. The computational form for this internal boundary condition

is derived in the same manner as presented above. Also, these terms need only be constructed

for element surfaces that are part of the contact surface.

The internal or gap surface flux vector for the master surface is given by

Fg(T) = −

∫

Γm

Θqg dΓ = −

∫

Γm

Θhg(Tm − Ts) dΓ (4.49)

where Γm is the contact area for the master surface, hg is an effective heat transfer coefficient and

Tm and Ts are temperatures on each side of the contact surface. The numerical implementation

of this condition requires that “master” and “slave” sides of the contact surface be defined.

Also, because unknown temperatures occur on both sides of the gap, each contact surface must

be processed in turn as a “master” surface; the opposite or “slave” surface provides an estimate

of the reference temperature for heat transfer across the gap. For generality, the situation

shown in the two-dimensional sketch of Figure 4.9 is considered, where the nodes and elements

4.10. BOUNDARY CONDITIONS AND SOURCE TERMS 45

Figure 4.9: Nomenclature for contact resistance formulation.

on each side of the contact surface are not aligned. If a node on the master surface does not

have on image on the slave surface, then hg is set to zero for that location and the contact heat

flux for that node is not evaluated.

In a computational form the flux vector for the gap can be written as

Fg(T) = −

∫ +1

−1

∫ +1

−1

Θ̂hg(ss, ts)Θ̂
T|Js|dss dts(Tm − Ts) (4.50)

or in matrix form

Fg(T) = −HgTm + HgTs (4.51)

In developing (4.51) the contact coefficient hg was assumed to vary in a known manner over

the contact surface. The vector Tm corresponds to unknown nodal point temperatures on

the master surface; the matrix in the term HgTm is combined with the diffusion matrix K

during the solution process. The temperatures in the vector Ts are not generally nodal point

temperatures but rather interpolated temperatures on the slave surface, adjacent to the master

surface nodes. The temperature vector Ts is obtained by (basis function) interpolation on

the slave surface; it is assumed that the slave surface temperatures can be interpolated by

the same functions as used to describe temperature variations on the master surface. Since

the temperature fields along the contact surface are generally unknown, this type of interface

condition is usually solved via an iterative process. A non-iterative (implicit) formulation and

solution method for contact can be developed by writing the slave temperature, Ts, in terms of

46 CHAPTER 4. ELEMENTS AND ELEMENT MATRIX CONSTRUCTION

the nodal point temperatures of the slave element. In this case, the HgTs vector is altered by

an interpolation matrix, Is, such that HgIsT is the appropriate term for the slave side where T

are the nodal point temperatures on the slave surface. This term is combined with the diffusion

matrix during the solution process. The only drawback to this implict form is the need to redo

connectivities and matrix pointers when the contact surfaces are dynamic.

The above formulation was carried out for the general case where the master and slave

nodes were not aligned. This does not preclude the use of a standard mesh where there is a

direct, one-to-one correspondence between nodes along the contact surface. Section 5.9 outlines

the algorithm used to determine the occurrence of contact and the spatial location of master

nodes on the slave surface. This is the thermal equivalent of the slide line algorithms used in

solid mechanics [19].

In addition to providing a generalized contact resistance model, the above formulation

provides a simple method for connecting regions with different mesh spacings. For “large” values

of hg, Equation (4.49) forces the temperature distributions on each side of the contact surface

to be essentially equal. Though this method can be made to work in practice, it is not optimal

as large values of hg can cause ill-conditioning of the matrix problem and difficulties in reaching

convergence with an iterative solution method. The constraint boundary conditions mentioned

in a subsequent section are a better alternative for connecting dissimilar mesh regions.

4.10.4 Specified Temperature Boundary Conditions

In addition to the (“natural”) boundary conditions specified by the boundary integrals presented

above, “essential” boundary conditions specifying particular values of the temperature must also

be considered. Application of a specified temperature boundary condition results in the field

equation for that particular nodal point temperature being replaced by a constraint equation

that enforces the proper boundary value.

4.10.5 Temperature Constraint Conditions

For some applications it is necessary to specify the functional relationship between the temper-

ature at one node and temperature at one or more other nodes. The enforcing of temperature

continuity between coincident surfaces with dissimilar meshes and the specification of spatially

periodic temperature boundary conditions are two examples of this type of constraint. The

multipoint constraint algorithm is structured like the contact algorithm with one surface la-

beled the master surface and the constrained temperature surface labeled the slave surface.

The locations of the slave nodes on the master surface are found and recorded using the same

search procedure as used in the contact algorithm. The field equation for each slave node is

replaced with a constraint equation that relates the temperature at the slave node to some

4.11. MATRIX EQUATION 47

function of the nodal temperatures on the master surface. In the case of temperature continu-

ity, the slave node value is the interpolant of the master node values. For periodic conditions,

the slave node temperature would typically be set to the master surface temperature plus some

temperature increment representing the heat flux across the periodic geometry. Both of these

types of constraints are available in COYOTE for static mesh configurations.

In matrix form a set of constraint equations for the temperature can be written as

CT = ITc + CkTk = Fc (4.52)

where Tc are constrained temperatures, Tk are “known” nodal point temperatures, I is the

identity matrix and Ck is the constraint coefficient matrix. The vector Fc is zero for equality

constraints and equal to the temperature offset for periodic boundary consitions. The sum-

mation form of the constraint equation shows that there are more columns than rows in the

system, i.e., the C matrix is not square. Either a Lagrange multiplier method or a penalty

formulation can be used to incorporate the constraints into the basic finite element problem

[20]. COYOTE uses a penalty method that takes the form

KcT = CTαCT = CTαFc (4.53)

where α is a matrix of penalty coefficients and Kc is the constraint matrix that is added to the

global diffusion matrix. The penalty coefficients are problem dependent but should generally

be sized at one to two orders of magnitude larger than a representative thermal conductivity.

4.11 Matrix Equation

As a result of the manipulations outlined in the previous chapters, the element matrices and

boundary conditions can be constructed for a variety of element types. An assembly process,

such as indicated by Equation (3.12) leads to the general matrix equation as shown in (3.10) or

(3.13). The equation in (3.10) can be made more specific by considering the individual terms

from various types of boundary conditions. Using (4.48) and (4.51), then (3.10) becomes

M(T)Ṫ + K(T)T = FQ(T) + Fq − HcT + HcTc

−HrT + HrTr − HgT + HgTs (4.54)

Rearranging (4.54) allows the final form of the discrete system to be written as

M(T)Ṫ + K(T)T = F(T) (4.55)

with

M = M

K = K + Hc + Hr + Hg

48 CHAPTER 4. ELEMENTS AND ELEMENT MATRIX CONSTRUCTION

F = FQ + Fq + Fc + Fr + Fg

and

Fc = HcTc

Fr = HrTr

Fg = HgTs

The equation in (4.55) represents the finite element analogue of the heat conduction problem

that must be solved for the domain of interest. When convective terms are required, the K

matrix in (4.55) is modified to include the unsymmetric, velocity dependent advection term.

A similar system can be written for the auxiliary variables φk when auxiliary diffusion or

auxiliary advection-diffusion processes are required. Expressing (3.21) in a form analogous to

(4.54) leads to

Mk(φk)φ̇k + Kk(φk)φk = Fk
Q(φk) + Fk

q(φk) − Hk
cφk + Hk

cφk
c − Hk

gφk + Hk
gφk

s

or more compactly

M
k
(φk)φ̇k + K

k
(φk)φk = F

k
(φk) (4.56)

with

M
k

= Mk

K
k

= Kk + Hk
c + Hk

g

F
k

= Fk
Q + Fk

q + Fk
c + Fk

g

and

Fk
c = Hk

cφk
c

Fk
g = Hk

gφk
s

and the superscript k can be either A or B. The possible coupling of (4.56) to (4.55) through

properties, boundary conditions and/or source terms is not shown explicitly but is allowed in

the implementation. When convective terms are required, the K
k

matrix is modified as in the

conduction equation.

When auxiliary variables are considered, the matrix systems in (4.55) and (4.56) are com-

bined to form an overall system

M̂Ẋ + K̂X = F̂ (4.57)

with

M̂ =












M 0 0

0 M
A

0

0 0 M
B












; K̂ =












K 0 0

0 K
A

0

0 0 K
B












(4.58)

4.11. MATRIX EQUATION 49

F̂ =







F

F
A

F
B







; X =







T

φA

φB







(4.59)

The system is shown for the most general case where two auxiliary variables are defined; if only

one auxiliary variable is needed, the φB equation is eliminated.

The periodic heat conduction problem produced a set of coupled equations for the real and

imaginary components of the temperature. As an assembled matrix problem, the equations in

(3.23) and (3.24) are written as

M̃Y + K̃Y = ǨY = F̌ (4.60)

with

M̃ =






0 −ωM

ωM 0




 ; K̃ =






K 0

0 K




 (4.61)

Ǩ =






K −ωM

ωM K




 (4.62)

F̌ =







FR

FI







; Y =







TR

TI







(4.63)

This defines a linear, time independent matrix problem for a periodic simulation. Note that

the matrix problem is unsymmetric.

50 CHAPTER 4. ELEMENTS AND ELEMENT MATRIX CONSTRUCTION

Chapter 5

Solution Procedures

The major computational effort in any finite element procedure occurs in the solution of the

assembled matrix equations that describe the discretized problem. This is especially true in the

case of highly nonlinear equations or problems with coupled physical phenomena, both of which

can be found in the present case. In addition to computational efficiency, these characteristics

also introduce questions regarding the ability to achieve a solution, i.e., convergence for a given

set of data. The choice of a solution algorithm is therefore a critical element in the overall

utility, robustness and efficiency of a computer code such as COYOTE.

As described previously, the basic matrix problem of concern can be written as

M(T)Ṫ + K(T)T = F(T). (5.1)

where M represents the capacitance matrix, K contains the diffusion terms and F provides

the boundary and volumetric forcing functions. In the most general case, each term in (5.1)

may depend explicitly on the temperature due to variable coefficients or thermal properties. A

dependence on other variables, such as time or spatial location, is also possible, though this does

not affect the nonlinearity of the global system. In all cases the matrices are large, sparse, and

symmetric in their structure; a proper ordering of the equations will produce a banded matrix

system. The inclusion of the advective term or a time periodic form alters these characteristics

slightly by making the system unsymmetric; the nonlinearity and matrix structure remain the

same. Note that with a simple redefinition of the matrices and vectors, the equation in (5.1)

may represent the conduction problem, a coupled conduction, auxiliary variable problem or a

time periodic problem.

In the following sections the solution algorithms for treating the steady and time-dependent

forms of (5.1) are outlined. The solution procedures are defined in general terms and are meant

to be applied to all of the classes and subclasses of diffusion and advection-diffusion problems

defined by Equation (5.1). No further explicit consideration of the advection-diffusion case will

be given as it is a standard subset of the general problem. Explict consideration of the coupled

51

52 CHAPTER 5. SOLUTION PROCEDURES

auxiliary variable problem will not be considered. Most of the algorithms described lead to

linear, algebraic equations that must be solved at each iteration or time step of the solution

process. The matrix solution methods used in COYOTE are also discussed in this chapter.

5.1 Steady-State Algorithms

The time-independent form of (5.1) is

K(T)T = F(T) (5.2)

which is recognized as a system of nonlinear, algebraic equations. Consider first the case where

K and F are not functions of T. In this situation (5.2) reduces to a linear matrix equation which

can be solved directly, without iteration. When (5.2) retains its nonlinear form, an iterative

technique is required. COYOTE currently employs a single type of iterative method, though it

may be combined with other techniques to expand the possibilities for achieving a steady state

solution.

Note that the time periodic problem leads to a matrix problem similar to the linear form

of (5.2) but for the real and imaginary components of the temperature. This case can thus be

solved directly, without iteration.

5.1.1 Successive Substitution Method

A particularly simple iterative method with a large radius of convergence is the successive

substitution (Picard, functional iteration) method described by

K(Tn)Tn+1 = F(Tn) (5.3)

where the superscript indicates the iteration level. For the mildly nonlinear behavior typically

found in heat conduction problems, the rate of convergence of (5.3) is generally good, despite

being a first-order method. An improvement in convergence rate can sometimes be realized by

use of a relaxation formula where

K(Tn)T⋆ = F(Tn) (5.4)

and

Tn+1 = αTn + (1 − α)T⋆ 0 ≤ α < 1.

The above methods are adequate for the large majority of thermal diffusion problems be-

cause nonlinearities associated with material properties and boundary conditions are usually

quite mild. In the few instances where nonlinear behavior causes the above schemes to con-

verge slowly or diverge, alternate methods could be developed. One popular choice is the use of

5.1. STEADY-STATE ALGORITHMS 53

second-order methods, such as Newton’s method. In the present application Newton’s method

has not been implemented; the construction of a Jacobian matrix for nonanalytic specifications

of material properties and boundary conditions is not believed to be cost effective. However,

for more complex nonlinearities, such as enclosure radiation, Newton’s method is viewed as

an essential technique. Section 5.5 describes the use of Newton’s method for the enclosure

radiation problem.

5.1.2 Continuation Method

Failure to achieve a converged solution using (5.3) or (5.4) can often be ascribed to the use of

a poor initial guess (T0) for the iterative algorithm. There are two general approaches to the

problem of generating good initial estimates for a solution vector and both involve some type of

“tracking” of the solution. The first procedure is simply the method of false transients in which

the solution is followed through use of a time parameter. The transient algorithms described

in a later chapter are candidates for this approach.

A second method consists of incrementally approaching the final solution through a series

of intermediate solutions. These intermediate solutions may be of physical interest or may

simply be a means to obtain the required solution. The formal algorithms used to implement

this procedure are termed continuation methods and can be used with either of the iterative

methods in (5.3) and (5.4).

Assume that the solution for (5.2) depends continuously on some real parameter, λ. For

heat conduction problems, λ could be the magnitude of a volumetric source or the magnitude

of a boundary condition. Then (5.2) can be written in general as

K(T, λ)T = F(T, λ) (5.5)

which suggests the zeroth order continuation method

K(Tn
λ, λm)Tn+1

λ = F(Tn
λ, λm) (5.6)

where (5.6) is solved for a series of problems with increasing values of the continuation parameter

λm = λm−1 +∆λ. The converged solution, Tλ, at one value of λ is used as the starting solution

at the next higher value of λ; the iterative method in (5.3) or (5.4) is used at each value of

λ to achieve a converged solution. This technique is available in COYOTE and can be used

effectively with some very nonlinear problems.

5.1.3 Convergence Criteria

The use of an iterative solution method necessitates the definition of a convergence and stopping

criteria to terminate the iteration process. The usual measure of convergence is a norm on the

54 CHAPTER 5. SOLUTION PROCEDURES

change in the solution vector between successive iterations. COYOTE employs the discrete

RMS norm defined by

dn+1 =




1

Nnodes · T 2
max

Nnodes∑

i=1

(

Tn+1
i − Tn

i

)2





1

2

(5.7)

In the definition in (5.7) Nnodes is the total number of nodal points and Tmax is an appropriate

temperature scale for the problem; Tmax may be specified or computed from the temperature

solution vector.

The criteria for terminating the iteration process is based on a user supplied tolerance. The

iterative algorithm is terminated when the following inequality is satisfied

dn+1 ≤ ǫT (5.8)

where ǫT is set by the user and has a typical value of 0.0001. The iterative process may also be

terminated after a fixed number of iterations. This option acts as a backup criteria to prevent

very slowly convergent or divergent problems from wasting computation time.

5.2 Transient Algorithms

Equation (5.1) represents a discrete space, continuous time approximation to the original system

of partial differential equations. A direct time integration procedure replaces the continuous

time derivative with an approximation for the history of the dependent variables over a small

portion of the problem time scale. The result is an incremental procedure that advances the

solution by discrete steps in time. In constructing such a procedure, questions of numerical

stablity and accuracy must be considered.

A large body of literature is available on possible time integration schemes for equations of

the diffusion type. Both implicit and explicit methods, as well as mode superposition, have been

used successfully. Each of these approaches have their own strengths and weaknessess, many

of which are problem dependent. In order to provide solution capabilities for as wide a range

of problems as possible, three different integration schemes are used in COYOTE. Two types

of implicit methods are available, both of which make use of a predictor/corrector strategy to

improve efficiency and accuracy. These procedures were originally developed by Gresho, et al.

[21] and are used in COYOTE with only minor modifications. The third integration scheme is

an explicit procedure that can be used effectively with the lower order elements available in the

code. All of the integration methods may be used with either a fixed time step or an adaptive

time step selection algorithm.

5.2. TRANSIENT ALGORITHMS 55

5.2.1 Forward/Backward Euler Integration

The first-order implicit integration method used in COYOTE employs a forward Euler scheme

as a predictor with the backward Euler method functioning as the corrector step. Omitting

the details of the derivation, the application of the explicit, forward Euler formula to Equation

(5.1) produces

MTn+1
p = MTn + ∆tn

[

F(Tn) − K(Tn)Tn
]

. (5.9)

This can be written in a form that is more suitable for computation by replacing the bracketed

term with a rearranged form of (5.1) to produce

Tn+1
p = Tn + ∆tnṪ

n. (5.10)

In Equations (5.9) and (5.10) the superscript indicates the timeplane, the subscript p denotes

a predicted value and ∆tn = tn+1 − tn. By using the form shown in (5.10) a matrix inversion of

M is avoided; the “acceleration” vector Ṫn is computed from a form of the corrector formula

as shown below.

The corrector step of the first-order scheme is provided by the backward Euler (or fully

implicit) method. When applied to Equation (5.1) this implicit method yields

MTn+1 = MTn + ∆tn
[

F(Tn+1) − K(Tn+1)Tn+1
]

(5.11)

or in a form more suitable for computation

[
1

∆tn
M + K(Tn+1)

]

Tn+1 =
1

∆tn
MTn + F(Tn+1). (5.12)

The implicit nature of this method is evident from the form of (5.12), since it is in effect, a

nonlinear, algebraic system for the variables T at timeplane n + 1.

The solution to (5.12) at timeplane n+1 can be achieved by an iteration procedure such as

Picard’s method. The rate of convergence of Picard’s method is greatly increased if the initial

solution estimate is “close” to the true solution. The solution predicted from (5.9) provides this

initial guess for the iterative procedure in a cost-effective manner.

5.2.2 Adams-Bashforth/Trapezoid Rule Integration

An implicit integration method that is second-order accurate in time can be developed along

the same lines as described above. A second-order equivalent to the forward Euler method is

the variable step, Adams-Bashforth predictor given by

Tn+1
p = Tn +

∆tn
2

[(

2 +
∆tn

∆tn−1

)

Ṫn −

(
∆tn

∆tn−1

)

Ṫn−1

]

(5.13)

56 CHAPTER 5. SOLUTION PROCEDURES

where ∆tn = tn+1 − tn and ∆tn−1 = tn − tn−1. This formula can be used to predict the

solution vector given two “acceleration” vectors from previous timeplanes; no matrix solution

is required.

A compatible corrector formula for use with (5.13) is available in the form of the trapezoid

rule. When applied to Equation (5.1) the trapezoid rule produces

[
2

∆tn
M + K(Tn+1)

]

Tn+1 =
2

∆tn
MTn + MṪn + F(Tn+1). (5.14)

Equation (5.14) is observed to be a nonlinear, algebraic system for the vector Tn+1 and can

again be solved using an iterative procedure such as Picard’s method.

5.2.3 Implicit Integration Procedures

The integration formulas outlined above form the basis for the implicit solution of time-

dependent problems in COYOTE. The similarity of the first- and second-order methods makes

it possible to include both procedures in a single, overall algorithm. The major steps in the

time integration procedure are outlined here.

At the beginning of each time step it is assumed that all of the required solution and

“acceleration” vectors are known and the time increment for the next step has been selected.

To advance the solution from time tn to time tn+1 then requires the following steps:

1) A tentative solution vector, Tn+1
p , is computed using the predictor Equations (5.10) or

(5.13).

2) The corrector Equations (5.12) or (5.14) are solved for the “true” solution, Tn+1. This

involves the iterative solution of (5.12) or (5.14) via Picard’s method. The predicted

values Tn+1
p are used to initialize the equation for the iteration procedure.

3) The “acceleration” vectors are updated using the new solution Tn+1 and the “inverted”

forms of the corrector formulas. For the first-order method the acceleration is computed

from the backward Euler definition

Ṫn+1 =
1

∆tn

(

Tn+1 − Tn
)

while the second-order accelerations are derived from the trapezoid rule

Ṫn+1 =
2

∆tn

(

Tn+1 − Tn
)

− Ṫn.

4) A new integration time step is computed. The time step selection process is based on an

analysis of the time truncation errors in the predictor and corrector formulas as described

in Section 5.2.4. If a constant time step is being used, this step is omitted.

5.2. TRANSIENT ALGORITHMS 57

5) Return to step 1 for next time increment.

In actual implementation the Picard iteration process in step 2 is not usually carried to

absolute convergence. Rather, a one-step correction is usually employed as advocated in [21];

this is the default procedure in COYOTE. The one-step procedure is quite efficient and can be

very accurate provided the time step is suitably controlled. Multiple iterations within a time

step may be employed as an option, but would not normally be required except in strongly

nonlinear problems involving enclosure radiation and/or chemical kinetics.

5.2.4 Time Step Control

Both of the implicit time integration procedures available in COYOTE can be used with a fixed,

user specified time step or a time step that changes only at certain points during the integration

interval. However, the a priori selection and modification of a reasonable integration time step

can be a difficult task, especially for a complex problem. One of the benefits of using the

predictor/corrector algorithms described here is that it provides a rational basis for dynamically

selecting the time step.

The detailed derivation of the time step selection formula is omitted here. The reader

interested in further details is referred to [21]. The general ideas for the time step selection

process come from the well-established procedures for solving ordinary differential equations. By

comparing the time truncation errors for two time integration methods of comparable order, a

formula can be developed to predict the next time step based on a user specified error tolerance.

In the present case, the time truncation errors for the explicit predictor and implicit corrector

steps are analyzed and provide the required formulas.

The time step estimation formula is given by [21] as

∆tn+1 = ∆tn

(

b ·
ǫt

dn+1

)m

(5.15)

where m = 1/2, b = 2 for the first-order method and m = 1/3, b = 3(1 + ∆tn−1/∆tn) for the

second-order scheme. The user specified error tolerance for the integration process is ǫt, which

has a typical value of 0.0001. The quantity dn+1 is an appropriate norm on the integration

error, which is defined as the difference between the predicted solution and the corrected value.

In COYOTE the following RMS norm is used

dn+1 =




1

Nnodes · T 2
max

Nnodes∑

i=1

(

Tn+1
i − Tn+1

i p

)2





1

2

(5.16)

where Nnodes is the number of nodes in the mesh and Tmax is an appropriate maximum tem-

perature for the problem that may be either specified or computed from the solution vector.

58 CHAPTER 5. SOLUTION PROCEDURES

Unlike the procedure described in [21], COYOTE always uses the newly computed time

step derived from (5.15). If ∆tn+1 ≤ 0.5∆tn a warning message is given to indicate a large

reduction in the time step has occurred. However, the previous time step is not rejected nor

recomputed.

5.2.5 Initialization

The predictor Equations (5.10) and (5.13) require that one or more acceleration vectors be

available at each timeplane in order to estimate a new solution vector. At the beginning of a

transient solution these vectors are not generally available and thus a special starting procedure

must be used. The approach taken in COYOTE is to use the dissipative, backward Euler method

for the first few steps and then switch to either of the standard predictor/corrector methods.

This procedure has the advantage that any nonphysical features of the numerical model are

quickly damped by the backward Euler scheme.

For the first time step, the implicit, backward Euler scheme is used alone; the second step

uses a forward Euler predictor and backward Euler corrector. Both of these steps use a fixed,

user supplied time step. At the third step, the usual predictor/corrector integration procedure

begins and automatic time step selection is started, if this option has been requested. The initial

time step supplied by the user to start the problem should be very conservative to prevent large

time step reductions when the automatic selection procedure takes control. Conversely, the

initial time step should not be so small as to produce spatial oscillations due to unresolved

temperature gradients. See Appendix C in the User’s Manual [5] for a method to select an

initial time step.

5.2.6 Forward Euler Integration

The explicit integration method used in COYOTE is based on the first-order, forward Euler

method. This algorithm was previously defined in (5.9) and is written here as

MTn+1 = MTn + ∆tn
[

F(Tn) − K(Tn)Tn
]

. (5.17)

Inverting the capacitance matrix M allows (5.14) to be written in a computationally effective

form as

Tn+1 = Tn + ∆tn M
−1
[

F(Tn) − K(Tn)Tn
]

= Tn + ∆tn M
−1

Feff . (5.18)

As written in (5.18), this algorithm does not requires the solution of a matrix system but simply

the construction of an effective flux vector from known data and a matrix-vector product.

The practical utility of (5.18) relies on two aspects of the algorithm. First, the inverse of

the effective capacitance matrix must be easily obtainable, i.e., it must be computationally

inexpensive. Also, the explicit nature of the method means that the stability of the algorithm

must be considered when choosing an integration time step.

5.2. TRANSIENT ALGORITHMS 59

5.2.7 Matrix Diagonalization

A particular feature of the finite element method when used for time-dependent problems is

the inherent coupling that occurs between nodal point time derivatives. By inspecting the form

of the element level capacitance matrix, as shown in (3.13), it is clear that M is not a simple

diagonal matrix but has a banded structure. This structure carries over to the global matrix,

M.

The inverse to M could be directly computed for use in the explicit algorithm in (5.18).

Unfortunately, the inverse of a banded matrix is a full matrix; the generally large size of M

for two and three-dimensional problems precludes the use of such an approach. For M
−1

to be

computed efficiently, M must have a diagonal form. Several strategies for diagonalizing M have

been proposed in the literature [16]. The approach taken in COYOTE is to use the row-sum

technique to approximate M at the element level. That is, the diagonal form of the element

matrix, MD, is formed by the components given by

mD
ii =

N∑

j=1

mij ; mD
ij = 0 i 6= j (5.19)

where N is the number of degrees of freedom in the element and mij are components of the

original capacitance matrix; the global matrix will also have the same diagonal form. In the

algorithm given in (5.18) the term M
−1

is replaced with M
−1

D , which is easily computed from

1/mD
ii .

Diagonalization (or “lumping”) techniques, such as the row-sum method, have been widely

used and investigated. It is known that the temporal response of the discretized equations is

altered by such techniques, though good results can still be obtained with careful use. A major

limitation to diagonalization (and row-sum in particular) is its restriction to low-order (linear)

finite element approximations. Higher order basis functions generally produce poor results

when used in a diagonalized form. This result implies that the explicit integration procedures

in COYOTE should only be used with the linear elements available in the code.

5.2.8 Stability and Time Step Control

Explicit integration methods are conditionally stable and thus require limits on the size of

the integration time step. Conventional stability analyses of the forward Euler scheme for a

diffusion equation [22] produce a time step restriction of the following form

λG
max∆t ≤ 2 (5.20)

where λG
max is the largest eigenvalue for the (global) matrix system M

−1

D K from Equation (5.18).

The largest eigenvalue for the system can be bounded by the largest element eigenvalue, which

in the present case is proportional to 1/h2 with h being a representative element dimension.

60 CHAPTER 5. SOLUTION PROCEDURES

From these results it is clear that the time step restriction for the explicit method is quite severe

especially on highly refined meshes.

An effective control of the time step for the explicit method relies directly on the ability

to evaluate the largest element eigenvalue in the system. Exact element eigenvalues could be

computed by a number of methods but this type of accuracy and computational expense is not

warranted for most applications. Instead, simple eigenvalue estimates that are rapidly com-

puted from a formula are preferred. Such formulas have been derived for bar, quadrilateral and

hexahedral elements with a linear temperature approximation [23,24], though these results are

restricted to cases where one-point quadrature is used to evaluate the finite element integrals.

For elements with multiple integration points, such as used in COYOTE, the theory and esti-

mation procedure due to Lin [25] is employed. The largest element eigenvalue can be bounded

by the sum of the largest eigenvalues at each integration point. That is

λG
max ≤ λE

max ≤

Nip∑

i=1

λi
max (5.21)

where Nip is the number of integration points in the element. As shown in [25], the nonzero

eigenvalues at an integration point can be found from the following matrix

S =
w

m
kBBT (5.22)

where w is the quadrature weight factor, m is the lumped capacitance at the integration point,

k is the conductivity matrix and B is the temperature gradient operator defined by

B =







∂Θ
∂x

∂Θ
∂y

∂Θ
∂z







. (5.23)

The vector Θ is the element interpolation function for the temperature. The maximum eigen-

value of S is readily computed for each integration point as the operators in (5.22) are all

available from the construction of the element matrices.

Further details of the derivation of (5.21) and (5.22) can be found in [23,25]. COYOTE uses

(5.22) to estimate λi
max and the bound in (5.21) to estimate the maximum system eigenvalue;

the system eigenvalue and Equation (5.20) allow computation of a usable time step. The

maximum stable time step computed from (5.20) can be also be scaled by the user to ensure a

conservative time integration strategy.

5.3. MATRIX SOLUTION PROCEDURES 61

5.3 Matrix Solution Procedures

When most of the algorithms of the previous chapters are applied at a given iteration or time

step, the result is a matrix equation of the form

Ax = b (5.24)

In the problems considered here the matrix A is large, sparse, banded and symmetric; an

unsymmetric system may occur in some applications. A solution to (5.24) can be achieved by

either an iterative or direct method. Historically, direct methods, such as the frontal method

or other forms of Gauss elimination, have been the solution methods of choice for most finite

element applications. However, the computer memory and CPU inefficiency of direct methods

with respect to large, three-dimensional problems, has produced renewed interest in iterative

methods for (5.24).

The solution methods used in COYOTE are based on a preconditioned conjugate gradient

(PCG) algorithm. The matrix solution technique was initially embedded in a PCG library pack-

age that was developed by Schunk and Shadid [26]; this package has been superceded by the

Aztec library [27] which has been designed for either serial or parallel computer architectures.

Current versions of the Aztec solvers are accessed through the more general solver package

Trilinos [28,29]. The COYOTE interface to the solver libraries is through the Finite Element

Interface (FEI) [30] which standardizes the interaction and formats for matrix solution. Ac-

cess to other solver libraries is also simplified with use of the FEI. For application to the heat

conduction problem, any of three different preconditions can be invoked: Jacobi, Polynomial

and the Incomplete Choleski method. The unsymmetric convection problem requires an iter-

ative method such as the generalized minimum residual method (GMRES). The fully coupled

conduction-radiation problem (see Section 5.5) also requires an unsymmetric method such as

GMRES. These unsymmetric methods may be used with any of several preconditioners; all of

the available preconditioners are derived from the assembled, global matrix, A. To accommo-

date the storage requirements of A, a standard sparse matrix format is used [29,30] that only

records the nonzero entries of the A matrix. Complete details on the iterative solvers available

in COYOTE can be found in [27-29].

5.4 Radiation View Factor Algorithms

When enclosure radiation is coupled to the conduction problem, a number of auxiliary compu-

tations must be included in the solution process. As defined in Section 2.4, the net radiation

method requires the evaluation of view factors for all radiating surfaces in the enclosure. For

geometries that are stationary, this computation need only be performed once while radiation

problems that include regions with specified motions or changing element topology, must have

the view factors updated periodically. COYOTE employs a number of number of different

62 CHAPTER 5. SOLUTION PROCEDURES

methods for the actual view factor computation, all of which are embedded in the companion

computer code, CHAPARRAL [31]. CHAPARRAL was designed to take advantage of some

well established view factor techniques as well as implement some newer, more efficient proce-

dures. Full details of the algorithms in CHAPARRAL and use of the code libraries are available

in [31].

The basic view factor definition is given by (2.18) as

Fk−j =
1

Ak

∫

Ak

∫

Aj

cos θk cos θj

πS2
dAj dAk (5.25)

which is recognized as a relation that depends only on the geometry of the enclosure surfaces;

the possibility of third surface shadowing must also be considered in the evaluation of (5.25).

Numerous methods have been developed for evaluating Fk−j and many of these are catalogued

in [8]. An adaptive procedure has been utilized in CHAPARRAL where the algorithm selected

for each pair-wise view factor computation is chosen based on a geometric and computational

cost basis. The possible procedures include: a) an analytic method, b) Hottel string method,

c) Gauss quadrature, d) Monte Carlo integration and e) Quasi-Monte Carlo integration. The

algorithm selection procedure and algorithms used for determining third surface shadowing are

detailed in the CHAPARRAL manual [31].

A significant difficulty with the procedures cited above is their relatively poor efficiency

for three-dimensional problems with very large numbers of surfaces. CHAPARRAL has an

alternate procedure available for these situations which is based on a hemicube algorithm [31,32].

This method peforms very well, with good accuracy, on large-scale problems; the hemicube

method is not available for two-dimensional applications. Details of the technique and its

implementation can be found in [31]. A comparison of all of the above view factor methods has

been reported in [32].

5.5 Radiation Solution Algorithms

The enclosure radiation problem was outlined in Section 2.4 and resulted in an equation of the

following form
N∑

j=1

[δkj − (1 − ǫj)Fk−j] qj =
N∑

j=1

(δkj − Fk−j) ǫjσTj
4. (5.26)

which may also be rewritten as the set of two equations

N∑

j=1

[δkj − (1 − ǫk)Fk−j] q
o
j = ǫk σ T 4

k (5.27)

qk = qo
k −

N∑

j=1

Fk−j qo
j . (5.28)

5.5. RADIATION SOLUTION ALGORITHMS 63

where qj are the uniform surface fluxes and Tk are the uniform surface temperatures; qo
j are the

uniform outgoing surface fluxes.

The discrete form of the radiation problem in (5.26) can be expressed in matrix form as

(I −Fρ)q̄ = (I −F)ǫσT̄4 = (I −F)ǫEb (5.29)

or in a compact form

A(T̄)q̄ = D(T̄)T̄ (5.30)

where I is the identity matrix, F is the matrix of view factors, ρ = I − ǫ and ǫ are diagonal

matrices of reflectances and emittances, respectively, and Eb is a vector representing the black-

body emissive power. Also, A is the radiative flux coefficient matrix, with a temperature

dependence due to surface property variations, and D is the surface temperature coefficient

matrix with a cubic dependence on surface temperature. The vector q̄ represents the uniform

net radiative flux on each surface and T̄ is the vector of uniform surface temperatures. The

computational form of (5.27) and (5.28) may be expressed in matrix form as

(I −Fρ)q̄o = ǫEb (5.31)

q̄ = (I −F)q̄o (5.32)

In all of these formulations, the assumptions of the radiative model require the values of

the surface temperatures T̄ to be constant over each surface. In COYOTE it is assumed that

each surface in the radiation problem corresponds to a face or edge of a finite element. The

required uniform surface temperatures needed for use in the radiation equations are obtained by

combining (averaging) the nodal point temperatures on the appropriate element face or edge.

5.5.1 Solution Strategies (Segregated)

COYOTE contains a series of solution strategies that may be invoked for transient and steady

solutions of coupled conduction and enclosure radiation problems. The methods are outlined

below in order of increasing complexity.

When the surface temperatures for all surfaces are known, Equation (5.30) forms a set of

linear algebraic equations for the unknown net surface fluxes, q̄. That is, Equation (5.30) can

be written as

A(T̄
n
)q̄n+1 = D(T̄

n
)T̄n (5.33)

The combination of (5.31) and (5.32) could also be used for generating the solution for q̄. Note

that the matrix A is a full matrix due to the surface to surface coupling represented by the

view factors F . This characteristic, along with the possible temperature dependencies, suggests

the use of an iterative solution method for (5.33) rather than a direct matrix factorization.

64 CHAPTER 5. SOLUTION PROCEDURES

COYOTE employs a Gauss-Seidel or generalized minimum residual (GMRES) method to

solve (5.33) for the net surface fluxes, q̄; these solution algorithms are located in the CHA-

PARRAL code and are explained in more detail in [31]. The surface fluxes provide boundary

conditions to the finite element model for the conduction process. When new surface temper-

atures are computed, due to either a new time step or iteration cycle, the above process is

repeated to obtain a new surface flux condition.

The segregated explicit Picard solution procedure outlined above is fairly reliable and can

be very efficient for time-dependent problems when a one-step corrector method is appropriate.

Some improvement in the coupling may be realized by using various semi-implicit methods

that rearranges the radiative flux boundary condition to be more dependent on the conduction

temperature field. Rewritting Equation (5.32) in terms of the black-body emissive power and

irradition at the new time level or iteration

q̄n+1 = ǫEb
n+1 − ǫGn+1 = ǫ σ (T̄n+1)4 − ǫGn+1 (5.34)

Assume that the irradiation does not vary significantly from the previous iteration and can be

approximated by Gn. Also, linearize the emissive power such that (5.34) becomes

q̄n+1 ≈ ǫσ(T̄n)3T̄n+1 − ǫGn = h̄r(T̄
n)T̄n + 1 − ǫGn+1 (5.35)

This form of the radiative flux is analogous to other heat transfer types of boundary conditions

and is treated computationally in a similar manner; the first term on the right-hand-side of

(5.35) is added to the diffusion matrix in the conduction equation and the remaining terms is

part of the force vector. This type of semi-implicit formulation is available in COYOTE and

has proven to be of benefit in some time-dependent problems. Another type of semi-implict

treatment, based on Newton’s method, is also available in the code and has proven to be even

more effective than the Picard type method outlined here. Details of this approach are given

in [33].

When time-independent problems are considered, the decoupled nature of the process leads

to significant convergence problems. Convergence problems also occur when a transient problem

approaches a steady state or time-independent interval. The basic difficulty is the dependence

of the radiative flux on the fourth power of the surface temperature; modest changes in tem-

perature between iterations can lead to significant changes in surface flux which produce even

larger variations in surface temperature. This nonlinear feedback can be controlled to a very

limited extent by relaxation techniques such as found in Equation (5.4). The partial resolution

of this dilema may be found in the use of a transient or false transient technique, as described

above, with the additional constraint that the solution be tightly converged within each time

step. Multiple iterations within the time step force the temperature and radiative flux solutions

to reach equilibrium with the further benefit that the adaptive time step selection algorithm

is able to maintain a reasonable time step. However, for radiation dominated problems even

this approach will eventually degrade. Convergence within the time step becomes increasingly

difficult to achieve; a time step reduction may temporarily help the solution process though this

remedy runs counter to the physical situation where the time step should increase as a steady

5.5. RADIATION SOLUTION ALGORITHMS 65

state is approached. The proper resolution of this problem is found in a more fully coupled

solution technique that simultaneously solves for the temperature and surface flux.

5.5.2 Solution Strategies (Coupled)

For time independent problems the finite element form of the conduction and radiation equa-

tions can be expressed as

K(T)T + Bq = F(T) (5.36)

and

A(T)q = Fσ(T) = D(T)T (5.37)

In the conduction Equation (5.36) the boundary conditions involving the radiative surface

fluxes have been removed from the F vector and written explicitly on the left-hand-side of the

equation. Also, the right-hand-side of the net radiation equation has been linearized and made

explicit in the surface temperature. The solution of this equation set for T and q could, in

theory, be accomplished by solving (5.37) for q (inverting the A matrix) and substituting the

result into (5.36), which would form a very nonlinear equation for the temperature. The fact

that A is usually a large (full) matrix precludes the use of this approach and forces consideration

of simultaneous solution methods, such as Newton’s method. Rewritting (5.36) and (5.37) as







RT

Rq







=







K(T)T + Bq − F(T)

−D(T)T + A(T)q







(5.38)

This nonlinear system can be solved via Newton’s method with the definition

[Jn]







∆Tn+1

∆qn+1







=







∂RT

∂T
∂RT

∂q

∂Rq

∂T

∂Rq

∂q













∆Tn+1

∆qn+1







= −







RT
n

Rq
n







(5.39)

The iterative solution procedure specified in (5.39) has very good convergence properties and is

available as an option in COYOTE. Note that the Jacobian is constructed to properly handle

the nonlinearities that occur in the coupling between conduction and enclosure radiation, i.e.,

the third power dependence on temperature found in the D matrix. The Jacobian does not

account for other temperature dependencies, such as material property or boundary condition

variations, because these are linearized and evaluated at the previously computed temperature.

Though the method in (5.39) is very reliable, there is a significant penalty in computational

cost. The matrix problem is increased in size by the total number of enclosure surfaces, which

for complex, three-dimensional geometries may be very large. Also, the matrix problem is now

unsymmetric and requires an iterative solution method such as GMRES. Further details of this

solution option and its efficiency can be found in [33].

It should be noted that the fully coupled algorithm may also be applied to the transient

problem. After a time integration method is specified, Equation (5.36) is augmented with a

66 CHAPTER 5. SOLUTION PROCEDURES

capacitance matrix which follows through to the Jacobian definition in (5.39). Though the

system in (5.36) and (5.37) is time singular in the radiosities, no significant difficulties should

be encountered in the solution of this system except those noted above. This method is available

in COYOTE as an option.

5.6 Chemical Reaction Solution Algorithm

The presence of reactive materials in the conduction problem requires that a number of nonlinear

conservation equations be solved for the chemical species in conjunction with the temperature

field. The general formulation for the chemistry problem was outlined in Section 2.5. The math-

ematical nature (stiffness) of the kinetic equations dictate that for computational efficiency, the

chemistry and thermal diffusion equations be solved independently. In COYOTE the solution

process is formally based on an operator splitting technique [34].

In the present application, operator splitting is particularly effective due to the form of

the kinetic equations. Since diffusion of the species is neglected, the kinetic equations have no

spatial gradients and reduce to ordinary differential equations that can be defined locally on

each finite element. In essence, the chemical species can be viewed as state variables for each

element and can be solved on an element-by-element basis. In COYOTE, all species equations

are defined at the integration points for each element. During a time step, the chemistry solution

is advanced first using a fixed (frozen) temperature field; the temperature field is subsequently

advanced over the same time interval using the recently evaluated (frozen) chemistry result. If a

predictor/corrector time integration method is employed, the frozen temperature field used for

the chemistry solution is the temperature produced from the predictor step. When a predictor

equation is not employed for time integration, the last available temperature field is used for

the chemistry solution.

The inherent stiffness of the kinetic equations requires that special integration methods

be used to advance the chemistry solution in time. COYOTE makes use of the stiff ordinary

differential equation (ODE) routines developed by T. R. Young in the package, CHEMEQ

[35] and the second generation package, CHEMEQ2 [36]. The techniques used in CHEMEQ

and CHEMEQ2 were developed specifically for chemical reaction systems and are based on

a combination of classical predictor/corrector methods and asymptotic methods for the stiff

components of the system. The rate equations for each reactive element are solved using their

own integration time step over the global time step of interest. The most restrictive chemistry

time step for all of the reactive elements is used to regulate the choice of the thermal diffusion

time step. The choice of the thermal diffusion time step is computed from

∆tn+1 = min{∆tdiff , Xchem × ∆tchem} (5.40)

where ∆tdiff is the estimated time step for the heat conduction equation (e.g., Equation (5.15)

or (5.20)), and ∆tchem is the minimum time step estimated for the chemistry solution. The

5.7. PHASE CHANGE ALGORITHMS 67

parameter Xchem is a user-defined scale factor that typically has a value between 10 and 100.

When reactive processes are unimportant, the adaptive time integration in CHEMEQ will pro-

duce a chemistry time step that is relatively large and Equation (5.40) will allow the conduction

solution to dictate the problem time scale. As the reactive process accelerates, the chemistry

time step will decrease significantly and ultimately control the time step formula in Equation

(5.40). The transition point for control of the global time step is dictated by the user through

the Xchem parameter.

5.7 Phase Change Algorithms

The standard enthalpy method for including latent heat effects in a change of phase problem

was outlined in Section 2.2. The solution procedure consists of replacing the specific heat for

the material with an effective specific heat function that includes the temperature-dependent

latent heat release. In a form that is amenable to computation, the effective specific heat is

given by

C∗(T) = C(T) + Lδ∗(T − Tt, ∆T) (5.41)

where δ∗ is the delta form function; δ∗ has a large but finite value in the interval centered about

Tt and is zero outside the interval. This equation is the computational analogue to Equation

(2.13) and is illustrated in Figure 5.1. The interval ∆T is often referred to as the “mushy”

zone and corresponds to the difference between the liquidus, Tl, and solidus, Ts, temperatures

for the material. Note that (5.41) is thus an approximation for the behavior of pure materials

that change phase at a specified temperature, Tt, but more accurately approximates nonpure

substances that have truely distinct liquidus and solidus temperatures.

The effective capacitance model described above is available in COYOTE and represents

the usual method for this type of simulation. However, some caution must be exercised when

generating time dependent solutions with this model. Since the transition temperature interval,

∆T , is often small compared to the overall temperature variation in the conduction problem,

there are some severe practical limitations on the time integration procedure. In general,

the time-stepping algorithm must be controlled such that every node that “changes phase” is

forced to attain a temperature value in the interval bracketed by ∆T . If a nodal point does

not “land” in the ∆T range but, simply steps over this temperature interval, the latent heat

effect is lost for that node and an incorrect temperature response and energy balance will result.

Methods for dealing with this difficulty include broadening the ∆T range and placing a limit

on the maximum temperature change that can occur during a time step. Integration time step

control, based on limiting the temperature change, is available in COYOTE as an option.

Alternatives to the methods based on specific heat make use of the enthalpy, H, versus

temperature curve for the phase change material and compute an effective specific heat based

68 CHAPTER 5. SOLUTION PROCEDURES

Figure 5.1: Definition of material properties for phase change computation.

5.8. BULK NODE ALGORITHMS 69

on the local slope of the enthalpy function. In one case, the following definition is used

Cp =
dH

dT
=

dH/dt

dT/dt
(5.42)

which can be rewritten in a computational form as

Cp =
H(Tn+1) − H(Tn)

Tn+1 − Tn
(5.43)

where the superscript denotes the time step number. Equation (5.43) can be evaluated at each

element integration point to produce the effective specific heat needed for the construction of

the element integrals. For situations where the denominator in (5.43) is zero, an artificial tem-

perature difference is created to allow the derivative to be evaluated. Note that this approach

has the same type of time step restrictions as the previous, capacitance-based method. A sec-

ond method that employs the enthalpy function is defined by using spatial gradients in place

of the time derivatives in (5.42). In this case the enthalpy is first computed at the nodes of the

element (knowing T) and the effective specific heat at the integration points is then recovered

from

Cp =

[
∇H · ∇H

∇T · ∇T

]1/2

(5.44)

where ∇H and ∇T are evaluated via the element shape functions. This technique will maintain

its accuracy as long as the phase boundary passes through each element and does not skip over

an element. Both of these enthalpy-based methods are available in COYOTE.

A final method for simulating latent heat release involves the construction of a temperature

dependent, volumetric heat source. From Equation (5.41) the term involving the latent heat

can be transferred to the right-hand-side of the energy Equation (2.1) to produce a volumetric

source term of the form

Qlh = −ρLδ∗(T − Tt, ∆T)
∂T

∂t
(5.45)

The definition of δ∗ indicates that the volume source is only active during the phase change and

has a magnitude proportional to the latent heat release. The presence of the time derivative

in the source definition complicates the solution process and would generally lead to the source

term be lagged in time. This type of phase change model could be used in COYOTE through

proper definition of the source term, but is not recommended.

5.8 Bulk Node Algorithms

The ordinary differential equations that describe the mass and energy of a bulk node, Equa-

tions (2.14) and (2.16), are integrated separately from the finite element equations. The time

integration methods available for the bulk node equations are the same as the methods used for

the conduction equation. That is, the implicit backward Euler and trapezoid rule algorithms

are available as is the explicit, forward Euler method. A predictor/corrector implementation

70 CHAPTER 5. SOLUTION PROCEDURES

for the implicit methods is also provided. Using the backward Euler method as an example,

the bulk node mass and energy equations would be evaluated by

Mn+1 = Mn + ∆tnfM (tn) (5.46)

Un+1 = Un + ∆tnfU (tn) (5.47)

where ∆tn is the time step and the f functions are the right-hand-sides of (2.14) and (2.16),

respectively. The bulk node volume is not integrated in time but simply updated according to

the specified volume change that may include element removal/addition or movement of the

bulk node containment. For problems where the bulk node volume is entirely described by

element surfaces, an internal volume computation is provided. This volume is computed by

summing the volumes of all tetrahedons formed from the triangular facets of an each bounding

element face and a reference point. Unbounded bulk nodes must have a volume specified.

The backward Euler integration formulas in (5.46) and (5.47) are the recommended algo-

rithms for the bulk node equations; the use of a compatible predictor equation is not recom-

mended. Typically, the right-hand-side data for these equations is rough, especially in situations

where element death contributes to the bulk node equations. Higher-order integration, with a

predictor equation, is not warranted in these cases and the backward Euler method provides

the best accuracy and stability.

Though the bulk node is described in terms of the internal energy, the temperature is the

variable of interest. The bulk node temperature is recovered from the latest value of the internal

energy by solving the following equation for Tn+1.
(
∫ T n+1

T0

Cv(T) dT + u0

)

Mn+1 = Un+1 (5.48)

In Equation (5.48), Cv is the specific heat at constant volume for the bulk node material and

u0, T0 are the reference internal energy per unit mass and the reference temperature for the

internal energy, respectively. The integral in (5.48) is computed with an adaptive quadrature

(trapezoid rule) scheme that continually halves the integration intervals until the integral value

is converged. An outside iterative loop alters the upper limit on the integral until the Tn+1

value results in a match with the total internal energy. Once the bulk node temperature is

converged the pressure for the bulk node is computed from the equation of state, which is

typically a perfect gas,

Pn+1 =
Mn+1

V n+1

R

M
Tn+1 (5.49)

where M is the molecular weight.

5.9 Contact and Multipoint Constraint Algorithms

The heat transfer aspects of contact between two material regions were considered in Sec-

tion 4.10.3 where a surface flux vector was developed based on the identification of a master

5.9. CONTACT AND MULTIPOINT CONSTRAINT ALGORITHMS 71

and slave surface. The multipoint constraint (MPC) equations for temperature that were out-

lined in Section 4.10.5 also depend on a master and slave surface paradigm. However, before

these formulations can be utilized, the geometric properties associated with master and slave

surfaces must be determined. Contact detection involves identifying the time at which contact

(or separation) occurs and the location (coordinates) of the master nodes on the slave surface.

As used in COYOTE, the multipoint constraints are static and therefore master node locations

on a slave surface need to be found only once. COYOTE employs a contact/MPC detection

algorithm that was initially developed for use in solid mechanics finite element codes [37]. The

use of these specific techniques allows coupled, thermal-stress problems with contact surfaces

to be simulated with a completely consistent approach.

Two specific types of contact are considered in COYOTE and these differ only in the method

of defining potential contacting surfaces. For problems in which a contact history is known,

COYOTE allows contacting surface pairs to be specifically identified. In this case, the search for

slave node locations on a master surface is limited exclusively to the paired surface. This option

is most effective for static contact and predefined sliding or normal contact. A more general

option in COYOTE allows multiple surfaces and/or blocks of elements to be defined such that

arbitrary combinations of surface contacts may occur. This situation requires a more global

search for slave node locations because contacting surface pairs are not predefined. The general

nature of this specification allows the kinematics of the various material regions to dictate the

occurrence of contact. Also, problems involving self contact (e.g., buckling or folding) may

be considered as well as simulations with surfaces that evolve in time (e.g., tearing, material

addition and deletion). Note that since COYOTE considers only the energy equation and has no

facilities for momentum or force computations, the kinematics specified for a problem must be

consistent with any contact processes that occur. In particular, situations involving penetration

and deformation of contacting regions are expected to be resolved by a solid mechanics code

before being passed to COYOTE.

The search process for finding the location of a node on an element surface involves the

assembly of a node list and a list of potential contacting elements. The data in these lists are

reorganized by a recursive bisection method to associate a node with a reduced list of elements

that are spatially nearby. The node is then tested against each element in the group until its

proper partner is found; the local coordinates for the node within the element are determined.

With this data in hand, either the contact boundary condition or the MPC construction can

be completed.

For both contact and MPC implementations, the possible mismatch of master and slave ele-

ment faces presents some difficulty for the consistent application of flux boundary conditions to

the exposed (non-contacting) surfaces [13]. Partially uncovered element surfaces may be treated

exactly if the surface imprints are computed and an outline of the exposed region is generated.

Boundary conditions are then evaluated using a boundary quadrature. COYOTE uses a more

approximate method that avoids the surface intersection computation. Since the surface bound-

ary conditions are evaluated numerically at surface integration points, COYOTE simply checks

the covered/uncovered status of each integration point on a surface. Those quadrature points

72 CHAPTER 5. SOLUTION PROCEDURES

that are uncovered participate in the boundary condition evaluation; contributions from cov-

ered points are neglected. The algorithm for evaluating quadrature point coverage is the same

as the original slave node/master element search algorithm. This method for partially covered

element surfaces is efficient and effective for reasonable surface mesh densities. Accuracy is

obviously degraded when boundary conditions are applied to large, partially exposed elements.

Also, partially covered surfaces are wholly included in radiation enclosure computations though

the application of the radiative flux is still governed by the number of uncovered quadrature

points.

5.10 Front Tracking Algorithm

The solution of the level set or front tracking equation given in (3.27) is accomplished with

the same integration algorithms as employed for the time-dependent conduction equation. The

solution of the front tracking equation is always decoupled from the conduction solution and is

updated after the conduction step. If the forward Euler method is selected then (3.27) can be

rewritten as

fn+1 = fn + ∆tn M̂−1
[

−Ĉfn
]

. (5.50)

The efficient use of (5.50) requires that the mass matrix M̂ be easily inverted. This scheme

is conditionally stable and must obey a time step restriction similar to (5.20). This algorithm

would normally be subcycled with respect to the conduction solution, especially if the conduc-

tion solution is generated with an implicit integration method.

An implicit method such as the trapezoid rule can also be used with (3.27). The trapezoid

rule form is given by
[

2

∆tn
M̂ + Ĉ

]

fn+1 =
2

∆tn
M̂fn + M̂ḟn. (5.51)

This scheme is unconditionally stable but would normally be run subcycled to the conduction

equation to maintain accuracy. The form given in (5.51) requires a matrix solution at each

time step. The iterative matrix solvers used in the conduction problem are also used with this

equation system.

5.11 Parallel Solution Methods

The parallel version of COYOTE is structured for a domain decomposition approach to a finite

element problem. Under this paradigm, the overall problem geometry (elements) is divided

into N groups of elements for execution on N processors of the parallel platform. A copy

of COYOTE is running on each processor and each processor is primarily responsible for the

element construction and solution of the subproblem assigned to the processor. Communication

of data between processors is handled through a message passing utility.

5.11. PARALLEL SOLUTION METHODS 73

The above description is superficial but conveys the essence of the algorithm. A few further

details are of interest but not essential to the understanding of the algorithms in COYOTE. The

initial problem description in terms of the mesh configuration and input data are decomposed

and load-balanced using external utilities such as CHACO [38] and the NEMESIS library [39].

The result of the decomposition is a set of N files describing the subproblem for each processor.

On each processor the finite element equations for the elements assigned to the processor are

constructed and boundary conditions applied. The partially assembled matrix is passed to

the solver library, through the FEI [30], which computes a solution using an iterative method.

Communication between processors during the matrix solve is accomplished using a message

passing library, MPI [40] and is contained within the solver library. Upon completion of the

matrix solution, each processor performs any post-processing operations for its assigned group

of elements and then proceeds to the next time step or iteration. Global (mesh-independent)

data that must be communicated between processors in COYOTE, such as time step and norm

data, is handled through wrapper utilities that access the MPI routines.

For problems involving enclosure radiation, COYOTE calls the CHAPARRAL library [31] to

compute view factors and solve the radiosity matrix problem. The surface description for each

enclosure is passed to CHAPARRAL which performs its own load-balance prior to computing

view factors. The parallel solution of the radiosity problem is handled by another call to the

solver library. The solution of the chemical kinetics problem is another subprocess that should

be load-balanced and solved in parallel. Unlike the previous parallel tasks that are decomposed

based on geometry, the decomposition of the chemistry problem should consider the current

reactivity of each element, i.e., the decomposition is task-based. This option has not been

implemented in the present version of COYOTE and the chemistry solution is produced using

the overall finite element decomposition, which is not optimal. Finally, search procedures, such

as those needed for contact detection and the multipoint constraints, are particularly difficult

in parallel, since the data is usually nonlocal and off the processor. The algorithm used here is

based on the parallel, solid mechanics contact scheme described in [37,41].

74 CHAPTER 5. SOLUTION PROCEDURES

Chapter 6

Pre- and Post-Processing

The COYOTE program was designed to be a self-contained analysis package with the necessary

options to set up a problem, solve for the required dependent variables and analyze the resultant

solution in terms of derived quantitites. The present chapter documents some of the numerical

procedures used in the pre-solution and data analysis chapters of the program.

6.1 Mesh Generation

COYOTE contains no mesh generation capability and relies completely on external mesh gen-

eration software for a geometric description of the problem. The code reads mesh generation

data from a standard format file called EXODUS II [42]. A complete description of the mesh

generation interface to COYOTE is available in the user’s manual [5]. For parallel applica-

tions the EXODUS II input file must be split into a parallel file structure using the NEMESIS

libraries [39] and assigned to the individual processors.

6.2 Flux Computation

The thermal fluxes associated with the conduction equation can be computed in COYOTE on

an element-by-element basis. Fourier’s law provides the definition of the conductive heat flux

as

qx = −kxx
∂T

∂x
− kxy

∂T

∂y
− kxz

∂T

∂z

qy = −kyx
∂T

∂x
− kyy

∂T

∂y
− kyz

∂T

∂z
(6.1)

75

76 CHAPTER 6. PRE- AND POST-PROCESSING

qz = −kzx
∂T

∂x
− kzy

∂T

∂y
− kzz

∂T

∂z

The component fluxes in (6.1) are computed by using the standard finite element approxima-

tions for T ,

T (xi, t) = ΘT (xi)T(t)

and the relations for the local temperature derivatives as derived in Section 4.8. That is,







∂Θ
∂x

∂Θ
∂y

∂Θ
∂z







= J−1







∂Θ
∂s

∂Θ
∂t

∂Θ
∂r







=
1

|J|











J11 J12 J13

J21 J22 J23

J31 J32 J33

















∂Θ
∂s

∂Θ
∂t

∂Θ
∂r







Using these definitions the flux components become

qx = −
kxx

|J|

(

J11

∂ΘT

∂s
T + J12

∂ΘT

∂t
T + J13

∂ΘT

∂r
T

)

−
kxy

|J|

(

J21

∂ΘT

∂s
T + J22

∂ΘT

∂t
T + J23

∂ΘT

∂r
T

)

−
kxz

|J|

(

J31

∂ΘT

∂s
T + J32

∂ΘT

∂t
T + J33

∂ΘT

∂r
T

)

qy = −
kyx

|J|

(

J11

∂ΘT

∂s
T + J12

∂ΘT

∂t
T + J13

∂ΘT

∂r
T

)

−
kyy

|J|

(

J21

∂ΘT

∂s
T + J22

∂ΘT

∂t
T + J23

∂ΘT

∂r
T

)

(6.2)

−
kyz

|J|

(

J31

∂ΘT

∂s
T + J32

∂ΘT

∂t
T + J33

∂ΘT

∂r
T

)

qz = −
kzx

|J|

(

J11

∂ΘT

∂s
T + J12

∂ΘT

∂t
T + J13

∂ΘT

∂r
T

)

−
kzy

|J|

(

J21

∂ΘT

∂s
T + J22

∂ΘT

∂t
T + J23

∂ΘT

∂r
T

)

−
kzz

|J|

(

J31

∂ΘT

∂s
T + J32

∂ΘT

∂t
T + J33

∂ΘT

∂r
T

)

In addition to the local components of the flux vector, the heat flux normal to the surface

(edge) is often of importance. By definition

qn = q · n

6.3. TIME HARMONIC FUNCTIONS 77

q = qxex + qyey + qzez (6.3)

n = nxex + nyey + nzez

and thus

qn = qxnx + qyny + qznz. (6.4)

In order to employ (6.4), the components of the normal vector are required. These are obtained

from the surface vectors e1 and e2 given by

e1 =







∂x
∂ss

∂y
∂ss

∂z
∂ss







; e2 =







∂x
∂ts

∂y
∂ts

∂z
∂ts







which were previously defined in Section 4.10.2. These vectors are related to the unit normal

n by

n =
e1 × e2

|Js|

where |Js| is defined in (4.40) as |e1 × e2|.

The definitions in (6.2) are sufficient to define the flux components at any point s0, t0, r0

within an element. In COYOTE, the flux components are evaluated in the interior of each

element at selected integration points. For quadrilateral and hexahedral elements the selected

interior points are typically the 2× 2× 2 Gauss points as recommended by [43]. Other element

types also have recommended interior points for accurate derivative computations. Note that

fluxes computed from temperature gradients are discontinuous between elements. To produce

a continuous flux distribution, the integration point flux values are linearly extrapolated to the

nodes of each element and averaged between all connected elements. Flux components can also

be combined with the definition in (6.4) to generate the normal flux on the element surface

(edge); fluxes normal to the element surface (edge) may be integrated over the boundary to

define the total energy transfer to or from the element. Flux components computed directly

from the boundary condition specification are also available from COYOTE. These values are

not post-processed quantities but are computed during the element matrix generation phase

and reported during the time stepping or iteration process.

When auxiliary variables are defined, the flux components for these variables may also be

computed. As the process is completely analogous to the conduction process, no further detailed

explanation is required.

6.3 Time Harmonic Functions

For time harmonic problems, the real and imaginary components of the temperature are the

primary quantities produced by COYOTE. For purposes of analysis, other more useful forms of

78 CHAPTER 6. PRE- AND POST-PROCESSING

the thermal response may be required. The real and imaginary temperatures may be combined

to provide a modulus and phase angle at each nodal point which may be output to the post-

processing file. These quantities are simply defined as

|T| =
√

TR
2 + TI

2 (6.5)

β = tan−1

(
TI

TR

)

(6.6)

The temperature at any point and time may be reconstructed from these fields and the use of

the definition in (2.39).

The heat flux components for the periodic case may be computed directly from the definition

in (6.1) for the real and imaginary components. That is

qR
i = −kij

∂ΘT

∂xj
TR (6.7)

qI
i = −kij

∂ΘT

∂xj
TI (6.8)

where the actual spatial derivatives are computed as in (6.2). For each component of the

heat flux vector, a modulus and phase angle may be defined in a manner analogous to the

temperature field.

|qi| =
√

(qR
i)2 + (qI

i)
2 (6.9)

γ = tan−1

(

qI
i

qR
i

)

(6.10)

This data may be output to the post-processing file. Another useful form of the flux result

would be the normal flux at a boundary. Using the definition in (6.4) real and imaginary

compnents of the normal flux can be constructed; this can be followed by a construction of the

modulus and phase angle for the flux normal to the boundary.

6.4 Heat Flow Function

For two-dimensional problems, Kimura and Bejan [44] have proposed the use of a heat flow

function to assist in the visualization of energy transport. The heat function is directly analo-

gous to the stream function for incompressible fluid flow and is constructed to satisfy the steady,

source free form of the energy equation. In formal terms, the heat function H is the remaining

nonzero component of a vector potential that identically satisfies a form of Equation (2.1). By

definition

q1 = qx = ρCuxT − k
∂T

∂x
=

∂H

∂y

q2 = qy = ρCuyT − k
∂T

∂y
= −

∂H

∂x
(6.11)

6.4. HEAT FLOW FUNCTION 79

Figure 6.1: Definition of element boundary for heat function computation.

where the flux components have been defined as the total of the convective and diffusive fluxes.

For simplicity the definitions in (6.11) have also assumed an isotropic conductivity though this

is not a required restriction. In the usual applications considered here, the velocities in (6.11)

will be zero and the heat function will reduce to a definition for a heat flux line, i.e. a line

that is everywhere tangent to the local flux vector. The change in the heat function is an exact

differential such that

δH =

∫ B

A
q · n dΓ (6.12)

q = qxex + qyey

n = nxex + nyey

where n is the normal to the integration path dΓ, q is the total flux vector along the path and

ei are unit vectors in the coordinate directions.

The calculation of the change in the heat function within a finite element can be carried out

using (6.12) once a suitable integration path AB is identified. In COYOTE the integration path

is taken along the two-dimensional element boundaries. Consider the typical element boundary

shown in Figure 6.1 with the following definitions

qx = Φ̂Tqx ; qy = Φ̂Tqy

80 CHAPTER 6. PRE- AND POST-PROCESSING

x = Υ̂Tx ; y = Υ̂Ty (6.13)

where Φ̂ and Υ̂ are interpolation (edge) functions and qx, qy, x, y are vectors of nodal point

fluxes and coordinates. The normal vector is given by

n =
1

∆

∂y

∂s
ex −

1

∆

∂x

∂s
ey (6.14)

with dΓ defined in the usual way by

dΓ =

[(
∂x

∂s

)2

+

(
∂y

∂s

)2
] 1

2

ds

or using the definitions of (6.13)

dΓ =









∂Υ̂

∂s

T

x





2

+




∂Υ̂

∂s

T

y





2





1

2

ds = ∆ ds.

Combining these relations with the definition for δH produces

δH =

∫ +1

−1




∂Υ̂

∂s

T

y Φ̂Tqx −
∂Υ̂

∂s

T

x Φ̂Tqy



 ds. (6.15)

The interpolation function definitions were described previously in Section 4.10.2; the function

Υ̂ can be either linear or quadratic depending on the shape of the element boundary. The

change in the heat function along any element boundary can be computed from (6.15) once

the element geometry, velocity and temperature fields are specified; the fluxes needed in (6.15)

are derived from the definitions in (6.13) and the formulas outlined in the previous chapter.

Computation of the heat function field for an entire finite element mesh is generated by applying

(6.15) along successive element boundaries, starting at a node for which a base value of H has

been specified.

The calculation of the heat function for axisymmetric geometries follows a similar procedure

with the appropriate definition for H being,

q1 = qr =
1

r

∂H

∂z
; q2 = qz = −

1

r

∂H

∂r
(6.16)

and

q = qrr er + qzr ez

n = nrer + nzez.

6.5 Error Estimation

An error estimation procedure, based on the Zienkiewicz-Zhu theory [45], is available in COY-

OTE and utilizes the flux computation procedure outlined in a previous section. Following [45],

6.5. ERROR ESTIMATION 81

an appropriate norm for the energy Equation (2.1) is

‖T‖2 =

∫

Ω

(∇T · ∇T) dΩ (6.17)

and by definition an error in the computed temperature is defined as ǫT = T e − T h where the

superscripts e and h refer to exact and computed, respectively. Using the definition for ǫT in

(6.17), leads to a norm for the temperature error

‖ǫT ‖2 =

∫

Ω

∇(T e − T h) · ∇(T e − T h) dΩ (6.18)

A more convenient form for the error norm can be constructed if the original norm includes

the thermal conductivity. In this case a similar procedure and Fourier’s law produces an error

norm on the flux

‖ǫq‖2 =

∫

Ω

(qe − qh) · (qe − qh) dΩ (6.19)

where q is a flux vector.

Since the exact (superscript e) values are not generally available, some method of approxi-

mating these terms is required. The Zienkiewicz-Zhu approach uses a local projection method

to estimate these values at the nodes of an element. In particular, a local least-squares method

is used for the patch of elements surrounding each node to recover a higher-order approximation

to the flux components at the node. These values can then be compared with the flux values

computed directly from the temperature solution; an element error indicator is then formed by

integration over the element surface as indicated in Equation (6.19).

The recovered fluxes at the node are approximated by a polynomial expansion such as

qi
e = ΛTa = {1 x y xy}









a1

a2

a3

a4









(6.20)

where (6.20) has been written for an arbitrary component of the flux and the polynomial is for

a typical two-dimensional case. The vector of coefficients a is computed from the least-squares

problem

minimize Ii =
1

2V

∫

Ω

(qi
e − qi

h)2 dΩ (6.21)

for each coordinate direction i. The minimization problem in (6.21) leads to a matrix problem

of the form [
∫

Ωp

ΛΛT dΩ

]

a =

∫

Ωp

Λ
∑

gp

qi
h dΩ (6.22)

for each flux component, where Ωp is the area or volume of the patch of elements surrounding the

node. The sum on the right-hand-side of (6.22) is over the number of Gauss (integration) points

in the patch of elements surrounding the node. After solution of (6.22), the recovered (higher-

order) fluxes at the nodes can be evaluated at the element integration points and compared to

82 CHAPTER 6. PRE- AND POST-PROCESSING

the fluxes computed from the temperature interpolation functions. These differences are then

integrated over the element to form the norm in (6.19) for each element. The element error

values are normalized over the entire mesh and can be output to the post-processing file. Note

that in the current version of COYOTE, the error estimation procedure is not operational in a

parallel environment.

6.6 Species and Gas Fraction

For thermal problems with chemical reaction, chemical species are computed at the integration

points of each element. For post-processing purposes, the integration point values for each

of the species are averaged over the element and output to the post-processing file as element

quantities. The reacted gas fraction can be computed directly from (2.28). This quantity is also

described as constant over the element when output to the post-processing file. For a coupled

thermo-mechanical analysis, the gas fraction may be transferred to the mechanical code for use

in various constitutive models.

6.7 Element and Element Block Variables

Element quantities such as mass, volume and internal energy are computed from their basic defi-

nitions for every element in the mesh. These quantities may be written to the post-processing file

as a user option. Similar quantities are available for each element block and may be referenced

through the block id number. In addition, the maximum, minimum and average temperature

for each element block is reported. The average block temperature is computed from the ratio

of the block internal energy and the volume integral of the specific heat. Bulk node variables are

recorded for post-processing and include the volume, temperature, pressure, mass and energy.

6.8 Graphical Output

COYOTE contains no graphics capability and relies completely on external visualization soft-

ware. The code outputs solution data in a standard format file called EXODUS II [42] that

can be accessed by any of several graphics packages, such as the BLOT code [46], EnSight [47]

or ParaView [48] software. Details of the output file are available in [5,42].

Chapter 7

References

1. COMSOL Multiphysics Users Guide, Version 3.5, COMSOL AB (2008),
http://www.comsol.com

2. COSMOSWorks, Version 2.95, Solidworks Corp. (2008), http://www.cosmosm.com

3. ABAQUS User’s Manual, Version 6.8, SIMULIA (2008), http://www.simulia.com

4. Thermal Synthesizer System Users Manual, Version 12.1, Spacedesign Corp. (2007),
http://www.spacedesign.com

5. D. K. Gartling, R. E. Hogan and M. W. Glass, “COYOTE - A Finite Element Com-
puter Program for Nonlinear Heat Conduction Problems, Part II - User’s Manual,”
SAND2010-0714, Sandia National Laboratories, Albuquerque, NM (2010)

6. H. S. Carslaw and J. C. Jaeger, “Conduction of Heat in Solids,” Clarendon Press,
Oxford, 2nd Edition (1959)

7. J. Crank, “The Mathematics of Diffusion,” Clarendon Press, Oxford, 2nd Edition
(1975)

8. R. Siegel and J. R. Howell, “Thermal Radiation Heat Transfer,” McGraw Hill, NY,
2nd Edition (1981)

9. C. Bonacina, G. Comini, A. Fasano and M. Primicerio, “Numerical Solution of
Phase-Change Problems,” Int. J. Heat Mass Transfer, 16, 1825-1832 (1973)

10. D. K. Gartling, “Finite Element Analysis of Convective Heat Transfer Problems
with Change of Phase,” Computer Methods in Fluids, K. Morgan, C. Taylor and
C. A. Brebbia, Eds., Pentech Press, London, 257-284 (1980)

11. G. Comini, S. Del Guidice, R. Lewis and O. C. Zienkiewicz, “Finite Element So-
lution of Nonlinear Heat Conduction Problems with Special Reference to Phase
Change,” Int. J. Num. Meth. Engng., 8, 613-624 (1974)

83

84 CHAPTER 7. REFERENCES

12. K. Morgan, “A Numerical Analysis of Freezing and Melting With Convection,”
Comp. Meth. Applied Mech. Engr., 28, 275-284 (1981)

13. J. N. Reddy and D. K. Gartling, “The Finite Element Method in Heat Transfer

and Fluid Dynamics,” 2nd Edition, CRC Press, Boca Raton, FL (2001)

14. J. A. Sethian, “Level Set Methods and Fast Marching Methods, Cambridge Univer-
sity Press, Cambridge, UK (1999)

15. E. B. Becker, G. F. Carey and J. T. Oden, “Finite Elements, An Introduction,

Volume I,” Prentice-Hall, NJ (1981)

16. O. C. Zienkiewicz, “The Finite Element Method,” McGraw-Hill, London, 3rd Edi-
tion (1977)

17. I. Ergatoudis, B. M. Irons and O. C. Zienkiewicz, “Curved, Isoparametric, ‘Quadri-
lateral’, Elements for Finite Element Analysis,” Int. J. Solids Structures, 4, 31-42
(1968)

18. B. M. Irons, “Quadrature Rules for Brick Based Finite Elements,” Int. J. Num.

Meth. Engng., 3, 293-294 (1971)

19. L. M. Taylor and D. P. Flanagan, “PRONTO 3D - A Three-Dimensional Transient
Solid Dynamics Program,” SAND87-1912, Sandia National Laboratories, Albu-
querque, NM (1989)

20. R. D. Cook, D. S. Malkus and M. E. Plesha, “Concepts and Applications of Finite

Element Analysis,” John Wiley and Sons, NY (1989)

21. P. M. Gresho, R. L. Lee and R. L. Sani,“On the Time Dependent Solution of the
Incompressible Navier-Stokes Equations in Two and Three Dimensions,” Recent

Advances in Numerical Methods in Fluids, Volume 1, Pineridge Press, Swansea, U.
K., 27-81 (1980)

22. T. J. R. Hughes, “Analysis of Transient Algorithms with Particular Referenceto
Stability Behavior,” Computational Methods for Transient Analysis, T. Belytschko
and T. J. R. Hughes, Eds., North-Holland, Amsterdam, 68-155 (1983)

23. T. Belytschko, “An Overview of Semidiscretization and Time Integration Proce-
dures,” Computational Methods for Transient Analysis, T. Belytschko and T. J. R.
Hughes, Eds., North-Holland, Amsterdam, 1-65 (1983)

24. W. K. Liu and T. Belytschko, “Efficient Linear and Nonlinear Heat Conduction
with a Quadrilateral Element,” Int. J. Num. Meth. Engng., 20, 931-948 (1984)

25. J. I. Lin, “Bounds on Eigenvalues of Finite Element Systems,” Int. J. Num. Meth.

Engng., 32, 957-967 (1991)

85

26. P. R. Schunk and J. N. Shadid, “Iterative Solvers in Implicit Finite Element Codes,”
SAND92-1158, Sandia National Laboratories, Albuquerque, NM (1992)

27. R. S. Tuminaro, M. Heroux, S. A. Hutchinson, and J. N. Shadid, “AZTEC User’s
Guide, Version 2.1,” SAND99-8801J, Sandia National Laboratories, Albuquerque,
NM (1999)

28. M. Salaz, M. Heroux and D. Day, “Trilinos Tutorial,” SAND2004-2189, Sandia
National Laboratories, Albuquerque, NM (2007)

29. M. Heroux and J. Willenbring, “Trilinos Users Guide,” SAND2003-2952, Sandia
National Laboratories, Albuquerque, NM (2007)

30. R. L. Clay, K. D. Mish, I. J. Otero, L. M. Taylor and A. B. Williams, “An Annotated
Reference Guide to the Finite-Element Interface (FEI) Specification, Version 1.0,”
SAND99-8229, Sandia National Laboratories, Albuquerque, NM (1999)

31. M. W. Glass, “CHAPARRAL V2.x - A Library for Solving Large Enclosure Radi-
ation Heat Transfer Problems,” SAND01-xxxx (in preparation), Sandia National
Laboratories, Albuquerque, NM (2001)

32. A. F. Emery, O. Johansson, M. Lobo and A. Abrous, “A Comparative Study of
Methods for Computing the Diffuse Radiation Viewfactors for Complex Struc-
tures,” J. Heat Trans., 113, 413-422 (1991)

33. R. E. Hogan and D. K. Gartling, “Solution Strategies for Coupled Conduction/Radiation
Problems,” Comm. Numer. Meth. Engng., 24, 523-542 (2008)

34. I. S. Wichman, “On the Use of Operator-Splitting Methods for the Equations of
Combustion,” Combust. Flame, 83, 240-252 (1991)

35. T. R. Young, “CHEMEQ - A Subroutine for Solving Stiff Ordinary Differential
Equations,” NRL Memorandum Report 4091, Naval Research Laboratory, Wash-
ington, DC (1980)

36. D. R. Mott, E. S. Oran and B. van Leer, “A Quasi-Steady-State Solver for the
Stiff Ordinary Differential Equations of Reaction Kinetics,” J. Comp. Phys., 164,
407-428 (2000)

37. M. W. Heinstein, S. W. Attaway, J. W. Swegle and F. J. Mello, “A General-Purpose
Contact Detection Algorithm for Nonlinear Structural Analysis Codes,” SAND92-
2141, Sandia National Laboratories, Albuquerque, NM (1993)

38. B. A. Hendrickson and R. Leland, “The Chaco User’s Guide - Version 1.0,” SAND93-
2339, Sandia National Laboratories, Albuquerque, NM (1993)

86 CHAPTER 7. REFERENCES

39. G. L. Hennigan, M. St. John, and J. N. Shadid, “NEMESIS I: A Set of Func-
tions for Describing Unstructured Finite Element Data on Parallel Computers,”
http://endo.sandia.gov/SEACAS/Documentation/Nemesis Users Guide.pdf, San-
dia National Laboratories, Albuquerque, NM (1998)

40. W. Gropp, E. Lusk and A. Skjellum, “Using MPI,” MIT Press, Cambridge, MA
(1995)

41. S. Plimpton, S. Attaway, B. Hendrickson, J. Swegle, C. Vaughn and D. Gard-
ner, “Transient Dynamics Simulations: Parallel Algorithms for Contact Detection
and Smoothed Particle Hydrodynamics,”Proc. Supercomputing ’96, Pittsburgh, PA
(1996)

42. L. A. Schoof and V. R. Yarberry, “EXODUS II - A Finite Element Data Model,”
SAND92-2137, Sandia National Laboratories, Albuquerque, NM (1994)

43. E. Hinton and J. S. Campbell, “Local and Global Smoothing of Discontinuous
Finite Element Functions Using a Least Squares Method,” Int. J. Num. Meth.

Engng., 8, 461-480 (1974)

44. S. Kimura and A. Bejan, “The ‘Heatline’ Visualization of Convective Heat Trans-
fer,” J. Heat Trans., 105, 916-919 (1983)

45. O. C. Zienkiewicz and J. Z. Zhu, “A Simple Error Estimator and Adaptive Proce-
dure for Practical Engineering Analysis,” Int. J. Num. Meth. Engng., 24, 337-357
(1987)

46. A. P. Gilkey and J. H. Glick, “BLOT - A Mesh and Curve Plot Program for the
Output of a Finite Element Analysis,” SAND88-1432, Sandia National Laborato-
ries, Albuquerque, NM (1989)

47. EnSight User Manual, Version 8.2, Computational Engineering International, (2006),
http://www.ensight.com

48. ParaView Guide, Version 3.0, Kitware, Inc., (2008), http://www.kitware.com

Distribution:

1 MS0826 D. K. Gartling 1500

1 MS0836 R. E. Hogan 1514

1 MS0382 M. W. Glass 1541

1 MS0899 Technical Library 9536 (electronic copy)

87

88

