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Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.



Experience Report for WOPR, 4/20/2010, CRIM, Montreal, Quebec, Canada
— Fault Density Prediction Experiments:
Gregory Pope, Lawrence Livermore National Laboratory - LLNL-TR-427516

Overview:

One of the purposes of our SQA effort at LLNL is to attempt to determine the “goodness” of the research
codes used for various scientific applications. Typically these are two and three dimensional multi-
physics simulation and modeling codes. These legacy research codes are used for applications such as
atmospheric dispersion modeling and analysis and prediction of the performance of engineered
systems. These codes are continually subjected to automated regression test suites consisting of verified
and validated expected results. Code is managed in repositories. Experience level of developers is high in
the knowledge domain, platforms, and languages used. Code size of the multi-physics code used in this
study was 578,242 lines excluding comment and blank lines or 5538.7 function points. Languages were
70% C++, 20% C, and 10% Fortran. The code has 130 users and a development team of 14 and an
embedded SQE. The code has achieved 100% prime feature test coverage, 73.6% functional test
coverage, and 71.5% statement test coverage. The average cyclomatic complexity of the code was 6.25.
The codes have evolved over 10 years.

Research codes are challenging because there is a desire to balance agility with discipline as well as
compliance with DOE standards. Agility is important to allow experimentation with new algorithms and
addition of the latest physics features. Discipline is important to increase the quality of the codes.
Automation of processes and defect prevention/detection are deployed throughout the software
development process. Since research codes are a small segment of the software industry, not much
information exists in terms of reliability studies on these types of codes. This paper describes attempts
to determine the goodness of these research codes. Goodness defined as both correctness of the codes
and their fault densities. Correctness is determined by user interviews, peer review; feature based
automated testing, and coverage measurement. This paper focuses on the fault density aspect of
goodness and reliability of the codes in particular.

The approach taken was to use multiple fault density prediction methods and compare results to actual
experimentation and other industry studies on fault density. As a result of the predictions and
experiments our confidence in the prediction methods was increased and our confidence in the
goodness of the code from a fault density perspective was given more context. A large unintended
benefit of these experiments was to find defects hidden for years in the codes when using the Monte
Carlo reliability testing results to develop heuristic based bug driven tests.

The Methods:
The six techniques chosen for the defect prediction were:

COQUALMO (Constructive Quality Model)

EPML (Equivalent Process Maturity Level)

Compare fault density predictions to Industry

Static Code analysis using Klocwork to determine found fault density

Cyclomatic Complexity analysis using Klocwork and historical defect data

Musa based reliability MTTF predicted from fault density compared to a reliability
demonstration test.
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COQUALMO :

Sunita Chulini’'s COQUALMO model derived from Barry Boehm’s et. al. work on the COCOMO and
COCOMOII models'. This model was developed by using Boehm’s risk factors for predicting fault density
instead of schedule estimation. The weighted correlation between COCOMO Il risk factors and the fault
densities were determined by an eight member panel of industry experts in a two pass study called the
DELPHI. The COQUALMO method was set up in a spread sheet (answering questions on a spreadsheet
tool about defect insertion and defect removal effectiveness) for the code under test risk factors,
producing a theoretical fault density for the code expressed in defects per KSLOC.

EPML:

The EPML", was also set up on a spreadsheet and used to estimate the CMM level of the software
project, then fault density by CMM maturity level was determined by data available from SEI. The
guestion was would the EPML estimate of maturity level and SEI defect density ranges match the
COQUALMO estimation?

Industry Fault Density Table:

Donald Reifer has published fault density ranges by software industry type ", would the fault densities
estimated make sense when compared to other and like industries? How would our predicted fault
densities compare to that of mission critical codes, avionics codes, medical codes, and commercial
codes? We expected that research software fault density would not be as low as mission critical or
avionics software fault density because those codes are subjected to infrequent changes and more
stringent testing, but perhaps better than most commercial software. Would our predicted fault density
map to industry research?

Static Code Analysis:

Static code analyzers are used to find questionable coding practices, such as uninitialized variables,
overflows, null pointer dereferencing, memory leaks, and many other types of problems. Originally
these tools were designed to find security vulnerabilities, but we have found them useful for finding
coding problems missed by compilers, inspections, and testing. The tool to be used was Klocworks,
which has been used on over six million lines of code at LLNL, finding over 7,000 potential defects to
date. Would the fault density prediction correlate to the number of defects found by static analysis?

Cyclomatic Complexity:

Cyclomatic complexity is another metric that the Klocwork tool collects. Complexity can be viewed as
the number of different paths through a software component. A loop counts as a single path regardless
of the Iterator value. For instance a component consisting of a sequence of statements with no loops or
conditional statements would have a cyclomatic complexity of one. (A single test case could cover all
paths). A single if-then else statement would be a complexity of two, a single nested if-then else three. A
case statement would be a complexity equal to the number of choices. A rule of thumb is to try to keep
complexity under 10 in a module of code. The theory is the more complex the code the more likely it will
have defects or undesired side effects when it is modified. The actual metric in the Klocwork tool is the
number of components with a complexity greater than a user supplied threshold. The plan was to
compare the historical defect reports on the codes to the categories of defects found by source
directory name in the code and see if the more complex areas of code had more found defects
historically. While not a direct comparison to fault density, a good correlation may help us prioritize
future testing.



Reliability Demonstration:

The predicted fault density would be used as an input to the Musa model constructed on a spreadsheet
to predict the number of hours the software should run without encountering a failure. Traditionally
tested software would then be run continuously (24/7) while stimulated by seeded random inputs to
see if the software could run as long without a failure as the predication (Monte Carlo Reliability
Testing).

Findings:

COQUALMO:

The codes used in the experiment were evaluated using the COQUALMO model. The questions were
answered by a certified CSQE who was familiar with the code team tools, processes, and staff. The
results of the questionnaire were an estimated fault density of 2.7 per KSLOC. The spreadsheet used is
available for evaluation.

EPML:

An estimated Process Maturity model was completed on the codes used in the experiment. The
guestions were answered by a certified CSQE who was familiar with the code team tools, processes, and
staff. The estimated CMM level was 3.4. The fault density for maturity level 3 codes is .27 defects per
function point"”. At 104 lines of code per function point for the languages used, this is equivalent to .27
defects per 104 lines of code or 2.6 defects per KESLOC using the backfire method (70% C++, 20% C, 10%
Fortran). This is very close to the COQUALMO prediction of 2.7. The spreadsheet used is also available
for evaluation.

Industrial Fault Density Table:

The following table gives a compilation of a number of software projects by industry done by Donald
Reifer.' The fault density prediction of 2.7 per KSLOC or 2.6 per KESLOC would indicate that the codes
used in the experiment are within the low range of most commercial codes, but have a higher fault
density than most DoD military codes. This is consistent with earlier speculation on the code based on
Qualitative observations.



Application Domain | Number Error Range | Normative Error Notes
Projects | (Errors/KESLOC)" Rate
(Errors/KESLOC)

Automation 55 2t08 5 Factory automation
Banking 30 3to 10 6 Loan processing, ATM
Command & Control 45 0.5t05 1 Command centers
Data Processing 35 2to 14 8 DB-intensive systems
Environment/Tools 75 5to 12 8 CASE, compilers, etc.
Military -All 125 02t03 <1.0 See subcategories
N Airborne 40 02to 1.3 0.5 Embedded sensors
N Ground 52 0.5t04 0.8 Combat center
N Missile 15 03to 1.5 0.5 GNC system
N Space 18 0.2t0 0.8 0.4 Attitude control system
Scientific 35 09to5 2 Seismic processing
Telecommunications 50 3to 12 6 Digital switches
Test 35 3to 15 7 Test equipment, devices
Trainers/Simulations 25 2to 11 6 Virtual reality simulator
'Web Business 65 4to 18 11 Client/server sites
Other 25 2to 15 7 All others

Static Analysis:
The Klocwork static analyzer used compiles and builds the code, and then compares the code to

approximately 1,600 heuristic rules that are considered secure coding practices. The codes in the
experiment are not so much concerned with security issues as they are not available to the general
public and used on closed networks. However most security vulnerabilities in codes are created by
undesirable coding practices, the code may function correctly, but may be more vulnerable to hackers.
The Klocwork tool found 4,295 coding practice and flagged them for analysis on the multi-physics code.
This was a found suspected defect density of 7.4 per KSLOC. Our experience with the tool is that 85% of
the found issues are defects that will need to be fixed, the rest are false alarms. This would lower the
defect rate found by the static analyzer to 6.3 per KSLOC. The number is much higher than the predicted
defect rate of 2.7, however many of the fixed defects would probably never been found by testing (a
fault manifest into a failure). For instance in the defect distribution pie chart shown below, over half of
the defects are null pointer dereferences. Most of these would occur only if memory was not available
when requested, so finding them would require the test case to control the allocation of memory to find
them. If this class of defect is removed then the defect density is (4,295-2740 = 1,555 or 1,555/573 =
2.7, really scary). Which brings up an interesting observation that is how historical fault densities have
been determined? If they have been determined by empirical observations of testing, then they may be




low, since it is not possible to prove all defects have been found. Our static analysis is giving new insights
into defect rates and allows for finding and fixing of problems difficult to find in inspections or testing.
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Cyclomatic Complexity:

The Klocwork tool was also used to calculate the cyclomatic complexity of the codes. The tool yields the
number of components over certain complexity threshold. Three values were used for the thresholds, 5,
10, and 20. The number of components exceeding threshold complexity was then put on a spreadsheet
and plotted by feature (actually a source file directory name). The defect tracker used for the project
was also exported to spreadsheet and plotted number of defects found and fixed against feature. The
defects had been collected for over five years. Not all of the features and directory file names lined up,
so some combining was performed. Lesson learned here, name the source directories the same names
as the categories in your defect tracker pull down menu. Interestingly enough the best correlation
between defects found and complexity was at the 10 threshold. At five the number of complex
components was too great for a good quantitative correlation, at 20 the number of complex
components were too small. As shown in the chart below, there is a correlation between the
complexity and the defects found over five years. A fourth order polynomial fit line is plotted for defects
found and complexity of ten or greater. The maximum gap between the two best fit lines is about 40
defects. Forty defects represents about plus or minus 2%. The same process for a threshold of 5 or
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greater complexity was plus or minus 15% and for a threshold of 20 plus or minus 5%. A simple
interpretation of this result is that for every component with a complexity count of ten or greater, one
can expect a defect to be found in that component. It would appear besides this simple and highly
guestionable quantitative conclusion (heuristic); qualitatively most defects can be expected in areas of
higher complexity in the code. The static analyzer defects found are also plotted for reference and do
also correlate qualitatively, with some outlier points. The outlier points emphasize that drawing
conclusions only by using defects found in testing or inspection can be misleading, as there may be a big
pocket of defects yet undiscovered because of the difficulty finding them with conventional tests. What
is not shown on the plot is that the leading defect area in the defect was the make and build process,
which of course is not related to the source code, but none the less is an important finding in terms of
focusing process improvements. Complexity then would seem to be a somewhat reasonable way to
predict defects, especially the highest probability areas for defects. As the complexity numbers go down,
the correlation tends to widen. Factors that seem to effect the correlation between defects found and
complexity are how frequently the code component is used, new code versus modified code, and the
experience level of the author, however at higher levels of complexity these factors do not seem to
dominate. Further studies are planned to see if other codes exhibit the defect per complexity of ten or
greater phenomenon.
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Reliability Prediction:

In order to check the ability to predict reliability (a highly controversial area) the plan was to use the
predicted defect density from COQUALMO and ECCM (and somewhat confirmed as “in the ballpark” by
the static analyzer and industry table) as the fault density for input to the Musa reliability calculation.
Musa’s model was developed at Bell Labs for AT&T telephony software many years ago. It treats the
software as a statistical problem, there are so many faults in the code, there is a very small chance that
when a line of code with a fault is executed it will be in a state that will generate a failure that is
perceivable to the user. The faster the CPU speed and duty cycle of the software the more likely that
these encountered faults will manifest a failure as a function of time. The Musa model has a simplifying
assumption however that faults (or defects) are uniformly distributed throughout the code. In the
complexity analysis above there was a good example of this not being true; defects tend to be greater in
the more complex areas of code, not uniform. Defects tend to cluster where lesser skilled programmers
have created code, etc. However Musa developed his reliability study before complexity was developed
by Tom McCabe. An obvious question then is can the basic reliability model be improved by using
complexity profiles instead of uniform distributions? The probability of encountering a defect in the
material component of the multi-physics code would be much greater than in the MHD component in
our example. However, we used the reliability model as described in the literature"" to see what would
happen. The test bed pictured below was used to stimulate the software with random inputs. The exact
inputs to stimulate and over which ranges were selected with help from the developers and code
physicists. It took some trial and error both with the software under test and the test tool to attain a
viable reliability test. Time synchronization between the test tool and the application was the most
challenging.
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The reliability prediction tool created, for a fault density or 2.7per KSLOC the following table (it is in the
COQUALMO workbook):

Probability

of Failure Probability

Hours Years | Free of Failure
1 99.91% 0.09%
3 99.72% 0.28%
8 99.27% 0.73%
160 86.30% 13.70%
480 64.27% 35.73%
1000 39.81% 60.19%
5000 0.6 1.00% 99.00%
10000 1.1 0.01% 99.99%
50000 5.7 0.00% 100.00%
100000 11.4 0.00% 100.00%

Our goal was to see if the software would run about 500 hours failure free when stimulated by random
inputs continuously. A failure was defined as a crash, math error, assertion error, system freeze,
extremely slow performance, or outside of the range of some rule of thumb values selected by the code
physicists. Note that it would be possible to have an error of a slightly wrong answer and not be able to
detect it; this is because we did not attempt to duplicate the software under test, as the duplicated
software would be no more trustworthy than the software being tested. Many tests had already been
run on this software to catch those types of errors with verified and validated expected results using
value compares and curve compares within tolerances. The result was we were able to run for 500
hours without a failure as defined for the reliability test.

The Bonus, Bug Driven Heuristic Testing:

An unexpected benefit of performing the randomized (Monte Carlo) reliability testing on the
atmospheric dispersion code is that we did trip across certain rare fault types that allowed us to create
specific tests to look for more of those fault types. For instance we found a certain chemical that had an
atomic weight of null. Null is not a legal atomic weight. So we wrote a heuristic test to check that all
chemical’s atomic weights were not a negative number, null, 0, space, carriage return, linefeed, etc. This
heuristic test did find additional chemicals that had wrong atomic weights. We also found a city of the
world with no radius (circle of nearby weather stations to get meteorological data). We wrote a heuristic
test to find any city of the world that had a negative number, null, 0, space, carriage return, linefeed,
etc. as a radius. We found more cities with no valid radius. We followed with a test to check the
minimum and maximum radius values that should be allowed. We also ran another heuristic test to
check the maximum wind speed reported by meteorological stations around the world. We found some
values over 200 miles per hour that could not be explained. We also ran a minimum value check on
meteorological stations around the world, using a heuristic given to us by a meteorologist. The rule was
for a wind speed of less than 2.6 knots per hours we should get a direction of null, for a wind speed of
greater than 2.6 knots per hour we should get a direction reading of 0-359. (The wind direction can not
be determined if these is no or very small amount of wind). This test found numerous meteorological
stations throughout the world that were not working correctly. All in all we found several hundred
corrupted data values that would have been unlikely to find using conventional testing techniques. We
also found another interesting thing, any test running at 3:00am failed. This turned out to be the server,



which rebooted itself to clear memory leaks at 3:00am. The code to do this was put in many years ago as
a late night fix, but was forgotten about. Since this system is potentially used 24/7 for tracking
worldwide events the old patch had to go and a leak checker used to find and fix the leak sources. The
same was true for the multi physics code; we were able to create new input tests that checked for
conditions that had never been tried before, and failed. Lesson learned here is that a powerful form of
testing is the Monte Carlo test to find defects and then use those bugs to create tests that use heuristics
to find all instances of that error type, especially in data intensive systems.

Future Work:

The reliability of the software can only be as good as the test suite used to test it. Future work includes
defect seeding to improve test suites. The plan is to seed about 8,000 defects, one at a time, into the
multi-physics code. Selecting the type of defects to seed and location of the seeded defect is a non-
trivial task. A special tool is being developed to help with this task. Some thoughts on what types of
defects to seed would be to look at the type of defects already found in the code and the types of
defects static analyzers look for. The location of the seeding could be at random or use complexity
profiling discussed earlier to seed more complex areas heavier. The use of parallel computers would
allow all 8,000 mutated source codes to compile and execute simultaneously against their test suites
that have formerly passed all tests. Those processors that do not detect their seeded defect (all tests still
pass) would then be checked by another tool using a reverse slicing technique to see what input
condition (if any) could be stimulated to detect the seeded error. If an input condition or conditions can
be found to stimulate the seed and detect the error, then that input would be a candidate test to add to
the test suite to improve it. Also to reduce the wall clock time needed to run reliability tests, use of the
parallel testing environment to accumulate hours faster. Lastly as stated before, continue to evaluate
other codes to see if the complexity prediction, both quantitative and qualitative holds true.
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