
SANDIA REPORT
SAND2010-2234
Unlimited Release
Printed May 2010

Teuchos C++ Memory Management
Classes, Idioms, and Related Topics

The Complete Reference

A Comprehensive Strategy for Safe and Efficient Memory Management

in C++ for High Performance Computing

Roscoe Bartlett

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy

by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United

States Government. Neither the United States Government, nor any agency thereof, nor any

of their employees, nor any of their contractors, subcontractors, or their employees, make any

warranty, express or implied, or assume any legal liability or responsibility for the accuracy,

completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-

resent that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,

does not necessarily constitute or imply its endorsement, recommendation, or favoring by the

United States Government, any agency thereof, or any of their contractors or subcontractors.

The views and opinions expressed herein do not necessarily state or reflect those of the United

States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best

available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401

Facsimile: (865) 576-5728

E-Mail: reports@adonis.osti.gov

Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce

National Technical Information Service

5285 Port Royal Rd

Springfield, VA 22161

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@ntis.fedworld.gov

Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
EP

ARTMENT OF ENERG
Y

•
 •
U
N

IT
ED

STATES OF AM

ER
I C

A

ii

SAND2010-2234
 Unlimited Release
 Printed May 2010

Teuchos C++ Memory Management Classes, Idioms, and
Related Topics

The Complete Reference

A Comprehensive Strategy for Safe and Efficient Memory Management in

C++ for High Performance Computing

Roscoe Bartlett

Abstract

The ubiquitous use of raw pointers in higher-level code is the primary cause of all memory usage
problems and memory leaks in C++ programs. This paper describes what might be considered a radical
approach to the problem which is to encapsulate the use of all raw pointers and all raw calls tonew and
delete in higher-level C++ code. Instead, a set of cooperating template classes developed in the
Trilinos package Teuchos are used to encapsulate every use of raw C++ pointers in every use case
where it appears in high-level code. Included in the set of memory management classes is the typical
reference-counted smart pointer class similar toboost::shared ptr (and therefore C++0x
std::shared ptr). However, what is missing in boost and the new standard library are non-reference
counted classes for remaining use cases where raw C++ pointers would need to be used. These classes
have a debug build mode where nearly all programmer errors are caught and gracefully reported at
runtime. The default optimized build mode strips all runtime checks and allows the code to perform as
efficiently as raw C++ pointers with reasonable usage. Also included is a novel approach for dealing
with the circular references problem that imparts little extra overhead and is almost completely invisible
to most of the code (unlike the boost and therefore C++0x approach). Rather than being a radical
approach, encapsulating all raw C++ pointers is simply the logical progression of a trend in the C++
development and standards community that started withstd::auto ptr and is continued (but not
finished) withstd::shared ptr in C++0x.

iii

iv

Contents

Preface . viii
1 Introduction . 1
2 Fundamental problems with raw C++ pointers . 5

2.1 Problems using raw C++ pointers for handling single objects . 5
2.2 Problems using raw C++ pointers for handling arrays of objects . 6
2.3 Problems with the incompatibility ofnew/delete andtry/throw/catch 7

3 Problems with common approaches for addressing memory management in C++. 10
3.1 Problems with usingstd::vector for handling all arrays . 10
3.2 Problems with relying on standard memory checking utilities . 13

4 Important prerequisites . 16
4.1 Value types versus reference types . 16
4.2 Non-persisting versus persisting and semi-persisting associations . 18

5 Teuchos classes for safer memory management and usage . 23
5.1 Overview of basic approach employed by Teuchos memory management classes 23
5.2 The proper role of raw C++ pointers . 26
5.3 Common aspects of all Teuchos memory management classes . 27
5.4 Memory management classes replacing raw pointers for single objects 27

5.4.1 Teuchos::Ptr<T> . 28
5.4.2 Teuchos::RCP<T> . 30
5.4.3 Raw C++ references . 32

5.5 Memory management classes replacing raw pointers for arrays of objects 32
5.5.1 Teuchos::ArrayView<T> . 34
5.5.2 Teuchos::ArrayRCP<T> . 36
5.5.3 Teuchos::Array<T> . 39
5.5.4 Teuchos::Tuple<T,N> . 41
5.5.5 Array views . 43

5.6 Const versus non-const pointers and objects . 44
5.7 Conversions . 45

5.7.1 Implicit and explicit raw-pointer-like conversions . 45
5.7.2 Conversions between different memory management types . 49
5.7.3 Implicit type conversion problems and shortcomings . 52

5.8 Core idioms for the use of the Teuchos memory management classes 58
5.8.1 The non-member constructor function idiom . 58
5.8.2 General idioms for handling arrays of objects . 60
5.8.3 Idioms for class object data members and local variables . 61
5.8.4 Idioms for the specification of formal arguments for C++ functions 63
5.8.5 Idioms for returning objects from C++ functions . 68

5.9 Reference-counting machinery in-depth . 76
5.9.1 Basic reference counting machinery . 76
5.9.2 Circular references and weak pointers . 79
5.9.3 Customized deallocators . 86
5.9.4 Embedded objects . 90
5.9.5 Extra data . 92

5.10 Roles and responsibilities for persisting associations: factories and clients 94
5.11 Debug-mode runtime checking . 95

5.11.1 Detection of null dereferences and range checking . 95

v

5.11.2 Detection of circular references 96
5.11.3 Detection of dangling references . 97
5.11.4 Detection of multiple owningRCPobjects . 100
5.11.5 Performance of debug-mode checking versus memory checking tools 102
5.11.6 Limitations of debug-mode runtime checking . 103
5.11.7 Exception handling and debugging . 105

5.12 Optimized performance . 106
5.12.1 Reference counting overhead . 107
5.12.2 Array access and iterator overhead . 113
5.12.3 Performance tuning strategies, semi-persisting associations . 115

5.13 Related idioms and design patterns . 119
5.13.1 The inverted object ownership idiom . 119
5.13.2 The separate construction and just-in-time initialization idioms 121
5.13.3 The object self-reference idiom . 124
5.13.4 The generalized view design pattern . 128

5.14 Comparison with other class libraries and the standard C++ library . 139
5.15 Advice on refactoring existing software . 141

6 Miscellaneous topics . 143
6.1 Essential and accidental complexity, making implicit concepts explicit 143
6.2 Philosophy of memory management: Safety, speed, flexibility and 100% guarantees 145

7 Conclusions . 147
References . 148

Appendix

A Summary of Teuchos memory management classes and idioms . 150
B Commandments for the use of the Teuchos memory management classes . 158
C Argument for using an signed integer forsize type in the Teuchos array classes 161
D Raw performance data . 165

D.1 Raw RCP performance data . 165
D.2 Raw Array performance data . 168

Figures

1 UML Class Diagram showing non-persisting and persisting associations 20
2 Conversions between different single-object memory management types. 46
3 Conversions between array memory management types. 47
4 Basic design of the Teuchos reference-counting machinery. 76
5 Example of severalRCPobjects pointing to the sameRCPNodeImpl object. 78
6 Simple circular reference between two objects. 80
7 Simple circular reference between two objects broken using aWEAK RCP. 81
8 Weak pointer scenario whereClientA is deleted first . 82
9 Weak pointer scenario whereClientB is deleted first . 84
10 Example of a circular chain involving many objects and many classes. 85
11 Example of duplicate owningRCPNodeImpl objects . 100
12 Timings for allocating and deallocating objects using RCP . 110
13 Timings of basic RCP operations on for three compilers . 112

vi

14 Timings for basic Array, ArrayRCP, and ArrayView operations . 114
15 Depiction of contiguous and non-contiguous multi-vector column views. 129
16 Parent and child classes for “generalized view” design pattern. 130
17 State behavior for parent object in “generalized view” design pattern. 130

Tables

1 Basic Teuchos memory management utility classes for encapsulating raw pointers. 24
2 Summary of capabilities of the basic Teuchos memory management classes. 24
3 Teuchos array container classes. 25
4 Common members and non-members for all types . 27
5 Additional non-members for array types . 33
6 Equivalences between raw pointer and smart pointer types for const protection 45
7 Basic implicit and explicit conversions by smart-pointer types. 46
8 Summary of basic conversions supported involving single objects. 50
9 Summary of basic conversions supported for contiguous arrays. 51
10 Idioms for class data member declarations for value-type objects. 62
11 Idioms for class data member declarations for reference-types objects. 62
12 Idioms for passing value-type objects to C++ functions. 64
13 Idioms for passing reference-type objects to C++ functions. 65
14 Idioms for returning value-type objects from C++ functions. 69
15 Idioms for returning reference-type objects from C++ functions. 70
16 Overhead of runtime checking for serial Tpetra test suite. 102
17 Performance testing platforms. 107
18 Sizes of RCP and boost::sharedptr objects for 64 bit GCC 4.1.2. 109

vii

Preface

This document describes the basic problems with raw memory management in C++ and presents an
approach to addressing the problems by encapsulating all raw C++ pointers in a system of cooperating
types. Almost every aspect is presented and issues of detailed usage, safety, performance, suggested idioms
and many other topics are discussed. This is a fairly lengthy document with more than 140 pages in the
main body and with 20 pages of appendices. This may seem like a lot of material to read through but
consider that the 1500+ pages of mainstream literature on modern C++ usage in just the references
[28, 30, 11, 25] still leaves a language that makes it too easy to write programs with undefined behavior
(i.e. segfault) and leak memory.

While this ducment is long, there is a much shorter path through this document is given below that gives
the basics for the anxious reader that does not need all the background material or the information on the
many interesting side topic discussed.

Abbreviated table of contents:

• Section 1 “Introduction”

• Section 4.2 “Non-persisting versus persisting and semi-persisting associations”

• Section 5.1 “Overview of basic approach employed by Teuchos memory management classes”

• Section 5.4 “Memory management classes replacing raw pointers for single objects”:

• Section 5.5 “Memory management classes replacing raw pointers for arrays of objects”

• Section 5.8 “Core idioms for the use of the Teuchos memory management classes”

• Section 5.10 “Roles and responsibilities for persisting associations: factories and clients”

• Section 5.14 “Comparison with other class libraries and the standard C++ library”

• Appendix A “Summary of Teuchos memory management classes and idioms”

• Appendix B “Commandments for the use of the Teuchos memory management classes”

The material shown above should be enough to give a) a basic idea of the motivation for the Techos
memory management classes, b) what the basic foundations for the classes are, c) the names, identities, and
basic usage for each of the classes, d) the core idioms for the use of the classes, and e) how these classes
compare with classes in the Boost and the standard C++ libraries. This is the most basic material that
should answer the most basic questions that most developers will have. The material in Appendix A and
Appendix B should be used as a (relatively) short reference guide for the use of these classes. This material
together with some existing code examples (e.g in Trilinos) should give an experienced C++ developer
enough to get started using these classes in a productive way. Finally, the reader should go through the full
table of contents at least once to get an idea of the variety of topics covered and where to look when more
information is needed (and most developers will need to know most of this extra information at some
point).

The rest of the material covered in this document either provides more background that might be needed to
persuade some readers or expands on a number of topics that almost every developer will need to consider

viii

at some point while using these classes including a) how to dealwith type conversion problems, b) how the
basic reference-counting machinery works, what types of debug-mode runtime checking is performed and
how to debug problems when exceptions are thrown, c) what optimized performance should look like and
how to better optimize code, d) what related idioms are useful or needed to fully exploit these classes, e)
guidance on how to refactor existing software, and f) other related topics like a discussion of essential and
accidental complexity.

Hopefully this document will be educational and help open the one’s mind to what is possible to achieve in
terms of safety and performance in modern C++ programs.

ix

x

1 Introduction

A critical problem in computational science and engineering (CS&E) software as well as in other types of
software developed in C++ is in the effective and safe management of memory and data. CS&E software
often has the goal of high performance where arbitrary data copy leads to undue overhead and can actually
complicate the software in many cases. It is common for CS&E software to share and pass around large
blocks of memory in order to do work efficiently (however, common approaches such as described in [12]
lead to many of the problems that exist in CS&E programs). At the most basic level, large arrays of integral
and floating point data are managed along with more complex general objects and arrays of objects. In
C++, the only universally accepted way to deal with memory for single objects and arrays of objects is to
use raw C++ pointers. However, raw C++ pointer facilities for the manipulation and sharing of basic
memory are inherently unsafe and error prone. The problem is further exacerbated when larger programs
composed out of different separately developed and maintained components are integrated together.
Assumptions about the origin, ownership, and process for reclaiming memory and other resources remain
the most basic problems with lower-level C++ programming techniques and are unfortunately still
ubiquitous in the C++ community and even in the current C++ best-practices literature [30, 25]. The
general C++ and CS&E communities inability to effectively address the basic problem of the usage of
memory in large-scale modular C++ codes affects every aspect of software quality, productivity and
reusabliltiy, and undermines the most basic software verification foundation for these codes. The
challenges of writing software that uses raw memory management results in components that are overly
rigid in how they can be used and reused which fundamentally detracts from the impact that such software
could otherwise have and makes it more difficult develop and maintain. The problems created by the use of
raw memory management can single-handily derail the vision of a large interconnected network of
reusable CS&E software components developed and used by many different CS&E organizations [32].
Therefore, the issue of memory management has as much or more impact on the macroscopic properties of
CS&E software components as it does on low-level internal software development.

C++ is an incredibility large and complex language that very few people really know how to use in a
confident and successful way. Arguably the most serious problems in C++ are related to dynamic memory
management which must be used with any moderately complex object-oriented program. The built-in C++
support for dealing with dynamic memory allocation withnew anddelete is fundamentally incompatible
with the built-in exception handling mechanism usingtry , throw , andcatch . One cannot effectively build
large-scale integrated software using just these low-level language features at the application programming
level. Software developed this way yields undefined behavior (e.g. segfaults) and leaks memory
unpredictably and is nearly impossible to integrate with other code. The only successful way to use C++ to
create complex robust software is to develop and rigorously adopt a set of programming idioms for safely
dealing with memory. By developing the right support software and associated idioms, we make C++
programs safer, better defined, faster to develop, and more efficient when run.

The reason that C++ is in this state of affairs is due to how C++ came into being and how it evolved over
many years [27, 29]. C++ was first developed in the early 1980s as an extension to the popular C
programming language and was first called “C with Classes”. At the time, high efficiency, very low
runtime overhead, and strong compatibility with C were critical requirements to the success of the new
language. Without this, the original creator of C++, Bjarne Stroustrup, concluded that C++ would be “still
born” [28]. The first C++ compilers were little more than preprocessors putting out C code on the back-end
which was then compiled into executable binary code.

As the years went on, however, object-oriented programming was refined, computers become faster with

1

more memory, and it was realized that more runtime support was required to enable more advanced usages
of C++. As new features were added to C++ to support new programming idioms, a strong need for
backward compatibility constrained the design of the language, sometimes making different language
features incompatible when used together in raw form. The most unfortunate example of this, which was
already mentioned, is the fundamental incompatibility of built-in dynamic memory management (i.e. using
new/delete) and built-in exception handling (i.e. usingtry /throw /catch) that was added more than a
decade later [27].

Because of the way that C++ “evolved” along with a strong need for backward compatibility, we have a
language that is a disaster when used in raw form on complex large-scale programs. Many programming
teams have exploited this natural capability of C++ to create travesties of software which in turn have
dumbfounded many a C++ programmer (and entire teams) and have resulted in giving C++ a bad name in
the general software engineering community (see Section 6 “DDD Matters Today” in [1] and “The Case of
the Construction Blob” in [14, Chapter 9] for a few examples).

More specifically, using low-level manual memory management (e.g.new/delete , raw pointers
everywhere) at all levels in C++ has resulted in several negative consequences in the development of C++
(and C) software that other more modern languages (e.g. Java and Python) have avoided:

• Programs that use raw memory management are more difficult to write and debug because it is
difficult to track down invalid memory usage that results in undefined behavior (e.g. segfaults),
double deletes, and memory leaks. (Also, memory checking tools like Valgrind and Purify do not
catch enough of these types of errors to adequately mitigate the problem.)

• Programs that use raw memory management can have many “hidden” memory usage errors (i.e.
undefined behavior) that can linger in the code for months or years which damage the most basic
foundations of software quality and verification. Many of these programs are “ticking time bombs”
just ready to go off, sometimes with disastrous consequences for users and developers alike.

• Dealing with raw memory management at all levels consumes large amounts of developer focus
which detracts from more general design focus. This results in software with lower quality designs
compared to software written in other modern languages developed using the same amount of effort.

• Developers maintaining C++ programs that use raw memory management typically have a high
degree of paranoia and fear about modifying the software (and for good reason because modifying
such software is dangerous and error prone). This results in the tendency to not refactor software as
requirements and domain knowledge change [13] which therefore results in software that dies the
slow painful death of software entropy [7].

• Software that uses raw memory management at all levels necessarily have designs that overly
constrain how the software is used and reused. For example, in such programs factory objects
typically have to outlive the products they create and must also be responsible for deleting the
objects. This results in large numbers of “static” factory objects that make the software hard to
maintain and reuse in reasonable contexts.

The consequences of raw memory management described above are all too common in C++ development
organizations and software produced by such organizations. This is why the general software development
community is largely moving away from C++ and instead moving to use more modern languages that do
not require manual unchecked memory management [1].

2

However, C++ has some unique features that differentiate it from every other language in wide use which
include:

• Strong typing (leads to high-performance code)

• High-performance native code

• Support for creating very efficient concrete data types with efficiency on par with built-in data types
that do not require dynamic memory management

• Support for operator overloading

• Support for object-oriented programming

• Support for generic programming (i.e. templates)

• A powerful turing-complete compile-time programming mechanism (i.e. template
meta-programming)

No other programming language with wide availability has this powerful set of features. For instance, C++
can be used to create class libraries for capabilities like automatic differentiation [17] for computing
derivatives of functions that achieves a level of generality and efficiency that has no rival in a software
library in any other programming language (e.g., see the Trilinos1 package Sacado2 [26]). It is precisely the
above feature set along with wide availability of high quality compilers on every major platform (including
the cutting-edge massively parallel computers), good interoperability with other languages (through C
interoperability), and strong support for next generation architectures [19] that makes C++ so attractive for
writing computational science & engineering software in the first place.

It is also this unique feature set that is C++’s saving grace with respect memory management problems. In
C++, one can actually develop a set of new data types that in essence can be used to develop new
programming environments in C++. This essentially allows one to define a new programming language
within C++ with a level of efficiency and flexibility that does not exist in any other programming language.
This is exactly what this paper advocates with respect to basic memory management in C++; developing a
new higher-level programming language in C++ for abstracting and encapsulating all raw memory usage as
well as dynamic memory management that is very compatible with the built-in C++ exception handling
mechanism. The approach being described here is really just the systematic and (arguably) elegant
application to the approaches advocated in [23, Section 13.2: Pointers] for instance.

This paper describes a set of low-level C++ classes and supporting software in the Trilinos package
Teuchos3 that are used to encapsulate all raw pointers and enable strong debug-mode runtime checking
while allowing for very high performance in non-debug-mode optimized builds.

The Teuchos memory management classes and the idioms that they help to define (which are described in
this paper) do not remove the need for programmers to learn and understand the intricate details of the C++
memory model and type system. On the contrary, learning to effectively use these memory management
classes requires more effort over just learning raw C++. However, the payoff is that the programs that result

1http://trilinos.sandia.gov
2http://trilinos.sandia.gov/packages/sacado/
3http://trilinos.sandia.gov/packages/teuchos/

3

from the use of these classes and idioms will be more likely to becorrect on first writing, will be easier to
debug when there are defects, will be easier and safer to maintain, and will be more self documenting
(which helps all of the above). In fact, the self-documenting expressiveness of the resulting programs
written using these classes and idioms is unmatched in any other programming language currently in
popular use, including Java and Python. This statement will be backed up throughout this paper and then
reiterated in Section 6.1.

The remainder of this paper assumes that the reader has some basic knowledge of C++ and is somewhat
familiar with smart reference-counted pointer classes likeboost::shared ptr (which is the basis for the
new C++0xstd::shared ptr class). The Teuchos equivalent for these smart pointer classes is
Teuchos::RCP which is abbreviated here as justRCPin sample code. If the reader is not familiar with the
basics of smart reference-counted pointer classes, then they should refer to [2] and [30]. If the reader is not
familiar with fundamental C++ concepts like implicit type conversions, templates, object lifetime models,
raw references and pointers and other basic topics, then some more basic background will be needed.
However, specific references to basic C++ material in books like [25, 28, 30] are made throughout this
document. So if the reader is a novice C++ programmer and is willing to look up the mentioned references,
then this paper can be a good guide to help learn this basic C++ material as well.

A final warning: the material in this document is fairly detailed and will take a significant investment in
time and experience writing code involving the Teuchos memory management classes using the idioms
described here before a developer will be proficient. It takes years just to master raw C++ so it should be no
surprise that learning a new set of idioms to fix a large number of the problems with raw C++ will also take
a significant amount of time and effort. What is needed is a culture change in the C++ programming
community where this type of approach and the idioms described here are taught at a very early stage;
much like the STL is now being taught in introductory C++ courses. What we need is a revolution in C++
education but we have to start somewhere and that is what this paper is all about, getting started and on the
road to a better generation of C++ programmers and C++ software. However, note that this document is not
a tutorial but instead is a complete reference guide to the Teuchos memory management guide that covers
almost every possible issue and reasonably related topic.

The body of this document is organized as follows. The fundamental problems with raw C++ pointers is
described in Section-2. Common (suboptimal) approaches for addressing memory management problems
are discussed in Section 3. Some important prerequisite concepts like value-types versus references-types
and persisting versus non-persisting associations are defined in Section 4. With all this background and
context in place, the Teuchos memory management classes are presented in Section 5. The basic outline of
the approach in Section 5.1 is perhaps the first section one would jump to in order to get a quick idea what
the Teuchos memory management classes are all about. Finally, taking a step back, the concepts of
essential and accidental complexity and a philosophical discussion of the trade-offs between speed, safety
and generality related to memory management are discussed in Section 6. Concluding remarks are given in
Section 7.

4

2 Fundamental problems with raw C++ pointers

This section summarizes some of the fundamental problems with basic C++ features related to raw
pointers. What is going to be argued is that while many people will claim that C++ pointers are strongly
typed, it will be shown that raw pointers are actually very weakly typed in many respects and how this
weak typing is the cause of many programming errors that result in incorrect programs and with undefined
behavior (e.g. segfaults).

In the following examples, the simple classes shown in Listing 1 are used in demonstration code:

Listing 1 :

class A {
char *char_ptr_;

public:
A(...);
void incrementA() { ++(*char_ptr_); }

};

class B : public A {
int size_;
int *int_ptr_;

public:
B(...);
void incrementB() { ++(*int_ptr_); }

};

The concrete class hierarchy in Listing 1 was chosen to demonstrate some insidious and perhaps less well
known flaws in the C++ type system when dealing with raw C++ pointers.

2.1 Problems using raw C++ pointers for handling single objects

There are a number of problems with using raw C++ pointers to manage single objects. For example, given
a class object of typeB in Listing 1 consider a pointer declared as:

B some_b(...);
B *b_ptr = &some_b;

Some of the legitimate things that one can do with this pointer are:

// Call member functions
b_ptr->incrementA();
b_ptr->incrementB();
// Extract reference
B &b_ref = *b_ptr;
// Copy pointer

5

B *b_ptr2 = b_ptr;
// Implicit conversion to const
const B *b_ptr3 = b_ptr;
// Implicit conversion to base type
A *a_ptr4 = b_ptr;

However, nothing good can evercome of any of the following operations when a pointer is only pointing to
a single object:

b_ptr++
b_ptr--
++b_ptr
--b_ptr
b_ptr+i
b_ptr-i
b_ptr[i]

No C++ compiler I have ever worked with will even issue a warning when array operations are invoked on
a raw C++ pointer for which it is clear is only pointing to a single object.

The problem here of course is that there is no way to tell the C++ compiler that a raw pointer is only
pointing to a single object. With respect to differentiating single objects and arrays of objects, C++ pointers
are untyped and the compiler provides no help whatsoever in statically asserting correct usage. This is
strike one for the notion that C++ pointers are strongly typed!

2.2 Problems using raw C++ pointers for handling arrays of objects

When considering the semantics of raw C++ pointers one realizes that raw pointers are really designed
primarily for dealing with contiguous arrays of objects (save for one exception that is mentioned below).
This is because almost every operation that C++ defines for raw pointers makes sense and is fairly well
defined when raw C++ pointers are pointing with contiguous arrays of objects. Every valid C++ operation
will not be reviewed for raw pointers to contiguous arrays of objects (see [28] for a complete listing).
Instead, a few examples are shown where the C++ type system using raw pointers falls flat on its face when
dealing with arrays of memory.

One particularly troubling example where the C++ type system fails when dealing with raw C++ pointers
to contiguous arrays of memory is shown in Listing 2.

Listing 2 :

void foo(const int n)
{

B *b_array = new[n];
A *a_array = b_array; // Compiles just fine :-(
for (int i = 0; i < n; ++i) {

a_array[i]->incrementA(); // KABOMMMMM!

6

}
delete [] b_array;

}

There are a lot of beginning and even some more experienced C++ programmers that would think that the
C++ code in Listing 2 is just fine. The resulting program has undefined behavior and may seem to run okay
in some cases but in the above case will almost certainly segfault right away. The above code fragment is
wrong, wrong, wrong as described in [11, Gotcha 33] and [30, Item 100]. Without going into great detail,
converting from a pointer for an array of typeB to a pointer of type of base typeA is almost always asking
for disaster because the alignment of the base typeA will be wrong according to the full typeB (again see
[11, Gotcha 33] all the gory details). As a result, for the second iterationi=1 , the embedded pointer in
a array[1].char ptr is pointing to garbage because on most 32 bit machines with mostcompilers, the
address ina array[1].char ptr is actually the binary representation of the integerb array[0].size .
Therefore, callinga array[1]->incrementA() on most 32 bit machines is equivalent to performing:

++(*reinterpret_cast<char*>(b_array[0].size_)); // KABOMMMMM!

If this sort of thing comes as a surprise to C++ developers, then they should probably fear using raw
memory in C++ more than they currently do and should seriously consider using the safer approach to
encapsulating raw memory usage that is being advocated in this paper.

So how did C++ come to allow such completely wrong and dangerous operations like shown in Listing 2?
It is because of the untyped dual nature of raw C++ pointers in trying to handle both single objects and
contiguous arrays of objects with one data type where the full set of operations are not appropriate for
either. The ability to cast raw C++ pointers from derived types to base types only ever generally makes
sense when the pointer is pointing to a single object and will not be interpreted as a pointer to a contiguous
array of objects. Note that C does not have this problem since there is no such thing as type derivation and
the designers of C never even envisioned that raw C pointers would be used for such a thing. However,
when the original designer of C++ adopted the C type system along with raw pointers and tried to apply it
to an object-oriented language, he inadvertently opened up a number of serious language gotchas that we
are still living with to this day. This is another strike for the notion that C++ pointers are strongly typed!

2.3 Problems with the incompatibility of new/delete and try/throw/catch

The use of raw pointers and raw calls tonew anddelete is also fundamentally incompatible with the
built-in C++ exception handling mechanism usingtry /throw /catch . For example, the following code will
leak memory if the functionsomeFunc() throws a C++ exception:

void foo()
{

A *a = new A(...);
someFunc(); // Could throw an exception
delete a; // Will never be called if someFunc() throws!

}

7

According to current C++ best practices relating to memory management and exception handling as
described in [25, Item 29] and [30, Item 71], code like shown above that leaks memory is totally
unacceptable in production quality C++ programs. This fundamental incompatibility of the built-in C++
dynamic memory management facilities usingnew/delete and the built-in exception handling mechanism
usingtry /throw /catch was clear even to the committee that created the official 1998 C++ standard.
However, again, because of the need for backward compatibility they were powerless to fix the problem at
the language level. Instead, the C++ standards committee included the first standard C++ smart pointer
class;auto ptr . The classauto ptr solves only the most basic problem with raw C++ pointers and that is
that it ensures that memory will be reclaimed when exceptions are thrown. For example, the following
refactored function will not leak any memory whensomeFunc() throws:

void foo()
{

std::auto_ptr<A> a(new A(...));
someFunc(); // Could throw an exception
// NOTE: delete will get called on the A object no matter how this
// function exists (i.e. normal exit or with a throw) since it is
// called by the destructor of the stack object ’a’ of type
// std::auto_ptr<A>.

}

The introduction ofstd::auto ptr is perhaps the first example of where a user-defined type was added to
the standard C++ library in order to define an idiom meant to fix a fundamental C++ language flaw due to
incompatible language features. Note the term “flaw” is used and not “deficiency”. It is generally excepted
in most modern programming languages that the language proper will not support every programming
model or idiom that is of general interest and instead (class) libraries are provided to fill in the gaps. The
problem is that the language definition itself is flawed with respect to the raw use ofnew/delete along
with try /throw /catch and is not just simply missing some desirable feature. One could argue that what
C++ is really missing is garbage collection (GC) but even that is not the case because to add GC would be
fundamentally incompatible with the current user-controlled memory management facility usingnew and
delete . There is a lot of C++ code out there that requires that destructors for objects be called exactly
when expected such as whendelete is called (and there are idioms such as defined in Section 5.13.4 that
depend on this behavior). Any form of language-supported GC will break some backward compatibility of
C++ and therefore we may never see a C++ standard with full GC. Also, removing the ability to precisely
control when destructors are called and memory is reclaimed would make C++ less attractive for many
domains where such low-level control is critical (e.g. embedded programming, systems programming,
scientific programming).

The Boost library and the up-coming C++0x standard add more types that continue in this trend of
providing new user-defined types and idioms to address fundamental C++ language flaws and deficiencies.
However, as described in meat of this paper, both the Boost and the C++0x standard libraries fall short of
providing a complete and comprehensive solution to the problems with raw C++ pointers and raw access to
memory.

Note that the upcoming C++0x standard as it is currently defined (at least the time of this writing) will do
nothing to fix the majority of these nonsensical raw C++ pointer gotchas because to do so would destroy
backward compatibility of millions of lines of existing C++ code. Because of the need for backward
compatibility, we cannot rely on any future C++ standard to fix the basic problems with raw C++ pointers.
Instead, this document advocates using new C++ user-defined types to create a new safer type-system in

8

C++ and avoiding the direct use of raw C++ pointers except whererequired to interact with non-compliant
code.

9

3 Problems with common approaches for addressing memory management
in C++

Because of some of the obvious problems with using raw C++ pointers to access raw memory and using
raw calls tonew anddelete to perform dynamic memory management, various authors have advocated a
number of different approaches for addressing these problems. A few of these approaches will be described
along with arguments as to why they are far too sub-optimal.

3.1 Problems with usingstd::vector for handling all arrays

A very common approach to try to get around using raw C++ pointers for managing contiguous arrays of
data is to use the container classstd::vector in everyuse case where a raw C++ array or pointer to an
array would be used. Before describing use cases wherestd::vector is being poorly used, first a review
is given for whatstd::vector is and what it is good for. The standard library classstd::vector is a
general-purpose concrete contiguous data container class for storing and retrieving value objects4. What
makes usingstd::vector attractive as compared to a simple class that a developer would write for
themselves is that:

• std::vector is a Standard Template Library (STL) compliant data container which makes it easy to
use with STL-like generic algorithms.

• std::vector contains functions for efficiently expanding and shrinking the size of the array that can
have platform/compiler specific optimizations with much better performance than what a developer
would roll on their own.

• std::vector is standardized so one can use it as a means for interoperability with other software in
appropriate situations.

These are pretty much the advantages of usingstd::vector over other alternatives. When used as a
general purpose data container where one will be changing the size of the array on the fly,std::vector is
convenient, general, and efficient (just what components from a standard library should be). However, in
other use cases,std::vector is far from convenient, general, or efficient. As one example, consider using
std::vector to replace raw C++ pointers for array arguments in allC++ functions as some authors have
suggested (e.g. see [20]). For example, consider a VISITOR [16] interface that operates on blocks of data
(similar to the RTOp interface described in [5]) along with a concrete subclass shown in Listing 3.

Listing 3 :

template<class T>
class BlockTransformerBase {
public:

virtual ˜BlockTransformerBase();
virtual void transform(const int n, const T a[], T b[]) const = 0;

};

4See Section 4.1 for a definition of “Value Types”.

10

template<class T>
class AddIntoTransformer : public BlockTransfomerBase<T> {
public:

virtual void transform(const int n, const T a[], T b[]) const
{

for (int i = 0; i < n; ++i)
b[i] += a[i];

}
};

The VISITOR interface shown in Listing 3 allows clients to accept anyBlockTransformerBase object
and allow it to transparently implement any nubmer of user-defined transforamtions. Note that virtual
funtions cannot be templated so it is not possible for thetransform(...) function to be templated on an
iterator type but must instead accept some fixed representation of the arrays of data to be operated on. The
advantages of thetransform(...) function in Listing 3 are that a) it is clean, b) the arrays of data can be
sub-views of large arrays, and c) it will yield very fast code. Of course the problem with the above function
transform(...) is that is uses raw C++ pointers. How does the functiontransform(...) know thata
andb are valid pointers and really point to valid arrays of data with at leastn elements. It is impossible for
the functiontransform(...) to assert anything about the data and completely relies on the caller of the
function to validate the data. Even in a debug build of the code, there is no way for the implementation of
the functiontransform(...) to validate that the preconditions concerning arguments have been met. This
is not good and does not allow for even the most basic approaches for defensive programming.

Therefore, some C++ programmers look at this and then they change functions liketransform(...) in
Listing 3 to usestd::vector which is shown in Listing 4.

Listing 4 :

template<class T>
class BlockTransformerBase {
public:

virtual ˜BlockTransformerBase();
virtual void transform(const std::vector<T> &a, std::vector<T> &b) const = 0;

};

template<class T>
class AddIntoTransformer : public BlockTransfomerBase<T> {
public:

virtual void transform(const std::vector<T> &a, std::vector<T> &b) const
{

DEBUG_MODE_ASSERT_EQUALITY(a.size(), b.size());
for (int i = 0; i < a.size(); ++i)

b[i] += a[i];
}

};

The advantages of the function in Listing 4 are that a) the size of each array is kept with the pointer to the
array itself inside of eachstd::vector object, b) The sizes of the arrays can be asserted by the

11

implementation of the functiontransform(...) , c) it is easy for callers who already use single
std::vector objects.

While this use ofstd::vector replaces raw C++ pointers as basic array function arguments, it has several
serious problems in both usability and performance in some important use cases. The primary
disadvantages of usingstd::vector as general array arguments to functions is a) there is no flexibility in
how the arrays are allocated, and b) one cannot pass sub-views of larger arrays of data.

To illustrate the problems with usingstd::vector for all array arguments to functions, consider a
situation where the application wants to allocate big arrays of data and then operate on pieces of the array
based on different logic. One motivation for allocating big arrays of data is to avoid memory fragmentation
and improve data locality. Now consider in Listing 5 what the client code would have to look like when
using the form oftransform(...) in Listing 4 which takes instd::vector objects.

Listing 5 : Client code that has to create temporarystd::vector objects to call function that takes
std::vector arguments

void someBlockAlgo(const BlockTransformerBase &transfomer,
const int numBlocks, const std::vector<double> &big_a,
std::vector<double> &big_b)

{
DEBUG_MODE_ASSERT_EQUALITY(big_a.size(), big_b.size());
const int totalLen = big_a.size();
const int blockSize = totalLen/numBlocks; // Assume no remainder!

const int blockOffset = 0;
for (int block_k = 0; block_k < numBlocks; ++block_k, blockOffset += blockSize)
{

if (big_a[blockOffset] > 0.0) {
// Create temporary std::vectors to do function call
std::vector a(big_a.begin()+blockOffset,

big_a.begin()+blockOffset+blockSize);
std::vector b(big_a.begin()+blockOffset,

big_b.begin()+blockOffset+blockSize);
// Do the operation
transfomer.transform(a, b);
// Copy back into the output array
std::copy(b.begin(), b.end(), big_b.begin() + blockOffset);

}
}

}

As it is clear to see, the above client code that uses thestd::vector version oftransform(...) is
neither clean, nor efficient since temporary copies of all of the data have to be created just to make the
function call and then data has be be copied back into the full array.

Now consider the client code in Listing 6 which uses the raw C++ pointer version oftransform(...) in
Listing 3.

Listing 6 : Example driver code that uses the raw-pointer version oftransform(...)

12

void someBlockAlgo(const BlockTransfomerBase &transformer,
const int numBlocks, const std::vector<double> &big_a,
std::vector<double> &big_b)

{
DEBUG_MODE_ASSERT_EQUALITY(big_a.size(), big_b.size()); const int
totalLen = big_a.size(); const int blockSize = totalLen/numBlocks;

const int blockOffset = 0;
for (int block_k = 0; block_k < numBlocks; ++block_k, blockOffset += blockSize)
{

if (big_a[blockOffset] > 0.0) {
transformer.transform(blockSize, &big_a[blockOffset], &big_b[blockOffset]);

}
}

}

As one can clearly see, using the raw C++ pointer version oftransform(...) makes the client code much
cleaning and much more efficient. However, of course, if the client makes any mistakes with its arrays of
memory, then the resulting program will yield undefined behavior and (in the best case) will segfault, or
will silently produce the wrong result, or (in the worst case) actually produce the right result on the current
platform but will fail on other platforms.

The Teuchos memory management array classes make algorithms involving sub-views like shown above
very clean, very efficient, and very safe (see the same versions of this example code using these new
Teuchos classes in Section 5.5.5).

In summary,std::vector is notan efficient or convenient general-purpose replacement for raw C++
pointers as function arguments in many important use cases.

3.2 Problems with relying on standard memory checking utilities

Some programmers simply use raw C++ pointers and think that standard memory checking tools like
Valgrind5 and Purify6 will catch all of their mistakes. When I first started coding in C++ back in 1996, I
was very aware of the problems with using raw pointers in C++ after experiencing the segfaults and
memory leaks that all C++ programmers experience. At the time, I had experimented some with writing
my own utility classes that encapsulated raw C++ pointers and I considered taking that further. However, at
that time, I conjectured that going through the effort of encapsulating all raw C++ pointers might be a waste
of time because it would not be long until someone came up with a 100% bullet-proof memory checking
tool for C++ that would make my feeble programmer-controlled attempts to wrap raw pointers obsolete.
After more than 10+ years of C++ programming experience where I have written hundreds of thousands of
lines of C++ code on a number of different platforms/compilers, I have come to regret that decision.

Through painful experience and then through some more careful thought, I have come to realize that
memory checking tools like Valgrind and Purify will never be able to provide an even sufficient (certainly
not 100%) means to validate memory usage in C++ programs. With respect to existing tool
implementations, I have experienced cases where both Valgrind and Purify have reported not even a single

5http://valgrind.org
6http://www.ibm.com/software/awdtools/purify

13

warning before the program segfaulted (while running in the tool) with essentially no feedback at all. I will
not go into detail about what techniques memory tools like Valgrind and Purify use to verify memory usage
other than to say that they can do a lot by just taking control ofmalloc(...) andfree(...) and in
inserting checks into the execution of the program by controlling the manipulation of the program stack.

One such case where Valgrind and Purify were completely unhelpful occurred with an off-by-one error
with std::vector using Linux/gcc (before I learned the GCC had a checked STL implementation). In the
end, the way that I found the off-by-one error was by just staring at the code over and over again until I
happened to see the problem. However, what I discovered through two days of debugging was that
std::vector used its own allocator which allocated big chunks of memory throughmalloc(...) . It then
proceeded to do its own memory allocation scheme, which was very fast but was invisible to the watchful
eyes of Valgrind and Purify. Any reads to this block of memory looked fine to Valgrind and Purify because
it was all contained within the block returned frommalloc(...) . What the off-by-one error did was to
write over a library managed part of the memory block and that silent corruption would doom a later
attempt bystd::vector to allocate memory.

There are other categories of use cases where external memory checking tools like Valgrind and Purify will
never be able to verify correct memory usage. One example is semantic off-by-one errors committed in
larger blocks of data. To demonstrate this type of error, consider the example code in the function
someBlockAlgo(...) in Listing 6 which uses the raw C++ pointer version of the function
transform(...) in Listing 3. Now consider what happens when a developer introduces an off-by-one
error such as shown intransform(...) in Listing 7.

Listing 7 :

template<class T>
void AddIntoTransformer<T>::transform(const int n, const T a[], T b[])
{

for (int i = 0; i <= n; ++i)
b[i] += a[i];

}

In case it is not obvious, the off-by-one error shown in Listing 7 is the replacement of the loop termination
statementi < n with i <= n which is a very common C++ programming error.

Now let’s consider the implications that the off-by-one error shown in Listing 7 will have on the data in
big b as driven by the code in Listing 6. If the last blockblock k=numBlocks-1 of data is processed, then
there is a reasonable chance a memory checking tool like Valgrind would catch the off-by-one error being
committed at the very end of the arraybig b. However, as described above, Valgrind may not catch even
this type of error. Also, note that turning on bounds checking withstd::vector (i.e. by enabling
GLIB CXX DEBUGwith gcc) will not catch this error either because of the way the raw pointers are

extracted in and and passed in the function call:

transformer.transform(blockSize, &big_a[blockOffset], &big_b[blockOffset]);

Now consider a defect caused by this off-by-one error for which no automated memory checking tool that
will ever be devised will ever be able to catch. This type of defect will occur, for example, when for the last

14

block block k=numBlocks-1 we havebig a[(numBlocks-2)*blockSize] > 0.0 and
big a[(numBlocks-1)*blockSize] <= 0.0 . In this case, only the next-to-last block of data will be
processed by the defectivetransform(...) function. This will not result in a classic off-by-one error that
a memory checking tool would catch because it would not touch memory outside of what is stored in
big b. However, this off-by-one error committed in Listing 7 would result in the array entry
big b[(numBlocks-2)*blockSize+blockSize] being erroneously modified. This is a defect that might
only slightly damage the final result of the program for the typical use case and might therefore go
unnoticed for years. However, when the program was really being used for something important years later
for a non-typical use case, this small off-by-one error could result in reporting incorrect results with
perhaps disastrous consequences.

The point that is trying to be made in the above example is that automated memory checking tools like
Valgrind and Purify will never be able to check thesemanticcorrectness of the usage of memory. The
semantic off-by-one defect described above is 100% correct from a strict memory usage point of view (i.e.
only allocated memory can be written to and only allocated and initialized memory can be read from) but is
100% wrong from a semantic point of view (i.e. the functiontransform(...) can only operate on the
elements of data from0 to n-1). The array memory management classes in Teuchos described in this
document help to verify that memory is used in a semantically correct way and throws exceptions for these
types of errors in a debug-mode build.

15

4 Important prerequisites

Before finally discussing the Teuchos memory management classes, a set of prerequisite concepts are
presented that are needed in order to understand the holistic memory management approach.

4.1 Value types versus reference types

Because of the flexibility of C++, many C++ programmers can and do implement a wide variety of types
yielding objects with different types of usage semantics. A quick summary of common “accepted” class
types in C++ is given in Item 33 “Be clear what kind of class you’re writing” in [30]. There is little point
here in trying to classify all of the crazy ways that people have used to code objects in C++ that stray from
these “accepted” class types. Instead, the recommendation here is to classify the majority of classes as
eithervalue typesor reference types. Value types and reference types are said to usevalue semanticsand
reference semantics, respectively, and that is sometimes how these data-types are described in various C++
literature.

Value typesin general:

• have public destructors, default constructors, copy constructors, and assignment operators (all
implementing deep copy semantics),

• have an identity that is determined by their value not their address,

• are usually allocated on the stack or as direct data members in other class objects,

• are usually notallocated on the heap (but can be for most value-type classes),and

• do not have any virtual functions and are not to be used as base classes (see Item 35 in [30]).

If S denotes a typical value type, the class definition ofS includes:

class S {
pubic:

˜S();
S();
S(const S&);
S& operator=(const S&);
...

};

All of the built-in intrinsic C++ data-types likechar , int , anddouble are value types. Likewise, class
types likestd::complex andstd::vector are also value types. Value types have also been called by
other names in the C++ literature. Stroustrup refers to value types as “true local variables” in [27]. The
term Abstract Data Type (ADT) in older C++ literature such as [8] usually maps to the concept of a value
type, but usually carries greater significance in implying that operator overloading is used to make an ADT
look more like a built-in C++ type (such as is the case forstd::complex).

Alternatively,reference typesin general:

16

• do not have a public copy constructor or assignment operator,

• are manipulated through a (smart) pointer or reference,

• have an identity that is primarily determined by their address and not their value,

• are allocated on the heap,

• typically are not permitted to be or cannot be allocated on the stack,

• are copied through an abstract clone function (if copying is allowed at all),

• have one or more virtual functions, and

• are usually designed to be used as base classes or are derived from base classes.

Reference types (employing reference semantics) are typically used for base classes in C++. Examples of
base classes in the C++ standard library includestd::ios base andstd::basic streambuf . Reference
types in the form of abstract base classes form the foundation for object-oriented programming in C++.

If A denotes a typical reference type class, the class definition ofA generally includes:

class A {
pubic:

virtual ˜A();
virtual A* clone() const = 0; // NOTE: Should use RCP (see later)
virtual void someFunc() = 0;
...

protected: // or private
A(const A&);
A& operator=(const A&);
...

};

Note that one can almost always choose to manipulate a value type using reference semantics. For
example, it is very common to choose to dynamically allocate large value objects likestd::vector and
then pass around (smart) pointers and references to the object to avoid unnecessary and expensive copying
and to facilitate the sharing of state.

While the ideas of value types and reference types and value semantics and reference semantics are long
established in the C++ literature (even if the terminology is not very uniform), many C++ programmers
either seem to not know about these idioms or choose not to follow them for some reason. By forcing the
majority of classes into either usingvalue semanticsor reference semanticsone eliminates meaningless
variability in C++ programs and frees one’s self to think about more important things (see the discussion of
using standards to actually improve creativity in [23]).

Side Note:The somewhat rigid classification of C++ types into value types and reference types is similar
in motivation and in many other respects to Eric Evans’ differentiation of all domain types intoValue
ObjectsandEntitiesin Domain Driven Design (DDD) [13]. While there are similarities between DDD’s
Value Objects and Entities and C++’s value types and reference types, respectively, there is not a
one-to-one mapping. In DDD, the distinction between a Value Object and an Entity has more to do with the
nature of the object in relation to the domain model and is not related to how memory is manged. Evans
assumes that one is using a language like Java where all objects use reference semantics.

17

4.2 Non-persisting versus persisting and semi-persisting associations

Another important prerequisite for understanding the Teuchos memory management classes is the
distinction betweennon-persisting associationsandpersisting associations. Working definitions for these
are:

• Non-Persisting associationsare associations between two or more objects that exist only within a
single function call for formal function arguments, or a single statement for function return objects,
where no memory of any of the objects is retained as a side effect after the function returns or the
statement ends.

• Persisting associationsare associations that exist between two or more objects that extend past a
single function call for formal function arguments, or a single statement for function return objects.

To help define these two different types of associations, consider the class and function definitions in
Listing 8.

Listing 8 : Classes using raw pointers with both non-persisting and persisting associations

class A {
public:

void fooA() const;
};

class B {
public:

void fooB1(const A &a) { a.fooA(); }
void fooB2() const { ... }

};

class C {
B* b_;

public:
C() : b_(0) {}
void fooC1(B &b, const A &a)

{ b_ = &b; b_->fooB1(A); }
void fooC2() const

{ b_->fooB2(); }
};

void someFunc(C &c, B &b, const A &a)
{

c.fooC1(b, a);
c.fooC2();

}

The functionB::fooB1(...) in Listing 8 involves a non-persisting association with respect to theA andB
objects since no memory of the objecta remains after the functionB::fooB1(...) exists. Non-persisting
associations represent typical input/output-only arguments to a function.

18

The functionC::fooC1(...) in Listing 8 creates a persisting association between aC object and aB object
since the memory of theB object is retained in theC object that persists after the functionC::fooC1(...)
exits. This memory of theB object stored in theC::b pointer data member is then used to implement the
functionC::fooC2() . Note that the functionC::fooC1(...) also involves a non-persisting association
with theA objecta since it is only used to callB::fooB1(...) and no memory ofa lingers after
C::fooC1(...) exists.

Another interesting case is the nonmember functionsomeFunc(...) also shown in Listing 8. While
someFunc(...) is a free function, it actually involves the creation of a persisting association between the
C andB objects as a side effect because it calls theC::fooC1(...) function.

In the idioms advocated in this paper, smart reference counted pointers are used for all persisting
associations and never for non-persisting associations. Using the basic TeuchosRCPclass, the raw pointer
code in Listing 8 would be refactored into the code shown in Listing 9.

Listing 9 : Refactored classes to useRCP for persisting associations

class A {
public:

void fooA() const;
};

class B {
public:

void fooB1(const A &a) { a.fooA(); }
void fooB2() const { ... }

};

class C {
RCP b_;

public:
void fooC1(const RCP &b, const A &a)

{ b_ = b; b_->fooB1(A); }
void fooC2() const

{ b_->fooB2(); }
};

void someFunc(C &c, const RCP &b, const A &a)
{

c.fooC1(b, a);
c.fooC2();

}

Note that the classesA andB remain unchanged because they do not involve any persisting associations. It
is only the classC that needed to be refactored to handle the persisting association withB. The non-member
functionsomeFunc(...) is also be modified since the creation of a persisting association is involved.

Most programming languages do not provide any means to differentiate between non-persisting
associations and persisting associations (see Section 6.1 for an expanded discussion). However, note that
the Unified Modeling Language (UML [15]) does differentiates between them in that persisting

19

Figure 1. UML Class Diagram showing non-persisting and persisting

associations for classes in Listing 8 and Listing 9.

relationships are shown with a solid line while non-persisting relationships are shown with a dotted line as
depicted for these example classes in Figure 1.

Another situation where the concepts of persisting and non-persisting associations comes up relates to how
objects are returned by C++ functions as return values. A persisting relationship is made through a function
return object if that object is remembered past a single statement. For example, consider the following code
fragment:

Listing 10 : Example of a dangerous type of persisting association that can result in undefined behavior
(e.g. segfault)

std::vector<int> v(n);
...
int &ele = v[0]; // Creates a persisting return object relationship
...
ele = 5; // Changes v[0] much later!

The above code fragment shows a presenting relationship between the client code that is initializing the
local referenceele and thestd::vector container objectv. This is very fragile and dangerous code
because ifv is re-sized, grown or have some other type of change, then the reference pointed to byele can
be invalid. For example, the following code fragment will likely result in a runtime memory usage error
with undefined behavior and (if one is lucky) will segfault:

Listing 11 :

std::vector<int> v(n);
int &ele = v[0];
v.resize(10*n);
ele = 5; // ele is likely to be invalid here!

If one is unlucky, the statementele = 5 will work just fine on one platform with one implementation of
thestd::vector but will break on another platform when run with a different data set. Note that tools like

20

Valgrind and Purify may not flag the problem due to the way that many implementations ofstd::vector
deal with memory.

Basically the problem here is that thestd::vector::operator[](size type) function returns a raw
C++ reference that should never be remembered past a single statement. The safe way to change an
element is:

Listing 12 :

std::vector<int> v(n);
v[0] = 5; // Non-persisting relationship!
v.resize(10*n);

Therefore, functions likestd::vector::operator[](size type) which return raw C++ references
should only be used for non-persisting associations as shown above.

Before leaving the topic of persisting and non-persisting associations, one has to recognize that there exists
a third category of associations that lie in between strict persisting and non-persisting associations. This
gray area will be referred to here as semi-persisting associations defined as:

• Semi-persisting associationsare associations that (like persisting associations) exist between two or
more objects that extend past a single function call for formal function arguments, or a single
statement for function return objects except where the use of the objects and the lifetime of the
association have more rigid constraints requiring greater care in use.

An example of a semi-persisting association is the use of an iterator to access an STL container as shown in
Listing 13:

Listing 13 :

void someFunc(std::vector<int> &v)
{

typedef std::vector<int>::iterator itr_t;
for (itr_t itr = v.begin(); itr != v.end(); ++itr) {

*itr = 5;
}

}

As shown in Listing 13, the iterator objectitr is used well past (perhaps thousands of loop iterations)
where it was created by the statementitr t itr = v.begin() . There are, however, significant
restrictions on how such iterators can be used: a) the iterator cannot be accessed after the originating parent
object has been destroyed, and b) the iterator cannot be accessed after the structure of the originating parent
has changed (e.g.v.resize(...) was called). For the sake of performance, one has to allow for the use of
semi-persisting associations such as this where the optimized build of the code lacks the machinery to
detect invalid usage. However, note that in the case of the STL containers that in a debug-mode checked

21

STL build (supported by GCC and the Microsoft compiles for instance), these types of dangling iterator
references will typically be detected. This type of debug-mode runtime checking is the saving grace for the
use of iterators and other types of semi-persisting associations which makes their use acceptable. If
iterators tostd::vector where simply hard-coded as raw pointers, this type of debug-mode runtime
checking would not be possible.

Semi-persisting associations also play a role in the use of the Teuchos memory management classes in
situations where performance is critical (see Section 5.12.3 and Commandments 6 and 8 in Appendix B).

22

5 Teuchos classes for safer memory management and usage

The primary purpose for the Teuchos memory management classes is to encapsulate all raw C++ pointers
in all high-level code. These classes are efficient and general and, in a debug-mode build of the code, will
catch and gracefully report 99% or more of the programming errors typically made with the ubiquitous
high-level use of raw C++ pointers.

5.1 Overview of basic approach employed by Teuchos memory management classes

The basic approach being advocated here and implemented in the Teuchos memory management classes is
to:

• Encapsulate all raw C++ pointers in high-level code using specially designed memory management
classes, capture raw C++ pointers as soon as possible, and encapsulate raw calls tonew in library and
application code.

• Provide a complete set of cooperating types that work together to safely and conveniently implement
all hand-offs of encapsulated raw C++ pointers using carefully scrutinized conversion code provided
with the classes. Also, never define implicit conversions from these safe types to raw C++ pointers
(or safety of the entire type safe system falls apart).

• Differentiate memory management classes for handling single objects from those for handling
contiguous arrays of objects.

• Differentiate memory management classes according to persisting and non-persisting (and
semi-persisting) associations.

– Use reference counting for memory management classes designed to handle persisting
associations.

– Do not impose the overhead of reference counting for memory management classes designed to
handle non-persisting associations.

– Do not impose the overhead of reference counting for memory management classes designed to
handle semi-persisting associations (but provide the machinery for strong debug-mode runtime
checking).

• Provide encapsulations for all uses of raw C++ pointers for arrays of contiguous objects including
dynamically sized arrays, statically sized arrays, and stack-based arrays.

• Provide a defaultoptimized modewhere maximum performance and minimal overhead are the goals
where raw C++ pointer performance is achieved for all reasonable use cases.

• Provide an optionaldebug modewhose goal is to provide maximum runtime checking with
reasonably low overhead in order to catch all sorts of common errors like:

– Dereferencing null pointers (Section 5.11.1)

– Array access errors like off-by-one and other errors (Section 5.11.1)

– Incorrect iterator usage (Section 5.11.1)

23

Basic Teuchos smart pointer types
Non-persisting (and semi-persisting) Persisting

Associations Associations
single objects Ptr<T> RCP<T>
contiguous arrays ArrayView<T> ArrayRCP<T>

Table 1. Basic Teuchos memory management utility classes for encap-
sulating raw pointers.

Summary of operations supported by the basic Teuchos smart pointer types
Operation Ptr<T> RCP<T> ArrayView<T> ArrayRCP<T>
Raw pointer-like functionality
Implicit conv derived to base x x
Implicit conv non-const to const x x x x
Dereferenceoperator*() x x x
Member accessoperator->() x x x
operator[](i) x x
operators++, -- , +=(i) , -=(i) x
Other functionality
Reference counting machinery x x
Iterators: begin(), end() x x
ArrayView subviews x x

Table 2. Summary of capabilities of the basic Teuchos memory man-
agement classes.

– Circular dependencies (Section 5.11.2)

– Dereferencing dangling pointers (references) (Section 5.11.3)

– Multiple owning reference-counting node object (Section 5.11.4)

• Structure debug-mode checking such that it does not alter the observable behavior of correct
programs in any way. However, when debug-mode checking is enabled, the software should never
yield undefined behavior (e.g. segfault).

The basic templated Teuchos memory management classes for encapsulating raw C++ pointers for single
objects and arrays arePtr , RCP, ArrayView , andArrayRCP shown in Table 1. A summary of the
capabilities of these classes is shown in Table 2. What one can see from this table is that raw pointer-like
functionality is partitioned across these various sets of classes in logical and safe ways. For example,
array-related operations are not defined on the single-object classesPtr andRCPbut implicit conversion
from derived types to base types is allowed. Alternatively, the array classesArrayView , andArrayRCP do
not support the dangerous and ill-conceived ability to implicitly convert arrays of derived types to arrays of
base types that is discussed in Section 2.2. Note that the classArrayView does not support all of the raw

24

Other Teuchos array container classes
Array class Specific use case
Array<T> Contiguous dynamically sizable, expandable, and contractible arrays
Tuple<T,N> Contiguous statically sized (with sizeN) arrays

Table 3. Teuchos array container classes.

pointer iterator-like operations thatArrayRCP supports like the dereference operatoroperator*() or the
pointer offset functions that change the pointer. The reason thatArrayRCP does support these iterator-like
operations is so that it can be used as a general purpose iterator implementation whileArrayView objects
do not need to be used in this way. Note that all of the array classes defined in Teuchos all support a basic
iterator interface with the[const] iterator member typedefs and the functionsbegin() andend() . In
optimized mode, these iterators are simply raw C++ pointers yielding maximum performance. However, in
debug mode, the iterators are implemented asArrayRCP objects resulting in fully checked iterators.

In addition to the four basic memory management classes shown in Table 1 (which provide the most
fundamental encapsulations for all raw C++ pointers in all high-level code) Teuchos also contains a few
other array container classes for a few more specific use cases shown in Table 3. The array container
classesArray andTuple pretty much cover the majority of use cases in C++ where raw C++ pointer arrays
are used for containers. The classArray is a directly replacement forstd::vector and actually wraps it
internally.

Note that all of these classes are templated on value types and are themselves value-types (see Section 4.1).
This means that one can embed these types in each other in any arbitrary order to create any type of data
structure that one would like. For example, one could have
Array<RCP<ArrayRCP<ArrayView<Tuple<Ptr<T>,5> > > > > > . By understanding what each of these
types provide and what each type means (in terms of the idioms defined in Section 5.8), one can achieve
almost anything in a way that is self documenting.

These classes all work together to provide a high level of debug-mode runtime checking to catch the
majority of common programming errors and report these errors gracefully with informative error
messages. A debug-mode build of the code is facilitated by defining the preprocessor macro
TEUCHOSDEBUG(through the CMake configuration variableTeuchos ENABLEDEBUG=ON). When
TEUCHOSDEBUGis not defined, the Teuchos memory management classes are configured to impart minimal
overhead and yield fast performance. WhenTEUCHOSDEBUGis defined, these classes are configured to
perform maximal debug runtime checking. These classes are also carefully designed so that if a program is
implemented correctly using these classes and executes correctly in optimized mode, then the program
compiled with the debug checking turned on will execute in exactly the same way. However, if any
undefined, dangerous, or just plain wrong behavior is being used, then these memory management classes
will throw exceptions and the exception objects will have very good error messages embedded in them
making it easier to debug and fix the problems.

What is important to understand is that all of these memory management classes must be developed
together with knowledge of each other’s internal implementations in order to provide solid debug-mode
runtime checking. For example, in general, one cannot mix in other memory management classes like
boost::shared ptr (i.e. std::shared ptr in C++0x) andstd::vector and provide the same high level

25

of runtime checking that is supported by the complete set of Teuchos memory management classes. More
details about why this is so are given in Section 5.11 in the context of debug-mode runtime checking for
and reporting of dangling references.

As with the development of any set of C++ classes, a set of accompanying idioms must also be developed
for maximizing their effective use. The idioms described in this paper involving the Teuchos memory
management classes result in code with maximum compile-time checking, maximum debug-mode runtime
checking, and maximally self-documenting.

5.2 The proper role of raw C++ pointers

The main thesis of this paper is that the use of all raw C++ pointers should be fully encapsulated in all
high-level C++ code and instead a system of safe specially designed types tailored to specific use cases
should be used instead. Does that mean that raw C++ pointers should never be used in any C++ code? The
answer of course is no, since raw C++ pointers will always have to be used in some special situations (but
perhaps not directly used as described below).

Given the full use of the Teuchos memory management classes, here are the valid situations where it is
appropriate (or required) to use raw C++ pointers in fully compliant C++ programs:

• Use raw C++ pointers (indirectly) for extremely well-encapsulated, low-level, high-performance
algorithms

In order to achieve high performance in computationally intensive code, one will always have to use
raw C++ pointers (at least indirectly) in a non-debug optimized build. This includes using raw C++
pointers to build specialized data structures and similar purposes. In this context, one can think of
raw C++ pointers as a fairly compact and efficient way to communicate with the compiler about how
one wants to manage memory at the hardware level. The ability to do this type of fine-grained
manipulation of memory has always been one of the strengths of C and C++ in systems-level
programming. Therefore, one can think of using raw pointers in C++ as a kind of portable assembly
language that one always has at one’s disposal on every platform and with every compiler. However,
instead of using raw pointers, one can always use the typesPtr , ArrayView or
ArrayType::iterator (whereArrayType is Array , ArrayRCP , or ArrayView) to yield raw pointer
performance in a non-debug optimized build but still maintain strong debug-mode runtime checking.
This approach is discuss in more detail in Section 5.12.3.

• Use raw C++ pointers to communicate with legacy C++ code and with other languages through C
bindings

The only remaining valid reason to use raw C++ pointers is to reuse and communicate with legacy
C++ code and to call functions in other languages through the now-universal approach of using C
bindings. However, one must endeavor to minimize the amount of C++ code that has naked raw C++
pointers and one should only expose a raw C++ pointer at the last possible moment (such as in the
call to the external functions themselves). Again, one must carefully encapsulate access to
non-compliant code that requires the exposure of raw C++ pointers.

One point is worth nothing here which is that in this new modern C++ software one must never use raw
C++ pointers in the basic interfaces between the various modules as that is where a majority of mistakes in

26

Common member functions
T* getRawPtr() [const]
Common nonmember functions
void swap(Type<T>&, Type<T>&)
bool is null(const Type<T>&)
bool nonnull(const Type<T>&)
bool operator==(const Type<T>&, ENull)
bool operator!=(const Type<T>&, ENull)
bool operator==(const Type<T>&, const Type<T>&)
bool operator!=(const Type<T>&, const Type<T>&)
bool operator<(const Type<T>&, const Type<T>&)
bool operator<=(const Type<T>&, const Type<T>&)
bool operator>(const Type<T>&, const Type<T>&)
bool operator>=(const Type<T>&, const Type<T>&)

Table 4. Common members and non-members forPtr , RCP,
Array[RCP,View] , andTuple

the use of memory will be made. This goes somewhat contrary to the advice in Item 63 “Use sufficiently
portable types in a module’s interface” in [30]. If this new modern safe C++ software must be called by
non-compliant software that uses raw C++ pointers, then one can provide specialized C-like interfaces for
those clients that use raw C++ pointers for communication. Of course, once one does this, one will have to
rely on clients to pass in memory correctly and keep it valid as long as local modules need it.

5.3 Common aspects of all Teuchos memory management classes

Table 4 gives the member and non-member functions common all the Teuchos memory management
classesPtr , RCP, Array , ArrayView , ArrayRCP , andTuple . The comparison operators allows all of these
types to be used as keys in associative containers likestd::map . The member functiongetRawPtr() is
actually an incredibly useful function that will return a null pointer (i.e. 0) when the underlying smart
pointer is null (such as withPtr , RCP, ArrayRCP , andArrayView) or when the container has size zero
(such as withArray).

5.4 Memory management classes replacing raw pointers for single objects

The templated classesPtr andRCPdescribed in the next two sections are used to encapsulate raw C++
pointers to single objects. Again,Ptr is used for non-persisting (and semi-persisting) associations andRCP
is used for persisting associations. Below, and in all of the code listings, it is assumed that the code is
enclosed in theTeuchos namespace or there are appropriateusing Teuchos::XXX declarations (as is safe
and appropriate) for the various names in place.

27

5.4.1 Teuchos::Ptr<T>

The templated classPtr is the simplest of all the Teuchos memory management classes. In optimized
mode it is just the thinnest of wrappers around a raw C++ pointer. Listing 14 shows what the
implementation ofPtr looks like in optimized mode:

Listing 14 : Teuchos::Ptr class

template<class T>
class Ptr {
public:

Ptr(ENull null_in = null) : ptr_(0) {}
explicit Ptr(T *ptr) : ptr_(ptr) {}
Ptr(const Ptr<T>& ptr) : ptr_(ptr.ptr_) {}
template<class T2> Ptr(const Ptr<T2>& ptr) : ptr_(ptr.ptr_) {}
Ptr<T>& operator=(const Ptr<T>& ptr) { ptr_=ptr.ptr_; return *this; }
T* operator->() const { return ptr_; }
T& operator*() const { return *ptr_; }
T* getRawPtr() const { return ptr_; }
T* get() const { return ptr_; } // For compatibility with shared_ptr
const Ptr<T>& assert_not_null() const;

private:
T *ptr_;

};

In optimized mode, the only overhead imparted byPtr is the default initialization to null (0). All other
functions are just inline accessors to the underlying raw C++ pointer memberptr . Therefore, the
performance when using this type is the same as when using a raw C++ pointer.

However, in debug mode (enabled whenTEUCHOSDEBUGis defined), thePtr class becomes more complex
and performs a number of runtime checks like for null dereferences and dangling references (see
Section 5.11.3).

One note about the default null constructor shown in Listing 14 which is:

template<class T>
Ptr<T>::Ptr(ENull null_in = null) : ptr_(0) {}

is that the typeENull is the simple enum in theTeuchos namespace:

enum ENull { null };

This simple enum allows for the safe implicit conversion from the enum valuenull to anyPtr<T> object.
For example, one can write code like:

Ptr<A> a_ptr = null;

28

This implicit conversion fromnull is shared by the other Teuchos memory management smart-pointer
classesRCP<T>, ArrayView<T> , andArrayRCP<T> . This allows calling functions that accept one of these
objects and by just passing innull when appropriate and the implicit conversion will be done
automatically if possible (see Section 5.7.3).

The main purpose for the existence of thePtr class is to replace raw C++ pointers in function calls for
typical input, input/output, and output arguments where no persisting relationship is present. (the classPtr
should also be used for semi-persisting associations where single objects are involved.) For example,
consider the function that modifies a typeA object shown in Listing 15.

Listing 15 : Simple function using unsafe raw pointer

void modifyA(A *a)
{

assert(a);
a->increment();

}

UsingPtr , the functionmodifyA(...) in Listing 15 would be changed to the form shown in Listing 16.

Listing 16 : Simple function refactored to use safePtr wrapped pointer

void modifyA(const Ptr<A> &a)
{

a->increment();
}

In this context, the primary advantage of the form shown in Listing 16 as apposed to Listing 15 is that in
debug mode, a check for a null pointer or a dangling reference would be performed automatically. If a null
dereference occurred, then an exception would be thrown with a very good error message. I have seen
platforms where a null dereference did not automatically result in a graceful assert, stopping the program. I
have seen cases where somehow memory was corrupted and the program continued! A good philosophy is
to make as few assumptions as possible about undefined behavior of the compiler and platform because I
have found that “typical and obvious” behavior for undefined behavior is not universal. Many have learned
the hard way that one will pay a price for such assumptions in lost time debugging obscure things like a
null pointer dereference that should have stopped the program but did not. Don’t take chances with
undefined behavior in the code, take control!

When all of the high-level code has been converted over to use these memory management classes and
there are no more raw C++ pointers, then client code should never have to construct aPtr object using a
raw C++ pointer. However, as code is being transitioned over and when such code is called by
non-compliant code, construction from a raw pointer is needed. The recommended way to convert from a
raw C++ pointer toPtr is to use the following templated non-member function:

Listing 17 : Teuchos::ptr(...)

template<class T> Ptr<T> ptr(T *p);

29

Using this non-member constructor function, client code would then be written as shown in Listing 18.

Listing 18 :

void foo(A* a)
{

using Teuchos::ptr;
modifyA(ptr(a));

}

A more typical use case for the construction of aPtr object is from a raw C++ object or reference. This
type of construction should always be performed using one of the non-member constructor functions
shown in Listing 19.

Listing 19 : Safe nonmember constructors for Teuchos::Ptr

template<typename T> Ptr<T> ptrFromRef(T& arg);
template<typename T> Ptr<T> inOutArg(T& arg);
template<typename T> Ptr<T> outArg(T& arg);
template<typename T> Ptr<T> optInArg(T& arg);
template<typename T> Ptr<const T> constOptInArg(T& arg);

The different forms of non-member constructor functions shown in Listing 19 are to allow for
self-documenting code for calls to functions that acceptPtr -wrapped objects. A complete and
comprehensive set of idioms for usingPtr along with the other Teuchos memory management types is
given in Section 5.8.

5.4.2 Teuchos::RCP<T>

The classRCP, the real workhorse of the Teuchos memory management classes, is used to manage single
objects in persisting associations.RCPis very similar to other high-quality reference-counted smart pointer
classes likeboost::shared ptr and of course the upcoming standard C++0x classstd::shared ptr .
However,RCPhas some key features that differentiate it from these other better known smart pointer
classes. In particular,RCPhas built in support for the detection of circular references (Section 5.9.2), has
built in support for resolving circular references with built-in weak pointers (Section 5.9.1), and other
strong debug runtime checking such as detecting multiple non-relatedRCPobjects owning the same
reference-counted objects (Section 5.11.4) and other types of checks.

Because the classRCPis described in [2] and is so similar in use toboost::shared ptr (described some
in [25]), this class will not be described in too much detail here. However, a fairly complete definition of
the classRCPis shown in Listing 20 (the full listing can be found in the Doxygen documentation).

Listing 20 : Class and helper function listing forRCP

template<class T>
class RCP {

30

public:

// General functions
RCP(ENull null_arg = null);
explicit RCP(T* p, bool has_ownership = false);
template<class Dealloc_T> RCP(T* p, Dealloc_T dealloc, bool has_ownership);
RCP(const RCP<T>& r_ptr);
template<class T2> RCP(const RCP<T2>& r_ptr);
˜RCP();
RCP<T>& operator=(const RCP<T>& r_ptr);
bool is_null() const;
T* operator->() const;
T& operator*() const;
T* getRawPtr() const;
Ptr<T> ptr() const;

// Other shared_ptr compariblity functions
...

// Reference counting member functions
...

private:
T *ptr_;
RCPNodeHandle node_;
...

};

// General non-member constructor functions
template<class T> RCP<T> rcp(T* p, bool owns_mem = true);
template<class T> RCP<T> rcpFromRef(T& r);
template<class T> RCP<T> rcpFromUndefRef(T& r);

// Deallocation policy functions
...

// Embedded objects functions
...

// Extra data functions
...

// Conversion functions
...

// Other common non-member functions
...

Again, basic usage of theRCPclass is described in [2] and the functions for decallocation policies,
embedded objects, extra data, conversion functions and other functions are discussed in other sections in a
more general setting. The basic idioms for smart pointers and reference counting are fairly well known, are
well documented in the literature, and there is a good overview in [2] so basic information will not be

31

replicated here. However, some of the more advanced functionality for RCPthat is not described in [2] or an
any of the existing C++ literature is described in later sections of this document.

5.4.3 Raw C++ references

Why is there a subsection on raw C++ references under the a section describing Teuchos Memory
Management classes for single objects? The reason is that raw C++ references to single objects are used in
the idioms described in this paper for non-persisting associations for single objects and this was a
reasonable place to discuss issues with raw C++ references.

While this paper argues that raw C++ pointers have no place in application-level code because they are
fundamentally unsafe, are C++ references also not inherently unsafe as well? After all, under the covers
raw C++ references really are just raw C++ pointers in disguise. While this is true, in practice raw C++
references are significantly safer than raw C++ pointers, especially if the idioms outlined in this paper are
carefully followed. In addition, the use of raw C++ references is exploited (as explained in Section 5.4.3)
in defining idioms that increase the self-documenting nature of C++ code and play a role in defining
non-persisting associations related to function formal arguments and return objects. All in all, the increased
expressiveness in using raw C++ references is worth the increased risk of misuse (this is still going to be
C++ after all).

Basically, a raw C++ reference is relatively safe as long as a) it is always initialized to point to a valid
object, and b) it is only used for non-persisting relationships (especially as const input arguments in C++
functions). If a raw C++ reference is initialized directly from an object or from dereferencing a smart
pointer, then it is guaranteed that the object will be valid when the reference is first created (at least in a
debug build where dereferencing null smart pointers throws). While raw C++ references are fairly safe
when used with the idioms described in this paper, there are no 100% guarantees. There are typically no
guarantees that the object pointed to by a raw reference will stay valid (because dangling references cannot
be detected as described in Section 5.11.6). This can happen when one breaks one or more of the idioms or
guidelines defined in this paper (which will happen because programmers make mistakes).

Note that raw C++ references should never be used for representing semi-persisting associations because it
is impossible to catch invalid usage like dangling references. Instead, when a semi-persisting association is
involved, always usePtr instead of a raw C++ reference (even if the object being represented is not allowed
to be null). Semi-persisting associations are described in more detail in Section 4.2 and Section 5.12.3.

5.5 Memory management classes replacing raw pointers for arrays of objects

The Teuchos memory management module actually defines four different C++ classes for dealing with
contiguous arrays of objects:ArrayView , ArrayRCP , Array , andTuple . As stated in Section 5.1 each of
these classes is needed in order to address different important use cases for dealing with contiguous arrays
of objects. The conventions outlined in the paper never have high-level code exposing a raw C++ pointer to
an array or directly using built-in (statically sized) C++ arrays.

In addition to the common members shown in Table 4, all of the Teuchos array classes provide a common
subset of the interface ofstd::vector which includes the typedefs and member functions shown in
Table 5.

32

std::vector compatible member typedefs
value type
size type
difference type
pointer
const pointer
reference
const reference
iterator
const iterator
element type
std::vector compatible member functions
size type size()
[const]reference operator(size type) [const]
[const]reference front() const
[const]reference back() const
[const]iterator begin() [const]
[const]iterator end() [const]
ArrayView returning member functions
ArrayView<[const] T> view(size type offset, size type size) [const]
ArrayView<[const] T> operator[]()(size type offset, size type size) [const]
ArrayView<[const] T> operator()() [const]
Additional common member functions
[const]pointer getRawPtr() [const]
std::string toString() const

Table 5. Additional common members and non-members for
ArrayView , ArrayRCP , Array , andTuple .

33

A few things to note about the common array interface components shown in Table 5 include:

• All of the Teuchos array classes are drop-in replacements for any code that usesstd::vector that
does not grow or shrink the container by supporting the necessary typedefs, query functions, element
access, and iterator access. This helps in migrating current code that usesstd::vector but should
be usingArray , ArrayView , ArrayRCP or Tuple .

• All of the array classes support returningArrayView subviews of contiguous ranges of elements.

• All of the array classes support a handygetRawPtr() function that allows a client to get the base
pointer address to the array or null. The standardstd::vector class supports no such function
which is very painful for users since it makes it hard to get a null pointer then the container can
legitimately be unsized in some use cases.

The exact functions shown in Table 5 forArrayView andArrayRCP are a little different than forArray due
to the different nature of these view classes as apposed to the container classArray . As described in
Section 5.6, the classesArrayView andArrayRCP can encapsulate both non-const and const typesT as
their template argument whileArray can only accept a non-const typeT. Therefore, thestd::vector
compatible functions inArrayView andArrayRCP are allconst functions since they don’t change what
data these objects point to, but only change the data itself.

One other aspect to note about the Teuchos array classes is that they deviate from the standard C++ library
convention of using an unsigned integer forsize type . Instead, they use a signed integer forsize type
typedefed to the signed typeTeuchos Ordinal which is guaranteed to be 32 bit on a 32 bit machine and
64 bit on a 64 bit machine7. The reasoning for breaking from thestd::vector standard forsize type is
described in Appendix C.

5.5.1 Teuchos::ArrayView<T>

The classArrayView , the simplest of the Teuchos array memory management classes, is designed to
encapsulate raw pointers in non-persisting associations primarily for formal function array arguments.
(ArrayView is to be used for semi-persisting associations as well.) In an optimized build, anArrayView
object simply holds a raw base array pointer and an integer size. In an optimized build,ArrayView looks
like Listing 21.

Listing 21 : Teuchos::ArrayView declaration (See Table 5 for common array members.)

template<class T>
class ArrayView {
public:

// Constructors/Assignment/Destructors
ArrayView(ENull null_arg = null);

7Teuchos Ordinal is typedefed by default to the standard C library typeptrdiff t which is always signed and is 32 bit on a
32 bit machine and 64 bit on a 64 bit machine.

34

ArrayView(T* p, size_type size);
ArrayView(const ArrayView<T>& array);
ArrayView(std::vector<typename ConstTypeTraits<T>::NonConstType>& vec);
ArrayView(const std::vector<typename ConstTypeTraits<T>::NonConstType>& vec);
ArrayView<T>& operator=(const ArrayView<T>& array);
˜ArrayView();

// Implicit conversion to const
operator ArrayView<const T>() const;

// Deep copy
void assign(const ArrayView<const T>& array) const;

// Common array class members and other functions
...

private:
T *ptr_; // Optimized implementation
size_type size_;

};

// Non-member helpers

template<class T>
ArrayView<T> arrayView(T* p, typename ArrayView<T>::size_type size);

template<class T>
ArrayView<T> arrayViewFromVector(std::vector<T>& vec);

template<class T>
ArrayView<const T> arrayViewFromVector(const std::vector<T>& vec);

template<class T>
std::vector<T> createVector(const ArrayView<T> &av);

template<class T>
std::vector<T> createVector(const ArrayView<const T> &av);

// Other common non-member helpers
...

// Explicit conversion functions
...

A few specific things to note aboutArrayView shown in Listing 21 in addition to the comments in
Section 5.5 and other sections include:

• ArrayView is extremely lightweight in an optimized build, carrying only a pointer and an integer
size. This allows one to replace the typical pointer and separate size argument with a single
aggregate light-weight object. Therefore, it yields very efficient code.

35

• ArrayView in optimized mode has all trivial inlined functions that work with the raw pointer so it is
as efficient as raw pointer code (Section 5.12.2).

• ArrayView is a drop in replacement for any code that usesstd::vector that does not grow or
shrink the container by supporting the necessary typedefs, query functions, and iterator access. This
helps in migrating current code that usesstd::vector but should be usingArrayView .

• ArrayView implicitly converts from anstd::vector so functions called by existing client code that
usesstd::vector can be safely and transparently refactored to useArrayView instead of
std::vector (subject to the limitations for implicit conversions described in Section 5.7.3).

• ArrayView directly supports the creation of subviews of contiguous ranges of elements.

What makesArrayView non-trivial and special, however, is that in a debug build, the implementation takes
on a variety of runtime checking to catch all sorts of errors such as dangling iterators, dangling sub-views
(Section 5.11.3), range checking (Section 5.11.1), and other types of runtime checking.

It should be noted that one should almost never create anArrayView object directly from a raw pointer but
instead create them as views ofArray , ArrayRCP , Tuple and otherArrayView objects. If client code is
routinely creatingArrayView objects from raw pointers, then the code is not safe and one needs to study
the core idioms described in Section 5.8.

The classArrayView has no equivalent in boost or the current C++ or proposed C++0x standard. This is a
critical class needed to allow for flexibility, high-performance, safety, and maximaly self-documenting
code. One cannot develop an effective type system without an integrated type likeArrayView .

5.5.2 Teuchos::ArrayRCP<T>

The classArrayRCP is the counterpart toArrayView for general flexible array views except it is used for
persisting relationships where reference-counting machinery is required. AnArrayRCP object can provide
a contiguous view into any array of data allocated in anyway possible and can allow the user to define what
is done to release memory in anyway they would like.

The class declaration forTeuchos::ArrayRCP is shown in Listing 22.

Listing 22 : Teuchos::ArrayRCP declaration (optimized build)

template<class T>
class ArrayRCP {
public:

// Constructors/initializers
ArrayRCP(ENull null_arg=null);
ArrayRCP(T* p, size_type lowerOffset, size_type upperOffset,

bool has_ownership);
template<class Dealloc_T>

ArrayRCP(T* p, size_type lowerOffset, size_type upperOffset,
Dealloc_T dealloc, bool has_ownership);

explicit ArrayRCP(size_type lowerOffset, const T& val = T());

36

ArrayRCP(const ArrayRCP<T>& r_ptr);
˜ArrayRCP();
ArrayRCP<T>& operator=(const ArrayRCP<T>& r_ptr);

// Object/Pointer Access Functions
T* operator->() const;
T& operator*() const;
ArrayRCP<T>& operator++();
ArrayRCP<T> operator++(int);
ArrayRCP<T>& operator--();
ArrayRCP<T> operator--(int);
ArrayRCP<T>& operator+=(size_type offset);
ArrayRCP<T>& operator-=(size_type offset);
ArrayRCP<T> operator+(size_type offset) const;
ArrayRCP<T> operator-(size_type offset) const;

// ArrayRCP Views
ArrayRCP<const T> getConst() const;
ArrayRCP<T> persistingView(size_type lowerOffset, size_type size) const;

// Implicit conversions
operator ArrayRCP<const T>() const;

// Explicit ArrayView
ArrayView<T> operator()() const;

// Size and extent query functions
size_type lowerOffset() const;
size_type upperOffset() const;
size_type size() const;

// std::vector like and other misc functions
void assign(size_type n, const T &val);
template<class Iter>

void assign(Iter first, Iter last);
void deepCopy(const ArrayView<const T>& av);
void resize(const size_type n, const T &val = T());
void clear();

// Common array class members (see above)
...

// Reference counting (same as for RCP)
...

private:
T *ptr_; // NULL if this pointer is null
RCPNodeHandle node_; // NULL if this pointer is null
size_type lowerOffset_; // 0 if this pointer is null
size_type upperOffset_; // -1 if this pointer is null

};

// Nonmember constructors

37

template<class T>
ArrayRCP<T> arcp(T* p, typename ArrayRCP<T>::size_type lowerOffset,

typename ArrayRCP<T>::size_type size, bool owns_mem = true);

template<class T, class Dealloc_T>
ArrayRCP<T> arcp(T* p, typename ArrayRCP<T>::size_type lowerOffset,

typename ArrayRCP<T>::size_type size, Dealloc_T dealloc, bool owns_mem);

template<class T>
ArrayRCP<T> arcp(typename ArrayRCP<T>::size_type size);

template<class T>
ArrayRCP<T> arcpClone(const ArrayView<const T> &v);

template<class T>
ArrayRCP<T> arcp(const RCP<std::vector<T> > &v);

template<class T>
ArrayRCP<const T> arcp(const RCP<const std::vector<T> > &v);

template<class T>
ArrayRCP<T> arcpFromArrayView(const ArrayView<T> &av);

template<class T>
RCP<std::vector<T> > get_std_vector(const ArrayRCP<T> &ptr);

template<class T>
RCP<const std::vector<T> > get_std_vector(const ArrayRCP<const T> &ptr);

// Customized deallocators
...

// Embedded object functions
...

// Extra data functions
...

// Conversion functions
...

// Common non-member functions
...

// Other nonmember functions

template<class T>
typename ArrayRCP<T>::difference_type
operator-(const ArrayRCP<T> &p1, const ArrayRCP<T> &p2);

template<class T>
std::ostream& operator<<(std::ostream& out, const ArrayRCP<T>& p);

38

Some of the main features of theArrayRCP class are:

ArrayRCP allows the user to allocate the contiguous array of data in anyway they would like and can define
how that array is deallocated anyway they would like.

ArrayRCP returns persisting subviews of data through the member functionpersistingView(...) . This
means that the underlying array of data will not be deleted until all the persisting subviews are destroyed.

ArrayRCP is a full replacement for a general raw pointer and can be used as a general iterator that always
remembers the allowed upper and lower bounds. It supports all the appropriate pointer array-like
operations includingptr+i , i+ptr , ptr-i , ptr+=i , ptr-=i , , ptr++ , ptr-- , *ptr , ptr->member() , and
of courseptr[i] . This is what allowsArrayRCP to be used as a checked iterator implementation in a
debug-mode build.

ArrayRCP can be used safely as a contiguous array by using it through itsconst interface which disables
all of the pointer-like functions that change the frame of reference (e.g.ptr+=i , ptr-=i , , ptr++ , and
ptr-- are disabled in theconst interface).

ArrayRCP can be used in place ofstd::vector (and thereforeArray) that only needs to size or resize the
array in baulk and does not need to flexibly grow or shrink the array. It does this by supporting functions
like assign(...) , resize(...) , andclear() . Because of the reference counting machinery that is
always part ofArrayRCP and support for all raw C++ pointer functionality (e.g.,ptr++), one may not want
to useArrayRCP instead ofArray in many types of code. However, if the overhead is not going to be
significant, then going withArrayRCP instead ofArray can be a good choice because it is much more
flexible in how memory is allocated and has built-in support for shared ownership (again, which may not be
needed). The classArrayRCP does not attempt to replaceArray but can be a better choice in many cases
where anArray may otherwise be used.

ArrayRCP supports explicit shallow conversion toArrayView . Requiring an explicit conversion from
ArrayRCP to ArrayView in consistent with the required explicit conversion fromRCPto Ptr . As explained
in Section 5.8.4, requiring this type of explicit conversion is meant to increase the type safety and
self-documenting nature of all code (including the calling code as well). Note that the
ArrayRCP::operator()() function is a very short-hand way to perform conversion toArrayView .

ArrayRCP supports owning conversions fromRCP-wrappedArray andstd::vector objects. This allows
for better interoperability between code and uses solid reference-counting ownership semantics.

Some of the other features of theArrayRCP class that are common with the other classes are discussed in
Section 5.7, Section 5.9, and Section 5.11.

5.5.3 Teuchos::Array<T>

The classArray is a complete drop-in replacement forstd::vector that is integrated with theArrayView
class for debug-mode runtime checking. In an optimized build,Array is nothing but an inline wrapper
around a fully encapsulatedstd::vector object. This means that in an optimized build,Array takes
advantage of all of the platform-specific optimizations contained in the nativestd::vector
implementation and imparts no extra space/time overhead (see the timing results in Section 5.12.2 for
evidence of this claim). However, in a debug build, a full set of platform-independent runtime checking is
performed that is as strong or stronger than any checked STL implementation (see [30, Item 83]) and in

39

addition includes dangling reference detection ofArrayView views or direct conversions toArrayRCP
objects (see Section 5.11.3).Array also supports better runtime debug output with better exception error
messages.

The class declaration for theArray class is shown in Listing 23.

Listing 23 : Teuchos::Array declaration (optimized build)

template<typename T>
class Array {
public:

// Constructors/initializers
Array();
explicit Array(size_type n, const value_type& value = value_type());
Array(const Array<T>& x);
template<ypename InputIterator> Array(InputIterator first, InputIterator last);
Array(const ArrayView<const T>& a);
template<int N> Array(const Tuple<T,N>& t);
˜Array();
Array& operator=(const Array<T>& a);

// Other std::vector functions
void assign(size_type n, const value_type& val);
template<typename InputIterator> void assign(InputIterator first,

InputIterator last);
iterator begin();
iterator end();
const_iterator begin() const;
const_iterator end() const;
reverse_iterator rbegin();
reverse_iterator rend();
const_reverse_iterator rbegin() const;
const_reverse_iterator rend() const;
size_type size() const;
size_type max_size() const;
void resize(size_type new_size, const value_type& x = value_type());
size_type capacity() const;
bool empty() const;
void reserve(size_type n);
reference operator[](size_type i);
const_reference operator[](size_type i) const;
reference at(size_type i);
const_reference at(size_type i) const;
reference front();
const_reference front() const;
reference back();
const_reference back() const;
void push_back(const value_type& x);
void pop_back();
iterator insert(iterator position, const value_type& x);
void insert(iterator position, size_type n, const value_type& x);
template<typename InputIterator> void insert(iterator position,

40

InputIterator first, InputIterator last);
iterator erase(iterator position);
iterator erase(iterator first, iterator last);
void swap(Array& x);
void clear();

// Conversions to and from std::vector
Array(const std::vector<T> &v);
std::vector<T> toVector() const;
Array& operator=(const std::vector<T> &v);

// Implicit conversion to ArrayView
operator ArrayView<T>();
operator ArrayView<const T>() const;

// Common array class members (see above)
...

private:
std::vector<T> vec_; // Optimized implementation

};

// Non-member helper functions
template<class T> ArrayRCP<T> arcp(const RCP<Array<T> > &v);
template<class T> ArrayRCP<const T> arcp(const RCP<const Array<T> > &v);
template<class T> ArrayRCP<T> arcpFromArray(Array<T> &a);
template<class T> ArrayRCP<const T> arcpFromArray(const Array<T> &a);
template<typename T> std::ostream& operator<<(std::ostream& os,

const Array<T>& array);
template<typename T> std::vector<T> createVector(const Array<T> &a);
std::string toString(const Array<T>& array);
template<typename T> Array<T> fromStringToArray(const std::string& arrayStr);

// Other common nonmember functions
...

The usage of theArray class is identical to the usage ofstd::vector except that it naively supports the
creation ofAraryView objects that can detect and report dangling references or attempts to resize the
container when one or moreArrayView objects are active. The unit tests forArray provide a complete
catalog of all the debug-mode runtime checking thatArray performs. A more general discussion of
debug-mode runtime checking can be found in Section 5.11.

5.5.4 Teuchos::Tuple<T,N>

The last array class discussed here is theTuple class which represents a compile-time sized array that
implicitly converts into anArrayView object. The class listing forTuple is shown in Listing 24.

Listing 24 : Teuchos::Tuple declaration (optimized build)

template<typename T, int N>

41

class Tuple {
public:

// Constructors/initializers
inline Tuple();
Tuple(const Tuple<T,N> &t);

// Implicit conversion to ArrayView
operator ArrayView<T>();
operator ArrayView<const T>() const;

// Common array class members (see above)
...

private:
T array_[N]; // Optimized implementation

};

// Non-member constructors

template<typename T>
Tuple<T,1> tuple(const T& a);

template<typename T>
Tuple<T,2> tuple(const T& a, const T& b);

template<typename T>
Tuple<T,3> tuple(const T& a, const T& b, const T& c);

...

template<typename T>
Tuple<T,15> tuple(const T& a, const T& b, const T& c, const T& d, const T& e,

const T& f, const T& g, const T& h, const T& i, const T& j, const T& k,
const T& l, const T& m, const T& n, const T& o);

The classTuple is very small and efficient in an optimized build. All the functions are inlined and all data
is allocated on the stack (or statically) and does not use the free store. In an debug build, however,Tuple
takes on all the debug checking of all the other Teuchos array classes including the detection of dangling
ArrayView views and dangling iterators.

One of the most useful features ofTuple is that a number of overloaded non-member constructor functions
with nametuple(...) are provided (show above) to make it easy to pass in arrays to functions that accept
them asArrayView arguments. Overloads oftuple(...) are currently provided from one up through 15
arguments. For an example for usingtuple(...) to call a function call, consider the function to be called:

void doSomething(const ArrayView<const int>&);

To call the function with three int arguments, one would use:

doSomething(tuple<int>(1, 2, 3)); // Implicitly converts to ArrayView<int>

42

Note that in an optimized build for the above function call thatall data would be allocated on the stack and
would not involve the free store. This results in very efficient code which is important when this is being
used in an inner loop.

5.5.5 Array views

One of the most powerful features of the Teuchos memory management array types is that they allow for
the creation of arbitrary contiguous subviews of data that have the strongest debug-mode runtime checking
possible. All of the array classesArrayView , ArrayRCP , Array , andTuple provide contiguous views as
ArrayView objects. The functions the provideArrayView views are shown in Table 5. TheArrayRCP
class can also provide persisting contiguous subviews as newArrayRCP objects using the function
ArrayRCP::persistingView(...) . Persisting views will remain even if the parentArrayRCP objects
have been released.

As soon as a contiguous array of data is correctly captured inArray or an owningArrayRCP object, all
childrenArrayView objects will be protected in that if the parent array gets deleted, a debug-mode runtime
check will detect and report a dangling reference if a client tries to access the data after the parent has gone
away (see Section 5.11.3 for details).

To demonstrate the elegance and superior error checking ofArrayView subviews, consider a refactored
version of code in Listing 4 and Listing 5 that tried to usestd::vector but resulted in verbose clumsy
code that was really no more correct or safe than the raw C++ pointer version. This refactored version to
useArrayView is shown in Listing 25 and Listing 26.

Listing 25 : Refactored version of Listing 4 to useArrayView

template<class T>
class BlockTransformerBase {
public:

virtual ˜BlockTransformerBase();
virtual void transform(const ArrayView<const T> &a, const ArrayView<T> &b) const = 0;

};

template<class T>
class AddIntoTransformer : public BlockTransfomerBase<T> {
public:

virtual void transform(const ArrayView<const T> &a, const ArrayView<T> &b) const
{

DEBUG_MODE_ASSERT_EQUALITY(a.size(), b.size());
for (int i = 0; i < a.size(); ++i)

b[i] += a[i];
}

};

Listing 26 : Refactored version of Listing 5 to useArrayView

void someBlockAlgo(const BlockTransformerBase &transfomer,
const int numBlocks, const ArrayView<const double> &big_a,
const ArrayView<double> &big_b)

43

{
DEBUG_MODE_ASSERT_EQUALITY(big_a.size(), big_b.size());
const int totalLen = big_a.size();
const int blockSize = totalLen/numBlocks; // Assume no remainder!

const int blockOffset = 0;
for (int block_k = 0; block_k < numBlocks; ++block_k, blockOffset += blockSize)
{

if (big_a[blockOffset] > 0.0) {
transformer.transform(big_a(blockOffset, blockSize),

big_b(blockOffset, blockSize));
}

}
}

The advantages of the refactored code in Listing 25 and Listing 26 are that they are nearly as compact as
the raw pointer versions in Listing 3 and Listing 6 but in addition also have full debug-mode runtime error
checking. To see the improved safety, let’s consider the case where thetransform(...) function is
incorrectly implemented with an off-by-one error as shown in Listing 27.

Listing 27 : Refactored version of off-by-one error in Listing 7 to useArrayView

template<class T>
void AddIntoTransformer<T>::transform(const ArrayView<const T> &a, const ArrayView<T> &b)
{

DEBUG_MODE_ASSERT_EQUALITY(a.size(), b.size());
for (int i = 0; i <= a.size(); ++i)

b[i] += a[i]; // Throws when i == a.size()
}

If the erroneoustransform(...) function in Listing 27 were called from Listing 26 then in debug-mode,
a runtime exception would immediately be raised when thetransform(...) function tried to access one
past the last element. As mentioned in Section 3.2, memory checking tools like Valgrind or Purify will
never be able to catch semantic usage errors like this but it is trivial to catch these mistakes when using the
Teuchos memory management classes.

As mentioned in Section 5.7, subviews can also be used along with the reinterpret cast functions to create
very efficient memory management schemes for POD (plain old data) where large untypedchar arrays are
created and then subviews are broken off and reinterpret cast to specific data types. Examples of this can be
found in the unit testing code.

5.6 Const versus non-const pointers and objects

The core smart-pointer pointer classesPtr , RCP, ArrayView andArrayRCP allow for the inner object (or
array of objects) to be const or non-const and for the outer pointer object to be const or non-const, just like
with regular C++ pointers. To draw the analogy with raw pointers, consider the equivalent declarations of a
raw pointer and the pointer encapsulation class in Table 6.

44

Equivalencies for const protection for raw pointers and Teuchos smart pointers types
Description Raw pointer Smart pointer

Basic declaration (non-const obj) typedef A* ptr A RCP<A>
Basic declaration (const obj) typedef const A* ptr const A RCP<const A>

non-const pointer, non-const objectptr A RCP<A>
const pointer, non-const object const ptr A const RCP<A>
non-const pointer, const object ptr const A RCP<const A>
const pointer, const object const ptr const A const RCP<const A>

Table 6. Equivalences between raw pointer and smart pointer types
for const protection. Here,RCPis a stand-in for all four typesPtr , RCP,
ArrayView andArrayRCP .

The majority of problems that beginners have with the Teuchos memory management classes is related to
the inability to make the basic equivalencies between raw pointers and smart pointers shown in Table 6 (see
Section 5.7.3 for specific examples). It is critical that the programmer recognize this equivalence with raw
pointers because it impacts many things especially implicit type conversions to satisfy function calls
(again, see Section 5.7).

5.7 Conversions

Type conversions exist both for a single smart pointer type for the embedded type argument (e.g.
RCP<Derived> implicitly converts toRCP<const Derived> , RCP<Base>, andRCP<const Base>) and
also between different smart pointer types (e.g.Array implicitly converts toArrayView). There are
implicit conversions and explicit conversions. These two types of conversions are depicted in Figures 2
and 3 and shown in more detail in more detail in Table 8 and Table 9. (Note: All of the conversions shown
in Table 8 and Table 9 are not shown in Figure 2 and Figure 3 for the sake of not making the figures to
complex.) These conversions are described in the following two sections.

5.7.1 Implicit and explicit raw-pointer-like conversions

The core Teuchos memory management smart pointer typesPtr , RCP, ArrayView andArrayRCP support
all of the reasonable implicit and explicit type conversions that are defined by raw C++ pointers. C++
defines implicit conversions for raw pointers from non-const to const and from derived to base types.
Table 7 shows what implicit and explicit conversions are supported for the four core memory management
smart pointer types.

As seen in Table 7, the smart pointer types for single objectsPtr andRCPdo not support the same implicit
and explicit conversions that are supported for the array smart pointer typesArrayView andArrayRCP . As
explained in Section 2.2, it almost always incorrect and dangerous to allow implicit conversions from
derived to base type for pointers that point into contiguous arrays of objects. Therefore, the types
ArrayView andArrayRCP do not support implicit conversions from derived to base types. Due to similar
logic, it almost never makes any sense to perform a static cast or a dynamic cast on a pointer to an array of

45

Figure 2. Conversions between different single-object memory man-

agement types.

Basic implicit and explicit supported conversions for Teuchos smart pointer types
Operation Ptr<T> RCP<T> ArrayView<T> ArrayRCP<T>

Implicit conv derived to base x x
Implicit conv non-const to const x x x x
const cast x x x x
static cast x x
dynamic cast x x
reinterpret cast x x

Table 7. Basic implicit and explicit conversions by smart-pointer types.

46

Figure 3. Conversions between array memory management types.

47

contiguous objects so the typesArrayView andArrayRCP do not support static and dynamic casts.

In well formed programs, there is a justification to perform reinterpret casts for contiguous arrays of POD
(plain old data) types. It is perfectly reasonable to allocate a large array ofchar (untyped) data and then
create subviews and reinterpret cast to separate arrays ofdouble andint data, for instance. However, in a
well formed program in high-level code there is not a single valid reason to perform a reinterpret cast for
single objects and therefore reinterpret cast is not supported for the typesPtr andRCP.

The allowed implicit conversions forPtr andRCPare implemented through templated copy constructors
(see Section 5.4.1 and Section 5.4.2). However, the only allowed implicit conversion for<T*> to <const
T*> for ArrayView andArrayRCP are instead supported through conversion member functions (see
Section 5.5.1 and Section 5.5.2). The supported explicit conversion operators for these four types are
shown in the Listings 28, 29, 30, and 31.

Listing 28 : Conversion functions forPtr

template<class T2, class T1> Ptr<T2> ptr_implicit_cast(const Ptr<T1>& p1);
template<class T2, class T1> Ptr<T2> ptr_static_cast(const Ptr<T1>& p1);
template<class T2, class T1> Ptr<T2> ptr_const_cast(const Ptr<T1>& p1);
template<class T2, class T1> Ptr<T2> ptr_dynamic_cast(const Ptr<T1>& p1,

bool throw_on_fail = false);

Listing 29 : Conversion functions for RCP

template<class T2, class T1> RCP<T2> rcp_implicit_cast(const RCP<T1>& p1);
template<class T2, class T1> RCP<T2> rcp_static_cast(const RCP<T1>& p1);
template<class T2, class T1> RCP<T2> rcp_const_cast(const RCP<T1>& p1);
template<class T2, class T1> RCP<T2> rcp_dynamic_cast(const RCP<T1>& p1,

bool throw_on_fail = false);

Listing 30 : Conversion functions for ArrayView

template<class T2, class T1> ArrayView<T2> av_const_cast(const ArrayView<T1>& p1);
template<class T2, class T1> ArrayView<T2> av_reinterpret_cast(const ArrayView<T1>& p1);

Listing 31 : Conversion functions for ArrayRCP

template<class T2, class T1> ArrayRCP<T2> arcp_const_cast(const ArrayRCP<T1>& p1);
template<class T2, class T1> ArrayRCP<T2> arcp_reinterpret_cast(const ArrayRCP<T1>& p1);

These conversion functions are used very similarly as for the built-in conversion operations in that only the
output type needs to be explicitly specified. For example, Listing 32 shows some example conversions
involving RCP(but the conversion function usage for the other types are identical).

Listing 32 : Example usage of the explicit conversion functions

48

RCP<const Base> = cbase(new Derived);
RCP<Base> base = rcp_const_cast<Base>(cbase);
RCP<const Derived> cderived = rcp_dynamic_cast<const Derived>(cbase, true);
RCP<const Derived> cderived2 = rcp_static_cast<const Derived>(cbase);
// NOTE: Static casting of Base to Derived is not safe when
// using virtual base classes or multiple inheritance. Only dynamic
// casting is always safe with polymophpic types.

Note that the dynamic cast conversion functionsptr dynamic cast() andrcp dynamic cast() both
take an option extra argumentthrow on fail that if set totrue will result in an exception being thrown
on a dynamic cast failure which is embedded with a very helpful error message (accessed through the
std::exception::what() function).

5.7.2 Conversions between different memory management types

It is critical that all conversions between the various Teuchos memory management classes be performed
using conversion code provided by the memory management classes or by associated helper functions in
the Teuchos library. Client code should never convert between memory management types by exposing a
raw C++ pointer. As soon as a raw C++ pointer is exposed, nearly all of the debug-mode runtime checking
will be disabled. If a raw C++ pointer is exposed in order to perform a needed valid conversion, then either
the programmer overlooked an already provided conversion function or the function needs to be added to
Teuchos (please contact the developers of Teuchos atteuchos-users@software.sandia.gov).

Figures 2 and 3 show many of the types of conversions that are supported between the different memory
management types. Specific conversions are shown in more detail in Tables 8 and 9. (Note: All of the
conversions shown in Tables 8 and 9 are not shown in Figures 2 and 3 for the sake of not making the
figures to complex.) For single objects, the conversions between differentRCPandPtr objects of various
kinds shown in Figure 2 and Table 8 include both implicit and explicit conversions (but do not show the
explicit conversion functions already shown in Listings 28 and 29). Conversions between different array
types shown in Figure 3 and Table 9 include both implicit and explicit conversions and view and copy
conversions yielding various types of conversions (but do not show the explicit conversion functions
already shown in Listings 30 and 31).

The conversions shown in Tables 8 and 9 (and also in Listings 28, 29, 30, and 31) are the most basic
conversions supported by the Teuchos memory management types but are not the only supported
conversions. The see the full set of type conversions supported, consult the Doxygen generated
documentation8. Note that full debug-mode runtime checking is fully enabled for every conversion
between Teuchos memory management types, including full dangling-reference detection and reporting
when creating non-reference-counting typesPtr andArrayView . In general, dangling references cannot be
detected when converting from raw C++ pointersT* and raw C++ referencesT& or for shallow views
involving std::vector . However, there are a few special cases where non-owningPtr , RCP, and
ArrayView , ArrayRCP objects created from raw C++ pointers (or references) will be able to detect
dangling references through the sophisticated debug-mode node tracing system (see Sections 5.11.3 and
5.11.6 for details).

8http://trilinos.sandia.gov/packages/teuchos

49

Most Common Basic Conversions for Single Object Types
Type To Type From Properties C++ code

RCP<A> A* Ex, Ow rcp(a p) 1

RCP<A> A* Ex, NOw rcp(a p,false) 2

RCP<A> A& Ex, NOw rcpFromRef(a)
RCP<A> A& Ex, NOw rcpFromUndefRef(a)
RCP<A> Ptr<A> Ex, NOw, DR rcpFromPtr(a)
RCP<A> boost::shared ptr<A> Ex, Ow, DR rcp(a sp)
RCP<const A> RCP<A> Im, Ow, DR RCP<const A>(a rcp)
RCP<Base> RCP<Derived> Im, Ow, DR RCP<Base>(derived rcp)
RCP<const Base> RCP<Derived> Im, Ow, DR RCP<const Base>(derived rcp)
boost::shared ptr<A> RCP<A> Ex, Ow, DR shared pointer(a rcp)

A* RCP<A> Ex, NOw RCP::getRawPtr() 3

A& RCP<A> Ex, NOw RCP::operator*() 4

Ptr<A> A* Ex, NOw ptr(a p) 2

Ptr<A> A& Ex, NOw outArg(a) 5

Ptr<A> RCP<A> Ex, NOw, DR ptrFromRCP(a rcp)
Ptr<const A> Ptr<A> Im, NOw, DR Ptr<const A>(a ptr)
Ptr<Base> Ptr<Derived> Im, NOw, DR Ptr<Base>(derived ptr)
Ptr<const Base> Ptr<Derived> Im, NOw, DR Ptr<const Base>(derived ptr)

A* Ptr<A> Ex, NOw Ptr::getRawPtr() 3

A& Ptr<A> Ex, NOw Ptr::operator*() 4

A* A& Ex, NOw &a 3

A& A* Ex, NOw *a p 3

Types/identifiers:A* a p; A& a; Ptr<A> a ptr ; RCP<A> arcp ; boost::shared ptr<A> a sp ;

Properties: Im = Implicit conversion, Ex = Explicit conversion, Ow = Owning, NOw = Non-Owning, DR = Dangling
Reference debug-mode runtime detection [NOTE: All conversions are shallow conversions, i.e. copy pointers not
objects]

1. Constructing an owningRCP from a raw C++ pointer is strictly necessary but must be done with great care
according to the commandments in Appendix B.

2. Constructing a non-owningRCPor Ptr directly from a raw C++ pointer should never be needed in fully com-
pliant code. However, when inter-operating with non-compliant code (or code in an intermediate state of
refactoring) this type of conversion will be needed.

3. Exposing a raw C++ pointer and raw pointer manipulation shouldnever be necessary in compliant code but
may be necessary when inter-operating with external code (see Section 5.2).

4. Exposing a raw C++ reference will be common in compliant code but should only be used for non-persisting
associations.

5. See other helper constructors for passingPtr described in Section 5.4.1.

Table 8. Summary of basic conversions supported involving single ob-
jects.

50

Most Common Basic Conversions for Contiguous Array Types
Type To Type From Properties C++ code (or impl function)

ArrayRCP<S> S* Sh, Ex, Ow arcp(s p,0,n) 1

ArrayRCP<S> S* Sh, Ex, NOw arcp(s p,0,n,false) 2

ArrayRCP<S> Array<S> Sh, Ex, NOw, DR arcpFromArray(s a)
ArrayRCP<S> ArrayView<S> Sh, Ex, NOw, DR arcpFromArrayView(s av)
ArrayRCP<S> ArrayView<S> Dp, Ex, Ow arcpClone(s av)
ArrayRCP<S> RCP<Array<S> > Sh, Ex, Ow, DR arcp(s a rcp)
ArrayRCP<const S> RCP<const Array<S> > Sh, Ex, Ow, DR arcp(cs a rcp)
ArrayRCP<const S> ArrayRCP<S> Sh, Im, Ow, DR ArrayRCP::operator()()

S* ArrayRCP<S> Sh, Ex, NOw ArrayRCP::getRawPtr() 3

S& ArrayRCP<S> Sh, Ex, NOw ArrayRCP::operator[](i) 4

ArrayView<S> S* Sh, Ex, NOw arrayView(s p,n) 1

ArrayView<S> Array<S> Sh, Im, NOw, DR Array::operator ArrayView()
ArrayView<S> Tuple<S> Sh, Im, NOw, DR Tuple::operator ArrayView()
ArrayView<S> std::vector<S> Sh, Im, NOw ArrayView<S>(s v)
ArrayView<S> ArrayRCP<S> Sh, Ex, NOw, DR ArrayRCP::operator()()
ArrayView<const S> const Array<S> Sh, Im, NOw, DR Array::operator ArrayView()
ArrayView<const S> const Tuple<S> Sh, Im, NOw, DR Tuple::operator ArrayView()
ArrayView<const S> const std::vector<S> Sh, Im, NOw ArrayView(cs v)
ArrayView<const S> ArrayRCP<const S> Sh, Ex, NOw, DR ArrayRCP::operator ArrayView()

S* ArrayView<S> Ex, NOw ArrayView::getRawPtr() 3

S& ArrayView<S> Ex, NOw ArrayView::operator[](i) 4

Array<S> S* Dp, Ex Array<S>(s p,s p+n)
Array<S> std::vector<S> Dp, Im Array<S>(s v)
Array<S> ArrayView<S> Dp, Im Array<S>(s av)
Array<S> Tuple<S,N> Dp, Im Array<S>(s t)
Array<S> ArrayRCP<S> Dp, Ex Array<S>(s arcp());
std::vector<S> Array<S> Dp, Ex s a.toVector();

S* Array<S> Ex, NOw Array::getRawPtr() 3

S& Array<S> Ex, NOw Array::operator[](i) 4

Types/identifiers:S* s p; ArrayView<S> s av ; ArrayRCP<S> s arcp ; Array<S> s a; Tuple<S,N> s t ;
std::vector<S> s v; RCP<Array<S> > s a rcp ; RCP<const Array<S> > cs a rcp ;

Properties: Sh = Shallow copy, Dp = Deep copy (dangling references not an issue), Im = Implicit conversion, Ex =
Explicit conversion, Ow = Owning (dangling references not an issue), NOw = Non-Owning, DR = Dangling Reference
debug-mode runtime detection for non-owning

1. It should never be necessary to convert from a raw pointer to an owningArrayRCP object directly. Instead, use
the non-member constructorarcp<S>(n) .

2. Constructing a non-owningArrayRCP or ArrayView directly from a raw C++ pointer should never be needed
in fully compliant code. However, when inter-operating with non-compliant code (or code in an intermediate
state of refactoring) this type of conversion will be needed.

3. Exposing a raw C++ pointer should never be necessary in compliant code but may be necessary when inter-
operating with external code (see Section 5.2).

4. Exposing a raw C++ reference will be common in compliant code but should only be used for non-persisting
associations.

Table 9. Summary of basic conversions supported for contiguous ar-
rays.

51

5.7.3 Implicit type conversion problems and shortcomings

Implicit conversions between different Teuchos memory management types, especially in templated
application code, is one of the most confusing aspects of using these classes. As shown in Figures 2 and 3,
many different implicit conversions are defined. An implicit conversion will only be performed by the C++
compiler to satisfy the formal arguments for a function call when several conditions are satisfied: a) when
it is needed to call a function where no other better functions provide a better match, b) when only a single
implicit conversion for each argument is sufficient, and c) when calling a non-template function (or a
template function where all of the template arguments are explicitly specified). Also, the C++ compiler
will not be able to do implicit conversions to satisfy a function call when ambiguous function calls exists.
Explaining the behavior of these implicit conversions in C++ gets down to the low-level details of the C++
type system that many C++ programmers take for granted or don’t understand all that well in the first place.

Almost all of the problems that programmers have with implicit conversions occur when trying to call
functions where implicit conversions are required to satisfy the signature of the function. Some of these
problems occur when developers fail to understand the C++ type system. Other problems are due to a
fundamental handicap that smart pointer types have with respect to raw C++ pointers.

Implicit conversions of the Teuchos memory management classes (or any other C++ classes in any other
library) needed to call a given function fail for one of the following reasons:

1. Implicit conversions to functions fail because the memory management types are not passed by const
reference (or by value) and are mistakenly (or on purpose) passed by non-const reference. (This is a
programming error.)

2. Implicit conversions fail because templated functions cannot perform implicit conversions in order to
satisfy a call. (This is a language usability annoyance associated with templates but also represents a
fundamental shortcoming of smart pointers compared to raw C++ pointers.)

3. Implicit conversions fail due to ambiguous overloaded calls to overloaded functions that would
otherwise work just fine when raw C++ pointers are involved. (This is a fundamental shortcoming of
smart pointers or any other class as compared to raw C++ pointers.)

Each of these types of problems are examined one at a time in the following three subsections.

Implicit conversions failing due to passing by non-const reference

First, consider implicit conversion problems caused by erroneously passing Teuchos memory management
objects by non-const references instead of by const reference. Consider the user-written function in
Listing 33 that mistakenly passes anRCPby non-const reference.

Listing 33 : User function with a bad pass by non-const reference problem

class Base { ... };
class Derived : public Base { ... };

52

void someUserFunction(RCP<const Base> &base); // Should be ’const RCP<>&’

void someOtherUserFunction()
{

RCP<Derived> derived(new Derived);
someUserFunction(derived); // Compile error, no implicit conversion!
RCP<const Derived> cderived = derived;
someUserFunction(cderived); // Compile error, no implicit conversion!
RCP<Base> base = derived;
someUserFunction(base); // Complile error, no implicit conversion!
RCP<const Base> cbase = base;
someUserFunction(cbase); // Compliles fine, exact match!

}

When user code tries to callsomeUserFunction(...) as shown in Listing 33, the C++ compiler refuses
to perform the implicit type conversions because the compiler will never perform an implicit type
conversion for an argument passed by non-const reference. This type of error is made at least once by most
developers when they first start using the Teuchos memory management classes and they can’t understand
why the code does not compile. To understand why the implicit conversions in Listing 33 are not
occurring, one must understand the C++ type system in how it handles basic type conversions. The C++
standard specifies that implicit type conversions to facilitate the call of a C++ function will only occur for
arguments passed by value or byconstreference. For example, a C++ compiler will convert anint into a
double to call a function taking adouble argument but only if the double is passed by value (i.e.double
x) or by const reference (i.e.const double& x). The same holds true for C++ pointer types. Note that
every pointer type (e.g.int* , SomeType*) is a new C++ value data type that is automatically defined by the
compiler for every defined type. The C++ compiler also automatically defines implicit conversions
between pointer types forT* to const T* and forDerived* to Base* (or combinations of both with
Derived* to const Base*). While C++ pointer data types have a special place in the C++ language, they
behave exactly like every other data type in C++ with respect to non-const references and implicit
conversions. That is, if a pointer object is passed by non-const reference instead of by value, the compiler
will refuse the perform the implicit conversion. For example, the equivalent code to Listing 33 replacing
RCPwith raw pointers shown in Listing 34 will also result in code that will not compile.

Listing 34 : User function with a bad pass by non-const reference problem using raw pointers

typedef const Base* ptr_const_Base; // Equivalent to RCP<const Base>

void someUserFunction(ptr_const_Base &base); // Bad pass by non-const ref!

void someOtherUserFunction()
{

Derived *derived = new Derived;
someUserFunction(derived); // Compile error, no implicit conversion!
const Derived *cderived = derived;
someUserFunction(cderived); // Compile error, no implicit conversion!
Base *base = derived;
someUserFunction(base); // Complile error, no implicit conversion!
const Base *cbase = base;
someUserFunction(cbase); // Compliles fine, exact match!
delete derived;

53

}

The way to fix this problem is to pass the Teuchos memory management types (or any other type one wants
the compiler to perform an implicit conversion on) by const reference. For example, fixing the code in
Listing 33 to pass by const reference shown in Listing 35 results in code that compiles just fine with the
C++ compiler performing all of the expected implicit conversions.

Listing 35 : User function with corrected pass by const reference

void someUserFunction(const RCP<const Base> &base); // Now correct!

void someOtherUserFunction()
{

RCP<Derived> derived(new Derived);
someUserFunction(derived); // Compiles fine, Derived* -> const Base*
RCP<const Derived> cderived = derived;
someUserFunction(cderived); // Compiles fine, const Derived* -> const Base*
RCP<Base> base = derived;
someUserFunction(base); // Compiles fine, Base* -> const Base*
RCP<const Base> cbase = base;
someUserFunction(cbase); // Compliles fine, exact match!

}

Implicit conversions failing due to templated function

Another situation where implicit conversions will fail to be performed to satisfy a function call are when
the function being called is a template function. The C++98 standard does not allow the implicit
conversion of input arguments in order to call a template function [25, Item 45]. For example, consider the
code in Listing 36 that fails to compile:

Listing 36 : Situation where implicit conversion fails due to a template function.

template<class T> class Base { ... };
template<class T> class Derived : public Base<T> { ... };

template<class T>
void someTemplateUserFunction(const RCP<const Base<T> > &base);

template<class T>
void someOtherTemplateUserFunction()
{

RCP<Derived<T> > derived(new Derived<T>);
someTemplateUserFunction(derived); // No implicit conv, no compmile!
RCP<const Derived<T> > cderived = derived;
someTemplateUserFunction(cderived); // No implicit conv, no compmile!
RCP<Base<T> > base = derived;
someTemplateUserFunction(base); // No implicit conv, no compmile!
RCP<const Base<T> > cbase = base;

54

someTemplateUserFunction(cbase); // Exact match, compiles!
}

What is frustrating and yet interesting about this situation is that if theRCPs are replaced with raw pointers,
as shown in Listing 37, the C++ compiler will perform the implicit type conversions just fine.

Listing 37 : Example where implicit conversion to call a template function works fine when using raw
C++ pointers.

template<class T>
void someTemplateUserFunction(const Base<T> *base);

template<class T>
void someOtherTemplateUserFunction()
{

Derived<T> *derived = new Derived<T>;
someTemplateUserFunction(derived); // Okay, Derived<T>* -> const Base<T>*
const Derived<T> *cderived = derived;
someTemplateUserFunction(cderived); // Okay, const Derived<T>* -> const Base<T>*
Base<T> *base = derived;
someTemplateUserFunction(base); // Okay, Base<T>* -> const Base<T>*
const Base<T> *cbase = base;
someTemplateUserFunction(cbase); // Okay, exact match!
delete derived;

}

Comparing the templated code in Listing 36 and Listing 37 it is clear that C++ assigns special privileges
and abilities to the conversion of raw C++ pointer data types that are not afforded to any other data type.
This is the first example of where smart pointer classes in C++ are put at a fundamental disadvantage with
respect to raw C++ pointers. This is an unfortunate situation but the problem can be dealt with by either
forcing the conversion of the input arguments or by explicitly specifying the template arguments as shown,
for example, in Listing 38.

Listing 38 : Example of methods for addressing implicit conversions to allow the call of templated
functions

template<class T>
void someTemplateUserFunction(const RCP<const Base<T> > &base);

template<class T>
void someOtherUserTemplateFunction()
{

RCP<Derived<T> > derived(new Derived<T>);
// Force the conversion Derived<T>* -> const Base<T>*
someTemplateUserFunction(RCP<const Base<T> >(derived));
// or, specify template argument allowing implicit conversion
// Derived<T>* -> const Base<T>*
someTemplateUserFunction<T>(derived);
...

}

55

As shown in Listing 38, typically the least verbose way to call atemplate function that requires a
conversion of input arguments is to just explicitly specify the template argument(s) which turns the
template function into a regular function in the eyes of the C++ compiler and then implicit conversions will
be allowed to satisfy the function call9.

Implicit conversions failing due to ambiguous overloaded function calls

The last situation to discuss where implicit conversions will fail to be performed for the Teuchos memory
management types occurs when calling overloaded functions that require a conversion of the internal
pointer type that would otherwise work just fine for raw C++ pointers. Consider the example code in
Listing 39 showing the use of overloaded functions that differ in the const type of the object.

Listing 39 : Example of ambiguous calls to overloaded functions

class Base { ... };
class Derived : public Base { ... };

void someUserFunction(const RCP<Base> &base); // Overload #1
void someUserFunction(const RCP<const Base> &base); // Overload #2

void someOtherUserFunction()
{

RCP<Derived> derived(new Derived);
someUserFunction(derived); // Compile error, ambiguous call
RCP<const Derived> cderived = derived;
someUserFunction(cderived); // Compile error, ambiguous call
RCP<Base> base = derived;
someUserFunction(base); // Okay, exact match for Overload #1
RCP<const Base> cbase = base;
someUserFunction(cbase); // Okay, exact match for Overload #2

}

The reason that the first two function calls in Listing 39 withRCP<Derived> andRCP<const Derived>
result in ambiguous function call compile errors is that the C++ compiler is not smart enough to know that
a conversion fromRCP<Derived> to RCP<Base> is better than a conversion fromRCP<Derived> to
RCP<const Base> which would allow the first function call to result in a call to Overload #1, for instance.
However, if raw C++ pointers are used in same code, as shown in Listing 40, the compiler will make the
right implicit conversions and call the right overloaded functions just fine.

Listing 40 : Example of implicit conversions for overloaded functions that work just fine for raw pointers

void someUserFunction(Base *base); // Overload #1
void someUserFunction(const Base *base); // Overload #2

void someOtherUserFunction()

9Enabling emplicit conversions of input arguments for template functions with explicitly defined template arguments does not
work on always work on even recent versions of the Sun C++ compiler.

56

{
Derived *derived = new Derived;
someUserFunction(derived); // Calls Overload #1: Derived* -> Base*
const Derived *cderived = derived;
someUserFunction(cderived); // Calls Overload #2: const Derived* -> const Base*
Base *base = derived;
someUserFunction(base); // Okay, exact match for Overload #1
const Base *cbase = base;
someUserFunction(cbase); // Okay, exact match for Overload #2
delete derived;

}

Again, similar to the templated function example given above, comparing Listing 39 and Listing 40, it is
clear that the conversions of raw C++ pointer types to call overloaded functions are given special privileges
and abilities that are not afforded to any other data type in C++. The C++ compiler will resolve overloaded
functions for the conversion of C++ pointer types based on the least required conversions (e.g.Derived* to
Base* is better thanDerived* to const Base*). This is wonderful behavior for raw C++ pointers (or
perhaps confusing depending on how one looks at it) but such special abilities are not afforded to smart
pointer types likePtr or RCP(or any other smart pointer type includingboost::shared ptr)10.

Problems in calling overloaded functions like this can be resolved but only through explicitly converting
the input arguments as shown in Listing 41.

Listing 41 : Example of resolving ambiguous calls to overloaded functions through explicit argument
conversions

void someUserFunction(const RCP<Base> &base); // Overload #1
void someUserFunction(const RCP<const Base> &base); // Overload #2

void someOtherUserFunction()
{

RCP<Derived> derived(new Derived);
someUserFunction(RCP<Base>(derived)); // Calls Overload #1
someUserFunction(RCP<const Base>(derived)); // Calls Overload #2
...

}

Having to explicitly convert input arguments to satisfy overloaded function calls gets annoying very quickly
for any reasonable-minded programmer. A much better way to deal with the problem of overload functions
and smart pointer types is to not use overloaded functions in the first place as demonstrated in Listing 42.

Listing 42 : Example of resolving ambiguous calls to overloaded functions by not using overloaded
functions in the first place

void someNonconstUserFunction(const RCP<Base> &base);
void someUserFunction(const RCP<const Base> &base);

10Fixing the problem of implicit conversions for template and overloaded functions to put smart pointers at the same level as raw
pointers would require a C++ language extension.

57

void someOtherUserFunction()
{

RCP<Derived> derived(new Derived);
// Compiles fine, implicit conv: Derived* -> Base*
someNonconstUserFunction(derived);
// Compiles fine, implicit conv: Derived* -> const Base*
someUserFunction(derived);
...

}

Avoiding problems with ambiguous function calls to overloaded functions by avoiding overloaded
functions (as demonstrated in Listing 42) may seem like a bit of cop-out but in general function
overloading tends to be abused in C++ anyway. In many cases, code can be much more clear by using
different function names in cases where most developers would just use overloaded functions (perhaps
because they cannot think of better non-overloaded names).

5.8 Core idioms for the use of the Teuchos memory management classes

Well designed C++ class libraries are created together with a set of idioms for their use and this is
especially true for the Teuchos Memory Management classes. This paper describes idioms related to the
creation of single dynamically allocated objects, for defining and using local variables and data members,
for passing objects and arrays of objects to and from functions, and for returning objects and arrays of
objects as return values from functions. It is critical that these idioms be used consistently in order to yield
the safest, highest quality, clearest, most self-documenting code.

5.8.1 The non-member constructor function idiom

The mainstream C++ literature espousing the use of smart reference-counted pointers like
boost::shared ptr seems to lack a solution for an effective, safe, and clean way to create new
dynamically allocated objects. To demonstrate the issues involved, consider the C++ classBlaget shown
in Listing 43:

Listing 43 : A class taking multiple dynamically allocatable objects

class Blaget {
public:

Blaget(const RCP<Widget> &widgetA, const RCP<Widget> const widgetB);
widgetA_(widget), widgetB_(widget) {}

...
private:

RCP<Widget> widgetA_;
RCP<Widget> widgetB_;

};

Now consider how one might go about constructing aBlaget object on the stack given newly dynamically
allocatedWidget objects. A compact, clean, and seemingly safe way to do so is shown in Listing 44.

58

Listing 44 : A leaky way to construct

Blaget blaget(rcp(new Widget()), rcp(new Widget()));

The problem with the code in Listing 44 is that it might result in a memory leak if an exception is thrown
by one of the constructors forWidget (see [30, Item 13]). The reason that a memory leak might occur is
that a C++ compiler is allowed to evaluate bothnew Widget() calls before calling thercp() functions. If
the second constructorWidget() throws an exception after the firstWidget() constructor has been
invoked but before theRCPobject wrapping the firstWidget object is constructed, then the memory created
by the firstnew Widget() will never be reclaimed.

The current C++ literature (see [30, Item 13]) recommends rewriting constructor code like shown in
Listing 44 using temporary local variables as shown in Listing 45.

Listing 45 : A sound but verbose way to construct

RCP<Widget> widgetA(new Widget());
RCP<Widget> widgetB(new Widget());
Blaget blaget(widgetA, widgetB);

While the code in Listing 45 will avoid a memory leak being created in case an exception is thrown,
competent Java and Python programs will rightfully be disgusted that they have to create temporary
variables just to call another constructor. From a software engineering perspective, it is undesirable to
create useless local variables likewidgetA andwidgetB because they might be inadvertently copied and
used for other purposes, resulting in undesirable side-effects.

The way to solve the problems described above is to provide non-member constructor functions for all
dynamically allocatable reference-type classes and then always call them to createRCP-wrapped objects in
client code. In fact, to avoid mistakes when using reference-type classes, one should disallow the creation
of reference-type objects except through a provided non-member constructor. Anon-member constructor
compliantWidget class declaration is shown in Listing 46.

Listing 46 : The non-member constructor idiom for reference-type classes

class Widget {
public:

static RCP<Widget> create() { return rcp(new Widget); }
void display(std::ostream&);

private: // or protected
// Not for user’s to call!
Widget();
Widget(const Widget&);
Widget& operator=(const Widget&);

};

// Non-member constructor function
inline RCP<Widget> createWidget() { return Widget::create(); }

59

Using the non-member constructor functioncreateWidget() , the unsafe constructor call in Listing 44 can
be written as shown in Listing 47.

Listing 47 : Clean and bullet-proof way to construct dynamically allocated objects using the
“non-member constructor function” idiom

Blaget blaget(createWidget(), createWidget());

The code in Listing 47 will never result in a memory leak if an exception is thrown because each argument
is returned as a fully formedRCPobject which will clean up memory if any exception is thrown.

Note that the use of thenon-member constructor idiomnot only means that raw calls todelete are
encapsulated in all high-level C++ code (due to the use ofRCP), but it also means that raw calls tonew
should be largely encapsulated as well!

The non-member constructor idiom as shown in Listing 46 where a reference-type object can only be
dynamically allocated and returned wrapped in anRCPobject is recommended for all reference-type
objects. The reason for this is that, as described in Section 5.9, when an object is dynamically allocated in
managed in anRCPobject, a number of important debug-mode runtime checks can be performed which
cannot be when the object is first allocated on the stack or managed as a static object.

5.8.2 General idioms for handling arrays of objects

Before describing specific idioms for class data members, formal function arguments, and function return
types it is worth discussing how arrays of objects are treated in a common way in all of these idioms and
why. A common set of idioms that is used throughout is how arrays of value-type objects and
reference-types objects are handled. When dealing with an array of value-type objects, typically a
contiguous array of objects will be allocated. For example, to create an array of value-type objects one
would declare:

Array<S> valTypeArray;

In this case, the storage for the array holding the value-type objects and the storage for the value-type
objects themselves are one and the same. This is also true for persisting and non-persisting views of array
of value-type objects represented asArrayRCP<[const] S> andArrayView<[const] S> , respectively. It
is common for numerical programs to create very large arrays of value-type objects of integers and floating
point numbers. Therefore, it is usually important to share these arrays and pass them around instead of
creating copies. Because if this, it is typical to seeArrayRCP<[const] S> being used to share large
value-type arrays of objects.

On the other hand, one cannot generally allocate a contiguous array of reference-type objects. Instead, one
has to allocate and use a contiguous array of (smart) pointer objects that then point to individually allocated
reference-type objects. For example, to store an array of dynamically allocated reference-type objects, one
would declare:

Array<RCP<A> > refTypeArray;

60

Anyone familiar with object-oriented programming in C++ should already knows this, but they might be
accustomed to allocating and working with arrays of raw pointers likestd::vector<T*> . This is a really
bad idea of course which is mentioned in Item 79 “Store only values and smart pointers in containers” in
[30]. In this case, one can think of the storage for the array ofRCPvalue-type objects and the storage for the
reference-type objects of typeA themselves to be different sets of storage. For example, one can change
whatA object is pointed to in theRCP<A>object stored in the contiguous array to without changing theA
object itself such as in Listing 48:

Listing 48 : Code that changes memory in the contiguous array but does not touch the memory in the
reference-type objects themselves

void foo(Array<RCP<A> > &refTypeArray, const RCP<A> &someA)
{

refTypeArray[0] = someA;
}

Note in Listing 48 that technically the memory stored in the array (ofRCP<A>objects) was changed but the
memory stored in the reference-type objects being pointed to where not changed at all. Likewise, one can
change anA object itself without disturbing the array storage inside of theArray<RCP<A> > object itself
such as shown in Listing 49:

Listing 49 : Code that changes the memory associated with the reference-type objects but does not change
the memory of the contiguous array at all

void foo(const Array<RCP<A> > &refTypeArray)
{

refTypeArray[0]->someChange();
}

As opposed to arrays used to store value-type objects (e.g.int , float , double , std::complex<double> ,
etc.) which can be huge (with millions of elements) one typically does not create large arrays of
reference-type objects. (Note that creating large arrays of reference-type objects would generally imply
that the reference-type objects are small and cheap and therefore creating a large array ofRCPobjects could
impart a large storage and runtime overhead as described in Section 5.12.1.) Since arrays of reference-type
objects tend to be small in well designed programs, one usually does not care to share the array storage of
Ptr or RCPobjects itself, only the reference-type objects they point to. Because of this, one typically will
not seeArrayRCP<[const] RCP<[const] A> > objects being passed around and stored. Instead, one
would typically just passArrayView<[const] RCP<[const] A> > objects and then use this array to
create a newArray<[const] RCP<[const] A> > object to copy the smart pointers. In general, we use
arrays ofRCPobjects for representing persisting associations and arrays ofPtr objects for representing
non-persisting associations when dealing with reference-type objects.

5.8.3 Idioms for class object data members and local variables

In general, class object data members and local variables represent a persisting relationship and therefore
should have unique ownership or use reference counting. That means that the typesPtr andArrayView

61

Class Data Members for Value-Type Objects
Data member purpose Data member declaration

non-shared, single, const object const S s ;
non-shared, single, non-const object S s ;
non-shared array of non-const objects Array<S> as ;
shared array of non-const objects RCP<Array<S> > as ;
non-shared statically sized array of non-const objectsTuple<S,N> as ;
shared statically sized array of non-const objects RCP<Tuple<S,N> > as ;
shared fixed-sized array of const objects ArrayRCP<const S> as ;
shared fixed-sized array of non-const objects ArrayRCP<S> as ;

Table 10. Idioms for class data member declarations for value-type
objects.

Class Data Members for Reference-Type Objects
Data member purpose Data member declaration

non-shared or shared, single, const object RCP<const A> a ;
non-shared or shared, single, non-const objectRCP<A> a;
non-shared array of const objects Array<RCP<const A> > aa ;
non-shared array of non-const objects Array<RCP<A> > aa ;
shared fixed-sized array of const objects ArrayRCP<RCP<const A> > aa ;
“...” (const ptr) ArrayRCP<const RCP<const A> > aa ;
shared fixed-sized array of non-const objectsArrayRCP<RCP<const A> > aa ;
“...” (const ptr) ArrayRCP<const RCP<const A> > aa ;

Table 11. Idioms for class data member declarations for reference-types
objects.

should almost never be used for class object data members or local variables (especially not for data
members). However, local variables of typePtr andArrayView will be created in a function when that are
created off otherPtr andArrayView objects (passed through the formal argument list). The typesPtr and
ArrayView will also be used as local variables when semi-persisting associations are involved (see
Section 5.12.3 for an example).

Tables 10 and 11 give some idioms for class object data members. Usages for local variables are similar.
Table 10 shows a few use cases involving value-type objects. Table 11 shows use cases involving
reference-type objects. Every possible use case is not shown in these tables, only the most common ones.
There is almost no end to the number of different types of data structures that can be created by embedding
these memory management types in each other to address different needs. When creating these composite
data structures one just needs to understand the implications for the selections of the class types and for the
use of const.

It is important to note that anRCP<S>data member for a value-type object is not shown in Table 10. That is

62

because once one declares anRCPobject pointing to a value-type object, at that point one is treating the
value-type object with reference semantics so it would be considered to be a reference-type object (which
takes one to Table 11). Again, most value-type class objects can be treated as reference-types in certain
contexts (e.g. such as when dynamically allocating a largeArray object so it can be shared and avoid
expensive deep copy semantics).

Note that there are a few other important differences between the way that value-type objects and
reference-type objects are handled. The main difference, obviously, is that one can hold a value-type object
by value but not for a reference-type object. One can see this in how single objects are stored and how
arrays of objects are declared in Table 11.

5.8.4 Idioms for the specification of formal arguments for C++ functions

Described here are idioms for the specification of the formal arguments for C++ functions that maximize
compile-time and debug-mode run-time checking, yield near optimal raw pointer performance for
non-debug-mode builds, and result in highly self-documenting code. A key component to this specification
is that no raw C++ pointers are used. Raw pointers are the cause of almost all memory usage problems in
C++. Raw C++ references, on the other hand, are safe to use as long as the object reference they are being
used to point to is valid and no persisting association exists (see Section 5.4.3).

Tables 12 and 13 give conventions for passing single objects and arrays of objects for value-type and
reference-type objects, respectively. In this specification, the Teuchos classesPtr , RCP, ArrayRCP , and
ArrayView are used as a means to pass objects of another type (shown asS andA in Tables 12 and 13).
Conventions are shown for both passing in objects and for passing out objects through the formal
arguments to C++ functions. Note that value-type objects can always be handled using reference semantics
so all of the passing conventions in Table 13 apply equally as well for value-type objects as they do for
reference-type objects. However, the conventions in Table 12 only apply to value-type objects that can be
stored in contiguous arrays.

This specification addresses the five different properties that must be considered when passing an object to
a function as a formal function argument (or passing back an object through a formal function argument):

• Is it a single object or an array of objects?

• Does the object or array of objects use value semantics or reference semantics?

• Is the object or array of objects changeable or non-changeable (i.e. const)?

• Is this establishing a persisting or non-persisting (or semi-persisting) association?

• Is the object or array of objects optional or required?

The first four of these properties are directly expressed in the C++ code in all cases shown in Tables 12 and
13. The specification for whether an argument or object is required or optional must be documented in the
function’s interface specification (i.e. in a Doxygen documentationparam field). It is declared here that, by
default, an argument passed through anPtr , RCP, ArrayView , or ArrayRCP object will be assumed to be
required (i.e. non-null) unless otherwise stated. The only exception for this implicit assumption for

63

Passing IN Non-Persisting Associations to Value Objects as Func Args
Argument Purpose Formal Argument Declaration

single, non-changeable object (required)S s or const S s or const S &s
single, non-changeable object (optional)const Ptr<const S> &s
single, changeable object (required) const Ptr<S> &s or S &s
single, changeable object (optional) const Ptr<S> &s
array of non-changeable objects const ArrayView<const S> &as
array of changeable objects const ArrayView<S> &as

Passing IN Persisting Associations to Value Objects as Func Args
Argument Purpose Formal Argument Declaration

array of non-changeable objectsconst ArrayRCP<const S> &as
array of changeable objects const ArrayRCP<S> &ss

Passing OUT Persisting Associations for Value Objects as FuncArgs
Argument Purpose Formal Argument Declaration

array of non-changeable objectsconst Ptr<ArrayRCP<const S> > &as
array of changeable objects const Ptr<ArrayRCP<S> > &as

Passing OUT Semi-Persisting Associations for Value Objects as Func Args
Argument Purpose Formal Argument Declaration
array of non-changeable objectsconst Ptr<ArrayView<const S> > &as
array of changeable objects const Ptr<ArrayView<S> > &as

Table 12. Idioms for passing value-type objects to C++ functions.

64

Passing IN Non-Persisting Associations to Reference (or Value) Objects as Func Args
Argument Purpose Formal Argument Declaration

single, non-changeable object (required)const A &a
single, non-changeable object (optional)const Ptr<const A> &a
single, changeable object (required) const Ptr<A> &a or A &a
single, changeable object (optional) const Ptr<A> &a
array of non-changeable objects const ArrayView<const Ptr<const A> > &aa
array of changeable objects const ArrayView<const Ptr<A> > &aa

Passing IN Persisting Associations to Reference (or Value) Objects as Func Args
Argument Purpose Formal Argument Declaration

single, non-changeable object const RCP<const A> &a
single, changeable object const RCP<A> &a
array of non-changeable objectsconst ArrayView<const RCP<const A> > &aa
array of changeable objects const ArrayView<const RCP<A> > &aa

Passing OUT Persisting Associations for Reference (or Value)Objects as Func Args
Argument Purpose Formal Argument Declaration

single, non-changeable object const Ptr<RCP<const A> > &a
single, changeable object const Ptr<RCP<A> > &a
array of non-changeable objectsconst ArrayView<RCP<const A> > &aa
array of changeable objects const ArrayView<RCP<A> > &aa

Passing OUT Semi-Persisting Associations for Reference (or Value) Objects as Func Args
Argument Purpose Formal Argument Declaration

single, non-changeable object const Ptr<Ptr<const A> > &a
single, changeable object const Ptr<Ptr<A> > &a
array of non-changeable objectsconst ArrayView<Ptr<const A> > &aa
array of changeable objects const ArrayView<Ptr<A> > &aa

Table 13. Idioms for passing reference-type objects to C++ functions.

65

non-null objects isconst Ptr<const T>& for single, non-changeable, non-persisting, objects where these
always mean that the argument is optional. If such an argument is required, it is specified asconst T& .

An array of value objects is passed as contiguous storage through anArrayView<S> or ArrayView<const
S> object. An array of reference objects, however, cannot be passed in contiguous storage for the objects
themselves and instead must be passed as contiguous storage of (smart) pointers to the objects using
ArrayView<const Ptr<const A> > for non-persisting associations orArrayView<const RCP<const
A> > for persisting associations. Theconst can be removed from the eitherPtr /RCPor A depending on
what is allowed to change or not change during the function call.

Note that in the case ofPtr , RCP, ArrayView , andArrayRCP objects, that these can be treated as output
objects in their own right which is shown in Tables 12 and 13 for passing out persisting and semi-persisting
relationships to single objects and arrays of objects. For example, passing anRCP<T>object into a function
to be set to point to a differentA object would be specified in the function prototype asconst Ptr<RCP<A>
>& or RCP<A>&depending on preference (only the caseconst Ptr<RCP<A> >& is shown in the tables
which is a better self-documenting form and provides better debug-mode runtime checking since it can
detect dangling references). Note that semi-persisting associations are always passed out asPtr and
ArrayView objects. These types have essentially zero overhead in an optimized build but yet have full
runtime checking including detection and reporting of dangling references in a debug-mode build (see
Section 5.12.3 for a discussion of the motivation and usage of semi-persisting associations). The typesRCP
andArrayRCP are always used to establish persisting associations.

Variations in passing single changeable objects

The only area of contention in this specification is how to handle arguments for required single changeable
objects. The specification described here allows either passing them through a smart pointer asconst
Ptr<T>& or as a raw non-const object reference asT&. In Item 25 in [30], the authors recommend passing a
raw non-const object referenceT& for changeable required objects, which seems very reasonable. However,
other notable authors [28, Section Section 5.5] and [23, Section 13.2] and the Google C++ coding
standard11 recommend passing a pointer instead, as it provides a visual clue that the object is being
modified in the function call. Of course, the idioms defined here do not allow raw pointers so one must
pass aconst Ptr<T>& object instead. To consider the issues, for example, looking at the function call in
Listing 50, which (if any) argument(s) are being modified?

Listing 50 : Function call using all raw references where it is impossible to determine what objects are
modified in the call

someFunction(a, b, c, d);

To tell for sure which objects are being modified in Listing 50, one would have to look at the function
prototype shown in Listing 51 to see that it is thed argument that is being modified in the function call.

Listing 51 : Function prototype where all objects are passed as raw C++ references

void someFunction(const A& a, const B& b, const C& c, D& d);

11http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml

66

Now consider the convention that all changeable arguments be passed in through a pointer asconst
Ptr<T>& , giving the new prototype shown in Listing 52.

Listing 52 : Function prototype where modified objects are passed throughPtr leading to
self-documenting client code

void someFunction(const A& a, const B& b, const C& c,
const Ptr<D>& d);

Now the new function call in Listing 53 is self-documenting with regards to which object is modified in the
function call by using theoutArg(...) templated non-member function (seeoutArg(...) in Listing 19).

Listing 53 : Self-documenting function call that shows what argument is modified in the function call

someFunction(a, b, c, outArg(d));

Also, given that allPtr<T> arguments are assumed to be non-null by default, this specifies that passing an
argument asconst Ptr<T>& has all of the same meaning that passing an argument byT&. Of course now
one has given up a compile-time check for a non-null argument forT& with a debug-mode runtime check
thatconst Ptr<T>& is non-null. Theoretically, the compile-time check would appear to be far superior but
in reality the debug-mode runtime check is usually what happens anyway since the raw object reference
would typically be created from a smart pointer in most cases (which can be null, resulting in a null
dereference runtime exception in a debug-mode build). Therefore the issue is not whether a compile-time
check will catch passing a null-object (because it can’t) but instead the issue is how soon a debug-mode
runtime check will catch a dereference of a null smart pointer.

Converting from non-persisting to persisting references to satisfy the defined idioms

There are legitimate instances where client code needs to convert a non-persisting reference (i.e.T&,
Ptr<T> , or ArrayView<T>) to a persisting reference (i.e.RCPor ArrayRCP) in order to satisfy the idioms
outlined in Tables 12 and 13. The most common case is when a function is passed a raw reference or aPtr
to a C++ object (for a non-persisting association) but the function’s implementation must create (and
destroy) and object what has a persisting association with the passed in object. Consider the classesA, B
andC shown in Listing 9 whereC maintains anRCPto B. Now consider a client function that needs anA and
B object to perform its function but also needs to create and destroy aC object internally giving it theB
object. In order to be consistent with the idioms defined here, theB object must be passed as a raw C++
reference or through aPtr object. Listing 54 shows how to convert from a raw C++ reference to a
non-owningRCPobject to satisfy the idioms.

Listing 54 : Converting from a raw C++ reference to anRCP object to satisfy function argument passing
idiom

void doSomeOperation(B &b, const A &a)
{

67

...
C c;
const RCP b_rcp = rcpFromRef(b);
c.fooC1(b_rcp, a);
c.fooC2();
...
// The C object is destroyed here!

}

In Listing 54, the standard conversion functionrcpFromRef(...) converts from a raw C++ reference to a
non-owningRCPobject. Creating anRCPlike is perfectly safe and correct. The lifetime of the createdC
object is contained within the functiondoSomeOperation(...) so the promise of not creating a persisting
association inherent in the functions prototype (i.e. passing theB object as a raw C++ reference) is being
correctly kept. Note that if the created non-owningRCPis accidentally used to create a persisting
association then, in many cases, the dangling reference will be caught by the built-in debug-mode runtime
checking (see Section 5.11.3).

A similar type of conversion is required when passing in an object through aPtr object. For example, the
function in Listing 54 may instead pass in aPtr object instead of a raw C++ referenceB& and the
refactored function is shown in Listing 55.

Listing 55 : Converting from aPtr object to anRCP object to satisfy function argument passing idiom

void doSomeOperation(const Ptr &b, const A &a)
{

...
C c;
const RCP b_rcp = rcpFromPtr(b);
c.fooC1(b_rcp, a);
c.fooC2();
...
// The C object is destroyed here!

}

Again, if a persisting association is accidentally created by copying theRCPobject created in Listing 55
then this can be detected in a debug-mode build. Note that the conversion fromPtr to RCPshown
in in Listing 55 actually generates much more efficient code in a debug-mode build because
dangling-reference detection is implemented without having to perform a more expensive node look-up as
described in Section 5.11.3.

5.8.5 Idioms for returning objects from C++ functions

Idioms for how objects are returned from C++ functions are also important in order to achieve C++ code
that is efficient, safe (with both compile-time and debug-mode run-time checking), and is as
self-documenting as possible. Tables 14 and 15 give common specifications for returning single objects
and arrays of objects for both value-type and reference-type objects for non-persisting, persisting, and
semi-persisting associations. Five different types of properties that must be defined and considered when
returning an object (or array of objects) from a function:

68

Returning Non-Persisting Associations to Value Objects
Purpose Return Type Declaration

Single copied object (return by value) S
Single non-changeable object (required)const S&
Single non-changeable object (optional)Ptr<const S>
Single changeable object (required) S&
Single changeable object (optional) Ptr<S>
Array of non-changeable objects ArrayView<const S>
Array of changeable objects ArrayView<S>

Returning Persisting Associations to Value Objects
Purpose Return Type Declaration

Array of non-changeable objectsArrayRCP<const S>
Array of changeable objects ArrayRCP<S>

Returning Semi-Persisting Associations to Value Objects
Purpose Return Type Declaration

Array of non-changeable objectsArrayView<const S>
Array of changeable objects ArrayView<S>

Table 14. Idioms for returning value-type objects from C++ functions.

• Is it a single object or an array of objects?

• Does the object or array of objects use value semantics or reference semantics?

• Is the object or array of objects changeable or non-changeable (i.e. const)?

• Is this establishing a persisting or non-persisting (or semi-persisting) association?

• Is the object or array of objects optional or required?

These five different properties are the same five described for formal function arguments described in
Section 5.8.4. Again, the first four of these properties are clearly defined in the C++ code itself. However,
again, it is not always possible to directly state in the C++ code declarations whether the object (or array of
objects) is optional or required. Here, we state by default that all array arguments of typeArrayView and
ArrayRCP are assumed to be required non-null arguments by default. Otherwise, documentation must exist
stating that the arguments are optional.

The semantics of return objects is different than for formal function arguments. There are several
differences that one can see from looking at Tables 12 and 13, and Tables 14 and 15. The key difference
between formal functions arguments and return values relates to using constant references for formal
arguments versus returning objects by value as return types. While the memory management objects of
typePtr , RCP, ArrayView , andArrayRCP are all passed by constant reference in Tables 12 and 13,
alternatively they are always returned as objects (i.e. return by value) in Tables 14 and 15. The reason that

69

Returning Non-Persisting Associations to Reference (or Value) Objects
Purpose Return Type Declaration

Single cloned object RCP<A>
Single non-changeable object (required)const A&
Single non-changeable object (optional)Ptr<const A>
Single changeable object (required) A&
Single changeable object (optional) Ptr<A>
Array of non-changeable objects ArrayView<const Ptr<const A> >
Array of changeable objects ArrayView<const Ptr<A> >

Returning Persisting Associations to Reference (or Value) Objects
Purpose Return Type Declaration

Single non-changeable object RCP<const A>
Single changeable object RCP<A>
Array of non-changeable objectsArrayView<const RCP<const A> >
Array of changeable objects ArrayView<const RCP<A> >

Returning Semi-Persisting Associations to Reference (or Value) Objects
Purpose Return Type Declaration

Single non-changeable object Ptr<const A>
Single changeable object Ptr<A>
Array of non-changeable objectsArrayView<const Ptr<const A> >
Array of changeable objects ArrayView<const Ptr<A> >

Table 15. Idioms for returning reference-type objects from C++ func-
tions.

70

these memory management objects should always be returned by value is that this is needed to correctly set
up the reference counting machinery to properly set up persisting relationships and to enable debug
runtime checking (e.g. to detect dangling references with semi-persisting associations).

Note that it is critical that semi-persisting associations for single objects must always be returned as
Ptr<T> objects and never as raw referencesT& which is otherwise acceptable for non-persisting
associations. The reason thatPtr<T> objects must always be used for semi-persisting associations is that in
a debug-mode build, the runtime checking machinery will be able to detect dangling references or changes
in the parent object that would otherwise invalidate the semi-persisting view that is impossible to catch
when using raw C++ references.

In the following section, an extended example is given highlighting the need to return the Teuchos memory
management smart pointer objects by value. If one already accepts the need for this, the example can be
skipped.

Extended example for the need to return smart pointers by value

In order to understand the importance of returning memory management objects by value instead of by
reference, first consider Listing 56 that looks to be perfectly safe code.

Listing 56 : A seemingly safe use of raw C++ references

void seeminglySafeFoo(Blob &blob, Flab &flab)
{

blob.doGoodStuff(flab);
}

The code in Listing 56 does not itself look unsafe. However, the reason that it unsafe comes from the code
that callsseeminglySafeFoo(...) and the code that implementsBlob shown in Listing 57.

Listing 57 : Code that makes seeminglySafeFoo(...) fail

class Blob
{

RCP<Flab> flab_;
public:

Blob() : flab_(createFlab()) {}
const RCP<Flab>& getFlab() { return flab_; }
void doGoodStuff(Flab &flab_in)
{

flab_ = createFlab(); // Using non-member constructor
flab_in.conflab(*flab_);

}
};

void badCallingFunction()

71

{
Blob blob;
seeminglySafeFoo(blob, *blob.getFlab());

}

When the code in Listings 56 and 57 executes, it will most likely cause a segfault when it runs, if one is
lucky. However, if unlucky, the code will actually seem to be working correctly on the machine where the
code is initially tested it but will explode later (perhaps years later) when run under different
circumstances. The reason that the code in Listings 56 and 57 is faulty is because theFlab object that is
passed through the callseeminglySafeFoo(blob, *blob.getFlab()) to blob.doGoodStuff(flab) is
invalidated before it is used because it gets destroyed and is replaced by a new object in the expression
flab = createFlab() . When this happens, the object now represented as the raw C++ reference
flab in is deleted which causes the code in the expressionflab in->conflab(*flab) to be in error,
and the behavior of the program is undefined (and again will segfault if one is lucky).

How did it come to this situation? What if the raw C++ references were replaced with with RCP-wrapped
objects? Well, consider the updated code in Listing 58.

Listing 58 : Still unsafe code

class Blob
{

RCP<Flab> flab_;
public:

Blob() : flab_(createFlab()) {}
const RCP<Flab>& getFlab() { return flab_; }
void doGoodStuff(const RCP<Flab> &flab_in)
{

flab_ = createFlab(); // Using non-member constructor
flab_in.conflab(*flab_);

}
};

void seeminglySafeFoo(Blob &blob, const RCP<Flab> &flab)
{

blob.doGoodStuff(flab);
}

void badCallingFunction()
{

Blob blob;
seeminglySafeFoo(blob, blob.getFlab());

}

Is the code in Listing 58 correct? The sad answer is no, it is not. TheFlab object returned from
blob.getFlab() will still get deleted before it is used in the expressionflab ->conflab(flab in) .
What is going on here? The core of the problem is that the functionBlob::getFlab() is incorrectly
implemented. Functions must always returnRCPobjects by value and never by reference as shown in

72

Tables 14 and 15. By returning a raw C++ reference to theRCP<Flab> object, a persisting association with
the client is never properly established and this is the root cause of the whole problem.

Now consider the updated code in Listing 59 that goes back to using raw C++ references where appropriate
but now returns theRCP<Flab> object by value as it should.

Listing 59 : Correctly returning RCP by value yielding safe code

class Blob
{

RCP<Flab> flab_;
public:

Blob() : flab_(createFlab()) {}
RCP<Flab> getFlab() { return flab_; } // Returns by value now!
void doGoodStuff(Flab &flab_in)
{

flab_ = createFlab(); // Using non-member constructor
flab_in.conflab(*flab_);

}
};

void seeminglySafeFoo(Blob &blob, Flab &flab)
{

blob.doGoodStuff(flab);
}

void goodCallingFunction()
{

Blob blob;
seeminglySafeFoo(blob, *blob.getFlab());

}

Is the code represented in Listing 59 now safe and correct? Yes it is. The reason that it is now safe and
correct is that a persisting relationship is now being correctly created by the function callblob.getFlab()
in that a new temporaryRCP<Flab> object is created (which increments the reference count). From this
new temporaryRCP<Flab> object, a raw C++ reference is then returned from*blob.getFlab() and
passed through. In this case, since the reference count on the existingFlab object is now two instead of
one, the expressionflab = createFlab() will not delete the existingFlab object and the following
expressionflab in.conflab(*flab) will have two validFlab objects. After the function
seeminglySafeFoo(blob, *blob.getFlab()) exits, the firstFlab object will finally be deleted (but
that is just fine).

More exmaples of function return issues

Another difference between formal function arguments and return values is what persisting and
non-persisting associations mean related to function returns. In the case of objects returned from C++
functions, a persisting association is one where the object returned from a C++ function is remembered

73

past the end of the statement where the C++ function returning the objects is called. For example, consider
the code in Listing 60.

Listing 60 : Example of a bad persisting association implemented as a raw C++ reference (see theGrob
class defined in Listing 61)

void foo(Glob& glob)
{

const Flab &flab = glob.getFlab();
glob.doStuff();
flab.doMoreStuff();

}

The code in Listing 60 represents a persisting association because because theFlab object returned in the
expressionconst Flab &flab = glob.getFlab() is remembered past the statement where it is called
and is used later in callingflab.doMoreStuff() . This type of code is all too common in C++ programs
(including a lot of code I have written over the last 10 years) but it is not safe because it is not properly
respecting the notion of persisting associations. To see why the code in Listing 60 is so bad, consider the
possible unfortunate implementation of theGlob class shown in Listing 61:

Listing 61 : Bad implementation of theGlob class with respect to persisting associations

class Glob {
RCP<Flab> flab_;

public:
Glob() : flab_(createFlab()) {}
const Flab& getFlab() const { return *flab_; }
void doStuff()

{
flab_ = createFlab(); // Non-member constructor
...

}
};

What happens of course is that the behavior of the code in Listings 60 and 61 is undefined and will most
likely result in a segfault (if one is lucky). The reason this is bad code is that theFlab object reference that
gets returned fromglob.getFlab() is not used until after the functionGlob::doStuff() gets called
which will delete theFlab object and replace it with another one. This results inflab.doMoreStuff()
being called on a deleted object. Again, this will typically result in a segfault, but on some systems in some
cases the program might actually seem to run just fine, perhaps even for years. This of course is an error
that a tool like Valgrind or Purify would likely catch pretty easily which is why these tools are very useful
to have around. So what rule was broken in Listing 60? Consider again the definition of a persisting
association related to a return value which is:

• Persisting associationsare associations that exist between two or more objects that extend past a
single function call for formal function arguments, or a single statement for function return objects.

74

What this means is that any object that is returned as a raw C++ reference from a function must be used in
the same statement from where the returning function is called. Therefore, the function in Listing 60
should be rewritten as shown in Listing 62.

Listing 62 :

void foo(Glob& glob)
{

glob.getFlab().doMoreStuff();
glob.doStuff();

}

Here, of course, one is assuming that the order of evaluation of the functions is not important.

Note that functions returning raw C++ references are common and are fairly safe to use as long as the
returned object is used in the same statement where the function is called. For example, this is what is
commonly done when a non-const reference to an element from a user-defined array class object is
returned and set in the same statements such as shown in Listing 63.

Listing 63 :

void foo(std::vector<int>& a)
{

a[0] = 5; // Non-persisting function return association
...

}

What is typically not safe, of course, is when one tries to save a reference to an object and then use it like in
Listing 64.

Listing 64 :

void foo(std::vector<int>& a)
{

int &a_0 = a[0]; // Incorrect persisting association
a.resize(20);
a_0 = 5; // Will likely segfault if one is lucky!
...

}

The problem with the code in Listing 64 is that thea.resize(20) function might cause a new buffer to be
allocated and the existing buffer to be deleted. This will of course make the reference returned inint &a 0
= a[0] invalid when it is later written to ina 0 = 5 .

The whole point of the example code Listings 63 and 64 is to demonstrate the working definition of
persisting & non-persisting associations as they relate to objects returned from functions. This argument
supports the idioms shown in Tables 14 and 15.

75

Figure 4. Basic design of the Teuchos reference-counting machinery.

5.9 Reference-counting machinery in-depth

In order to effectively use these memory management classes and to debug problems when they occur, one
must understand the basic reference-counting approach being used. Basic reference counting with smart
pointers is well established in the C++ literature [24] but a basic overview and specific details about the
approach used in the Teuchos memory management classes is appropriate to describe here. Of equal
importance is to describe how the reference-counting infrastructure can be used to address some boundary
cases that can help solve some fundamental problems with reference counting.

The basic reference counting machinery being used by the classes is first described. Next, the issue of
circular references and weak pointers are discussed.

5.9.1 Basic reference counting machinery

The foundation for the reference-counting machinery used by all of the reference-counting classes is shown
in Figure 4 (UML class diagram). The classRCPNodeis an abstract base class that contains two different
reference counts (a strong count and a weak count) and inline functions for manipulating the counts as
efficiently as possible. The templated concrete subclassRCPNodeImpl is what actually stores the raw C++
pointer to the reference-counted object. This class is also templated on an deallocation policy object that
determines how the object is reclaimed.RCPNodeHandle is a simple handle class that automates the
manipulation of the reference counts by overloading the copy constructor and assignment operator
functions. This avoids having to replicate reference counting incrementing and decrementing in the

76

user-level classesRCPandArrayRCP that contain it. All of the functions onRCPNodeHandle are inlined
and the only data members are a pointer to the underlyingRCPNodeobject and astrength attribute (with
valuesRCPSTRONGandRCPWEAK). The classRCPNodeHandle imparts zero space and time overhead and
removes all duplication in how the reference count node object is handled. In future UML diagrams, the
RCPNodeHandle class will be considered to be part of the owningRCPor ArrayRCP classes to avoid clutter.
The classesRCPNode, RCPNodeImpl , andRCPNodeHandle , are used unchanged for both theRCPand
ArrayRCP classes (however, only theRCPclass is shown for simplicity).

The member functions forRCPandArrayRCP related to reference-counting are shown in Listing 65.

Listing 65 : Reference counting member functions forRCP andArrayRCP

template<class T>
class [Array]RCP {
public:

...
// Reference counting member functions
ERCPStrength strength() const;
bool is_valid_ptr() const;
int strong_count() const;
int weak_count() const;
int total_count() const;
void set_has_ownership();
bool has_ownership() const;
Ptr<T> release();
RCP<T> create_weak() const;
RCP<T> create_strong() const;
template<class T2> bool shares_resource(const RCP<T2>& r_ptr) const;
const RCP<T>& assert_not_null() const;
const RCP<T>& assert_valid_ptr() const;
...

};

Most of the functions in Listing 65 are never called by general clients except in desperate situations.
Notable exceptions are the member functionscreate weak() (which is used to create aWEAK RCPobject
from aSTRONGobject) and andcreate strong() (which is used to create aSTRONG RCPobject from a
WEAKobject). The functioncreate weak() is used to break a circular reference as described in
Section 5.9.2 whilecreate strong() is used in situations like the “object self-reference” idiom described
in Section 5.13.3.

Figure 4 also shows that everyRCPNodeobject has an optionalstd::map object that can be used to store
and retrieve arbitrary extra data (represented as theany data-type which can handle any value-type object).
A raw pointer is stored to theextra data mapobject that is initialized to null by default. Therefore, if no
extra data is used, the only overhead for this feature is an extra pointer member and its initialization to null.
The motivation for and the usage of extra data is discussed in Section 5.9.5.

It is critical to understand that the foundation for sharing objects using reference counting is that only one
owningRCPNodeobject can exist for any object that is shared. Consider the code in Listing 66 that creates
the reference-counting objects shown in Figure 5. All of theseRCPobjects share the sameRCPNodeobject.

77

Figure 5. Example of severalRCP objects pointing to the same

RCPNodeImpl object.

Listing 66 : Example of setting up severalRCP objects pointing to the same reference-counted object
shown in Figure 5.

RCP<C> c(new C);
RCP<B1> b1 = c;
RCP<B2> b2 = c;
RCP<A> a1 = c;
RCP<A> a2 = a.create_weak();

If the programmer follows the idioms described in Section 5.8 and outlined in Appendix A and
Appendix B, it will always be the case that only one reference-counting node object will exist for a given
reference-counted object. Exceptions to the one owningRCPNodeobject per reference-counted object
guideline are allowed to facilitate some more advanced use cases (see Section 5.13.1 for an example). As
mentioned earlier, theRCPNodeobject stores both a strong and a weak reference count. The strong and
weak reference counts are equal to the number of strong and weakRCPobjects pointing to the singleRCP
node object. When the strong count goes to zero, the underlying reference-counted object is destroyed but
theRCPNodeImpl object is not destroyed until the strong and weak counts both go to zero. The motivation
and the workings of strong versus weak reference counts is discussed in Section 5.9.2.

Finally, one of the key integrated debug-mode capabilities of the Teuchos reference-counting machinery is
the ability to trace theRCPNodeobjects that are created and destroyed and put them in a low-overhead
object database. TheRCPNodeTracer class/object is a global singleton object that stores all of theRCPNode
objects in active use. Anstd::multimap object is used to store raw pointers to theRCPNodeobjects and
the multi-map is keyed by thevoid* address of the underlying reference-counted objects themselves.
Therefore, one can query to see if anyRCPNodeobject already exists for a given object. The cost of this
query isO(log(n)) wheren is the number of activeRCPNodeobjects currently in use. Therefore, the cost of
node tracing quite scalable with the number ofRCPNodeobjects in use. The current implementation
optionally relies on Boost code which provides some trickery for determining at compile-time if a type is
polymorphic or not and thereby allowing the usedynamic cast<const void*>(p) to determine the true
base address of any object (no matter if it uses virtual base classes and multiple inheritance or not). The

78

ability to trace activeRCPNodeobjects and look them up based on an object’s address is critical for many
debug-mode runtime checking capabilities including: a) reporting objects involved in circular
dependencies after a program ends (see Section 5.11.2), b) detection of dangling references of non-owning
RCPobjects (see Section 5.11.3), and c) detection of the creation of multiple owningRCPNodeobjects (see
Section 5.11.4).

Note that node tracing is only an optional debug-mode feature and is not required for the correct
functioning of the reference-counting machinery. In fact, the observable behavior of correct programs is
exactly the same whether debug-mode node tracing is enabled or not. For correct programs, the only
observable consequence of having node tracing enabled will be increased runtimes.

5.9.2 Circular references and weak pointers

The fundamental weakness of low-overhead reference counting as described in this paper and used in the
Teuchos memory management classes is that there is no bullet-proof way to address circular references that
otherwise result in memory leaks. Because of possible circular references, only system-level
garbage-collection methods, such as implemented in languages like Java and Python, can robustly clean up
memory in every case of circular reference. As stated earlier, given backward compatibility constraints,
many existing C++ programs cannot be used with any C++ implementation that might implement garbage
collection, not now or ever. A key issue is that many programs require the side-effects of the deletion of
objects as specific points in the program and changing the time of deletion of the object (and the call of the
destructor) would break the program.

To understand the problem with circular references, consider the code in Listing 67 which sets up a simple
circular reference between two objects.

Listing 67 : Setting up a simple circular reference between two objects

{
RCP<A> a = createA();
RCP b = createB();
a->set_B(b);
b->set_A(a);
RCP<ClientA> clientA = createClientA(a);
RCP<ClientB> clientB = createClientB(b);
...

}
// The A and B objects will not be deleted when the above code block ends!

The code fragment in Listing 67 sets up the objects in Figure 6 showing the circular reference. Here object
a contains anRCPpointing to objectb, and objectb contains anRCPpointing to objecta. In this situation,
whenClientA andClientB destroy theirRCPobjects pointing to the underlyinga andb objects, the
reference counts will not go to zero because of the circular reference betweena andb. This will result in a
memory leak that a tool like Valgrind or Purify should complain about. If lots of objects with circular
references are constantly being created and destroyed resulting in these types of memory leaks, then
obviously one has a problem and the system could run out of memory and bring the program down.

79

Figure 6. Simple circular reference between two objects.

When debug-mode node tracing is enabled and circular references exist, the reference-counting node
tracing machinery will print out the remainingRCPNodeobjects when it exists (see Section 5.11.2 for more
details).

While there is no completely general and bullet-proof way to address the circular reference problem, there
is a fairly simple and cheap approach supported by the Teuchos reference-counting machinery that
developers can use to effectively resolve circular references in most cases. The approach described here
supported by the Teuchos reference-counted classes is to exploit the concept of weak reference-counted
pointers. As shown in Figure 4, this is accomplished through astrength attribute with valuesSTRONGand
WEAK. By default, allRCPobjects areSTRONG. When anRCPis STRONG, then the underlyingConcreteT
object is guaranteed to stay around. However, when theRCPis WEAK, the underlyingConcreteT can get
deleted when strong count goes to zero (by the deletion of otherSTRONG RCPobjects).

So how can one deal with circular references like this? The answer in this case is to use a weakRCPto
break the circular reference as shown in Listing 68.

Listing 68 : Breaking a simple circular reference using a weakRCP

{
RCP<A> a = createA();
RCP b = createB();
a->set_B(b);
b->set_A(a.create_weak());
RCP<ClientA> clientA = createClientA(a);
RCP<ClientB> clientB = createClientB(b);
...
if (deleteClientAFirst)

clientA = null;
else

clientB = null;

80

Figure 7. Simple circular reference between two objects broken using

a WEAK RCP.

}
// Now all the objects will be deleted correctly no matter if
// clientA or clientB goes away first.

The object structure set up by the code in listing Listing 68 is depicted in Figure 7. With the weak pointer
in place, all of the objects will get destroyed whenClientA andClientB remove theirRCPobjects, no
mater what order they remove them. The critical assumption is that the “useful” lifetime ofa is a super-set
of the “useful” lifetime ofb. If a gets deleted beforeb, thenb had better not try to accessa anymore!
However, the goal is that whoever gets deleted first (i.e.clientA or clientB), then the objectsa andb will
also be deleted gracefully and not result in memory leaks.

In the next section, detailed scenarios are given for the deletion of the objects shown in Figure 7. This
information is important if one wants to understand exactly how the weak pointers can allow the objects to
be deleted correctly while still catching mistakes gracefully and avoiding undefined behavior. However,
this information is not critical to understand for basic usage of the classes.

Detail scenarios for weak pointers and cicular references

Consider the scenario where theclientA object goes away first (i.e.deleteClientAFirst=true)
depicted in Figure 8 (UML communication diagram). This scenario is shown in two phases in two separate
UML communication diagrams in Figure 8 with the following steps:

a) ClientA goes away first

a.1) As rcpA2 goes away, it deincrementsnodeA::strongCount from 1 to 0.

a.2) SincenodeA::weakCount > 0 , thennodeA is not deleted but sincenodeA::strongCount==0
the objecta gets deleted.

81

a) ClientA goes away first

b) ClientB goes away second

Figure 8. Weak pointer scenario whereClientA is deleted first

82

a.3) As a is deleted, it deletes itsRCPobjectrcpB1 .

a.4) SincercpB1 is a strong pointer, it deincrementsnodeB::strongCount from 2 to 1. Therefore,
neithernodeB or b gets deleted at this point. NOTE: At this point, the objecta has been deleted
andnodeA ’s internal pointer has been set toNULL. If the b object tries to accessa after this, it
will result in an exception being thrown in a debug build. In a non-debug build, any access ofa
from b will result in undefined behavior (e.g. segfault).

b) ClientB goes away second

b.1) As clientB goes away, it takesrcpB2 with it. SincercpB2 is a strong pointer, it deincrements
nodeB::strongCount from 1 to 0. SincenodeB::strongCount andnodeB::weakCount are
both 0 this results innodeB being deleted.

b.2) As nodeB is being deleted, it deletes theb object.

b.3) As b is being deleted, it deletes itsRCPobjectrcpA1 .

b.4) With rcpA1 being deleted it reducesnodeA::weakCount from 1 to 0. Since
nodeA::strongCount andnodeA::weakCount are both 0, this results innodeA being deleted.
Since the objecta is already deleted, nothing more happens.

Now consider the scenario where theclientB object goes away first (i.e.deleteClientAFirst=false)
depicted in Figure 9 which involves the following steps:

a) ClientB goes away first

a.1) TheclientB object goes away first and takes itsRCPobjectrcpB2 with it. This reduces
nodeB::strongCount from 2 to 1. No other objects are deleted yet.

b) ClientA goes away second

b.1) WhenrcpA2 goes away, it deincrementsnodeA::strongCount from 1 to 0. At this point,
sincenodeA::weakCount > 0 , the node is not deleted but the referenced objecta is deleted.

b.2) The objecta is deleted.

b.3) As a is deleted, it deletes itsRCPobjectrcpB1 .

b.4) As rcpB1 is deleted, it deincrementsnodeB::strongCount from 1 to 0. Since
nodeB::weakCount==0 , thennodeB is deleted.

b.5) As nodeB is deleted, it deletes theb object.

b.6) As b is deleted, it deletes itsRCPobjectrcpA1 . What is critical here is thatb must not try to
accessa which is already in the process of being deleted. Ifb were to try to accessa as it is
being deleted, in debug mode an exception would be thrown. In non-debug mode, this would
result in undefined behavior (e.g. segfault). It is rare, however, that one object tries to access
another as they are deleted.

b.7) WhenrcpA1 is removed, it deincrementsnodeA::weakCount from 1 to 0. Since
nodeA::strongCount is already 0, this results innodeA being deleted. Sincea is already in
the process of being deleted, nothing extra happens here.

83

a) ClientB goes away first

b) ClientA goes away second

Figure 9. Weak pointer scenario whereClientB is deleted first

84

Figure 10. Example of a circular chain involving many objects and

many classes.

What is especially interesting about the second scenario is how deleting thea object in Figure 9.b triggers a
chain reaction that causes theb object to be deleted which recursively causes thenodeA object to be
deleted, all in the call stack where thea object is being deleted. To accomplish this correctly, the
RCPNodeImpl::deleteObj() function has some special logic to avoid a double delete call being
performed on the reference-counted object.

Comparison to weak pointers in Boost

With respect the weak pointers, the Teuchos classRCPdiffers substantially from the Boost and therefore the
C++0x standard reference-counting classes. With the classRCP, the attribution of strong or weak is made at
runtime. This allows an external client to decide at runtime to makea’s reference tob weak orb’s reference
to a weak depending on the given circumstance. With the Boost and C++0xshared ptr class, one has to
use a separate classweak ptr to represent a weak pointer. The problem with the Boost approach then is
that one has to decide at compile time if a particular reference is going to be weak or strong. While there
are some cases where one can always assume the reference needs be weak (like in the self-reference case
described in Section 5.13.3), there are more complex cases where one cannot decide this so easily at
compile time. For example, if one were to use theshared ptr andweak ptr classes, one would have to
decide at compile time to makea’s reference orb’s reference weak. The decision one makes make might
work for one set of use cases that one currently knows about, but for more complex use cases not
discovered yet, one may need to switch it. In fact, in the same compiled program there may be some use
cases wherea will be deleted beforeb and other use cases whereb will be deleted beforea. With the
classesshared ptr andweak ptr , this is impossible to handle (at least not without storing both smart
pointer types in each classA andB object and then using one or the other which is not very elegant or
efficient). The only argument for the compile-time approach used by Boost and C++0x is improved
performance in both speed and memory overhead but the results in Section 5.12.1 show that this extra
overhead is fairly minimal. Overall, the overhead induced by the flexible runtime approach to weak
pointers of theRCPclass (and therefore also theArrayRCP class) is well worth this small extra overhead.
Typically, the classesRCPandArrayRCP are used to manage objects (or blocks of array data forArrayRCP)
much larger than what is contained in the infrastructure for the reference-counting objects so the additional
memory overhead is usually insignificant as well.

85

Summary of circular references and weak pointers

While this section has focused on a simple example involving a circular reference between two classes and
two objects, in reality circular references typically involve many different objects and classes which may be
in very distant parts of the code base which make them very difficult to find by just examining the static
code or running the code in a debugger. For example, Figure 10 (UML object diagram) depicts a circular
reference involving eight objects. When the externalsomeClient object removes itsRCP<H>object, the
chain of objects froma to h will not be deleted which results in a memory leak. These types of chains of
circular references can be very difficult to track down and that is where the debug-mode runtime node
tracing described in more detail in Section 5.11.2 comes in most handy.

Section 5.11.3 describes how weak pointers are used in runtime debug checking for dangling
(non-persisting) references. Section 5.13.3 describes how weak pointers are used in dealing with object
self-references.

In summary, the Teuchos reference-counting machinery dynamically addresses both strong and weak
references and is a very powerful tool but to use it effectively, one needs to understand the basic semantics
for its use. The good news is that likely 90% of more casual developers who use the classesRCPand
ArrayRCP will never need to know the difference between a strong and weak reference and will by default
just use strong references. Weak references will get used under the hood for some debug-mode runtime
checking but they are totally transparent to client code and the programmer. It is only in cases of circular
references and with some more advanced idioms and design patterns (see Section 5.13.3 and Section 5.13.4
for examples) do typical programmers need to know anything about weak pointers.

5.9.3 Customized deallocators

The most common use ofRCPis to manage the lifetime of objects allocated using operatornew and
deallocated using operatordelete (or new [] anddelete [] for ArrayRCP). For these use cases, the
built-in behavior inRCPdoes exactly the right thing for this average case. However, there are situations
when one cannot simply calldelete to deallocate an object.

Some examples of situations where something other than callingdelete needs to be performed include
when:

1. Reference counts for objects are managed by requiring clients to explicitly call increment and
decrement functions: This situation occurs when using CORBA [18] and COM [9] for instance. Such
an approach is also presented in [24, Item 29] in the subsection “A Reference-Counting Base Class”.
In these protocols, deallocation occurs automatically behind the scenes when this other reference
count goes to zero and does not occur through an explicit call to operatordelete as with the default
behavior forRCP.

2. Objects are managed by certain types of object databases: In some object databases, an object that is
grabbed from the database must be explicitly returned to the database in order to allow proper object
deletion to take place later.

3. A different reference-counted pointer class is used to initially get access to the managed object: For
example, suppose some piece of peer software works withboost::shared ptr (see [6])

86

referenced-counted objects while the resident software works with RCPobjects. It then becomes
critical no object is deleted until all the clients using either of these smart pointer types remove their
references to this underlying object (i.e. by destroying their smart pointer objects or setting them to
null).

4. A C struct object is allocated and deallocated through explicit C function calls: Here, a C library
function must be called to deallocate the object (examples of this exist in unit test and library code).

There are many other additional situations where one cannot simply assume that calling operatordelete is
used to release an object. The bottom line is that in order to be general, one must allow arbitrary policies to
be used to deallocate an object after clients are finished using the object.

Perhaps the key differentiating property between a flexible high quality reference-counted pointer
implementation and a poor implementation is the capability to allow the user to define an arbitrary
deallocator policy that defines exactly what it means to release a reference-counted object (or array of
objects). The reference-counted Teuchos classesRCPandArrayRCP , as well asboost::shared ptr all
allow the client to specify a user-defined deallocation policy object when the first reference-counted object
is constructed.

The code associated with customized deallocation policies forRCP(which are also identical forArrayRCP)
are shown in Listing 69.

Listing 69 : Declarations for customized deallocation policies forRCP

// Default decallocation policy for RCP
template<class T>
class DeallocDelete
{
public:

typedef T ptr_t;
void free(T* ptr) { if(ptr) delete ptr; }

};

// Other provided deallocation policy classes
template<class T> class DeallocNull { ... };
template<class T> class DeallocArrayDelete { ... };
template<class T> class DeallocFunctorDelete { ... };
template<class T> class DeallocFunctorHandleDelete { ... };
template<class T> class EmbeddedObjDealloc { ... };

template<class T>
class RCP {
public:

...
template<class Dealloc_T>
RCP(T* p, Dealloc_T dealloc, bool has_ownership);
...

};

// Non-member constructors for deallocators and extraction functions

87

template<class T, class Dealloc_T>
RCP<T> rcp(T* p, Dealloc_T dealloc, bool owns_mem);

template<class Dealloc_T, class T>
const Dealloc_T& get_dealloc(const RCP<T>& p);

template<class Dealloc_T, class T>
Dealloc_T& get_nonconst_dealloc(const RCP<T>& p);

template<class Dealloc_T, class T>
Ptr<const Dealloc_T> get_optional_dealloc(const RCP<T>& p);

template<class Dealloc_T, class T>
Ptr<Dealloc_T> get_optional_nonconst_dealloc(const RCP<T>& p);

All deallocator objects must support the typedef memberptr t and function memberfree(...) . The
concept of a template policy interface (also called a function object [28, Section 18.4]) should hopefully be
familiar to semi-advanced users of the STL (part of the standard C++ library).

To demonstrate the use of a deallocator object, let us assume that the code must wrap objects of typeA
managed by the object database shown in Listing 70.

Listing 70 : Example of a simple object database

class ObjectADB {
...
A& get(int id);
void release(int id);
...

};

In the object database in Listing 70, objects are accessed and released using an integer ID. How this ID is
specified and determined is not important here. Let us suppose that one wants to define an abstract factory
that returns objects of typeA wrapped inRCP<A>objects using a database object of typeObjectADB shown
in Listing 70. For this abstract factory, objects of typeA will be allocated from a list of ids given to the
factory. The outline of this abstract factory subclass is shown in Listing 71:

Listing 71 : Factory subclass that allocates new objects using anObjectADB object

class ObjectADBFactory : public AbstractFactory<A> {
RCP<ObjectjADB> db_;
Array<int> ids_;

public:
ObjectADBFactory(const RCP<ObjectADB>& db, const ArrayView<const int>& ids)

: db_(db), ids_(ids) {}
RCP<A> create(); // Overridden from AbstractFactory

};

88

The above abstract factory subclassObjectADBFactory inherits from a genericAbstractFactory base
class that defines a pure virtual methodcreate() . In order to implement thecreate() function, a
deallocator class must be defined and used shown in Listing 72.

Listing 72 : Custom deallocator class for releasing objects managed byObjectADB

class DeallocObjectADB
{

RCP<ObjectjADB> db_;
int id_;

public:
DeallocObjectADB(const RCP<ObjectjADB>& db, int id)

: db_(db), id_(id) {}
typedef A ptr_t;
void free(A* ptr) { db_->release(id_); }

};

Now one can define the implementation of thecreate() function override as shown in Listing 73.

Listing 73 : Implementation of the factory create function

RCP<A> ObjectADBFactory::create()
{

TEST_FOR_EXCEPTION(ids_.size()==0, std::runtime_error, "No ids are left!");
const int id = ids_.pop();
return rcp(&db_->get(id), DeallocObjectADB(db_, id), true);

}

The program in Listing 74 shows the use of the factory subclassObjectADBFactory defined in
Listings 70, 71, 72, and 73.

Listing 74 : Example driver program that transparently uses theObjectADBFactory class

int main()
{

// Create the object database and populate it (and save the ids)
RCP<ObjectADB> db;
Array<int> ids;
...
// Create the abstract factory object
ObjectADBFactory ftcy(db, ids());
// Create some A objects and use them
RCP<A> a_ptr1 = fcty.create();
...
return 0;

}

89

In the example program in Listing 74, all of the objects of typeA are created and removed seamlessly
without the client code that interacts withRCPandAbstractFactory knowing anything about what is
going on under the hood.

Examples of other types of deallocators are given in the unit test suite for theRCPclass.

5.9.4 Embedded objects

Support for customized template deallocator policy objects described in Section 5.9.3 turns out to be a
pretty flexible feature. The ability to embed any arbitrary object in theRCPNodeobject gives one an
efficient way to define a different deallocation policy that is invoked by the destructor on the object instead
of requiring an explicit deallocation policy object. In addition, one can also tack on any extra data desired
and embed it in the underlyingRCPNodeImpl object. The only restriction is that one has to make the choice
of what to embed in theRCPNodeobject when the very firstRCPobject is created (which in turn creates the
concrete templatedRCPNodeImpl object). If one wants the flexibility to embed other data in the underlying
RCPNodeobject after it has been created then the “extra data” feature needs to used which is described in
Section 5.9.5. The advantage of embedding objects in the deallocator in theRCPNodeImpl object is that it
can be quite a bit more efficient than using the “extra data” feature which requires more runtime-support
and greater overhead.

The functions that are used to embed objects when creatingRCPobjects and retrieve them again are shown
in Listing 75 (identical functions exist for theArrayRCP class).

Listing 75 : Embedded object functions for RCP

template<class T, class Embedded>
RCP<T> rcpWithEmbeddedObjPreDestroy(T* p, const Embedded &embedded,

bool owns_mem=true);

template<class T, class Embedded>
RCP<T> rcpWithEmbeddedObjPostDestroy(T* p, const Embedded &embedded,

bool owns_mem=true);

template<class T, class Embedded>
RCP<T> rcpWithEmbeddedObj(T* p, const Embedded &embedded, bool owns_mem=true);

template<class TOrig, class Embedded, class T>
const Embedded& getEmbeddedObj(const RCP<T>& p);

template<class TOrig, class Embedded, class T>
Embedded& getNonconstEmbeddedObj(const RCP<T>& p);

template<class TOrig, class Embedded, class T>
Ptr<const Embedded> getOptionalEmbeddedObj(const RCP<T>& p);

template<class TOrig, class Embedded, class T>
Ptr<Embedded> getOptionalNonconstEmbeddedObj(const RCP<T>& p);

90

The embedded object functions in Listing 75 simply use the custom templated deallocator class
EmbeddedObjDealloc shown in Listing 76 along with the public deallocator functions in Listing 69.

Listing 76 : RCP Deallocator using an embedded object

template<class T, class Embedded, class Dealloc>
class EmbeddedObjDealloc
{
public:

typedef typename Dealloc::ptr_t ptr_t;
EmbeddedObjDealloc(

const Embedded &embedded, EPrePostDestruction prePostDestroy,
Dealloc dealloc
) : embedded_(embedded), prePostDestroy_(prePostDestroy), dealloc_(dealloc)
{}

void setObj(const Embedded &embedded) { embedded_ = embedded; }
const Embedded& getObj() const { return embedded_; }
Embedded& getNonconstObj() { return embedded_; }
void free(T* ptr)

{
if (prePostDestroy_ == PRE_DESTROY)

embedded_ = Embedded();
dealloc_.free(ptr);
if (prePostDestroy_ == POST_DESTROY)

embedded_ = Embedded();
}

private:
Embedded embedded_;
EPrePostDestruction prePostDestroy_;
Dealloc dealloc_;
EmbeddedObjDealloc(); // Not defined and not to be called!

};

The customized deallocator class in Listing 76 is then templated withDeallocDelete (see Listing 69) and
set by the non-member constructor functions in Listing 75. The distinction between pre- and post-destroy
can be critical depending on how the embedded data is used (many examples are given in this paper). In
most cases, the order the embedded object is reset to the default value is not important and therefore the
client would just usercpWithEmbeddedObj(...) to set the embedded object (in which case it uses
post-destruction by default).

Typically, the embedded object will be someRCPsuch that when the embedded object is assigned to the
default state as inembedded = Embedded() then the destructor on that object will be called (which is
what happens when the strong count goes to zero withRCP). A simple example of embedding anRCPthat
controls memory release is shown in Listing 77:

Listing 77 : A simple example of using embedded objects

RCP<A> a_ptr1(new A);
RCP<A> a_ptr2 = rcpWithEmbeddedObj(a_ptr1.getRawPtr(), a_rcp1, false);

91

What the code in Listing 77 does it is creates a new now-owningRCPNodeImpl object with anRCPobject
embedded in it. This maintains the correct ownership semantics by resets the reference count in the new
RCPNodeImpl object. The use case shown in Listing 77 may look silly and trivial but it is the foundation
for several more advanced use cases (see Section 5.13.1 for a related example). As a result of this code, the
underlyingA object will not be deleted until theRCPNodeImpl object associated witha ptr2 , and all of the
RCPobjects created from it, are destroyed. Even the above simple use case can be useful if one wants to be
able to use the reference count onRCPobjects derived froma ptr2 to determine usage of the object by
other clients. There are concrete examples of this exact simple usage in production code.

A more general usage of embedded objects to perform arbitrary actions is demonstrated in the context of
the “generalized view” design pattern in Section 5.13.4.

5.9.5 Extra data

As mentioned in Section 5.9.1, the Teuchos reference-counting machinery supports storing and retrieving
arbitrary objects as extra data stored on theRCPNodeobject itself. The functions supporting extra data for
theRCPclass are shown in Listing 78 (the functions forArrayRCP are identical).

Listing 78 : RCP extra data functions

template<class T1, class T2>
void set_extra_data(const T1 &extra_data, const std::string& name,

const Ptr<RCP<T2> > &p, EPrePostDestruction destroy_when = POST_DESTROY,
bool force_unique = true);

template<class T1, class T2>
const T1& get_extra_data(const RCP<T2>& p, const std::string& name);

template<class T1, class T2>
T1& get_nonconst_extra_data(RCP<T2>& p, const std::string& name);

template<class T1, class T2>
Ptr<const T1> get_optional_extra_data(const RCP<T2>& p, const std::string& name);

template<class T1, class T2>
Ptr<T1> get_optional_nonconst_extra_data(RCP<T2>& p, const std::string& name);

Given the support for embedded objects described in Section 5.9.4, extra data rarely needs to be used.
Embedding and retrieving objects in the templatedRCPNodeImpl object is more efficient that using the
more generalstd::map object andany wrapper that are used to implement the “extra data” feature and
therefore embedded objects should be used whenever possible instead of extra data. However, there are a
few key advantages to using extra data over embedded objects that may be worth the performance overhead
or using extra data may be the only way to address an issue and some examples include:

• One can associate new extra data after the RCPNode object is created.With embedded objects, one
can only select the data-type for the embedded object at the time when the firstRCPobject is created.

92

• One can retrieve data without having to know the concrete template types in theRCPNodeImpl
object.With extra data, one only needs to know the string name and the type of the extra data that
needs to be retrieved. With embedded objects, the original type of the underling reference-counted
object that is used to template theRCPNodeImpl class also needs to be known (to see this compare
the template arguments for thegetEmbeddedObj(...) andget extra data(...)). If this type
changes (i.e. if the creating code changes the subclass implementationTOrig used), then this will
break client code that tries to retrieve the embedded object. Therefore, client code that retrieves
embedded object data is more fragile than code that retrieves extra data.

• One can completely change the deallocation policy at runtime after the RCPNode object has been
created.With embedded objects, the deallocation policy of a reference-counted object cannot be
changed after the initialRCPNodeImpl object has been created; with extra data it can.

To demonstrate the power and flexibility of extra data, let’s consider a (perhaps unlikely) scenario where
some piece of code incorrectly associates the wrong deallocation policy to an allocated object shown in
Listing 79.

Listing 79 : Example of incorrect deallocator

RCP<A> createRCPWithBadDealloc()
{

return rcp(new A[1]); // Will use delete but should use delete []!
}

Hopefully no one would write code like is shown in Listing 79 (but shockingly I did once write code
similar to this). However, let’s suppose that one has to use the functioncreateRCPWithBadDealloc() to
allocateA objects and are stuck with a pre-compiled library and one cannot access the source code to fix the
problem. On most systems an error like this will be tolerated and not cause problems but tools like
Valgrind and Purify will complain about code like this to no end and there may be some platforms where
this will actually cause the program to crash (since this has undefined behavior).

With RCPand extra data, one can replace the deallocation policy on the fly to use the correct policy. The
first step is to create a class that will calldelete [] on the pointer correctly as shown in Listing 80.

Listing 80 : Deallocator class for extra data deallocation

template<typename T>
class DeallocArrayDeleteExtraData {
public:

static RCP<DeallocArrayDeleteExtraData<T> > create(T* ptr)
{ return rcp(new DeallocArrayDeleteExtraData(ptr)); }

˜DeallocArrayDeleteExtraData() { delete [] ptr_; }
private:

Ptr<T> ptr_;
DeallocArrayDeleteExtraData(T* ptr) : ptr_(ptr) {}

};

The client code can then fix the deallocation policy as shown in Listing 81.

93

Listing 81 : UsingDeallocArrayDeleteExtraData as extra data to fix deallocation policy

// Create object with bad deallocator
RCP<A> a = createRCPWithBadDealloc();

// Disable default (incorrect) dealloc and set a new deallocation policy as extra data!
a.release();
set_extra_data(DeallocArrayDeleteExtraData<A>::create(a.getRawPtr()),

"dealloc", inOutArg(a));

The kind of flexibility shown in the above example is not possible using embedded objects and is not
possible with classes likeboost:shared ptr . There are numerous other uses for extra data to fix nasty
memory management problems (which is why the extra data feature was added in the first place). However,
in well designed software, there is no need for a feature like this so a developer should count themselves
lucky if they never need to use the extra data feature.

5.10 Roles and responsibilities for persisting associations: factories and clients

There are two fundamentally different sets of actors that play two different roles in the use of the
reference-counted classes used for persisting associations: a) factory entities that first create the
reference-counted objectRCP<A>which define the deallocation policy, and b) general clients that accept
and use a shared reference-counted objectA through anRCP<A>object.

Factory entities first create the reference-counted object (or array) and construct the firstRCP(or
ArrayRCP) object containing it. The most basic type of factories are non-member constructor functions
described in Section 5.8.1. When the firstRCPobject is created, the factory gets to decide exactly how
object (or array) will be released when the strong reference count goes to zero. The default behavior, of
course, is to just simply calldelete (or delete [] for arrays) on the contained raw pointer. However, the
factory can also choose any arbitrary action imaginable to occur when the reference-count goes to zero.
This is set up using a template deallocator policy object as described in Section 5.9.3.

Alternatively, the responsibilities of general clients that use and share a reference-counted object are very
simple and these responsibilities are:

• Accept the persisting relationship for a shared reference-counted object through anRCPobject (or
ArrayRCP for arrays) as described in Section 5.8.4.

• Share the reference-counted object with other clients by creating a copy of one’sRCP(or ArrayRCP)
object and giving it to them.

• When one is finished using the object, simply delete or set to null all of one’sRCPobjects. If some
other client is still using the object, it will remain alive. If the client’s is the last (strong) reference,
then the deallocator policy object that is embedded in the underlyingRCPNodeImpl object is invoked
which knows exactly how to clean up and reclaim the underlying object (or array of memory).

That is all there is to it. Factories create the underlying object(s) wrapped in the firstRCPobject and define
how the referenced object(s) will be reclaimed when it is time to do so. General clients just accept and

94

maintain their references to shared objects (or arrays) by accepting and storingRCPobjects (orArrayRCP
objects) and then setting them to null when they are finished using the object(s).

5.11 Debug-mode runtime checking

The primary reason that these Teuchos memory management classes need to be developed in tandem with
each other and know each other’s internal implementations to some extend is to be able to implement
robust and effective debug-mode runtime testing. The debug-mode runtime testing that is built into these
classes is very strong and will catch nearly every type of programmer error that is possible, as long as raw
C++ pointers are never externally exposed and if raw C++ references are only used for persisting
associations. The different categories of debug-mode runtime testing are described in the following
subsections along with what the typical diagnostic error messages look like that are attached to exceptions
when they are thrown.

5.11.1 Detection of null dereferences and range checking

One of the most basic types of debug-mode runtime checking performed by the Teuchos memory
management classes are for attempts to dereference a null pointer and range checking of arrays and
iterators.

Listing 82 : Debug-mode null dereference checking (all types)

RCP<A> a_ptr; // Default constructs to null
A &a_ref = *a_ptr; // Throws!
a_ptr->someFunc(); // Throws!

ArrayRCP<int> aa; // Default constructs to null
a[0]; // Throws!
int &i_ref = *a.begin(); // Throws!

...

All of the Teuchos memory management classes throw on null dereferences. While most systems will abort
the program on null dereferences there are some platforms (e.g. some Intel C++ compilers) that will not
and it will result in memory errors that may not be seen until later in the program. Technically,
dereferencing a null pointer has undefined behavior and compilers and runtime systems can do anything
they want with undefined behavior (including corrupting memory and continuing as is the case with some
Intel C++ compilers).

The Teuchos array classesArray , ArrayView , ArrayRCP , andTuple all perform array bounds checking in
debug-mode builds:

Listing 83 : Debug-mode array-bounds checking (all Teuchos array types)

Array<int> a(n);
a[-1]; // Throws!
a[n]; // Throws!

95

In a debug-mode build of the code, all the iterators returned bythebegin() andend() functions of the
classesArray , ArrayView , ArrayRCP , andTuple are of the typeArrayRCP which is a fully ranged
checked iterator.

Listing 84 : Debug-mode iterator range checking (all Teuchos array types)

Array<int> a(n);
*(a.begin()-1); // Throws!
*(a.begin() + a.size()); // Throws!
*a.end(); // Throws!

In addition, comparisons between iterators will thrown if they do not point into the same underlying
contiguous array of memory.

Listing 85 : Debug-mode iterator matching checking (all Teuchos array types)

ArrayRCP<int> a_arcp = arcp<int>(n);
Array<int> a(n);
// Simple mistake calling standard STL algorithm
std::copy(a.begin(), a_arcp.begin(), a_arcp.end()); // Throws!

These types of checks are fairly straightforward but are extremely useful and work on every platform. This
checking is built into programs automatically in a debug-mode build of the code. Contrast this to checked
STL implementations that may or may not exist on a given platform and if they do exist, the quality of the
implementations can vary widely. Note that in a non-debug build of the code, none of these checks are
performed which leads to the fastest code possible.

5.11.2 Detection of circular references

One of the more sophisticated types of debug-mode runtime checking supported by the Teuchos memory
management classes is the detection and reporting of circularRCPreferences that result in memory leaks.
The issue of circular references and the concept of weak pointers was outlined in Section 5.9.2. When
debug-mode node tracing is enabled, the reference-counting machinery keeps track of all theRCPNode
objects that are created and destroyed. If the program ends and there are one or moreRCPNodeobjects that
are still remaining, then a error message is printed tostd::cerr that gives all the details of the objects
involved in the circular reference.

For example, consider the simple circular reference created in Listing 67 and shown in Figure 6. If left this
way, when debug-mode node tracing is enabled, the program ends and prints an error message like the
following to std::cerr :

Listing 86 : Example error message printed after a program ends when there are unresolved strong
circular references

96

*** Warning! The following Teuchos::RCPNode objects were created but have
*** not been destroyed yet. This may be an indication that these objects may
*** be involved in a circular dependency! A memory checking tool may complain
*** that these objects are not destroyed correctly.

0: RCPNode (map_key_void_ptr=0x4a3ff50)
Information = {T=A, ConcreteT=A, p=0x4a3ff50, has_ownership=1}
RCPNode address = 0x4a3ffa8
insertionNumber = 23

1: RCPNode (map_key_void_ptr=0x4a40548)
Information = {T=B, ConcreteT=B, p=0x4a40548, has_ownership=1}
RCPNode address = 0x4a405f0
insertionNumber = 24

NOTE: To debug issues, open a debugger, and set a break point in the function where the
the RCPNode object is first created to determine the context where the object first
gets created. Each RCPNode object is given a unique insertionNumber to allow setting
breakpoints in the code. For example, in GDB one can perform:

1) Open the debugger (GDB) and run the program again to get updated object addresses

2) Set a breakpoint in the RCPNode insertion routine when the desired RCPNode is first
inserted. In GDB, to break when the RCPNode with insertionNumber==3 is added, do:

(gdb) b ’Teuchos::RCPNodeTracer::addNewRCPNode([TAB] [ENTER]
(gdb) cond 1 insertionNumber==3 [ENTER]

3) Run the program in the debugger. In GDB, do:

(gdb) run [ENTER]

4) Examine the call stack when the prgoram breaks in the function addNewRCPNode(...)

This error message is enough information to allow one to open a debugger, and set a break-point in the
functionRCPNodeTracer::addNewRCPNode(...) and then examine where these objects are getting
created that result in the circular reference (see Section 5.11.7).

Note that in reality, the circular references will involve many objects (sometimes more than a dozen as
shown in Figure 10) and therefore this output will contain manyRCPNodeobjects. A program may also
contain large numbers of smaller sets of circular dependencies. On example in Trilinos had a test that
generated hundreds of thousands of smaller circular cycles and leaked memory from hundreds of thousands
of objects.

5.11.3 Detection of dangling references

Another useful and necessary form of debug-mode runtime checking involves the detection and reporting of
access to invalid objects and arrays made through dangling references. A dangling reference is a catch-all
term that refers to any pointer or reference that points to a no-longer valid object or array. For example, the

97

following code fragment shows invalid access to a dangling iterator to an array that has changed shape:

Listing 87 : Example of a dangling iterator

Array<int> a(n);
Array<int>::iterator itr = a.begin();
a.resize(0);
*itr = 1; // Invalid access of dangling iterator (throws)!

In debug-mode, the above example would result in an exception being thrown with an error message like
shown below:

Listing 88 : Example of a dangling reference error message

Teuchos_RCPNode.hpp:515:

Throw number = 3

Throw test that evaluated to true: true

Error, an attempt has been made to dereference the underlying object
from a weak smart pointer object where the underling object has already
been deleted since the strong count has already gone to zero.

Context information:

RCP type: Teuchos::ArrayRCP<int>
RCP address: 0x7fbfffec98
RCPNode type: Teuchos::RCPNodeTmpl<int,

Teuchos::EmbeddedObjDealloc<int,
Teuchos::RCP<__gnu_debug_def::vector<int, std::allocator<int> > >,
Teuchos::DeallocArrayDelete<int> > >

RCPNode address: 0xab65a0
insertionNumber: 5
RCP ptr address: 0xab4c50
Concrete ptr address: 0xab4c50

NOTE: To debug issues, open a debugger, and set a break point in the function where the
the RCPNode object is first created to determine the context where the object first
gets created. ...

The erorr message shown in Listing 88 contains all the information needed to open a debugger, run the
program again to create new pointer addresses, set up breakpoints and break conditions, and debug the
problem. Breakpoints can be set when theRCPNodeobject is first created and inserted and also when the
exception is thown (see Section 5.11.7). The NOTE at the bottom of the error message in Listing 88 is
really the same as shown in Listing 86 and is only cut off to save space.

A few other examples of dangling references are shown in Listings 89–90.

Listing 89 : Example of a danglingArrayView

98

ArrayView<int> av;
{

Array<int> a(n);
av = a;

}
av[0] = 1; // Invalid access to dangling ArrayView (throws)

Listing 90 : Example of a danglingPtr

Ptr<A> a_ptr;
{

RCP<A> a_rcp = createA();
a_ptr = a_rcp.ptr();

}
a_ptr->someFunction(); // Invalid access to dangling Ptr (throws)

In general,Ptr , ArrayView and iterators (returned from thebegin() member functions) all can be
involved in dangling references. Therefore, anytime aPtr , ArrayView , or iterator object is created from
some other Teuchos memory management object, one can expect that in a debug build that dangling
references will checked for and if detected will result in exceptions being thrown with very detailed error
messages like shown in Listing 88.

Note that the ability to detect a danglingArrayView of anArray object as shown in Listing 89 is due to the
fact that the debug-mode internal implementation ofArray is designed to support this. Compare this to
ArrayView views ofstd::vector , as shown in Listing 91 where dangling references cannot be detected.

Listing 91 : DanglingArrayView of std::vector (cannot detect dangling references)

ArrayView<int> av;
{

std::vector<int> v(n);
av = v;

}
av[0] = 1; // Invalid access to dangling ArrayView (does *not* throw)

The code in Listing 91 has undefined behavior and will most likely segfault if one is lucky. If unlucky, the
program may actually appear to run correctly on the main development and testing platforms and it will not
be until moved to a production platform that the ill-effects of this erroneous code will be seen. This is one
example of why it is so important to useArray instead of rawstd::vector objects. Strong debug-mode
runtime checking ofArrayView views are not possible when usingstd::vector .

Another type of more sophisticated debug-mode dangling reference detection involves non-owningRCP
objects to existing reference-counted objects. Consider code like shown in Listing 92.

Listing 92 : Example of a dangling non-owningRCP object detected through node tracing

RCP<A> a_rcp = createA();
A &a_ref = *a_rcp;

99

Figure 11. Example of duplicate owningRCPNodeImpl objects

RCP<A> a_rcp2 = rcpFromRef(a_ref); // Same as rcp(a_ref.getRawPtr(), false)
a_rcp = null; // The ’A’ object gets deleted (a_rcp2 is a dangling pointer)
a_rcp2->someFunction(); // Invalid reference to deleted ’A’ object (throws)

In a debug-mode build with node tracing turned on, the dangling non-owningRCPreferencea rcp2 in
Listing 92 will be caught by the system. This works because the statementrcpFromRef(a ref) results in
a call toRCPNodeTracer::getExistingRCPNode(...) to look-up the existingRCPNodeobject that
points to the sameA object. In this case, the existingRCPNodeobject is found and it is used to create a
weakRCPobject (see Section 5.9.2) that can then detect if the original reference-counted object has been
deleted. Again, this more sophisticated type of debug-mode runtime checking requires that node tracing be
enabled12.

Debug-mode runtime detection and reporting of dangling references is built on the foundation of weakRCP
andArrayRCP objects. Basically, all non-persisting views use a weakRCPor ArrayRCP object (see
Section 5.9.2) internally to allow the parent object to be changed or be deleted and to detect this if a client
tries to access the now invalid object through the dangling reference.

5.11.4 Detection of multiple owningRCP objects

There are other types of invalid usage that can be detected and caught in debug-mode with node tracing
enabled. Consider, for example, what happens when one or more of the commandments in Appendix B are
broken and more than one owningRCPNodeobject is created pointing to the same underlyingConcreteT
object as shown in Figure 11 generated by the sloppy code shown in Listing 93.

Listing 93 : Invalid creation of dual owningRCPNodeImpl objects (shown in Figure 11)

C *c_raw_ptr = new C;

12In order to handle multiple inheritance and virtual bases classes and still get the correct base object address, Boost support
must also be configured which is needed to useboost::is polymorphic to allow the use ofdynamic cast<void*>(...) to
determine the true base address of a polymorphic object. Otherwise, without this, the system will not be able to determine if two
abstract interfaces really point to the same object and therefore the look-up of theRCPNodeobject may fail to detect when two
addresses are pointing to the same object.

100

RCP<C> c_ptr(c_raw_ptr);
RCP<A> a_ptr1 = c_ptr;
...
A *a_raw_ptr = c_raw_ptr;
RCP<A> a_ptr2(a_raw_ptr);

The problem is that the twoRCPNodeImpl objects generated by Listing 93 (shown in Figure 11) do not
know about each other and the first one who has its strong reference count go to zero will result in the
underlyingC object being deleted. In this case, the other remainingRCPNodeImpl object, and all of the
resultingRCPobjects pointing to it will be left with a non-null pointer to a now deletedC object. If the
client tries to access the underlying object through one of these now invalid references, it will yield
undefined behavior and will likely result in a segfault (if one is lucky). Also, a second call todelete will
also occur even if invalid access is not performed.

Not to fear, in a debug-mode build with node tracing enabled, theRCPNodeTracing object automatically
detects the creation of the second owningRCPNodeImpl<A> object and will thrown an exception with an
error message that looks something like Listing 94.

Listing 94 : Example of an error message from a the attempt to create dual owningRCPNodeImpl
objects

Trilinos/packages/teuchos/src/Teuchos_RCPNode.cpp:240:

Throw number = 1

Throw test that evaluated to true: rcp_node_already_exists && rcp_node->has_ownership()

RCPNodeTracer::addNewRCPNode(rcp_node): Error, the client is trying to create a new
RCPNode object to an existing managed object in another RCPNode:

New RCPNode {address=0x9cb3e0, base_obj_map_key_void_ptr=0x9cac40,
base_obj_type_name=A, map_key_void_ptr=0x9cac40, has_ownership=1, insertionNumber=6}

Existing RCPNode {address=0x9cb2b0, base_obj_map_key_void_ptr=0x9cac40,
base_obj_type_name=C, map_key_void_ptr=0x9cac40, has_ownership=1, insertionNumber=5}

Number current nodes = 6

This may indicate that the user might be trying to create a weak RCP to an existing
object but forgot make it non-ownning. Perhaps they meant to use rcpFromRef(...)
or an equivalent function?

NOTE: To debug issues, open a debugger, and set a break point in the function where the
the RCPNode object is first created to determine the context where the object first
gets created. ...

A debugger can be opened, a break-point can be set in the functionTestForException break(...) , and
the program can be run again and break at the time the exception is thrown to see the context under which
the second illegalRCPNodeis created (see Section 5.11.7). A breakpoint can also be set in the function
addNewRCPNode(...) to see when the otherRCPNodeobject was created (see Section 5.11.7).

101

Configuration Runtime (sec) Multiplier Valgrind Mult

1) Optimized build (base-line) 0.16 1.0 -
2) Debug-mode runtime checking 0.49 3.1 -
3) Debug-mode runtime checking + node tracing 1.08 6.8 -
4) Valgrind optimized build 56.21 351.3 351.3
5) Valgrind debug-mode runtime checking 214.01 1337.6 431.5
6) Valgrind debug-mode runtime checking + node tracing 378.54 2365.9 347.9

Table 16.Overhead of runtime checking for serial Tpetra test suite.

If one is willing to pay for a little extra overhead ofRCPNodetracing (see Section 5.12.1 for some timing
results of the overhead), then node tracing will detect the erroneous creation of multiple owningRCPNode
objects and respond in a graceful way. Note that creating multiple non-owningRCPNodeobjects is okay
and is allowed both when node tracing is enabled and when it is not enabled (however, see
Commandment 5 in Appendix B for restrictions on the creation of owning and non-owningRCPobjects).

5.11.5 Performance of debug-mode checking versus memory checking tools

One of the common criticisms of debug-mode runtime checking is that it incurs an unacceptably large
runtime overhead. However, this overhead is only incurred for debug-mode builds and does not affect
non-debug optimized builds. To speed up debug-mode runtime checking, one can compile with optimized
compiler options (e.g.-O3) which significantly speeds up the code. Also, one has to consider the relative
cost of built-in debug-mode runtime checking versus running a memory checking tool like Valgrind or
Purify.

To investigate the cost of debug-mode runtime checking, the Trilinos package Tpetra13 is used since it
relies the Teuchos memory management classes at a very low level and therefore would be expected to
show the largest runtime overhead for debug-mode checking. Table 16 shows the runtime of the Tpetra
serial test suite (12 test programs) for several different build and runtime configurations. In all of these
builds, optimized compiler options (-O3) were used. All of these timing tests were performed on an a
3.2GHz AMD machine with 8 cores running Linux 2.6.9-78.0.1.ELsmp using GCC 3.4.6. Valgrind tests
were run using version 3.2.1. All of the test executables were run in serial on the unloaded Linux machine.

The results in Table 16 give the total runtimes as well as the relative runtimes for debug-mode checking
and Valgrind. The second column ‘Runtime’ gives the raw CPU time in seconds (as reported by CTest) for
all 12 test executables in the Tpetra test suite. The third column ‘Multiplier’ gives the ratio of the runtime
relative to the base-line optimized build case. The fourth column ‘Valgrind Multi’ gives the fractional
increase in the runtime of the test suite run with Valgrind relative to running the same executables without
Valgrind.

The results in Table 16 show that while the cost incurred by debug-mode runtime checking can be
significant (a factor of 3.1 for basic debug-mode runtime checking) it is still quite reasonable. When node
tracing is enabled, the cost more than doubles to a factor of 6.8 times the basic optimized build. While the
cost of full debug-mode runtime checking with node tracing is a factor of 6.8 over the basic optimized

13http://trilinos.sandia.gov/packages/tpetra/

102

build, the cost of running with Valgrind is a factor of over 300!The increased cost of running Valgrind is a
factor of 431.5 for the basic debug-mode executables. A factor of 300 can make running a tool like
Valgrind prohibitive for even moderate sized problems while a factor of 6.8 may be quite reasonable. For
example, a test problem that takes 20 minutes to run in a standard optimized build may take 2 hours 15
minutes to run with full debug-mode runtime checking with node tracing enabled but that same program
may take 100 hours (i.e. more than 4 days) to run with Valgrind! Also, as has been mentioned several times
before, in some respects the level of runtime checking provided by Teuchos in a debug-mode build is more
effective that what one gets with just Valgrind14. In order to perform the most detailed runtime checking
possible, one can run with Valgrind with debug-mode runtime checking with node tracing enabled.
However, the overhead of this maximal checking is staggering at more than 23,000 times the cost of the
basic optimized build! With this level of overhead, only very small test problems can be run.

What these timing results suggest is that the cost of debug-mode runtime checking for programs using the
Teuchos memory management classes will be less than a factor of 10 more than the basic optimized build
in the worst case while the overhead of running a tool like Valgrind can be as much as a factor of 400 or
more. This means that enabling debug-mode runtime checking in regular development and automated
testing is quite reasonable. Note that the Tpetra package used in this example is likely an extreme case in
the usage of the Teuchos memory management classes. Other types of software that don’t use the Teuchos
memory management classes for such low-level computations will see much less of a slow-down.
However, note that theses tests were only performed on one machine using one compiler so results on other
platforms using different compilers may vary significantly.

5.11.6 Limitations of debug-mode runtime checking

Once memory is dynamically allocated and owned by one of the Teuchos memory management class
objects, the debug-mode runtime checking will catch every imaginable type of programming error as long
as a raw C++ pointer or raw C++ reference is not exposed. If all the idioms and rules outlined in this paper
are followed, then the only issue the developer will have to address that is not 100% obvious are circular
references. However, if programmers never made any mistakes, there would be no need for debug-mode
runtime testing in the first place. While the level of debug-mode runtime testing implemented in the
Teuchos memory management classes is unmatched, code that converts from raw pointers (and raw
references) to Teuchos memory management objects and vice versa is vulnerable to programming errors
that the debug-mode runtime checking cannot catch.

The first category of programming errors that cannot be detected involve some types of conversions of raw
pointers (and raw references) to Teuchos memory management objects. However, before discussing
situations where the debug-mode runtime checking will not catch errors, first note that if an object is
dynamically allocated and is immediately given over to a strong owningRCPobject (or anArrayRCP object
in the case of arrays) then many different types of bad conversions from raw pointers (and raw references)
to memory management types will be caught. That is because when an object’s address is associated with a
strong owning RCP, it gets added to the debug-modeRCPNodetracing system discussed in Section 5.9.1.
Given this tracking, future conversions from a raw pointer or raw reference to a Teuchos memory
management class object that result in multiple owningRCPs or dangling references fromPtr s and
non-owningRCPs will all be detected and cleanly reported (see Sections 5.11.3 and 5.11.4). One way to
guarantee this is to require that a classes’ objects be dynamically allocated through its non-member

14However, Valgrind does perform a number of other types of checks including usage of uninitialized memory that are very
useful and cannot be duplicated by the Teuchos memory management classes.

103

constructors (Section 5.8.1) which returned the new objects wrapped in strong owningRCPs. In this way,
the object is immediately tracked under the debug-mode node tracing system.

However, not every class can or should employ the non-member constructor idiom to force the creation of
strong owningRCPobjects. In particular, value-type classes (Section 4.1) such asstd::vector and
Teuchos::Array must be allowed to be generally constructed on the stack or globally but one still needs
to be able to dynamically allocate them in many different situations. The downside to allowing value-type
class objects to be dynamically allocated and managed withRCPis that it allows client code to try to create
an owningRCPto a stack (or otherwise non-dynamically) allocated object which the debug-mode runtime
checking will not be able to detect as shown, for example, in Listing 95.

Listing 95 : Example where debug-mode checking cannot detect an erroneous delete issue

{
std::vector<int> vec(n);
const RCP<std::vector<int> > vec_rcp(&vec); // Gives ownership to delete!
...
// When vec_rcp is destroyed it will call delete on the address &vec
// resulting in undefined behavior (e.g.\ segfault)!

}

In this case, the owingRCP<std::vector<int> > object will try to calldelete on the address&vec at the
end of the block which will result in undefined behavior (e.g. segfault). The lack of debug-mode checking
shown in Listing 95 is unfortunate but it is very hard to detect if an address is for a dynamically allocated
object where it is okay to calldelete 15. Note that the code in this example violates Commandment 4 in
Appendix B that states that owningRCP(andArrayRCP) objects should only be created by passing in the
address directly returned fromnew (or new[] for ArrayRCP) unless a customized deallocation policy object
is attached which defines a more specialized dellocatioin policy. The good news though is that memory
checking tools like Valgrind and Purify usually do a good job of detecting and reporting erroneous calls to
delete (i.e. free(...)) that try to free stack-owned memory. But again if the idioms outlined in
Section 5.8 and the commandments defined in Appendix B are followed, this problem should never occur.

The other category of programming errors that the debug-mode runtime checking cannot detect and report
involves exposing and then misusing raw C++ pointers and references. As soon as client code exposes a
raw C++ pointer and starts copying it around, all bets are off. However, even if client code never exposes a
C++ pointer, one can still get into trouble. One unfortunate case involves the use of raw C++ references. If
raw C++ references are only used as formal arguments to C++ functions, one will almost never have a
problem. However, incorrectly returning anRCPobject by reference instead of by value, as is described in
Section 5.8.5, can result in invalid C++ references. Also, if one uses references like in Listing 96, then one
can of course have dangling raw C++ references that the Teuchos debug-mode runtime checking can never
catch.

Listing 96 : Example of where holding on to a raw C++ references disables debug-mode runtime
checking

15Perhaps in the future a portable library function can be written and used that will be able to detect the difference between a
stack address and a heap address so an exception can be thrown right when the bad owningRCPis first created.

104

RCP<A> a_ptr = newA();
A &a = *a_ptr;
...
a->someFunc();
// This above object may not be valid anymore and may result in
// undefined behavior (a segfault)!

The code in Listing 96 violates the use of raw C++ references only for non-persisting associations. The
statementA &a = *a ptr results in the creation of a persisting relationship in that it extends past the
statement where it was created.

In summary, as soon as an object reference is exposed through a raw C++ pointer or a raw C++ reference,
in general the Teuchos debug-mode runtime checking can no longer detect errors. Therefore, never expose
a raw C++ pointer (except for the situations described in Section 5.2) and only expose and use raw C++
references for strictly non-persisting associations. Also, great care must be taken in first constructing
Teuchos memory management class objects such they have the correct memory management properties.

5.11.7 Exception handling and debugging

The debug-mode runtime checking performed by the Teuchos memory management classes throw
exceptions when violations are detected. As has been shown throughout this document, these exceptions
have associated messages that are fairly detailed with lots of information about the nature and context of
the problem.

All exceptions thrown by the Teuchos memory management classes (and the rest of Trilinos for that
matter) all use a system of macros in the fileTeuchos TestForException.hpp . All of these macros call
the functionTestForException break(...) just before an exception is thrown. Therefore, if the error is
repeatable (and most errors are), then one can open a debugger (e.g. GDB) and set a break-point in that
function, run the program, and then examine the state of the program just as the exception is being thorwn.
Several exceptions can be thrown before the exception that one needs to debug. To make it easier to break
on the exception that one cares about, every exception message has aThrown number associated with it
embedded in the error message of the exception object. One can set a conditional break-point in
TestForException break(...) to only stop whenthrowNumber has the right value. For example, if one
needs to stop onThrow number = 10 , then in GDB one can set:

(gdb) b ’TestForException_break [TAB] [ENTER]
(gdb) cond 1 throwNumber==10
(gdb) run

When the program stops at this break-point, one can then examine the call stack to troubleshoot the
problem.

Many exception messages contain other types of information that would have one set breakpoints in other
functions. For example, a dangling reference exception (as shown in Section 5.11.3) would contain
addresses of objects that one would use to set conditional breakpoints. To examine the context under which
anRCPNodeis first created, one would set a break-point in the function
Teuchos::RCPNodeTracer::addNewRCPNode(...) and set a condition to only break when

105

insertionNumber is the number printed in the exception message. For example, for the exception
message shown in Listing 88, one would set the break-point in GDB as:

(gdb) b ’Teuchos::RCPNodeTracer::addNewRCPNode [TAB] [ENTER]
(gdb) cond 1 insertionNumber==5
(gdb) run

When the debugger breaks, one would then be able to examine the call stack to see the context under which
this RCPNodeobject is first created.

NOTE: Setting breakpoints based oninsertionNumber is generally better than trying to set breakpoints
based on the object addresses because the same address can get reused multiple times as objects are created
and destroyed. On theinsertionNumber uniquely identifies a particularRCPNodeobject. In builds where
there is no node tracing enabled,insertionNumber will be equal to -1 and will not aid in debugging.

NOTE: Before entering a conditional break-point involving an address, one must first run the program
again in the debugger which will typically produce an exception message with different addresses because
the debugger moves things around in memory. One will need to use these new pointer addresses when
setting conditional breakpoints.

The Teuchos reference-counting classes are all fully exception safe in that they provide either the basic
guarantee (retain some valid object state and no leaked memory when an exception is thrown), the strong
guarantee (retain original state when an exception is thrown), or the no-throw guarantee (see [30, Item 71]).
However, if exceptions are thrown from destructors when objects are being destroyed, then the
reference-counting classes are only fully exception safe in a debug-mode build. This does not really break
exception safety since destructors should not be throwing exceptions in most valid C++ programs (see [30,
Item 51]). The Teuchos memory management classes provide the foundation for allowing the wide-spread
and consistent use of C++ exception handling in all client code in such a way as memory will not be leaked
when exceptions are thrown. However, achieving a truly exception safe program means more than just not
leaking memory; it means that all code provides at least one of the fundamental exception guarantees
(again, see [30, Item 71]).

Note that throwing exceptions differs from what many other class libraries do which is typically to call
assert(...) when a runtime failure is discovered. For example, the checked STL for g++ will call assert
when a usage violation is discovered. There are pros and cons for throwing exceptions versus halting the
program but if code can be made exception safe, then one can argue that throwing exceptions is better
because it allows the program to recover in case of a catastrophic failure of a submodule while calling
assert(...) does not. Also, writing unit tests for code that throws exceptions is much easier and more
efficient than trying to write unit tests for code that halts the program. This issue of testability is a huge
advantage of exception handling over callingassert(...) or exit(...) when an error occurs.

5.12 Optimized performance

While debug-mode runtime checking is of great importance, of equal importance is speed in a optimized
non-debug build. It is critical in high performance code that the wise use of the Teuchos memory
management classes lead to optimized performance that is nearly identical to the performance of raw
pointers. Otherwise, if there is always a performance gap with using the Teuchos memory management

106

GCC 4.1.2: GNU GCC 4.1.2 (compiler options-O3 -DBOOST SP DISABLE THREADS) running under Linux
2.6.18-128.1.6.el5 on 2 Quad Intel Xeon CPUs at 2.93GHz and 4MB L1 Cache and 16 GB RAM.

ICC 10.1: Intel ICC C++ 10.1 (compiler options-O3 -DBOOST SP DISABLE THREADS) running under
Linux 2.6.18-128.1.6.el5 on 2 Quad Intel Xeon CPUs at 2.93GHz and 4MB L1 Cache and 16 GB
RAM.

MSVC++ 2008: Microsoft Visual C++ 2008 (compiler options /D SECURESCL=0
/DBOOST SP DISABLE THREADS /Ox) running under Windows Vista Enterprise on an Intel Core 2
Duo CPU T9800 at 2.93GHz and 2.00 MB RAM.

Table 17.Performance testing platforms.

classes, then there will always be an excuse to go back to using raw pointers will all of the disastrous
consequences discussed in Section 1 and Section 2.

In this section, the optimized performance of the Teuchos memory management classes is analyzed. In an
optimized build, all of the runtime checking is disabled but there is still some non-trivial overhead
associated with the reference-counting machinery. If used at too fine a granularity, reference-counting
overhead can become a significant space/time performance problem on real-world problems.

The optimized performance of several different types of operations are examined in the next few sections.
All of these performance timing tests were run on three different compilers shown in Table 17 that
represent two mainstream platforms. The GCC 4.1.2 and Intel ICC 10.1 results where run on the same
Linux machine and therefore one can directly compare the optimizing capability of these two compilers on
this platform. Note that the processor used for the Microsoft Vista platform is also Intel and has the same
clock speed as for the Linux platform. Therefore, one can make fairly direct comparisons of runtimes
between the three different compilers. Timings on other compilers may give different results, especially for
compilers that have a bad history at optimizing C++ code (e.g. PGI, Sun, AIX etc.). All of these
performance timing tests are driven by a performance testing framework in Teuchos and there are nightly
performance tests that strictly enforce relative performance timing targets.

This section is broken up into subsections as follows. First, the optimized performance of the
reference-counting machinery is looked at in Section 5.12.1. Reference-counting overhead will never go to
zero with respect to raw pointers but it is constant-time overhead and therefore its impact can be minimized
by not applying it at too low a level. The optimized performance of the Teuchos array classes is given in
Section 5.12.2. The timing results show that the basic bracket operator (i.e.a[i]) and iterator (i.e.
a.begin()) access methods all yield raw pointer performance. Finally, in Section 5.12.3, performance
tuning strategies are discussed primarily addressing the issue of performance optimizations related to
semi-persisting associations.

5.12.1 Reference counting overhead

While the reference-counting machinery used by theRCPandArrayRCP classes significantly improves
software development productivity and quality in many respects, it also has a certain amount of space and

107

time overhead that needs to be considered in design decisions.Here, the cost of the various operations
associated with theRCPclass are compared to raw pointers and to theboost::shared ptr class. Timings
are performed for creating and destroying theRCPNodeobject and reference-counted object, for
manipulating the reference count, and for accessing the underlying reference-counted object. These are the
core operations of theRCPclass that are most likely to affect performance.

All of the operations being timed are very low-level and therefore it is difficult to get meaningful unbiased
timing results. To get accurate timings, one must perform the operation in loop and average the times. With
naive code, some compilers (e.g. Microsoft Visual C++) will just optimize away the entire loop. Therefore,
the operation must be performed in the context of a loop over an array where the result of the loop gets
used in some way to accumulate a final result. Examples of these types of timing loops will be given below.
Because of the loop and iterator overhead and this extra (minimal) computation, the timings listed for each
operation are higher that what they would be otherwise. Therefore, the overhead reported is lower that
what it really is but by how much one cannot be sure. Also, when performing loops, issues of loop
initialization and cache issues come into play. In order to avoid these issues, a single loop size from all the
results of 1024 was selected to display in the figures and tables in this section. The raw timing results for
other loops sizes are given in Appendix D.1.

Note that the atomic thread-safe reference-counting machinary inboost::shared ptr was turned off in
order to get better timing comparisons. Preliminary timing studies showed that the assembler-optimized
atomic lock-free reference-counting machinary on Linux/GCC imparted about a 4x overhead. To avoid this
performance overhead, the assember code for atomic reference-count manipulation was disabled by
compiling with -DBOOSTSP DISABLE THREADS. Issues of thead safety are briefly discussed in
Section 5.14.

The first type of overhead to consider is the memory overhead of the reference-counting machinery shown
in Figure 4. Table 18 shows the sizes of some important objects associated withRCPand
boost::shared ptr (on a 64 bit platform where pointers are 8 bytes). The sizes are shown for allocating
std::vector<double> objects but the memory used by the reference counting machinery only depends
on pointers so the memory usage overhead is the same no mater what type of object is used. From looking
at Table 18, one can see that the static size ofstd::vector<double> is 24 bytes for this compiler.
Consider allocating anstd::vector<double> object with only one element. This would dynamically
allocate onedouble object in an array giving a total of 32 bytes. Now consider the reference-counting
machinery overhead. For every allocatedstd::vector<double> object, there is a reference-counting
node object of typeRCPNodeImpl<std::vector<double>, ... > which is 48 bytes. In addition there
is also anRCP<std::vector<double> > object of size 24 bytes. That gives a total of 24+48=72 bytes of
reference-counting overhead to manage an object that only consumes 32 bytes. That is memory overhead
of 225%! However, when thestd::vector<double> is allocated to hold 100 elements, the memory
consumed by thestd::vector<double> object is 24+8*(100) = 824 bytes. Now the 72 bytes of
reference-counting overhead is only 8.7%. By the time one gets to 1000 elements, the overhead drops to
0.8%. The point is that the reference-counting machinery imparts a storage overhead that is non-trivial for
small objects. Therefore,RCPshould not be used to manage large numbers small objects. Likewise,
ArrayRCP should not be used to manage large numbers of small arrays for the same reason.

Table 18 also shows the sizes of comparable objects associated with theboost::shared ptr class. The
boostsp counted impl p node object only consumes 32 bytes on this machine as apposed to the 48 bytes
for theRCPNodeImpl object. The increased overhead of theRCPNodeImpl object is due to the pointer for
the extra data map, an extra ownership Boolean, and storage of the deallocator object. Also, the
boost::shared ptr object itself only consumes 16 bytes while the equivalentRCPobject uses 24 bytes.

108

Type sizeof(Type)
bool 1
double* 8
double 8
std::vector<double> 24
boost::shared ptr<std::vector<double> > 16
boost::detail::sp counted impl p<std::vector<double> > 32
RCP<std::vector<double> > 24
RCPNodeImpl<std::vector<double>, ... > 48

Table 18. Sizes of RCP and boost::sharedptr objects for 64 bit GCC
4.1.2.

This increase in storage is due to having to store astrength enum to dynamically handleSTRONGand
WEAKreferences. This is the storage cost of increase flexibility of theRCPclass over the
boost::shared ptr class.

Now consider the runtime overhead associated with dynamic allocation and deallocation. Figure 12 shows
the timings for dynamically allocating and deletingstd::vector<double> objects for different numbers
of vector elements on the three compilers shown in Table 17. Figure 12.a shows the timings for allocating
std::vector<double> objects with only one element. This shows that there is some runtime overhead
needed to dynamically allocate new node objects forRCP. The extra overhead is due to an extra call tonew
in order to allocate the node object. Note that the extra overhead forRCPis quite small with respect to
boost::shared ptr for all three compilers (because both classes do very similar things). However, this is
constant time overhead so as largerstd::vector<double> objects are allocated (with associated
initialization of the vector elements in an inner loop) the relative overhead goes to zero, as shown in
Figure 12.b. Therefore, the runtime overhead of the reference-counting machinery for allocating and
deallocating large objects is very small.

Now consider timings for dereferencing usingRCP::operator*() , member access through the arrow
operatorRCP::operator->() , and assignment throughRCP::operator=(...) (which changes the
reference counts) shown in Figure 13. These timings are the average CPU time (in seconds) per inner loop
iteration (see Listing 97 for an example). These timing results show that dereferencing and member access
for RCPyield raw pointer performance on all the compilers because these member functions are trivially
inlined to expose the raw pointer.

The assignment operator, however, imposes significant overhead because of the need to increment and
deincrement the reference counts. The timing code fragment that exercisesRCP::operator=(...) is
shown in Listing 97. (Note thatstd::vector is used instead ofArray in Listing 97 in order to avoid
timing overhead that might result from a bad implementation ofArray::operator[](...) that would
affect the timing results.)

Listing 97 : Performance timing loops forRCP::operator=(...)

{
RCP<char> p(new char(’n’));

109

Figure 12. Timings for allocating and deallocating objects using RCP

110

std::vector<RCP<char> > p_vec(arraySize);
TEUCHOS_START_PERF_OUTPUT_TIMER_INNERLOOP(outputter, numActualLoops, arraySize)
{

for (int i=0; i < arraySize; ++i) {
p_vec[i] = p;
// NOTE: This assignment operation tests the copy constructor and
// the swap function. This calls both bind() and unbind()
// underneath.

}
}

}
TEUCHOS_END_PERF_OUTPUT_TIMER(outputter, rcpTime);

Timing results for the code in Listing 97 fornumActualLoops=338498 andarraySize=1024 are shown in
Figure 13 along with similar timings for raw pointers andboost::shared ptr . The full timing results for
other sizes are show in in Appendix D.1.

Several interesting points to note about these timing results are described below.

First, the timing results for the simple raw-pointer loops shown in Figure 13 suggest that these two
machines have nearly identical processor speeds. Therefore, the CPU times on the Y-axis scale for each of
these compiler/machine bar charts is made the same to allow for absolute comparisons. This allows for
direct comparisons of the optimizing capabilities of these three compilers with respect to dealing with
general C++ code (and not just C-like raw pointer loops). This suggests that GCC 4.1.2 is better than the
rest and that MSVC++ 2008 is quite bad at optimizing generalRCPC++ code.

Second, note that the cost of manipulating the reference count inRCP::operator=(...) is an order of
magnitude higher than the dereference and arrow operators which have raw-pointer performance. The real
overhead of manipulating the reference counts may not actually be this high due to the simple nature of the
raw pointer code run in a loop getting better optimization. The reference-count manipulation code involves
if statements that may disable certain loop optimizations.

Third, note thatRCP::operator=(...) is about 30% slower on GCC 4.1.2 than forboost::shared ptr
due to the extra overhead of dynamically handling strong and weak reference counts. The overhead ofRCP
overboost::shared ptr goes up to 50% on on ICC 10.1 and then falls off a cliff going up to 300% for
MSVC++ 2008. Clearly the MSVC++ compiler is not inlining theRCPfunctions as well in this case.
However, there may be compiler options that would cause the MSVC++ compiler to be more aggressive in
inlining but none could be found after a moderate level of experimentation.

Fourth, note that for GCC 4.1.2, the cost of manipulating the reference count (at5.59-09 sec) is two
orders of magnitude less than the cost to allocate and deallocate anstd::vector<double> object with
only one element (at1.39-07 sec) and is three orders of magnitude less for 16384 elements (at5.84-06
sec) as shown in Appendix D.1. Therefore, just the memory allocation overhead can dominate these other
costs in some cases. Also, if a large object is being used with expensive operations, then the
reference-counting overhead will be insignificant compared to using the object. Again, this argues that
classes likeRCPshould only be used to manage larger objects that have more expensive operations
associated with them. The same argument can be made thatArrayRCP should only be used for managing
larger arrays of data where the cost of loops over the data overwhelm the reference-counting costs.

Lastly, note that theRCP::operator=(...) implementation both deincrements and increments the

111

Figure 13. Timings of basic RCP operations on for three compilers

112

reference count while the copy constructor only has to increment the reference count. Therefore, we might
expect that the copy constructor would be about twice as fast as the assignment operator. The performance
of the copy constructor is not measured in a loop because it is hard write a loop that tests it without other
overhead. However, the fastest approach is to avoid the copy of theRCPobjects at all by passing in constant
references to theRCPobjects as formal function arguments which is advocated in Section 5.8.4.

5.12.2 Array access and iterator overhead

Another important type of performance (perhaps more important than the performance ofRCPfor handling
single objects) is the performance of the Teuchos array classes. In an optimized non-debug build these
classes must yield the same performance as using raw pointers or the performance of the application will
definitely be affected.

Performance timing experiments for the bracket operatoroperator[](size type) and iterators (returned
from thebegin() andend() functions) were performed using simple timing loops. Unlike the
performance tests forRCPdescribed in the previous section, timing array operations naturally lends
themselves to performance timings. The performance timing code fragments for theArray class are shown
in Listing 98 and 99. The timing loop code for raw pointers and theArrayRCP andArrayView classes are
nearly identical.

Listing 98 : Performance timing loops forArray::operator[](size type)

Teuchos::Array<double> a(arraySize);
TEUCHOS_START_PERF_OUTPUT_TIMER_INNERLOOP(outputter, numActualLoops, arraySize)
{

for (Ordinal i=0; i < arraySize; ++i)
a[i] = 0.0;

}
TEUCHOS_END_PERF_OUTPUT_TIMER(outputter, arrayTime);

Listing 99 : Performance timing loops forArray iterators

Teuchos::Array<double> a(arraySize);
TEUCHOS_START_PERF_OUTPUT_TIMER_INNERLOOP(outputter, numActualLoops, arraySize)
{

Teuchos::Array<double>::iterator a_itr = a.begin(), a_end = a.end();
for (; a_itr < a_end; ++a_itr)

*a_itr = 0.0;
}
TEUCHOS_END_PERF_OUTPUT_TIMER(outputter, arrayTime);

Figure 14 shows the CPU timings foroperator[](size type) and iterators for the performance tests
with sizesnumActualLoops=230574 andarraySize=1600 . These timing results are fairly interesting and
there are a few important details to note.

First, the performance of the raw pointer iterator loops on all three platforms is almost identical. The CPU
time per inner loop iteration for the raw iterator form of the loop for all three compilers on the two different
Linux and Windows machines is about3.5e-10 seconds. This suggests that the CPUs on these two

113

Figure 14. Timings for basic Array, ArrayRCP, and ArrayView opera-

tions

114

machines are nearly identical for low level operations. This therefore suggests that only the compilers that
result in different performance for the other operations. Because these processors appear to be giving the
same raw performance, the Y-axis scales on all the timing bar charts are made the same in Figure 14 to
allow for direct comparison between each of the platforms.

Second, the ICC 4.1.2 compiler does not optimize the GNUstd::vector::iterator type16 as well as it
optimizes raw pointer iterator syntax. The GNU GCC 4.1.2 compiler itself does not even quite fully
optimize its ownstd::vector::iterator type!

Third, the ICC 4.12 compiler is not optimizing the array indexing form of the inner loops shown in
Listing 98 as well as the other two compilers even for the use of raw pointers. The performance is even
worse for the abstract data typesstd::vector , Array , ArrayRCP , andArrayView .

Forth, for some reason the MSVC++ 2008 compiler is not optimizing the loop using
ArrayRCP::operator[](size type) as well as for the other array types. Several different compiler
options and variations on theArrayRCP and performance timing code where experimented with without
any impact (except to make every operation slower). However, the performance timing loop using iterator
for ArrayRCP yield raw-pointer performance (not surprising given thatArrayRCP::iterator is just a raw
pointer in a non-debug build).

The take-away points from these timing results are that all compilers do not fully optimize the array
indexing form of the loops and only raw pointers used as iterators will yield the optimal performance. The
Teuchos array classes perform at least as well asstd::vector and actually out-performstd::vector in
some cases. This is only because the Teuchos array classes use raw C++ pointers for iterators in an
optimized non-debug build while the GNU implementationstd::vector uses a library-defined class.

5.12.3 Performance tuning strategies, semi-persisting associations

The timing results shown in the prior two sections lead to a few different conclusions related to
performance issues in the use of the Teuchos memory management types:

• The reference-counting machinery of theRCPclass imparts at least 72 bytes of overhead for every
reference-counted object (the overhead forArrayRCP is slightly higher) and thereforeRCPshould not
be used to manage massive numbers of small objects, just from a memory usage standpoint.
Likewise,ArrayRCP should not be used to manage large collections of small arrays since the
memory overhead could be significant.

• The extra runtime overhead of reference-counting machinery does not significantly increase dynamic
memory allocation and deallocation runtime costs for moderately large objects.

• The runtime reference-counting overhead ofRCPwith respect toboost::shared ptr can vary from
as little as 30% on a good optimizing compiler (e.g. GCC 4.1.2) to as much as 300% or more on a
poor optimizing compiler (e.g. MSVC++ 2008). Therefore, if portable performance of is critical,
make sure and use the reference-counting types at as high a level of granularity as one can such that
it does not damage the quality of the software (i.e. safety, flexibility, usability, maintainability).

16The data-type for the optimized iterator forstd::vector::iterator on GNU is not a raw pointer. Instead it is a library-
defined data type with all inline functions that should in theory be optimized as well as the raw pointer but not always.

115

• The most portable way to achieve high performance in array operations is to use iterators on
ArrayRCP andArrayView objects. The timing results on ICC 10.1 show that some compilers will
not even given optimize performance forstd::vector::iterator ! Also, all compilers do not
automatically fully optimize the array bracket form of an array-based loop so an iterator loop is the
only full-proof way to get the best optimized performance across platforms.

The performance tests described above show that the memory and runtime overhead of the
reference-counting machinery can be high when used with small cheap objects. Therefore, if the
reference-counted typesRCPandArrayRCP are used at too low a level of granularity, the overall
performance of the program may suffer and may use significantly more memory than it would with raw
pointers. In such low-level code, strictly adhering to the idioms described in Sections 5.8.4 and 5.8.5 with
respect to persisting relationships can significantly degrade performance. Therefore, in low-level
performance-critical code, the strict idioms related to persisting associations need to be relaxed or the
design must be changed to raise the level of granularity where the reference-counted types are used.

However, just because one cannot useRCPandArrayRCP in every situration and still achieve high
performance does not mean that the code should hard-code the use ofraw pointers. Instead,Ptr can be
used instead ofRCPandArrayView can be used instead ofArrayRCP when the full semantics of persisting
relationships are not needed and instead only semi-persisting relationships are needed (see Section 4.2). By
using the typesPtr andArrayView instead of raw pointers for all semi-persisting associations one still
gets all of the strong debug-mode runtime checking that is described in Section 5.11 (e.g. dangling
reference checking, null checking, range checking, etc.) yet these types remove all overhead over raw
pointers in a non-debug optimized build.

As an example, consider the design of a sparse matrix class that stores its data as compressed sparse rows
and allows access to the sparse rows. The client of the sparse matrix class would obtain handles to the
sparse row data, make modifications to it, and then release the handles. Performing all of these operations
in a single statement (as is strictly required for a non-persisting relationship as defined in Section 4.2) is
impractical. Therefore, the handles for the internal sparse row data represent a persisting relationship and
the strict interpretation of the idioms defined in Sections 5.8.4 and 5.8.5 would require the use ofArrayRCP
yielding the sparse matrix class interface shown in Listing 100.

Listing 100 : Sparse matrix class interface adhering to strict interpretation of idioms for persisting
relationships

class SparseMatrix {
public:

...
int getNumRows() const;
void getSparseRow(int rowId, const Ptr<ArrayRCP<double> > &values,

const Ptr<ArrayRCP<const int> > &colIds);
...

};

TheSparseMatrix class shown in Listing 100 would be used as shown in Listing 101.

Listing 101 : Client code usingArrayRCP form of theSparseMatrix class

116

void zeroOutSparseMatrix(const Ptr<SparseMatrix> &M)
{

const int numRows = M->getNumRows();
for (int row_i = 0; row_i < numRows; ++row_i) {

ArrayRCP<double> values;
M->getSparseRow(row_i, outArg(values), null);
typedef ArrayRCP<double>::iterator itr_t;
for (itr_t itr = values.begin(); itr != values.end(); ++itr)

*itr = 0.0;
}

}

While the interface and the user code shown in Listing 101 strictly satisfies that safe and bullet-proof
idioms on persisting associations described in Section 5.8.4, the reference counting overhead (in memory
size and speed) of this code can be quite high if the rows are very sparse. Looking at code such as shown in
Listing 101 and similar use cases, it never seems reasonable that a client would grabArrayRCP objects to
internal rows and expect to have the row data persist even if the matrix changed structure or was deleted.
Instead, one just needs to set up the infrastructure for semi-persisting associations to be able to detect those
types of invalid usage in a debug-mode build but yield high performance in an optimized build. Therefore,
it seems reasonable to replaceArrayRCP in SparseMatrix::getSparseRow(...) in Listing 100 with
ArrayView yielding the newSparseMatrix interface shown in Listing 102.

Listing 102 : Sparse matrix class interface using a semi-persisting association for row views for the sake
of performance

class SparseMatrix {
public:

...
int getNumRows() const;
void getSparseRow(int rowId, const Ptr<ArrayView<double> > &values,

const Ptr<ArrayView<const int> > &colIds);
...

};

The updated client code zeroing out the rows of the matrix would then look like Listing 103.

Listing 103 : Client code usingArrayView form of theSparseMatrix class with semi-persisting row
views

void zeroOutSparseMatrix(const Ptr<SparseMatrix> &M)
{

const int numRows = M->getNumRows();
for (int row_i = 0; row_i < numRows; ++row_i) {

ArrayView<double> values;
M->getSparseRow(row_i, outArg(values), null);
typedef ArrayView<double>::iterator itr_t;
for (itr_t itr = values.begin(); itr != values.end(); ++itr)

*itr = 0.0;
}

}

117

Now the client code in Listing 103 will have no reference-counting overhead in a non-debug optimized
build but in a debug-mode build, all invalid usage will be detected. For example, consider invalid code such
as shown Listing 104 where the client code tries to hold on to sparse row data after the matrix is deleted.

Listing 104 : Example of invalid usage ofSparseMatrix leading to a dangling reference exception in
a debug-mode build

// Create and initialize the matrix
RCP<SparseMatrix> M = createSparseMatrix(...); // Non-member constructor
...

// Grab a sparse row to the matrix
ArrayView<double> values_row_0;
ArrayView<const int> colIds_row_0;
M->getSpaseRow(0, outArg(values_row_0), outArg(colIds_row_0));

// Delete the matrix (leaving dangling values_row_0 and colIds_row_0)
M = null;

// Try to access the row
ArrayView<double>::iterator

itr = values.begin(), // Throws exception in debug-mode build!
itr_end = values.end();

for (; itr != itr_end; ++itr)
*itr = 0.0;

As shown in Listing 104, usingArrayView allows programming errors to be detected in a debug-mode
build. If raw pointers would have been used, this dangling reference may not be detected right away. On
some platforms for some problem sizes, the program using raw pointers may seem to run just fine and
Valgrind may not complain (especially if sophisticated memory management is used inside the
SparseMatrix class). The error may not present itself until months or years later where it may do untold
harm.

Note that there may be some extreme cases where the overhead of an extra size data member inArrayView
is too high. In these cases, one can instead use an iterator type such asArray::iterator or
ArrayRCP::iterator (depending on type of the underlying container class). In a debug-mode build, the
iterator objects will be fully checkedArrayRCP objects while in a non-debug optimized build, the iterators
will be raw pointers (orstd::vector::iterator in the case ofArray::iterator). This yields raw
pointer performance in a non-debug optimized build with no space or time overhead (because all the
objects actually are raw pointers in this case).

The point of this section is to acknowledge that there will be situations in low-level code where the strict
adherence to using reference-counted typesRCPandArrayRCP for persisting associations may not yield
acceptable performance and therefore one must instead provide for semi-persisting views. However, as
demonstrated above, the solution to the performance problem is not to fall back to using raw pointers but
instead to fall back on the non-reference-counted typesPtr andArrayView (or Array[RCP]::iterator).
By using the typesPtr andArrayView (or Array[RCP]::iterator), one maintains all the desirable
debug-mode runtime checking without any of the reference-counting overhead in a non-debug optimized
build. We can have our cake and eat it too!

118

5.13 Related idioms and design patterns

There are a number of important idioms related to the usage of the Teuchos memory management classes
and most specifically theRCPclass. The power and flexibility of the reference-counting machinery built in
to theRCPclass opens the door the a whole host of interesting idioms, a few of which are described in the
following subsections.

5.13.1 The inverted object ownership idiom

A rare situation that can occur is when one has an object that maintains anRCPto another object but one
wants to expose the second object and have it remember the first object; in other words, one wants to invert
the object ownership. To demonstrate, consider the two classes in Listing 105.

Listing 105 : Two classes where one maintains an RCP to the other

class A { ... };

RCP<A> createA(...);

class B {
public:

static RCP create(const RCP<A> &a) {return rcp(new B(a)); }
RCP<A> getA() { return a_; }
void unsetA() { a_ = null; }
...

private:
RCP<A> a_;
B(const RCP<A> &a) a_(a) {}

};

RCP createB(const RCP<A> &a) {return B::create(a);}

The classA in Listing 105 may involve some complex initialization or it may only be an abstract interface
with multiple subclasses. In either case, it may make sense to provide a factory function (or a set of such
functions) that creates and initializes aB object for different complex initializations ofA objects such as the
example shown in Listing 106.

Listing 106 : A factory function that creates aB object wrapping a complexA object

RCP createBFactory(...)
{

// Complex initialization of A
RCP<A> a;
...
// Wrapped B
return createB(a);

}

119

Up to now, this is pretty standard code. The client would typically hold anRCPobject and would
manage the lifetime of theA object implicitly wrapped in theB object.

However, now consider a rare use case where a client may only want to deal directly with theA object but
still maintain theB object for later use. There are a few approaches that one could try to implement this
inversion of RCP ownership but there is a way to enable this that is 100% bullet-proof without having to
change the existingA or B classes or any other code at all. The way to do this is to use the
rcpWithInvertedObjOwnership(...) function (defined in Listing 108) as shown in Listing 107.

Listing 107 : A factory function that returns anA object embedded with aB object (inverting the
ownership relationship)

RCP<A> createAFactory(...)
{

RCP b = createBFactory(...);
return rcpWithInvertedObjOwnership(b->getA(), b);

}

Listing 108 : Standard helper function implementing the “inverted object ownership” idiom

template<class T, class ParentT>
RCP<T> rcpWithInvertedObjOwnership(const RCP<T> &child, const RCP<ParentT> &parent)
{

typedef std::pair<RCP<T>, RCP<ParentT> > Pair_t;
return rcpWithEmbeddedObj(child.getRawPtr(), Pair_t(child, parent), false);

}

Without going into a lot of detail, what the code in Listings 107 and 108 accomplishes is that it defines a
newRCP<A>object with a newRCPNodeobject that uses the other existingRCP<A>andRCPobjects to
define ownership and ensure that the underlyingA andB objects do not go away until the lastRCP<A>object
copied from the object returned by the functioncreateAFactory(...) has gone away. The reason that
false is passed into thercpWithEmbeddedObj(...) call is because it is the embedded objectsRCP<A>
andRCPthat define the deallocation and not the embedded deallocator (which callsdelete). The
reason that bothRCP<A>andRCPare passed as an embedded object (stored in anstd::pair object) is
that one needs to make sure theA object does not get deleted in case some client calls theB::unsetA()
function.

Given this data-structure, another piece of code can then extract the underlyingRCPobject is shown in
Listing 109 which uses the standard Teuchos functiongetInvertedObjOwnershipParent(...) defined
in Listing 110.

Listing 109 : A function that extracts the B object from the A object

RCP extractBFromA(const RCP<A> &a)
{

return getInvertedObjOwnershipParent(a);
}

Listing 110 : Standard helper grabbing the inverted parent

120

template<class ParentT, class T>
RCP<ParentT> getInvertedObjOwnershipParent(const RCP<T> &invertedChild)
{

typedef std::pair<RCP<T>, RCP<ParentT> > Pair_t;
Pair_t pair = getEmbeddedObj<T, Pair_t>(invertedChild);
return pair.second;

}

That is all there is to it. This is not the sort of thing that one wants to expose to general clients but it can be
very handy to have this type of flexibility when implementing the guts of library code. The above example
shows the flexibility of these memory management classes and what some of the possibilities are if one
understands the underlying reference-counting machinery a little.

5.13.2 The separate construction and just-in-time initialization idioms

The “separate construction and initialization” and “just-in-time initialization” idioms described here are not
specific to the use of the Teuchos memory management classes but they do provide the basic foundation for
the next idiom described, the “object self-reference” idiom. To set up the context for the discussion,
consider a typical class design shown in Listing 111.

Listing 111 : Example of a typical C++ class that uses constructors for all initialization

class SomeClass : public SomeBaseClass {
int member1_;
double member2_;
RCP<A> a_;
RCP b_;
RCP<C> c_;
void finalInitialization() { ...} // Can’t call virtual functions on SomeBaseClass

public:
SomeClass(): member1_(1), member2_(5.0) {}
SomeClass(const RCP<A> &a) : member1_(1), member2_(5.0), a_(a)

{ finalInitialization(); }
SomeClass(const RCP &b) : member1_(1), member2_(5.0), b_(b)

{ finalInitialization(); }
SomeClass(const RCP<A> &a, const RCP &b, const int someValue)

: member1_(1), member2_(5.0), a_(a), b_(b)
{ c_ = createC(rcp(this, false), a, b, someValue);

finalInitialization(); }
RCP<A> get_A() { return a_; }
RCP get_B() { return b_; }
RCP<C> get_C() { return c_; }
void doSomeOperation(...) {...}

};

So what is wrong with the design ofSomeClass in Listing 111? First, there is the duplication of default
values formember1 , member2 in all of the constructors. This makes it labor intensive and error-prone to

121

change the values later. Yes, one could create static constants of some type to be reused in all the
constructor initialization lists but one still has to list all of these arguments in every constructor17.

The second problem with the classSomeClass that it cannot call any virtual functions in the base class
SomeBaseClass to help initialize its state in the constructors [30, Item 49].

The third problem with the design ofSomeClass shown in Listing 111 is that theC object that is created in
the third constructor that takesA andB objects is not properly setting up a persisting relationship between
theC object and theSomeClass object. When thisC object is exposed through theget C() member
function, this creates a dangerous situation where theSomeClass object may be deleted leaving a client
with a danglingRCP<C>object with no way for the reference-counting machinery described in Section 5.9
do detect the the problem. This issue will be discussed more in the context of the “object self-reference”
idiom in Section 5.13.3.

Lastly, the classSomeClass is inflexible in that it requires the client creating theSomeClass object to know
the concrete types ofA and orB (which could be abstract interfaces in this example) right when the
SomeClass object is first created. This creates a three-way coupling between a) the client, with b) defining
the time when theSomeClass object is first created, and c) needing fully constructedA andB objects right
whenSomeClass is first created. In complex programs, it is very hard and very constraining to have to
fully initialize a web interconnected objects before constructing downstream objects.

Without further ado, the use of the “separate construction and initialization” and “just-in-time
initialization” idioms applied toSomeClass shown in Listing 111 gives the new refactored class in
Listing 112.

Listing 112 : Example of the use of the “separate construction and initialization” and “just-in-time
initialization” idioms

class SomeClass : public SomeBaseClase {
public:

SomeClass(): isIntialized_(false), member1_(1), member2_(5.0) {}
void set_A(const RCP<A> &a) { a_ = a; isIntialized_=false; }
void set_B(const RCP &b) { b_ = b; isIntialized_=false; }
RCP<A> get_A() { return a_; }
RCP get_B() { return b_; }
RCP<C> get_C() { justInTimeInitialize(); return c_; }
void uninitialize() { a_ = null, b_ = null; c_ = null; isIntialized_=false; }
void doSomeOperation(...)

{
justInTimeInitialize();
...

}
private:

bool isIntialized_;
int member1_;
double member2_;
RCP<A> a_;
RCP b_;
RCP<C> c_;

17The new C++0x standard will address the problem of duplicate constructor initialization lists by allowing constructors to call
each other but we will not see such a feature in wide spread use until many years after the C++0x standard is finalized.

122

void justInTimeInitialize()
{

if (isIntialized_) return;
// Can now call virtual functions on SomeBaseClass (someBaseFunc())!
if (nonnull(a_) && nonnull(b_))

c_ = createC(rcp(this, false), a, b, this->getSomeValue());
...
isIntialized_ = true;

}
};

// Non-member constructors
RCP<SomeClass> someClass()

{ return rcp(new someClass()); }
RCP<SomeClass> someClass(const RCP<A> &a)

{ RCP<someClass> sc(new someClass()); sc->set_A(a); return sc; }
RCP<SomeClass> someClass(const RCP &b)

{ RCP<someClass> sc(new someClass()); sc->set_B(b); return sc; }
RCP<SomeClass> someClass(const RCP<A> &a, const RCP &b)

{ RCP<someClass> sc(new someClass()); sc->set_A(a); sc->set_B(b); return sc; }

SIDE NOTE: Before describing the specific advantages of the refactored class in Listing 112, first note that
the issue of the creation of theC object and dangling references ofc returned fromget C() have not been
addressed in this design. That issue will be addressed with the “object self-reference” idiom described in
Section 5.13.3.

Some of the specific advantages of the usage of the “separate construction and initialization” idiom as
applied to the design ofSomeClass shown in Listing 112 are described below.

a) The default values formember1 andmember2 are defined in only one constructor initialization list.
This massively simplifies the maintenance of large complex classes with lots of data members and more
than one constructor.

b) The private initialization functionjustInTimeInitialize() can now call a virtual function on the
base classSomeBaseClass::getSomeValue() to get the value ofsomeValue instead of requiring the
client to pass it into the constructor.

c) The objectsa andb can be constructed and injected into theSomeClass object in different parts of the
code by different clients. This breaks a fundamental dependency which couples these objects and the
clients together and can massively simplify the structure of complex programs.

d) The “separate construction and initialization” idiom naturally leads to the “just-in-time initialization”
idiom where thejustInTimeInitialize() function is not called until the functions
doSomeOperation(...) or get C() are called by a client. This allows the objectsa and/orb to be passed
into the functionsset A(...) andset B(...) in a partially-initialized state. These objects do not need to
be fully initialized until thedoSomeOperation(...) or get C() functions are called. This can massively
simplify and robustify the design of complex programs by separating code that creates the links between
objects from the code that fully initializes the objects. This avoids the constraints of needing to use a
factory object to create fully initialized “aggregate” objects described in [13].

123

e) An object of typeSomeClass is not any harder for a client to create because the non-member constructor
functions allow the object to be constructed in a single function call (see Section 5.8.1) for all the use cases
given in the original class constructor design.

The only real disadvantage of the “separate construction and initialization” idiom is some small decrease in
performance in using assignment instead of member initialization lists [25, Item 4]. However, this type of
low-level performance is almost never an issue in higher-level classes likeSomeClass shown in
Listing 112. Most classes in a complex program are higher-level classes where low-level performance
considerations like this are not an issue so the the “separate construction and initialization” idiom is
applicable in more cases than not.

The main disadvantage of the “just-in-time initialization” idiom is the need to have a call the function
justInTimeInitialize() in every operation that requires the object to be fully initialized. This is minor
programming inconvenience and a minor performance overhead. The more significant disadvantage is that
more unit testing is needed to test the behavior of the user functions for when the object is not ready to be
fully initialized. However, good class design makes this fairly easy.

5.13.3 The object self-reference idiom

There are occasions where an object needs to provide anRCPto itself with the full protection of the
debug-mode checking with node-tracing enabled. However, for an object to hold a strongRCPto itself
would set up a circular reference and the object would never be deleted. The issue of self references was
mentioned in the previous section in the context of the “separate construction and initialization” idiom.

The most straightforward example of where the “object self-reference” idiom is needed is when a factory
object creates a product that must in turn store a strong owningRCPto the factory that created it. This is the
exact use case that exists in the Thyra package forVectorBase andVectorSpaceBase objects [3]. In this
case,VectorSpaceBase acts as the factory andVectorBase acts as the product. Also, everyVectorBase
object has a functionspace() that returns anRCPto theVectorSpaceBase object that created it to be used
to create otherVectorBase objects.

A simplified version of the implementation of theVectorSpaceBase standard subclass
DefaultSpmdVectorSpace using the “object self-reference” idiom is shown in Listing 113.

Listing 113 : Example of the “object self-reference” idiom where a factory must give a strong owning
RCP self reference to its products.

class DefaultSpmdVectorSpace : public VectorSpaceBase {
RCP<DefaultSpmdVectorSpace> weakSelfPtr_;
Ordinal localDim_;
DefaultSpmdVectorSpace() : localDim_(0) {}

public:
static RCP<DefaultSpmdVectorSpace> create()

{
RCP<DefaultSpmdVectorSpace> vs(new DefaultSpmdVectorSpace);
vs.weakSelfPtr_ = vs.create_weak();
return vs;

}
void initialize(const Ordinal localDim)

124

{ localDim_ = localDim; }
RCP<VectorBase> createMember()

{ return defaultSpmdVector(weakSelfPtr_.create_strong()); }
};

// Nonmeber constructor
RCP<DefaultSpmdVectorSpace> defaultSpmdVectorSpace(const Ordinal localDim)
{

RCP<DefaultSpmdVectorSpace> vs = DefaultSpmdVectorSpace::create();
vs->initialize(localDim);
return vs;

}

The way the “object self-reference” idiom works is that a static functioncreate() allocates a
default-initializedDefaultSpmdVectorSpace object and stores it in a strong owningRCPobject. It then
creates a weakRCPobject that it sets as the self reference on the newly createdDefaultSpmdVectorSpace
object. The default constructor is made private so the only way for a client to create an
DefaultSpmdVectorSpace object is to use use the staticcreate() function (or call it indirectly through
the non-member constructor functiondefaultSpmdVectorSpace()). Because this self reference is a weak
tracingRCP, it can detect dangling references or can be used to create a strongRCPwhen needed while at
the same time not creating a circular reference that would result in a memory leak.

The memory functioncreateMember() shown in Listing 113 creates a strong owningRCPto itself which
is given to the newly createdDefaultSpmdVector object in the statement
defaultSpmdVector(weakSelfPtr .create strong()) . This allows the resulting product
DefaultSpmdVector object to outlive the client’sRCPreferences to the factory object
DefaultSpmdVectorSpace . A simple example of this is shown in Listing 114.

Listing 114 : Example of client code that creates a factory, uses it to create a product and lets the factory
go away where the factory is remembered in the product

RCP<VectorBase> createMyVector(const Ordinal localDim)
{

RCP<DefaultSpmdVectorSpace> vs = defaultSpmdVectorSpace();
return vs->createMember();
// NOTE: The DefaultSpmVectorSpace object is embedded in the returned
// DefaultSpmdVector object and will not be deleted

}

Code like shown in Listing 114 may seem contrived but there have been several use cases for Thyra over
the years that required code just like this to work or it would have resulted in a much more complex design
of the client’s code to work around this issue.

There are also other less obvious examples where the “object self-reference” idiom is useful. For one such
case, consider Listing 115 which shows a simplified version of the class shown in Listing 111 that has to
pass a self reference to an object it creates and holds internally.

Listing 115 : Example of an class withRCP to self problems (similar to the class in Section 5.13.2)

125

class SomeClass : public SomeBaseClass {
RCP<C> c_;
void finalInitialization() { ...}

public:
SomeClass() {}

{ c_ = createC(rcp(this, false)); finalInitialization(); }
RCP<C> get_C() { return c_; }
...

};

The problem with the code in Listing 115 is that it gives up anRCP<C>object to its internalC object that is
constructed internally but a proper node tracing relationship has not been established between theC object
and theSomeClass object. (Even ifSomeClass does not intentionally give up itsRCP<C>object, it is still
very easy to do it by accident so this scenario still applies.) To see the problem with this, consider the client
code in Listing 116.

Listing 116 : Client code that results in undefined behavior (e.g. segfault)

RCP<SomeClass> sc(new SomeClass);
RCP<C> c = sc->get_C();
sc = null; // The SomeClass object is destroyed which invalidates ’c’!
c->someFunc(); // Calls on the now deleted SomeClass object pointed to inside!

The problem with the code in Listing 116 is that when theSomeClass objectsc is destroyed, there is no
way for the reference-counting machinery in to catch the dangling reference. This code yields undefined
behavior and will segfault if one is lucky but like any memory usage error, if one is unlucky the code will
appear to work correctly but will be a ticking time-bomb that will go off eventually. The reason for this
behavior is that the statementc = createC(rcp(this, false)) in the constructorSomeClass()
creates a non-owingRCPNodeobject beforethe owningRCPNodeobject is created by the client code
RCP<SomeClass> sc(new SomeClass) . This violates Commandment 5 in Section B. The node-tracing
reference-counting machinery would have to be more complex and much more expensive to catch dangling
reference errors where the strong owningRCPNodeobject was not the firstRCPNodeobject created.

The solution to this problem is to use a variation of the “object self-reference” idiom. The updated design
that accomplishes this is shown in Listing 117.

Listing 117 : Example of the “object self-reference” idiom for detecting dangling references to internally
held objects

class SomeClass : public SomeBaseClass {
RCP<SomeClass> weakSelfPtr_;
RCP<C> c_;
SomeClass() {}
void justInTimeInitialize() { c_ = createC(weakSelfPtr_); }

public:
static RCP<SomeClass> create()

{
RCP<SomeClass> sc(new SomeClass);
sc.weakSelfPtr_ = sc.create_weak();

126

return sc;
}

RCP<C> get_C() { justInTimeInitialize(); return c_; }
...

};

// Nonmeber constructor
RCP<SomeClass> someClass() { return SomeClass::create(); }

The advantage of the design in Listing 117 is that now client code like shown in Listing 118 below will
result in a dangling reference exception in a node-tracing debug-mode build.

Listing 118 : Client code that results a clean dangling-reference exception

RCP<SomeClass> sc = someClass();
RCP<C> c = sc->get_C();
sc = null; // The SomeClass object is destroyed which invalidates ’c’!
c->someFunc(); // Now the dangling reference is detected and throws!

Note that the implementation ofSomeClass in Listing 117 means that the nature of the relationship
between theC object returned fromSomeClass::get C() , the parentSomeClass object, and the client
code represents a semi-persisting association as defined in Section 4.2. In this case, the usage of theC
object is only valid while the parentSomeClass object still exists. However, if the client mistakenly tries to
use a danglingC object after its parentSomeClass object is destroyed, then a clean runtime
dangling-reference exception is thrown as described in Section 5.11.3.

Alternatively, if one wants theSomeClass::get C() function to create a true persisting association where
theC object can outlive all of the client references to the parentSomeClass object, then the implementation
of SomeClass::get C() can be modified to what is shown in Listing 119.

Listing 119 : Implementation of the “object self-reference” idiom using a true persisting association

RCP<C> SomeClass::get_C()
{

justInTimeInitialize();
return rcpInvertedObjOwnership(c, weakSelfPtr_.create_strong());

}

Creating a strongRCPis required in this case as well as the inversion of the object ownership (which is an
instance of the “inverted object ownership” idiom which is described in Section 5.13.1).

Given the implementation in Listing 119, client code like shown in Listing 118 will allow theC object to be
used after the client’sRCP<SomeClass> object is madenull without thrown a dangling reference
exception. Choosing between a semi-persisting or a persisting association is a design decision for the
creator ofSomeClass .

127

5.13.4 The generalized view design pattern

One of the most useful and powerful idioms / design-patterns related to the use of the Teuchos memory
management classes is the “generalized view” design pattern18. In this context, a “view” is some object
that is created off of a parent object and provides some type of access to some part of the parent. Views can
be const or non-const and can be persisting or semi-persisting (see Section 4.2 for the definition of
persisting and semi-persisting associations). Views can also be direct views or “generalized views” (i.e.
potentially detached non-direct views).

A direct view is one which directly points into the the internal data structures of the parent so that a change
of the view instantaneously changes the parent and changes to the parent instantaneously changes the
view(s). An example of a direct view is an iterator into an container such as is returned from
std::vector::begin() or std::list::begin() . Other examples of direct views includeArrayView
views ofArray andArrayRCP objects. Direct views can be non-const or const as is demonstrated with
iterators andArrayView s. Direct views are a pleasure to work with but they also fundamentally constrain
the implementation of the parent objects that they are providing the views into. In the case of contiguous
array containers likestd::vector andArrayRCP , constraining the implementation to store a pointer to a
contiguous array of data internally is not a problem, that is an important and proper design constraint for
these classes. However, for more general classes, the rigid constraints imposed by direct views are
unacceptable and break the abstraction in many cases. For example, if an abstract matrix object provides
direct views of the rows of a matrix then the matrix must necessarily be stored in a row-major
data-structure, precluding other possibilities. Once a direct row-based view is supported by such a matrix
class, it becomes impossible to change the internal representation of the matrix to anything other than a
row-oriented implementation and still maintain high performance and a reasonable implementation.

Basic overview of the “generalized view” design pattern

Because direct views can overly constrain the implementation freedom of the parent, in order to allow for
the fullest freedom to pick the internal implementations of the parent and the view separately, we must
instead consider using potentially detached non-direct views defined here as “generalized views”. A
“generalized view” is a view of a parent object that is not guaranteed to be a direct view such that changes
to the view may not be instantaneously propagated to the parent and vice versa. One example of a case
where a “generalized view” is needed is when creating a view of non-contiguous columns of a dense
matrix where, for the sake of efficiency, one must create a temporary contiguous copy as a new dense
matrix. This type of generalized view is used in the implementation of Thyra MultiVector non-contiguous
column views [3] which is depicted in Figure 15. In the Thyra MultiVector implementation, when the
client requests a view of a set of non-contiguous columns, the implementation will create a temporary
contiguous copy which results in improved performance of many types of operations19. The Thyra
example of non-contiguous column views is a good example because it is a simple case to describe yet has
all the features needed to demonstrate the workings of the generalized view design pattern.

18Here the term ‘design pattern’ and not ‘idiom’ is used to describe the “generalized view” design pattern. The reason that the
more general term ‘design pattern’ is being used is that the majority of the pattern is really language independent and the behaviors
are more general then what one will find in a typical language-specific idiom. It is only theRCPdetails that would classify this as a
C++ idiom. However, this is an important example of the use ofRCPso it is worthy to be discussed in this document.

19Using contiguous columns of a Fortran-style column-major dense matrix is required in order to take advantage of high perfor-
mance Basic Linear Algebra Subroutines (BLAS) software [10].

128

Figure 15. Depiction of contiguous and non-contiguous multi-vector

column views.

Before describing the Thyra MultiVector example in more detail, first, a generic description of the
“generalized view” design pattern is presented. The most general description of the “generalized view”
design pattern is shown in Figure 16 (UML class diagram) and Figure 17 (UML state diagram). Figure 16
shows two generic classes; aParent and aView . In this case, only one type of the view is shown but in
reality there can be several different types of views into a single parent object (as there are in the Thyra
MultiVector case). A view is created using either thecreateNonconstView(...) or the
createView(...) functions. In either case, the returned view is wrapped in anRCPobject. There are two
purposes for wrapping the view in anRCPobject. First, a newView object may need to be dynamically
allocated to satisfy the view request (and therefore needsRCPto take care to control the lifetime of the
dynamically allocated view object). Second, the action needed to re-sync the parent up with the view can
be set as an embedded object on the returnedRCP(see Section 5.9.4). In fact, theParent object is not
guaranteed to be updated after changes to a non-const view are made until the view is destroyed/released.
To demonstrate, consider the client code in Listing 120.

Listing 120 : Example use of a generalized view

void changeParent(const Ptr<Parent> &parent)
{

// Create a non-const view
const RCP<View> view = parent->createNonconstView(...);

// Change the parent through the view
view->makeChange(...);
view->makeChange(...);
...

// Destroy the view which resycs the view with the parent
view = null;

// Now the parent has been updated for changes through the view!

}

129

Figure 16. Parent and child classes for “generalized view” design pat-

tern.

Figure 17. State behavior for parent object in “generalized view” de-

sign pattern.

130

The code in Listing 120 demonstrates that the parent is only guaranteed to be updated after the non-const
generalized view has been destroyed. The state of the parent is undefined while a non-const view is active.
One of three possibilities exist for the state of the parent while a non-const view is active. First, if the view
just happens to be a direct view, then changes to the view are instantaneously reflected in the parent.
Second, if the view is a completely separate chunk of data, changes to the view do not affect the state of the
parent at all until the view is destroyed and the data in the view is copied into the parent’s internal data
structures in the appropriate way. The third option is somewhere in between the first two; part of the view’s
data may directly point back into the parent’s internal data structures and the rest of the view’s data may be
separate from the parent. In this case, the state of the parent object may actually violate its internal
invariants and the parent object would not even be usable while the non-const view is active.

In order to allow complete freedom in how a generalized view is implemented and to allow the
implementation to change at will, a relatively strict usage protocol must be defined as shown in the parent’s
state diagram in Figure 17. With respect to generalized views, theParent has one of three states; ‘no
views’, ‘has const views(s)’, and ‘has non-const view’. The default state of the parent is ‘no views’. In this
state, either a const or a non-const view can be created and all types of query and modifying functioins can
then be called. When a const view is created, the parent enters the state ‘has const view(s)’. In this state, the
parent object is still allowed to be queried and other const-views can be created. However, while there are
active const views, a non-const view cannot be created. The reason that non-const views cannot be allowed
while const views are active is that creating a non-const view and then changing it while const views are
active would put the const views into an undefined state. If the const and non-const views happened to be
implemented as direct views, then changes to the non-const view would not only change the parent but it
would also change the direct const views. However, if the views are implemented as detached copies of
data, then changes to the non-const view would not be expected to be propagated to the existing const
views20. Since this type of ambiguity would destroy the abstraction, the generalized view design pattern
simply states that creating non-const views on the parent while const views are active is just not allowed.
Likewise, any operations on the parent that might change the state in a way that would affect the views
must also be disallowed. In summary, when const views are active, the non-const interface of the parent
must be locked down. When the last const view is destroyed, the parent goes back to the ‘no views’ state.

When a non-const view is created the parent goes into the ‘has non-const view’ state. In this state, no other
non-const or const views can be created and the entire const and non-const interface of the parent must be
locked down. In essence, when a non-const view is active, the parent object has to be completely left along.
The reason for this should be obvious. When a non-const view is represented as a separate copy of data,
then the state of the parent is undefined until the non-const view is destroyed and the data is written back.
In this case, a query of the parent would not show the changes made in the active non-const view. Again,
this type of ambiguity would destroy the abstraction and therefore the parent object must be totally locked
down while a non-const view is active. Likewise, only one non-const view can be allowed at any one time
due to similar arguments. When the non-const view is destroyed, any changes in the data are written back
to the parent’s internal data structures and the parent goes back to the state ‘no views’.

In order to allow for the highest performance, the simplest implementations of the parent and the view
classes in all cases, and to help catch errors in client code, therefore by default the generalized view design
pattern states that views should be semi-persisting; that is, the views are only valid while the client’sRCPto

20Actually, one could implement an OBSERVER [22] type of implementation where changes to the views would automatically
be written back and forth to keep the parent and the views in sync but this would lead to complex and fragile implementations
and could significantly degrade performance if frequent small changes to data resulted in lots of syncs. Therefore, to allow for a
simple implementation and the highest performance, the generalized view design pattern discourages this type of more complex
less efficient OBSERVER-type of implementation.

131

the parent is still active and the view is not expected to live onpast the lifetime of the parent. Therefore,
any access to generalized views that remain after the last strongRCP<Parent> object is released should
result in dangling reference exceptions in a debug-mode build as shown in Listing 121.

Listing 121 : Example of a dangling reference generalized view

// Create and initialize parent
RCP<Parent> parent = createParent(...);
...

// Create a view
RCP<View> view = parent->createNonconstView(...);

// Destroy the parent (invalidating the existing view)
parent = null;

// Try to access the now dangling view
view->makeChange(...); // Throws dangling reference exception!

Even if a generalized view can be made persisting (which it is in the MultiVector example given later), the
implementation should still prefer to implement non-const views as semi-persisting views. The main
purpose of a non-const view is to change the parent object so if the parent is released before the non-const
view is written to and written back, then that is most likely a programming error in the client’s code. For
example, the code in Listing 121 is most likely an error in program logic because if the parent has been
deleted then there is no use in modifying the view. By implementing generalized views and semi-persisting
views the objects help to better catch these types of errors in client code.

However, if it makes sense in the particular setting, an implementation of the generalized view design
pattern can choose to implement the views as full persisting views that will persist even after all the
external parent references are removed (thereby avoiding dangling-reference exceptions). Note that if the
parent class implements the “object self-reference” idiom described in Section 5.13.3 then a strongRCPto
the parent object can always be attached to theRCPof the view, thereby providing for persisting generalized
views no mater what internal data structures are used.

Another aspect of the generalized view design pattern is that it is important to distinguish between
non-const views and const views. In the case of const views, if a separate copy of the data must be created
to support the const view, the data does not have to be written back to the parent when the const view is
destroyed. This makes const views fundamentally more efficient than non-const views (which must write
back their data when they are destroyed). Because const views are potentially more efficient, the unadorned
namecreateView(...) is given to create const views while the longer name
createNonconstView(...) is used to create non-const views. The idea is that a developer is more likely
to call the shortercreateView(...) function creating a more efficient and safe const view. If a const view
is all the client code requires, then all is good. However, if the client code really needs to change the parent
object through the view, then the code will not compile and the developer will need to change the client
code to create a non-const view throughcreateNonconstView(...) .

Because the parent object gets locked down (or is in an undefined state when debug usage checking is not
enabled) when generalized views are active, it is important that client code only create views at the last
possible moment and then release them at the earliest possible moment. The best way to do this, when

132

possible, is to create and release the view in the same statement where the view will be used as
demonstrated in Listing 122.

Listing 122 : Example of minimizing the lifetime of a generalized view

void changeParentThroughView(const Ptr<Parent> &parent)
{

changeTheView(*parent-createNonconstView());
queryTheView(*parent->createView());
...

}

The client code in Listing 122 works just fine because the temporaryRCP<[const] View> objects
managed by the compiler are guaranteed to exist until the full statement they are created in ends. This is
one case where using anRCPto manage the memory is very convenient.

The last issue to discuss related to the generalized view design pattern is that, depending on the nature of
the parent and the view classes, it may be reasonable to have the parent object partitioned into different
logical pieces and then apply the behaviors shown in Figure 17 to each of these logical pieces separately.
For example, one can treat each row or each column in a matrix object as a separate logical piece such that
one can allow separate views of each of the rows or columns independent of each other. This is the case
with the Thyra MultiVector example (mentioned earlier and to be described in more detail below).
However, any bulk query operations on the parent object (like taking an induced matrix norm) must be
locked out while non-const views are active. Likewise, any bulk modifying operation (like assigning all the
matrix entries to zero) must be locked out when any views are active.

Example implementation of generalized views for MultiVector non-contiguous column views

Now that a basic overview of the generalized view design pattern has been given, the Thyra MultiVector
non-contiguous column view example mentioned earlier and depicted in Figure 15 is described in more
detail. This is a good example to highlight the features of the generalized view design pattern and the usage
of theRCPclass to manage detached view semantics. A simplified class declaration for the Thyra
MultiVector subclass showing the relevant class members is given in Listing 123.

Listing 123 : Class declaration for Thyra MultiVector implementation of multi-vector views as
“generalized views”

template<class Scalar>
class DefaultSpmdMultiVector : virtual public SpmdMultiVectorBase<Scalar> {
public:

...

DefaultSpmdMultiVector(
const RCP<const SpmdVectorSpaceBase<Scalar> > &spmdRangeSpace,
const RCP<const ScalarProdVectorSpaceBase<Scalar> > &domainSpace,
const ArrayRCP<Scalar> &localValues,
const Ordinal leadingDim = -1

133

);

...

protected:

...

RCP<const MultiVectorBase<Scalar> >
nonContigSubViewImpl(const ArrayView<const int> &cols) const;

RCP<MultiVectorBase<Scalar> >
nonconstNonContigSubViewImpl(const ArrayView<const int> &cols);

...

private:

RCP<const SpmdVectorSpaceBase<Scalar> > spmdRangeSpace_;
RCP<const ScalarProdVectorSpaceBase<Scalar> > domainSpace_;
ArrayRCP<Scalar> localValues_;
Ordinal leadingDim_;

ArrayRCP<Scalar> createContiguousCopy(const ArrayView<const int> &cols) const;

};

// Non-member constructor
template<class Scalar>
RCP<DefaultSpmdMultiVector<Scalar> >
defaultSpmdMultiVector(

const RCP<const SpmdVectorSpaceBase<Scalar> > &spmdRangeSpace,
const RCP<const ScalarProdVectorSpaceBase<Scalar> > &domainSpace,
const ArrayRCP<Scalar> &localValues,
const Ordinal leadingDim = -1
)

{
return Teuchos::rcp(

new DefaultSpmdMultiVector<Scalar>(
spmdRangeSpace, domainSpace, localValues, leadingDim));

}

The internal private data-structure for a multi-vector is very simple as shown in Listing 123. A standard
column-major Fortran-style dense matrix format is used where all of the data in the local processes is
stored in a single contiguousArrayRCP<Scalar> object. The number of rows in the local process is given
by spmdRangeSpace ->localSubDim() andleadingDim is the stride between columns.

The generalized views returned by the functionsnonContigSubViewImpl(...) and
nonconstNonContigSubViewImpl(...) are of the typeMultiVectorBase which is the upper-most base
class forDefaultSpmdMultiVector . (The concrete types of the views are actually
DefaultSpmdMultiVector .) Therefore, this is an instance where the class types of the parent and view are
actually the same (an interesting example of CLOSURE OF OPERATIONS principle [13, Chapter 10])!

134

The implementations of the functionsnonContigSubViewImpl(...) and
nonconstNonContigSubViewImpl(...) are given in Listing 124.

Listing 124 : Implementation ofDefaultSpmdMultiVector functions
nonContigSubViewImpl(...) andnonconstNonContigSubViewImpl(...)

template<class Scalar>
RCP<const MultiVectorBase<Scalar> >
DefaultSpmdMultiVector<Scalar>::nonContigSubViewImpl(

const ArrayView<const int> &cols) const
{

THYRA_DEBUG_ASSERT_MV_COLS("nonContigSubViewImpl(cols)", cols);
const int numCols = cols.size();
const ArrayRCP<Scalar> localValuesView = createContiguousCopy(cols);
return defaultSpmdMultiVector<Scalar>(

spmdRangeSpace_,
createSmallScalarProdVectorSpaceBase<Scalar>(*spmdRangeSpace_, numCols),
localValuesView);

}

template<class Scalar>
RCP<MultiVectorBase<Scalar> >
DefaultSpmdMultiVector<Scalar>::nonconstNonContigSubViewImpl(

const ArrayView<const int> &cols)
{

THYRA_DEBUG_ASSERT_MV_COLS("nonContigSubViewImpl(cols)", cols);
const int numCols = cols.size();
const ArrayRCP<Scalar> localValuesView = createContiguousCopy(cols);
const Ordinal localSubDim = spmdRangeSpace_->localSubDim();
RCP<CopyBackSpmdMultiVectorEntries<Scalar> > copyBackView =

copyBackSpmdMultiVectorEntries<Scalar>(cols, localValuesView.getConst(),
localSubDim, localValues_.create_weak(), leadingDim_);

return Teuchos::rcpWithEmbeddedObjPreDestroy(
new DefaultSpmdMultiVector<Scalar>(

spmdRangeSpace_,
createSmallScalarProdVectorSpaceBase<Scalar>(*spmdRangeSpace_, numCols),
localValuesView),

copyBackView);
}

The implementation of the sub-view functions in Listing 124 is fairly simple. First, the private helper
functioncreateContiguousCopy(...) creates anArrayRCP<Scalar> object for a contiguous copy of
the non-contiguous columns being requested. This contiguous copy of data is then given over to create a
newDefaultSpmdMultiVector object which represents the view. The implementation of the function
createContiguousCopy(...) is simple enough and is given in Listing 125.

Listing 125 : Implementation ofDefaultSpmdMultiVector function
createContiguousCopy(...)

template<class Scalar>

135

ArrayRCP<Scalar>
DefaultSpmdMultiVector<Scalar>::createContiguousCopy(

const ArrayView<const int> &cols) const
{

typedef typename ArrayRCP<Scalar>::const_iterator const_itr_t;
typedef typename ArrayRCP<Scalar>::iterator itr_t;
const int numCols = cols.size();
const Ordinal localSubDim = spmdRangeSpace_->localSubDim();
ArrayRCP<Scalar> localValuesView = Teuchos::arcp<Scalar>(numCols*localSubDim);
// Copy to contiguous storage column by column
const const_itr_t lv = localValues_.begin();
const itr_t lvv = localValuesView.begin();
for (int k = 0; k < numCols; ++k) {

const int col_k = cols[k];
const const_itr_t lv_k = lv + leadingDim_*col_k;
const itr_t lvv_k = lvv + localSubDim*k;
std::copy(lv_k, lv_k+localSubDim, lvv_k);

}
return localValuesView;

}

Note how iterators are used to perform the raw data copy in Listing 125. This results in very well checked
code in a debug-mode build (see Section 5.11) but very high performance code in a non-debug optimized
build (see Section 5.12).

Note that the key difference between the implementation of the functionsnonContigSubViewImpl(...)
andnonconstNonContigSubViewImpl(...) in Listing 124 is that
nonconstNonContigSubViewImpl(...) creates anRCPto an object of type
CopyBackSpmdMultiVectorEntries and attaches it to the created
RCP<DefaultSpmdMultiVector<Scalar> > object as an embedded object (see Section 5.9.4). The
destructor forCopyBackSpmdMultiVectorEntries performs the copy-back of the non-const view after
the lastRCPto the view is destroyed. The implementation of the class
CopyBackSpmdMultiVectorEntries is given in Listing 126.

Listing 126 : Implementation of the classCopyBackSpmdMultiVectorEntries

template<class Scalar>
class CopyBackSpmdMultiVectorEntries {
public:

CopyBackSpmdMultiVectorEntries(
const ArrayView<const int> &cols,
const ArrayRCP<const Scalar> &localValuesView, const Ordinal localSubDim,
const ArrayRCP<Scalar> &localValues, const Ordinal leadingDim
)
: cols_(cols), localValuesView_(localValuesView), localSubDim_(localSubDim),

localValues_(localValues), leadingDim_(leadingDim)
{}

˜CopyBackSpmdMultiVectorEntries()
{

typedef typename ArrayRCP<const Scalar>::const_iterator const_itr_t;
typedef typename ArrayRCP<Scalar>::iterator itr_t;

136

// Copy from contiguous storage column by column
if (localValues_.strong_count()) {

const int numCols = cols_.size();
const const_itr_t lvv = localValuesView_.begin();
const itr_t lv = localValues_.begin();
for (int k = 0; k < numCols; ++k) {

const int col_k = cols_[k];
const const_itr_t lvv_k = lvv + localSubDim_*k;
const itr_t lv_k = lv + leadingDim_*col_k;
std::copy(lvv_k, lvv_k + localSubDim_, lv_k);

}
}

}
private:

Array<int> cols_;
ArrayRCP<const Scalar> localValuesView_;
Ordinal localSubDim_;
ArrayRCP<Scalar> localValues_;
Ordinal leadingDim_;

};

// Non-member constructor
template<class Scalar>
RCP<CopyBackSpmdMultiVectorEntries<Scalar> >
copyBackSpmdMultiVectorEntries(

const ArrayView<const int> &cols,
const ArrayRCP<const Scalar> &localValuesView, const Ordinal localSubDim,
const ArrayRCP<Scalar> &localValues, const Ordinal leadingDim
)

{
return Teuchos::rcp(

new CopyBackSpmdMultiVectorEntries<Scalar>(
cols, localValuesView, localSubDim, localValues, leadingDim));

}

The implementation ofCopyBackSpmdMultiVectorEntries in Listing 126 is straightforward. When the
destructor is called, it copies the data in the non-const view back to the native storage of the parent
DefaultSpmdMultiVector object.

The only twist in the implementation ofnonconstNonContigSubViewImpl(...) and
CopyBackSpmdMultiVectorEntries is that a weakArrayRCP is used for the parent’slocalValues data
in theCopyBackSpmdMultiVectorEntries object. It is created in the function
nonconstNonContigSubViewImpl(...) with localValues .create weak() . If the parent goes away
before the view, then the weak pointerlocalValues in the destructor for
CopyBackSpmdMultiVectorEntries will have a strong count of 0, thereby resulting in the skipping of the
copy-back of data. This this a performance optimization since there is no point in copying back the data if
the parent object is gone. This design allows both const and non-const multi-vector views to be persisting
(past the lifetime of the parent) and still have the highest performance.

There are several things that are interesting about this example. First, by using the embedded object feature
of RCP, the code is able to implement the copy-back-to-parent functionality without having to write a new

137

MultiVector subclass just for the view. TheDefaultSpmdMultiVector objects that are returned as views
have no idea they are being used as views into otherDefaultSpmdMultiVector objects. Without the
embedded object feature described in Section 5.9.4, a differentMultiVector subclass would have to be
created with a destructor that would copy back the data. Second, the constraints imposed by the generalized
view design pattern shown in Figure 17 ensure that no problems will arise due to the fact that the views are
stored in detached copies of the data. If changes to the parentDefaultSpmdMultiVector were allowed
while a non-constDefaultSpmdMultiVector view was active, then all of the changes in the parent would
be overwritten when theDefaultSpmdMultiVector view was destroyed. Third, this example
demonstrates why const views are fundamentally more efficient than non-const views. In the case of a const
view, the temporary contiguous copy of data is just released and does not need to be copied back to the
parent. This saves the work imposed by the destructor on theCopyBackSpmdMultiVectorEntries object.

Summary of the generalized view design pattern

In summary, the main properties and features of the generalized view design pattern are:

• Generalized views allow for complete abstraction, encapsulation, and the highest performance in all
cases. This is simply not possible to achieve with direct views.

• Non-const generalized views are only guaranteed to update the state of the parent after the view
object has been released.

• A single parent object can provide more than one type of generalized view and views can be applied
separately to different logically distinct parts of the parent object (e.g. views to the rows or columns
of an abstract matrix object can be created and handled separately).

• It is important to differentiate between non-const views and const views. While detached non-const
views must be copied back to parent when the view is released, const views do not (therefore
improving the performance of const views).

• It is critical thatRCPobjects be used to wrap the created view objects in order to allow the views to
be dynamically allocated and to allow for specialized copy-back behavior when non-const views are
destroyed.

• The flexibility and performance gains allowed by the generalized view design pattern come at the
expense of more restricted usage patterns of the parent and view objects.

– Only one non-const view can be active for any logically district part of the parent object at any
one time and the parent object (or at least any functionality that relates to the viewed part) must
be locked down while a non-const view is active.

– Multiple const views can be active for any logically district part of the parent object at any one
time but the non-const interface of the parent object (at least any non-const functionality that
relates to that viewed part) must be locked down while any const views are active.

138

5.14 Comparison with other class libraries and the standard C++ library

Comparisons between the Teuchos memory management classes and other classes in Boost and the
standard C++ library have been made throughout this document. Here, these comparisons are summarized
and extended. Comparisons with Boost classes are for version 1.40.

The Teuchos classRCPis almost identical in most respects to theboost::shared ptr class and therefore
also thestd::tr1::shared ptr in C++03 andstd::shared ptr class in C++0x. The first version of the
classRCPwas developed back in 1998 under the nameMemMngPack::ref count ptr as part of the
development of the rSQP++ package [31] (now called MOOCHO [4]). At that time, there was no general
purpose high-quality reference-counted smart pointer class available and many compilers at the time (e.g.
MSVC++ 6.0) could not even support template member functions needed for implicit smart-pointer
conversions. After 1998, the firstboost::shared ptr class appeared (which did not allow a customized
deallocation policy and was therefore not very flexible). Over the years, the two classes independently
evolved in very similar ways. The current version ofboost::shared ptr is a high-quality flexible
reference-counted smart pointer class. Because it now supports custom template deallocator policy objects
(which are called “deleters” inboost::shared ptr) it allows for great flexibility in how it is used.

The key advantages of theRCPclass over the currentboost::shared ptr class are greater functionality,
greater flexibility, and better debug-mode runtime checking. The few of the specific key advantages of the
RCPclass that cannot be replicated with theboost::shared ptr class without changing its design include:

• TheRCPclass has built-in support for debug-mode runtime tracing of reference-counting nodes
(Section 5.9.1) which is used to implement a whole host runtime checking including the detection
and reporting of a) circular references (Section 5.11.2) and b) multiple owning reference-counted
objects (Section 5.11.4).

• TheRCPclass allows the association and retrieval of extra data attached to an already-created
reference-counting node object (Section 5.9.5).

• TheRCPclass allows a client to callrelease() to remove deletion ownership from an
already-createdRCPobject (the rare need for this is described in Section 5.9.5).

• TheRCPclass has built-in support for both strong and weak reference-counted pointer handles right
in the same class (see Section 5.9.2). Theboost::shared ptr class uses a separate
boost::weak ptr class to represent weak references which is less flexible. TheRCPapproach
allows the debug-mode runtime detection and reporting of dangling non-owning references while
boost::shared ptr class cannot when using a null deleter (Section 5.11.3).

The key advantages of the currentboost::shared ptr class over the currentRCPclass are that it has
lower storage and runtime overhead (Section 5.12.1), and it has native support for sharing
reference-counting nodes across different threads in a multi-threaded program. TheRCPclass does not yet
have support for thread-safe sharing across multiple threads but some reasonable solution will be
implemented (perhaps borrowing form theboost::shared ptr implementation) when it is needed. The
RCPclass has been developed in the context of computational science and engineering applications where
up till now parallelism has been handled using distributed memory MPI implementations where no
multi-threading is used. Given that even the best non-lockingboost::shared ptr implementation imparts
a significant overhead in manipulating the reference count (a factor of 4x overhead for GCC in a recent

139

timing test), it is not clear if the right solution to the multi-threading problem is to make allRCPobjects
thread safe in an entire program. Multi-threading is coming to computational science codes with the
multi-core revolution [19] so this issue may need to be addressed soon in theRCPandArrayRCP classes.
Until then,boost::shared ptr can be used in cases where sharing across threads is required.

Because both the TeuchosRCPandboost::shared ptr classes support customized deallocation policy
objects, one can embed anRCPobject in aboost::shared ptr object and vice versa. This is already
supported in Teuchos using the overloaded non-member template helper functionsTeuchos::rcp(const
boost::shared ptr<T> &p) andTeuchos::shared pointer(const RCP<T> &rcp) (see Table 8).
This allows the developer to mix and matchRCPandboost::shared ptr objects in the same code and
still have correct memory management. However, sinceRCPhas better debug-mode runtime checking and
is more flexible it should be preferred toboost::shared ptr in most high-level code. Alternatively,
becauseboost::shared ptr has lower overhead and has native support for sharing across threads it also
has valid uses. Additionally, of course, one may need to convert back and forth betweenRCPand
boost::shared ptr objects to glue together different pieces of separately developed code that use
different smart pointer classes. The classboost::scoped ptr is identical tostd::auto ptr but does not
allow copying or assignment and is therefore safer to use in more limited scopes.

Another smart pointer class for single objects isstd::auto ptr . This class does not support sharing and
has only the minimal functionality needed to support the Resource Allocation Is Initialization (RAII) idiom
[30, Item 13]. Given that reference-counting overhead is low compared to raw allocations and
deallocations (see Section 5.12.1) there is little reason to ever usestd::auto ptr instead ofRCP(or
boost::shared ptr for that matter) except for perhaps the handling of RAII for small objects.

The Teuchos classArray is of course equivalent tostd::vector by design and uses anstd::vector
internally. The main advantages of usingArray instead of directly usingstd::vector are a)Array has
better debug-mode runtime checking and produces better error messages, b) conversion to the other
Teuchos array typesArrayView andArrayRCP includes full runtime debug-mode detection and reporting
of dangling references (which is not possible with withstd::vector), and c) is more consistent with the
usage of the other Teuchos array types. A major difference betweenArray andstd::vector is thatArray
uses an unsigned integer for itssize type (see Appendix C for the justification).

The Teuchos classArrayRCP really has no equivalent class in Boost or the C++0x standard libraries. There
is a Boost class calledboost::shared array which uses theboost::shared ptr reference-counting
machinery and has an overloadedoperator[](size type) function but his class does not support
iterators (which are critical for safety and performance) and does not support persisting sub-views (see
Section 5.5.5).

The Teuchos compile-time sized array classTuple is more or less equivalent to the classboost::array .
Both contain an iterator interface and other STL compliant functions. The key advantage ofTuple is that
conversions to the other Teuchos array typesArrayView andArrayRCP support full runtime debug-mode
detection and reporting of dangling references.

Finally, the Teuchos classesPtr andArrayView have no equivalent in Boost or C++0x. As described
throughout this paper, these classes are key to creating C++ code that is maximally self documenting (by
distinguishing between persisting and non-persisting associations), maximally safe in terms of debug-mode
runtime checking, and while at the same time allowing for the highest performance in non-debug optimized
builds. One cannot plug the remaining holes in safety and performance without thePtr andArrayView
classes.

140

What makes the Teuchos memory management classes unique across all other class libraries is that they
form a complete coordinated system of types to encapsulate all raw C++ pointers in high-level code while
at the same time providing 100% secure debug-mode checking. This is only possible because these classes
are developed as a system of types and the level of debug-mode runtime checking that exists is only
possible because these types have access to each others private implementation (in some appropriate way).
In general, one cannot mix and match Boost, standard C++, and Teuchos classes together at the top level
and get safe C++ programs with the full extent of debug-mode runtime checking that the integrated set of
Teuchos classes provide. Many examples of this have been given through this document. One example is
that if one creates anArrayView object from astd::vector object it cannot detect a dangling reference
(see Section 5.11.3). However, there are some specialized cases where Boost and standard C++ types can
be used safely with the Teuchos memory management classes and some of these cases have already been
discussed above (e.g.RCPandboost::shared ptr objects can be embedded in each other and deep copies
of array objects are always safe).

5.15 Advice on refactoring existing software

The easiest way to incorporate the full use of the Teuchos memory management classes is to develop new
code and use them from the very beginning. In this mode of development, the debug-mode runtime
checking makes development fast and productive with one never seeing a segfault or other memory usage
error that comes from undefined behavior. However, the more typical situation is that a large existing
code-base must continue to be developed, current code must be modified, and new code must integrated
with existing code. For existing code bases, the code will need to be refactored to use the Teuchos memory
management classes, replacing the use of raw pointers and raw calls tonew anddelete along the way.

While code refactored to use the Teuchos memory management classes will be of higher quality and more
productive to work with during further development, there will necessarily be a transition period where the
code will be refactored to replace current uses of raw C++ pointers and less-than-safe (or inflexible)
memory management approaches. It is not recommended that all work on new capabilities stop and the
existing code base be refactored all at once to switch over to the complete use of the Teuchos memory
management classes. Instead, the code should be refactored to use the Teuchos memory management
classes in small iterative cycles as needed. The highest priority code to refactor are the heavily used major
module and class interfaces. It is these major interfaces where mistakes and memory usage problems are
most likely to be made. However, rather than break backward compatibility it is wise to provide the safe
versions of the interface functions but leave the existing unsafe raw-pointer versions when possible and
have them call the new safe versions (by converting between raw pointers to the memory management
types as needed). This avoids duplication which simplifies further maintenance and also provides for
smooth upgrades of client code to incrementally switch over from raw pointers to the Teuchos memory
management classes. The help facilitate the transition of client code, the deprecated raw pointer interface
functions and other code can be marked as deprecated on some compilers which generates warning
messages while compiling (e.g. GCC’sattribute ((deprecated))).

While the most critical code to refactor to use the Teuchos memory management types are major module
and class interfaces, the next most important software to refactor is any software that needs to be changed
or extended. Other code is lower priority to refactor, especially existing well-encapsulated code that uses
raw C++ pointers internally that does not need to be changed to add new features any time soon. It is not
until such code needs to be changed that it should be refactored to use the safer memory management types
(which will make adding new features much easier and safer).

141

While the final state of code refactored to use the Teuchos memory management types is excellent (as
described throughout this document), great care must be exercised in refactoring the software. In general,
before any piece of software is refactored to use the Teuchos memory management types, it should first be
covered with high-quality unit tests (see [14] for a great treatment on how to add unit tests to existing code
bases to facilitate adding new features). The general process that should be followed to refactor existing
software to use the Teuchos memory management types includes the following major steps (consistent with
the advice in [14]):

1. Break dependencies to allow unit tests to be written

2. Add unit tests to cover behavior of the code to be refactored

3. Refactor the targeted code incrementally to use the Teuchos memory management classes (all the
while running the unit tests constantly including using Valgrind and/or Purify to ensure defects are
not being created) by:

(a) Replacing raw pointers internally with Teuchos memory management types until all raw
pointers are gone

(b) Writing new versions of the interface functions in terms of the safer Teuchos memory
management types

(c) Keeping the existing raw-pointer interface functions which are called by the unit tests but have
them call the new functions that take the safer memory management types

(d) Marking the deprecated functions as so to facilitate refactoring of client code (e.g. using GCC’s
attribute ((deprecated)))

4. After a unit of code is totally refactored to use the new Teuchos memory management types, the unit
test code should be refactored to call the safe interface functions that don’t pass raw pointers, thereby
removing all raw C++ pointers from the unit test code itself.

5. Selectively refactor client code that can conveniently call the new safe interface functions of the
refactored code. (Caution, only do this if there are at least some decent system-level regression tests
in place.) As more and more code is refactored to use the safe Teuchos memory management types,
the easier and safer this type of refactoring will become.

6. Write new unit tests (using test-driven development) and add the desired new features in the selected
code safely and easily

While the incremental refactoring process described above may be slow and may only refactor small parts
of the code in each batch, over time, more and more of the code base will be refactored to remove raw C++
pointers and the code will become more and more safe, easier to work with, and be better self
documenting. Whatever happens, one should never attempt to refactor a large volume of code in one batch
to use the Teuchos memory management types, even if there are good unit tests in place. Refactorings
shouldneverbe attempted in large batches, no matter what [14].

The above process was followed with great success to refactor the Trilinos package Thyra [3] over a period
of more than a year. This process can be followed for a code base very safely and productively if the above
incremental unit-testing refactoring process is followed.

142

6 Miscellaneous topics

When thinking about memory management in C++ it is helpful to take a step back and consider a few
different higher-level issues. In the following section, the issue of essential and accidental complexity is
discussed and what role the Teuchos memory management classes play in addressing accidental
complexity and helping to make implicit concepts explicit. Then, the philosophy of memory management
is discussed and some analogies are used to help put things in perspective and provide a solid foundation
for the approach used in the Teuchos memory management classes as compared to approaches that start
with safer language but arrive at a similar balance between safety, speed, and flexibility.

6.1 Essential and accidental complexity, making implicit concepts explicit

While the idioms described in this document (largely outlined in Section 5.8) may appear complex at first
sight, one has to consider that it is not really the idioms that are complex but the essential attributes of
object relationships that are complex. Frederick Brooks refers to this asessential complexityas opposed to
accidental complexity[7]. Accidental complexityin programming refers to complexity resulting from
complicating details of the programming language or environment which are not directly related to solving
the problem at hand. Accidental complexity has largely been removed as higher level languages have been
developed [7, Chapter 16]. However, raw pointers in C and C++ and manual resource management (when
that is not the main focus of the program) are definitely a lingering category of accidental complexity21.
Alternatively,essential complexityexists because of the nature of the problem at hand that no programming
language will ever be able to fully remove. (However, can use object-oriented and other design approaches
to partition and abstract essential complexity such that we can write and maintain large-scale programs.)

What the Teuchos Memory Management classes do is that they remove much of the accidental complexity
of using raw pointers and manual resource management and instead they more directly address the
essential complexity of writing programs in making important concepts explicit that are implicit in most
languages (including raw C++). Dealing with the nature of relationships between objects is essential
complexity and for every relationship between two classes (for example in a UML class diagram [15]) one
must answer the essential questions:

• What is the multiplicity of the relationship?(i.e. is there just one object or is there more than one
object at the other end of the association?). In UML class diagrams, a singular multiplicity
relationship is represented using a1 and multiplicity greater than one is represented using1..* (see
Figure 4 for examples).

• Is the object optional or required?In a UML class diagram, an optional object is represented using
0..1 while a required object is represented as1 (see Figure 4 for examples).

• Is the object changeable or non-changeable?In UML class diagrams, a non-changeable object is
given the attribute{readOnly }. In UML, by default, all objects at the end of an association are
assumed changeable.

• Is the association persisting or non-persisting?In a UML class diagram, non-persisting associations
are referred to as “dependency associations” and are represented with a dotted line (and can also be

21 http://discuss.joelonsoftware.com/default.asp?joel.3.278613.51

143

given the keyword≪parameter ≫). Persisting associations are referred to as “relationships” and
are represented as solid lines (see Figure 4 for examples).

Note that while UML is an expressive language that allows one to explicitly represent the above essential
information, most programming languages cannot (at least not the raw language). Consider that in Java and
Python that it is impossible to distinguish between persisting and non-persisting associations because every
user-defined object is always managed through an indirect reference handed by the garbage-collected
language. This causes big problems when it comes time to try to understand a complex program written in
these languages. For example, consider the agony that Micheal Feathers goes through in many refactorings
described in [14] in trying to determine the nature of objects as to whether they are actually embedded in
each other (i.e. persisting) or are just passed to each other (i.e. non-persisting). Python has no
user-definable concept ofconst but the Python language itself understands the need forconst by having
built-in immutable data-types like strings and tuples.

One of the goals of the idioms defined in this paper is to change the above essential complexities from
implicit concepts to explicit concepts directly stated in code (see “Making Implicit Concepts Explicit” in
[13, Chapter 9]). The essential attributes of object relationships (i.e. multiplicity, persistent vs.
non-persistent, changeable vs. non-changeable) are present in every program no mater what high-level
programming language is used [7, 23, 14]. The issue is that most executable languages (not withstanding
executable XML [15, Chapter 1]) lack the expressiveness to make these concepts explicit. The Teuchos
memory management classes and the associated idioms described in this paper provide a means to make
many of these essential concepts explicit in C++ in a way that is not possible in any other widely used
programming language.

While the Teuchos memory management classes go a long way in removing some of the accidental
complexity of programing in C++ due to manual memory management, some of the types of remaining
accidental complexity (among many others not mentioned) include:

• Value semantics versus reference semantics: The distinction between value semantics versus
reference semantics is a C++ concept that does not directly relate to solving a problem or
representing a model in code and is therefore accidental complexity. In Java and Python, all
user-defined types use reference semantics but in C++ programmers can take advantage of
value-types which gives more efficient code and more control in C++ than what is possible in these
other languages. However, this extra control could be classified as accidental complexity (which we
tolerate for the sake of added control and improved performance).

• Pointer syntax for memory management typesPtr, andRCP: In order to access the underlying
object through the smart pointer typesPtr andRCP, one has to use pointer syntax usingfunc(*a)
anda->someMember() . The C++ language makes it impossible to define abstract data types that
allow direct access to the underlying object (i.e. usingfunc(a) anda.someMember()) like raw C++
references allow. Pointer syntax is not essential to the nature of problem solving (as proven by all the
languages that don’t have pointers including Java and Python) and therefore pointer syntax must be
categorized as accidental complexity. Note, however, that the typesArrayView andArrayRCP were
not listed in this category because one can use these array classes using just the
operator[](size type) function and one does not need to use pointer syntax. In fact,ArrayView
does not even support any pointer-like functions and the pointer-like functions onArrayRCP are only
really there to allow it to be used as a general-purpose checked iterator in a debug-mode build. While
pointer syntax is not an essential concept they do actually come in handy to define iterators into

144

containers and present a much more compact iterator interfacethat what one will find in other
languages. In other words, pointers syntax can be considered to be a nice enhancement when
considering iterators. In most other contexts, however, we must consider pointer syntax to contribute
to accidental complexity.

6.2 Philosophy of memory management: Safety, speed, flexibility and 100% guarantees

When looking at different strategies for memory management in C++ and in other languages, it helps to
think a little on the philosophical level which can actually help put the issues involved in perspective.

When looking at the different memory management approaches implemented in various programming
languages, the core issues come down to trade-offs in safety and correctness versus speed and flexibility.
For example, a language like C sacrifices safety and correctness for speed and flexibility. Because C is so
“close” to the hardware, one can implement very specialized memory management approaches tailored to
very specific types of domains. However, the price one pays for this raw speed and flexibility in C is the
fact that there is very little compiler-supported checking that would otherwise be needed to assert correct
memory usage.

Now take Python on the other extreme. If one writes code only in Python, one will almost never experience
and memory leak or segfault of any kind due to code that one directly writes. Here is a language which is
nearly 100% safe (assuming the language implementation is 100% correct) but offers less flexibility in how
memory is managed and results in very slow native code as compared to C in many cases (e.g. for
computationally intensive loops).

So how important is a 100% guarantee that memory will always be used correctly like is provided in a
language like Python? How important is a 100% guarantee in any area? Well, if one can get a 100%
guarantee without having to pay a significant price for it then one would be a fool not to accept it. For
example, if one has a choice between two vendors selling the same product for the same price but one
vendor will give a 100% money-back guarantee, with all things being equal, it would probably be foolish
not to go with the vendor with the 100% guarantee.

However, in most areas, greater safety (not to mention a 100% guarantee) comes with greater costs. Instead
of demanding a 100% guarantee, we typically accept some level of extra risk as long as we have taken
basic precautions to protect ourselves. To demonstrate this, let’s consider another analogy which I like to
refer to as theTransportation Analogy. When considering modes of transportation, we accept that we are
not 100% safe when driving our cars on the road but we do it anyway. The reason that we get into our cars
every day is that we take reasonable precautions like purchasing a car with a good safely design, wearing
seat-belts, obeying the traffic laws, driving a reasonable speed, and practicing defensive driving. What is
going to be argued here is that the approach to memory management that is being advocated in this paper is
the equivalent of driving a car, wearing one’s seat belt, and taking other reasonable safety precautions but
does not provide a 100% guarantee.

Now let’s talk about the safety versus speed/efficiently extremes in the Transportation Analogy and in the
area of memory management. At one extreme, writing all high-level code in C++ (or C) using raw pointers
for everything is like riding a high-performance motorcycle on a crowded interstate going 150 mph,
without wearing a helmet or any other safety gear, while doing a wheelie. At this extreme, one wrong move
means certain death.

145

At the other extreme, writing all code in a language like Pythonis like driving around in a reinforced tank
that does a maximum of 10 mph where one sits inside wearing a car racing helmet with the Hans device,
full racing safety gear, and having a massive air bag system to encase one’s entire body in foam three feet
thick in case of a collision. On this side of extreme safely, we could hit a Mac truck head on and be just
fine. The only way to really kill one’s self would be to drive off a shear cliff.

If we all required a near 100% safely guarantee, we would all be driving around in reinforced tanks like the
one described above but we don’t. We don’t because we are not willing to pay the price of the near 100%
guarantee provided by the tank. We can’t afford it financially and it would take forever to get back and
forth to work. Instead, we are content with our less than 100% safe cars because they are affordable and
fast and yet do not pose unreasonable risks.

Now, we can incrementally go from either extreme to a more balanced state in both the Transportation
Analogy and with memory management in C++ and Python.

From the extreme of safety with less speed and flexibility represented by the reinforced tank (and Python)
one can incrementally move toward the middle ground of the car. One can start by removing the racing
helmet and Hans device, followed by decreasing the weight and increasing the speed of the tank, and so on.
Continuing on this trend of sacrificing safety in favor of greater speed and agility leads us to our typical car.
Likewise, moving from an extreme of safety to a more reasonable balance between safety and
speed/flexibility in Python involves taking pieces of computationally intensive Python code, rewriting them
in C/C++, and then calling them from Python. This is an approach that many Python enthusiasts are
advocating [21] but make no mistake that in going down this road that one is sacrificing safety in Python in
the name of speed and flexibility. One is giving up Python’s near 100% guarantee when one does this and
will therefore have to deal with difficult and dangerous memory errors cropping up in the code.

From the extreme of speed and flexibility with little regard for safety represented by the motorcycle (and
C/C++ raw pointers) one can also incrementally move toward the car. One can start by putting on a helmet,
followed by slowing down some, and so on. Continuing on this trend of adding safety will eventually see
one morphing the motorcycle into the typical car. Likewise, moving from an extreme of less safety toward
a more reasonable balance between speed/flexibility and safety in C++ involves adding more and more
utility classes to hide more and more uses of raw C++ pointers in high-level C++ code. This is the trend
that the C++ community has been following for more than the last decade. We see it first in the
introduction ofstd::auto ptr andstd::vector . This was then followed by the development of
boost::shared ptr (and thereforestd::shared ptr in C++0x). What is being suggested in this paper is
the logical conclusion of this journey which is the development of a complete set of utility classes in order
to remove all raw C++ pointers from high-level C++ code; i.e. complete the transition from the motorcycle
(C/C++ raw pointers) to the car (Teuchos C++ memory management classes).

With the approach being advocated in this paper, using the Teuchos memory management classes in
debug-mode is like driving around in the tank where one is protected from almost any danger. However,
using the Teuchos memory management classes in non-debug optimized builds is like driving around with
the fast high-performance motorcycle. Try turning a tank into a motorcycle and then back again that easily!

146

7 Conclusions

Using the Teuchos reference-counted memory management classes allows one to remove unnecessary
constraints in the use of objects by removing arbitrary lifetime ordering constraints which are a type of
unnecessary coupling [23]. The code one writes with these classes will be more likely to be correct on first
writing, will be less likely to contain silent (but deadly) memory usage errors, and will be much more
robust to later refactoring and maintenance.

The level of debug-mode runtime checking provided by the Teuchos memory management classes is
stronger in many respects than what is provided by memory checking tools like Valgrind and Purify while
being much less expensive. However, tools like Valgrind and Purify perform a number of types of checks
(like usage of uninitialized memory) that makes these tools very valuable and therefore complement the
Teuchos memory management debug-mode runtime checking.

The Teuchos memory management classes and idioms largely address the technical issues in resolving the
fragile built-in C++ memory management model (with the exception of circular references which has no
easy solution but can be managed as discussed). All that remains is to teach these classes and idioms and
expand their usage in C++ codes. The long-term viability of C++ as a usable and productive language
depends on it. Otherwise, if C++ is no safer than C, then is the greater complexity of C++ worth what one
gets as extra features? Given that C is smaller and easier to learn than C++ and since most programmers
don’t know object-orientation (or templates or X, Y, and Z features of C++) all that well anyway, then what
really are most programmers getting extra out of C++ that would outweigh the extra complexity of C++
over C? C++ zealots will argue this point but the reality is that C++ popularity has peaked and is becoming
less popular while the popularity of C has remained fairly stable over the last decade22. Idioms like are
advocated in this paper can help to avert this trend but it will require wide community buy-in and a change
in the way C++ is taught in order to have the greatest impact.

To make these programs more secure, compiler vendors or static analysis tools (e.g. klocwork23) could
implement a preprocessor-like language similar to OpenMP24 that would allow the programmer to declare
(in comments) that certain blocks of code should be “pointer-free” or allow smaller blocks to be “pointers
allowed”. This would significantly improve the robustness of code that uses the memory management
classes described here.

22See the Tiobe index of programming language popularity athttp://www.tiobe.com .
23http://www.klocwork.com
24http://openmp.org

147

References

[1] A. Avram and F. Marinescu.Domain-Driven Design Quickly. InfoQ, 2006.

[2] R. A. Bartlett. Teuchos::RCP : An introduction to the Trilinos smart reference-counted pointer class
for (almost) automatic dynamic memory management in C++. Technical report SAND04-3268,
Sandia National Laboratories, Albuquerque, New Mexico 87185 and Livermore, California 94550,
2004.

[3] R. A. Bartlett. Thyra linear operators and vectors: Overview of interfaces and support software for
the development and interoperability of abstract numerical algorithms. Technical report
SAND2007-5984, Sandia National Laboratories, Albuquerque, New Mexico 87185 and Livermore,
California 94550, 2007.

[4] R. A. Bartlett. Mathematical and high-level overview of MOOCHO: The Multifunctional
Object-Oriented arCHitecture for Optimization. Technical report SAND09-3969, Sandia National
Laboratories, Albuquerque, New Mexico 87185 and Livermore, California 94550, 2009.

[5] R. A. Bartlett, B. G. van Bloeman Waanders, and M. A. Heroux. Vector reduction/transformation
operators for linear algebra interfaces to efficiently develop complex abstract numerical algorithms
independently of data mapping, 2003. Submitted toACM TOMS.

[6] BOOST. The BOOST library. http://www.boost.org.

[7] F. Brooks.The Mythical Man-Month (second edition). Addison Wesley, 1995.

[8] J. Coplien.Advanced C++. Addison Wesley, 1992.

[9] Micosoft Corporation. COM: Component object model. http://www.microsoft.com/com.

[10] J. Demmel.Applied Numerical Linear Algebra. SIAM, 1997.

[11] S. Dewhurst.C++ Gotchas. Addison Wesley, 2003.

[12] Glenn Downing, Paul F. Dubois, and Teresa Cottom. Data sharing in scientific simulations.
Computing in Science and Engineering, 6:87–96, 2004.

[13] E. Evans.Domain-Driven Design. Addison Wesley, 2004.

[14] M. Feathers.Working Effectively with Legacy Code. Addison Wesley, 2005.

[15] M. Fowler. UML Distilled (third edition). Addison Wesley, 2004.

[16] E. Gamma et al.Design Patterns: Elements fo Reusable Object-Oriented Software. Addison-Wesley,
1995.

[17] A. Griewank.Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation.
SIAM, 2000.

[18] Object Management Group. CORBA: Common object request broker architecture.
http://www.corba.org.

[19] M. Heroux. Design issues for numerical libraries on scalable multicore architectures.Journal of
Physics: Conference Series, 2008.

148

[20] P. Kambadur1, D. Gregor1, A. Lumsdaine, and A. Dharurkar.Recent Advances in Parallel Virtual
Machine and Message Passing Interface, chapter Modernizing the C++ Interface to MPI, pages
266–274. Springer, 2006.

[21] H. Langtengen and X. Cai. On the efficency of python for high-performance computing: A case study
involving stencil updates for partial differential equations. In H. Bock, E. Kostina, X. Hoang, and
R. Rannacher, editors,Modeling, Simulation and Optimization of Complex Processes: Proceedings of
the Third International Conference on High Performance Scientific Computing, pages 337–358.
Springer-Varlag Berlin Heidelberg, 2008.

[22] R. Martin. Agile Software Development (Principles, Patterns, and Practices). Prentice Hall, 2003.

[23] S. McConnell.Code Complete: Second Edition. Microsoft Press, 2004.

[24] Scott Meyers.More Effective C++. Addison Wesley, 1996.

[25] Scott Meyers.Effective C++ (Third Edition). Addison Wesley, 2005.

[26] E. Phipps, R. Bartlett, and D. Gay. Automatic differentiation of C++ codes for large-scale scientific
computing.Third International Workshop on Automatic Differentiation, February 2006.

[27] B. Stroustrup.The Design and Evolution of C++. Addison-Wesley, New York, 1994.

[28] B. Stroustrup.The C++ Programming Language, special edition. Addison-Wesley, New York, 2000.

[29] B. Stroustrup. Evolving a language in and for the real world: C++ 1991-2006.HOPL III:
Proceedings of the third ACM SIGPLAN conference on History of programming languages, pages
4–1 to 4–59, 2007.

[30] H. Sutter and A. Alexandrescu.C++ Coding Standards: 101 Rules, Guidelines and Best Practices.
Addison Wesley, 2005.

[31] Bart van Bloemen Waanders, Roscoe Bartlett, Kevin Long, Paul Boggs, and Andrew Salinger. Large
scale non-linear programming for PDE constrained optimization. Technical report SAND2002-3198,
Sandia National Laboratories, Albuquerque, New Mexico 87185 and Livermore, California 94550,
2002.

[32] M. VanDerVanter, D.E. Post, and M.E. Zosel. HPC needs a tool strategy. Technical report
LA-UR-05-1592, Las Alamos Laboratories, 2005.

149

A Summary of Teuchos memory management classes and idioms

Basic Teuchos smart pointer types
Non-persisting (and semi-persisting) Persisting

Associations Associations
single objects Ptr<T> RCP<T>
contiguous arrays ArrayView<T> ArrayRCP<T>

Other Teuchos array container classes
Array class Specific use case
Array<T> Contiguous dynamically sizable, expandable, and contractible arrays
Tuple<T,N> Contiguous statically sized (with sizeN) arrays

Equivalencies for const protection for raw pointers and Teuchos smart pointers types
Description Raw pointer Smart pointer

Basic declaration (non-const obj) typedef A* ptr A RCP<A>
Basic declaration (const obj) typedef const A* ptr const A RCP<const A>

non-const pointer, non-const objectptr A RCP<A>
const pointer, non-const object const ptr A const RCP<A>
non-const pointer, const object ptr const A RCP<const A>
const pointer, const object const ptr const A const RCP<const A>

Summary of operations supported by the basic Teuchos smart pointer types
Operation Ptr<T> RCP<T> ArrayView<T> ArrayRCP<T>
Raw pointer-like functionality
Implicit conv derived to base x x
Implicit conv non-const to const x x x x
Dereferenceoperator*() x x x
Member accessoperator->() x x x
operator[](i) x x
operators++, -- , +=(i) , -=(i) x
Other functionality
Reference counting machinery x x
Iterators: begin(), end() x x
ArrayView subviews x x

Basic implicit and explicit supported conversions for Teuchos smart pointer types
Operation Ptr<T> RCP<T> ArrayView<T> ArrayRCP<T>

Implicit conv derived to base x x
Implicit conv non-const to const x x x x
const cast x x x x
static cast x x
dynamic cast x x
reinterpret cast x x

150

Class Data Members for Value-Type Objects
Data member purpose Data member declaration

non-shared, single, const object const S s ;
non-shared, single, non-const object S s ;
non-shared array of non-const objects Array<S> as ;
shared array of non-const objects RCP<Array<S> > as ;
non-shared statically sized array of non-const objectsTuple<S,N> as ;
shared statically sized array of non-const objects RCP<Tuple<S,N> > as ;
shared fixed-sized array of const objects ArrayRCP<const S> as ;
shared fixed-sized array of non-const objects ArrayRCP<S> as ;

Class Data Members for Reference-Type Objects
Data member purpose Data member declaration

non-shared or shared, single, const object RCP<const A> a ;
non-shared or shared, single, non-const objectRCP<A> a;
non-shared array of const objects Array<RCP<const A> > aa ;
non-shared array of non-const objects Array<RCP<A> > aa ;
shared fixed-sized array of const objects ArrayRCP<RCP<const A> > aa ;
“...” (const ptr) ArrayRCP<const RCP<const A> > aa ;
shared fixed-sized array of non-const objectsArrayRCP<RCP<const A> > aa ;
“...” (const ptr) ArrayRCP<const RCP<const A> > aa ;

151

Passing IN Non-Persisting Associations to Value Objects as Func Args
Argument Purpose Formal Argument Declaration

single, non-changeable object (required)S s or const S s or const S &s
single, non-changeable object (optional)const Ptr<const S> &s
single, changeable object (required) const Ptr<S> &s or S &s
single, changeable object (optional) const Ptr<S> &s
array of non-changeable objects const ArrayView<const S> &as
array of changeable objects const ArrayView<S> &as

Passing IN Persisting Associations to Value Objects as Func Args
Argument Purpose Formal Argument Declaration

array of non-changeable objectsconst ArrayRCP<const S> &as
array of changeable objects const ArrayRCP<S> &ss

Passing OUT Persisting Associations for Value Objects as FuncArgs
Argument Purpose Formal Argument Declaration

array of non-changeable objectsconst Ptr<ArrayRCP<const S> > &as
array of changeable objects const Ptr<ArrayRCP<S> > &as

Passing OUT Semi-Persisting Associations for Value Objects as Func Args
Argument Purpose Formal Argument Declaration
array of non-changeable objectsconst Ptr<ArrayView<const S> > &as
array of changeable objects const Ptr<ArrayView<S> > &as

152

Passing IN Non-Persisting Associations to Reference (or Value) Objects as Func Args
Argument Purpose Formal Argument Declaration

single, non-changeable object (required)const A &a
single, non-changeable object (optional)const Ptr<const A> &a
single, changeable object (required) const Ptr<A> &a or A &a
single, changeable object (optional) const Ptr<A> &a
array of non-changeable objects const ArrayView<const Ptr<const A> > &aa
array of changeable objects const ArrayView<const Ptr<A> > &aa

Passing IN Persisting Associations to Reference (or Value) Objects as Func Args
Argument Purpose Formal Argument Declaration

single, non-changeable object const RCP<const A> &a
single, changeable object const RCP<A> &a
array of non-changeable objectsconst ArrayView<const RCP<const A> > &aa
array of changeable objects const ArrayView<const RCP<A> > &aa

Passing OUT Persisting Associations for Reference (or Value)Objects as Func Args
Argument Purpose Formal Argument Declaration

single, non-changeable object const Ptr<RCP<const A> > &a
single, changeable object const Ptr<RCP<A> > &a
array of non-changeable objectsconst ArrayView<RCP<const A> > &aa
array of changeable objects const ArrayView<RCP<A> > &aa

Passing OUT Semi-Persisting Associations for Reference (or Value) Objects as Func Args
Argument Purpose Formal Argument Declaration

single, non-changeable object const Ptr<Ptr<const A> > &a
single, changeable object const Ptr<Ptr<A> > &a
array of non-changeable objectsconst ArrayView<Ptr<const A> > &aa
array of changeable objects const ArrayView<Ptr<A> > &aa

153

Returning Non-Persisting Associations to Value Objects
Purpose Return Type Declaration

Single copied object (return by value) S
Single non-changeable object (required)const S&
Single non-changeable object (optional)Ptr<const S>
Single changeable object (required) S&
Single changeable object (optional) Ptr<S>
Array of non-changeable objects ArrayView<const S>
Array of changeable objects ArrayView<S>

Returning Persisting Associations to Value Objects
Purpose Return Type Declaration

Array of non-changeable objectsArrayRCP<const S>
Array of changeable objects ArrayRCP<S>

Returning Semi-Persisting Associations to Value Objects
Purpose Return Type Declaration

Array of non-changeable objectsArrayView<const S>
Array of changeable objects ArrayView<S>

Returning Non-Persisting Associations to Reference (or Value) Objects
Purpose Return Type Declaration

Single cloned object RCP<A>
Single non-changeable object (required)const A&
Single non-changeable object (optional)Ptr<const A>
Single changeable object (required) A&
Single changeable object (optional) Ptr<A>
Array of non-changeable objects ArrayView<const Ptr<const A> >
Array of changeable objects ArrayView<const Ptr<A> >

Returning Persisting Associations to Reference (or Value) Objects
Purpose Return Type Declaration

Single non-changeable object RCP<const A>
Single changeable object RCP<A>
Array of non-changeable objectsArrayView<const RCP<const A> >
Array of changeable objects ArrayView<const RCP<A> >

Returning Semi-Persisting Associations to Reference (or Value) Objects
Purpose Return Type Declaration

Single non-changeable object Ptr<const A>
Single changeable object Ptr<A>
Array of non-changeable objectsArrayView<const Ptr<const A> >
Array of changeable objects ArrayView<const Ptr<A> >

154

Conversions of data-types for single objects

Conversions of data-types for contiguous arrays

155

Most Common Basic Conversions for Single Object Types
Type To Type From Properties C++ code

RCP<A> A* Ex, Ow rcp(a p) 1

RCP<A> A* Ex, NOw rcp(a p,false) 2

RCP<A> A& Ex, NOw rcpFromRef(a)
RCP<A> A& Ex, NOw rcpFromUndefRef(a)
RCP<A> Ptr<A> Ex, NOw, DR rcpFromPtr(a)
RCP<A> boost::shared ptr<A> Ex, Ow, DR rcp(a sp)
RCP<const A> RCP<A> Im, Ow, DR RCP<const A>(a rcp)
RCP<Base> RCP<Derived> Im, Ow, DR RCP<Base>(derived rcp)
RCP<const Base> RCP<Derived> Im, Ow, DR RCP<const Base>(derived rcp)
boost::shared ptr<A> RCP<A> Ex, Ow, DR shared pointer(a rcp)

A* RCP<A> Ex, NOw RCP::getRawPtr() 3

A& RCP<A> Ex, NOw RCP::operator*() 4

Ptr<A> A* Ex, NOw ptr(a p) 2

Ptr<A> A& Ex, NOw outArg(a) 5

Ptr<A> RCP<A> Ex, NOw, DR ptrFromRCP(a rcp)
Ptr<const A> Ptr<A> Im, NOw, DR Ptr<const A>(a ptr)
Ptr<Base> Ptr<Derived> Im, NOw, DR Ptr<Base>(derived ptr)
Ptr<const Base> Ptr<Derived> Im, NOw, DR Ptr<const Base>(derived ptr)

A* Ptr<A> Ex, NOw Ptr::getRawPtr() 3

A& Ptr<A> Ex, NOw Ptr::operator*() 4

A* A& Ex, NOw &a 3

A& A* Ex, NOw *a p 3

Types/identifiers:A* a p; A& a; Ptr<A> a ptr ; RCP<A> arcp ; boost::shared ptr<A> a sp ;

Properties: Im = Implicit conversion, Ex = Explicit conversion, Ow = Owning, NOw = Non-Owning, DR = Dangling
Reference debug-mode runtime detection [NOTE: All conversions are shallow conversions, i.e. copy pointers not
objects]

1. Constructing an owningRCP from a raw C++ pointer is strictly necessary but must be done with great care
according to the commandments in Appendix B.

2. Constructing a non-owningRCPor Ptr directly from a raw C++ pointer should never be needed in fully com-
pliant code. However, when inter-operating with non-compliant code (or code in an intermediate state of
refactoring) this type of conversion will be needed.

3. Exposing a raw C++ pointer and raw pointer manipulation shouldnever be necessary in compliant code but
may be necessary when inter-operating with external code (see Section 5.2).

4. Exposing a raw C++ reference will be common in compliant code but should only be used for non-persisting
associations.

5. See other helper constructors for passingPtr described in Section 5.4.1.

156

Most Common Basic Conversions for Contiguous Array Types
Type To Type From Properties C++ code (or impl function)

ArrayRCP<S> S* Sh, Ex, Ow arcp(s p,0,n) 1

ArrayRCP<S> S* Sh, Ex, NOw arcp(s p,0,n,false) 2

ArrayRCP<S> Array<S> Sh, Ex, NOw, DR arcpFromArray(s a)
ArrayRCP<S> ArrayView<S> Sh, Ex, NOw, DR arcpFromArrayView(s av)
ArrayRCP<S> ArrayView<S> Dp, Ex, Ow arcpClone(s av)
ArrayRCP<S> RCP<Array<S> > Sh, Ex, Ow, DR arcp(s a rcp)
ArrayRCP<const S> RCP<const Array<S> > Sh, Ex, Ow, DR arcp(cs a rcp)
ArrayRCP<const S> ArrayRCP<S> Sh, Im, Ow, DR ArrayRCP::operator()()

S* ArrayRCP<S> Sh, Ex, NOw ArrayRCP::getRawPtr() 3

S& ArrayRCP<S> Sh, Ex, NOw ArrayRCP::operator[](i) 4

ArrayView<S> S* Sh, Ex, NOw arrayView(s p,n) 1

ArrayView<S> Array<S> Sh, Im, NOw, DR Array::operator ArrayView()
ArrayView<S> Tuple<S> Sh, Im, NOw, DR Tuple::operator ArrayView()
ArrayView<S> std::vector<S> Sh, Im, NOw ArrayView<S>(s v)
ArrayView<S> ArrayRCP<S> Sh, Ex, NOw, DR ArrayRCP::operator()()
ArrayView<const S> const Array<S> Sh, Im, NOw, DR Array::operator ArrayView()
ArrayView<const S> const Tuple<S> Sh, Im, NOw, DR Tuple::operator ArrayView()
ArrayView<const S> const std::vector<S> Sh, Im, NOw ArrayView(cs v)
ArrayView<const S> ArrayRCP<const S> Sh, Ex, NOw, DR ArrayRCP::operator ArrayView()

S* ArrayView<S> Ex, NOw ArrayView::getRawPtr() 3

S& ArrayView<S> Ex, NOw ArrayView::operator[](i) 4

Array<S> S* Dp, Ex Array<S>(s p,s p+n)
Array<S> std::vector<S> Dp, Im Array<S>(s v)
Array<S> ArrayView<S> Dp, Im Array<S>(s av)
Array<S> Tuple<S,N> Dp, Im Array<S>(s t)
Array<S> ArrayRCP<S> Dp, Ex Array<S>(s arcp());
std::vector<S> Array<S> Dp, Ex s a.toVector();

S* Array<S> Ex, NOw Array::getRawPtr() 3

S& Array<S> Ex, NOw Array::operator[](i) 4

Types/identifiers:S* s p; ArrayView<S> s av ; ArrayRCP<S> s arcp ; Array<S> s a; Tuple<S,N> s t ;
std::vector<S> s v; RCP<Array<S> > s a rcp ; RCP<const Array<S> > cs a rcp ;

Properties: Sh = Shallow copy, Dp = Deep copy (dangling references not an issue), Im = Implicit conversion, Ex =
Explicit conversion, Ow = Owning (dangling references not an issue), NOw = Non-Owning, DR = Dangling Reference
debug-mode runtime detection for non-owning

1. It should never be necessary to convert from a raw pointer to an owningArrayRCP object directly. Instead, use
the non-member constructorarcp<S>(n) .

2. Constructing a non-owningArrayRCP or ArrayView directly from a raw C++ pointer should never be needed
in fully compliant code. However, when inter-operating with non-compliant code (or code in an intermediate
state of refactoring) this type of conversion will be needed.

3. Exposing a raw C++ pointer should never be necessary in compliant code but may be necessary when inter-
operating with external code (see Section 5.2).

4. Exposing a raw C++ reference will be common in compliant code but should only be used for non-persisting
associations.

157

B Commandments for the use of the Teuchos memory management classes

Here are stated commandments (i.e. very strongly recommended guidelines) that if followed, along with
the idioms defined in Section 5.8, then client code will be nearly 100% safe through debug-mode runtime
checking and will almost never result in undefined behavior (e.g. segfaults) or a memory leak (except for
circular references as described in Section 5.11.2). While there will be situations where it is justified to
violate almost any of these commandments, they should be valid in 99% of a well written code base.

Commandment 1 Thou shall not expose raw pointers in any high-level C++ code.

Exception:Only expose raw pointers when interfacing with non-compliant code or momentarily in order to
construct a Teuchos memory management class object. However, these cases should be encapsulated as
low-level code.

Commandment 2 Thou shall only use raw C++ references for non-persisting associations (see
Sections 4.2 and 5.4.3).

Commandment 3 Thou shall useRCP for handling single objects for all persisting associations (see
Section 4.2).

Commandment 4 Thou shall put a pointer for an object allocated with operatornew into a strong
owningRCP whenever possible by directly callingnew right in the constructor for theRCP object itself or
construct fromrcp(...).

Commandment 5 When wrapping an object inside of anRCP, thou shall create a strong owningRCP
object first before any non-owningRCP objects (see Sections 5.11.4 and 5.13.3).

Justification:In order for the reference-counting machinery to detect dangling non-owning references in a
debug-mode build, the firstRCPobject created must have ownership to delete. The system cannot detect
dangling references from non-owningRCPNodeobjects created before an owningRCPNodeobject is
created.

Commandment 6 Thou shall usePtr for handling single objects for all semi-persisting associations (see
Section 4.2).

Justification:When performance constraints do not allow for the reference-counting overhead ofRCP, then
Ptr can be used instead to form a semi-persisting association (which should be accompanied with the
appropriate documentation about the performance optimization). One should never have to retreat back to
using a raw pointer in these cases. At least withPtr , invalid usage will be checked for in a debug build so
one does not loose any debug-mode runtime checking when usingPtr instead ofRCPif one really does not
need reference-counting machinery.

158

Commandment 7 Thou shall useArrayRCP for handling all contiguous arrays of objects for all
persisting associations where the array does not need to be incrementally resized while sharing the array
(see Sections 4.2 and 5.8.2).

Commandment 8 Thou shall useArrayView for handling contiguous arrays of objects for all
semi-persisting associations (see Sections 4.2 and 5.12.3).

Justification:When performance constraints do not allow for the reference-counting overhead of
ArrayRCP , thenArrayView can be used instead to form a semi-persisting association (which should be
accompanied with the appropriate documentation about the performance optimization). One should never
have to retreat back to using a raw pointer in these cases. At least withArrayView , invalid usage will be
checked for in a debug build so one does not loose any debug-mode runtime checking when using
ArrayView instead ofArrayRCP if one really does not need reference-counting machinery.

Commandment 9 Thou shall not call rawnew or delete in any high-level C++ code to dynamically
allocate and destroy single objects. Instead, create memory using a user-defined non-member constructor
function (see Section 5.8.1).

Exception: Calling rawnew in okay when an appropriate non-member constructor is missing. In general,
value-type classes (e.g.std::vector) will not have non-member constructor functions that return
RCP-wrapped objects.

Commandment 10 Thou shall not call raw operatornew [] or delete [] in any high-level C++
code to dynamically allocate and destroy contiguous arrays of data. Instead, use functions such as
Teuchos::Array<T>(n) andTeuchos::arcp<T>(n) to dynamically allocate arrays.

Commandment 11 Thou shall not directly create and use compile-time fixed sized arrays withT[N].
Instead, create compile-time fixed-sized arrays usingTeuchos::Tuple<T,N> and convert to
Teuchos::ArrayView<T> for more general usage.

Commandment 12 Thou shall useTeuchos::Array as a general purpose contiguous container
instead ofstd::vector in order maximize debug-mode runtime checking (see Sections 5.5.3
and 5.11.3).

Commandment 13 Thou shall only convert or cast between different memory management objects (of the
same or different types) using the provided implicit and explicit conversion functions (see Section 5.7).
Thou shall never expose a raw C++ pointer to perform a conversion.

Exception: Some very advanced and rare use cases might have one exposing a raw C++ pointer (see
Section 5.13.1 for the only example described in this paper).

Commandment 14 Thou shall only pass in the typesPtr, RCP, ArrayView, andArrayRCP by
constant reference (e.g.const RCP<T> &a) and never by non-const reference (e.g. never doRCP<T>
&a).

159

Exception: The only time one should ever pass in a non-const reference to one of these types (e.g.RCP<T>
&a) is when the function will modify what data the object points to. However, if this is the case, it is
typically better and more clear to pass in the object through aPtr object (e.g.const Ptr<RCP<T> > &a)
using theoutArg(...) function (see Section 5.8.4).

Commandment 15 Thou shall only reutrn objects of typePtr, RCP, ArrayView, andArrayRCP from
a function by value and not a constant reference (see Section 5.8.5).

Exception: Returning one of these types by non-const reference makes sense when using the local static
variable initialization trick described in [25, Item 4]. However, returning one of these types by const
reference would almost never be justified.

160

C Argument for using an signed integer forsize type in the Teuchos
array classes

The Teuchos array memory management classesArray , ArrayRCP , andArrayView all use an unsigned
integer forsize type (ptrdiff t by default). This breaks from the C++ standard library convention of the
standard containers likestd::vector that all use an unsigned integer forsize type (which issize t in
most implementations). The primary disadvantage for using an unsigned integral type is that subtractions
that would normally produce a negative number instead roll over into a huge positive number, making it
more difficult to debug problems. For example, consider the simple program shown in Listing 127:

Listing 127 : Example program showing the problem with unsigned integral types

#include <iostream>
#include <string>

typedef unsigned long int size_type ;

void print_val(const std::string &valName, const size_type val)
{ std::cout << valName << " = " << val << "\n";}

int main()
{

const size_type a = 5, b = 7;
const size_type c = b - a;
const size_type d = a - b;
print_val("a", a);
print_val("b", b);
print_val("b - a", c);
print_val("a - b", d);
return 0;

}

When the above program is compiled with GCC 3.4.6 on a 64 bit Linux machine and run it produces the
output:

a = 5
b = 7
b - a = 2
a - b = 18446744073709551614

In the above program, the subtraction ofa - b is a programming error but that error results in the number
18446744073709551614 when using an unsigned type. Getting a number like18446744073709551614 in
program output or in the debugger does not exactly give a great hint as to what the problem might be. Was
uninitialized memory used to produce this result? Is there some other memory usage problem that would
cause the program to produce a ridiculous result such as this? It is problems like this that greatly contribute
to the accidental complexity that is inherit in C/C++ programing (see Section 6.1).

However, whenunsigned long int is replaced withlong int in Listing 127 and the code is rebuilt and
run one gets:

161

a = 5
b = 7
b - a = 2
a - b = -2

Now, getting output like-2 when a positive number is expected is much easier to debug. The chance of
getting-2 as the result of a memory usage error is very unlikely. This would immediately be flagged as a
subtraction error in the program and quickly tracked down and fixed. Therefore, from a program
correctness and debugging perspective, signed integral types are far superior to unsigned types.

So if programs with unsigned integers are harder to debug when things go wrong, then what are the
advantages of using an unsigned type? Well, some might argue that using an unsigned type for integral
objects that that can only be non-negative in valid programs helps to make the code self documenting. This
is partially true but one can achieve the same result by using a typedef to make the usage expectation clear
(e.g.size type).

So what then is left as the real advantage for using an unsigned integral type? The only real advantage of an
unsigned integral type (e.g.unsigned int) over a signed integral type (e.g.int) is that unsigned integral
type objects can represent twice the positive range as the equivalent signed integral type objects. For
smaller integral types likechar and andshort int , having twice the range can be quite useful. However,
on 32 bit and 64 bit modern computers, using anunsigned [long] int instead of a[long] int as the
size for a container is quite worthless. On a 64 bit Linux machine with GCC 3.4.6, the sizes of several
integral types pertinent to this discussion are shown in Listing 128.

Listing 128 : Sizes and ranges of some common integral types of GCC on a 64 bit Linux machine

sizeof(int) = 4
std::numeric_limits<int>::min()= -2147483648
std::numeric_limits<int>::max()= 2147483647
std::log10(std::numeric_limits<int>::max())= 9.33193

sizeof(unsigned int) = 4
std::numeric_limits<unsigned int>::min()= 0
std::numeric_limits<unsigned int>::max()= 4294967295
std::log10(std::numeric_limits<unsigned int>::max())= 9.63296

sizeof(long int) = 8
std::numeric_limits<long int>::min()= -9223372036854775808
std::numeric_limits<long int>::max()= 9223372036854775807
std::log10(std::numeric_limits<long int>::max())= 18.9649

sizeof(unsigned long int) = 8
std::numeric_limits<unsigned long int>::min()= 0
std::numeric_limits<unsigned long int>::max()= 18446744073709551615
std::log10(std::numeric_limits<unsigned long int>::max())= 19.2659

sizeof(size_t) = 8
std::numeric_limits<size_t>::min()= 0
std::numeric_limits<size_t>::max()= 18446744073709551615
std::log10(std::numeric_limits<size_t>::max())= 19.2659

162

sizeof(ptrdiff_t) = 8
std::numeric_limits<ptrdiff_t>::min()= -9223372036854775808
std::numeric_limits<ptrdiff_t>::max()= 9223372036854775807
std::log10(std::numeric_limits<ptrdiff_t>::max())= 18.9649

On a 32 bit machine,size t is a 4 bitunsigned int andptrdiff t is a 4 bitint . The standard C library
typedefsize t is guaranteed to be the largest possible object size returned fromsizeof(...) and is also
used for functions likemalloc(...) . The standard C library typedefptrdiff t is supposed to be
guaranteed to hold the difference between the subtraction of any two pointers in the largest allocatable
array. Right here lies the first problem with this approach as shown in the simple program in Listing 129.

Listing 129 : Simple program showing the fundamental incompatibility ofsize t andptrdiff t.

#include <iostream>
#include <string>
#include <limits>

template<typename T>
void print_val(const std::string &valName, const T val)
{ std::cout << valName << " = " << val << "\n";}

int main()
{

const size_t maxSize = std::numeric_limits<size_t>::max();
const size_t size = static_cast<size_t>(0.75 * maxSize);
char *a = new char[size];
ptrdiff_t a_diff = (a+size) - a;
print_val("maxSize", maxSize);
print_val("size", size);
print_val("a+size - a", a_diff);
delete a;
return 0;

}

The program in Listing 129 allocates achar array 75% the size of the maximum allowed bysize t . In
this program,size is 50% larger than the largest value that can be represented by the signed type
ptrdiff t (which is the type asint in this case). When this program is compiled with GCC 3.4.6 in 32 bit
mode (i.e. with-m32) and run it produces the following output:

maxSize = 4294967295
size = 3221225471
a+size - a = -1073741825

The value ofptr2 - ptr1 = -1073741825 whereptr1 = a andptr2 = a+size is totally wrong. What
this output suggests is thatptr2 = a+size is 1073741825 elements in front ofptr1 = a which is
completely wrong when in actualityptr2 = a+size is size = 3221225471 elements afterptr1 = a .
What this 32 bit output confirms is that it false to claim thatptrdiff t can store the difference between

163

any two pointers in a single array of data. Perhaps that was trueon the machines when C was first
developed the early 1970’s but it is not true today where machines with 4+ GB of memory are common.

Now consider practical usage of types likestd::vector on modern machines. First, consider what it
would mean to allocate the largeststd::vector of evenchar s. A char is 1 byte so on a 32 bit machine,
anstd::vector<char> of max size would have4294967295 bytes = 4.3 GB of memory. That would
exhaust all of the memory of a 4 GB machine and more. Being limited to only half the range ofsize t
(which is the positive range representable byptrdiff t) would give anstd::vector<char> that takes up
2.3 GB of memory. No real 32 bit program is ever going to allocate a singlestd::vector of char s that
takes up more than half of the addressable memory of the entire machine! It is hard to imagine what useful
task such a program would perform.

When one moves up to anstd::vector<int> for a 32 bit (4 byte)int the maximum size of array that one
can create is4294967295 * 4 / 1e+9 = 17.2 GB. Being limited to theunsigned int typeptrdiff t
would limit one to anstd::vector<int> of size 8.6 GB which is already twice the addressable memory
of a 32 bit system.

Therefore, even on a 32 bit machine, limiting the maximum size ofstd::vector objects to have only
std::numeric limits<ptrdiff t)>::max() = 2.3×109 elements is really not any kind of limit at all.
For any reasonable program on any reasonable 32 bit machine one cannot even store that much memory.

On a 64 bit machine this of course becomes silly. By limiting the maximum number of elements in an
std::vector<char> (not to mention arrays with larger data types) to be
std::numeric limits<ptrdiff t)>::max() on 64 bit machine would mean that one would take up
18446744073709551615 / 2 = 9.2e+9 GB of memory to allocate a single array! We will likely never in
human history ever see a machine with 2×109 GB of memory in a single address space.

In summary, limiting the maximum number of elements in anstd::vector (and therefore Teuchos
Array) to be half ofsize t using thelong signed int typeptrdiff t for size type is not any kind of
limit at all in any realistic 32 bit program and especially not a 64 bit program.

Therefore, the Teuchos array memory management classes all use by defaultptrdiff t assize type
because of the inherent debugging and other advantages of using a signed integral type instead of an
unsigned type and with no real advantages at all for usingsize t overptrdiff t .

164

D Raw performance data

D.1 Raw RCP performance data

Listing 130 : RawRCP timing data on GCC 4.1.2

0. RCP_createDestroyOverhead_UnitTest ...

Messuring the overhead of creating and destorying objects of different sizes
using raw C++ pointers, shared_ptr, and using RCP.

Number of loops = relCpuSpeed/relTestCost = 5e+03/0.001 = 5e+06

obj size num loops raw shared_ptr RCP shared_ptr/raw RCP/raw
--------- --------- -------------- -------------- -------------- -------------- --------------

1 3465735 7.407462e-08 1.215497e-07 1.398462e-07 1.640909e+00 1.887910e+00
4 2011797 7.450006e-08 1.239370e-07 1.413890e-07 1.663582e+00 1.897838e+00

16 885379 8.031363e-08 1.284388e-07 1.467530e-07 1.599215e+00 1.827249e+00
64 326124 1.130889e-07 1.589150e-07 1.792815e-07 1.405222e+00 1.585315e+00

256 108380 2.369718e-07 2.786677e-07 2.359753e-07 1.175953e+00 9.957949e-01
1024 33849 5.029395e-07 5.578008e-07 5.812875e-07 1.109081e+00 1.155780e+00
4096 10153 1.552546e-06 1.608293e-06 1.630947e-06 1.035907e+00 1.050498e+00

16384 2961 5.759541e-06 5.821344e-06 5.840932e-06 1.010731e+00 1.014132e+00
65536 846 2.503073e-05 2.513239e-05 2.515721e-05 1.004061e+00 1.005053e+00

1. RCP_dereferenceOverhead_UnitTest ...

Messuring the overhead of dereferencing RCP, shared_ptr and a raw pointer.

array dim num loops raw shared_ptr RCP RCP/raw RCP/shared_ptr
--------- --------- -------------- -------------- -------------- -------------- --------------

64 3261240 7.765547e-10 1.037752e-09 6.958626e-10 8.960896e-01 6.705479e-01
256 1083803 7.295887e-10 8.572714e-10 7.611003e-10 1.043191e+00 8.878173e-01

1024 338498 7.117812e-10 8.238572e-10 7.125746e-10 1.001115e+00 8.649249e-01
4096 101538 7.187575e-10 1.155846e-09 1.192136e-09 1.658607e+00 1.031397e+00

16384 29614 8.350258e-10 1.155404e-09 1.190919e-09 1.426207e+00 1.030739e+00
65536 8461 8.362559e-10 1.155293e-09 1.199785e-09 1.434711e+00 1.038512e+00

2. RCP_memberAccessOverhead_UnitTest ...

Messuring the overhead of dereferencing RCP, shared_ptr and a raw pointer.

array dim num loops raw shared_ptr RCP RCP/raw RCP/shared_ptr
--------- --------- -------------- -------------- -------------- -------------- --------------

64 3261240 7.794917e-10 1.037733e-09 6.954218e-10 8.921479e-01 6.701355e-01
256 1083803 7.295743e-10 8.639896e-10 7.611075e-10 1.043221e+00 8.809221e-01

1024 338498 7.115158e-10 8.325987e-10 7.242242e-10 1.017861e+00 8.698358e-01
4096 101538 7.252928e-10 1.156058e-09 1.192244e-09 1.643811e+00 1.031302e+00

16384 29614 8.369755e-10 1.154404e-09 1.190985e-09 1.422963e+00 1.031688e+00
65536 8461 8.364092e-10 1.154440e-09 1.199527e-09 1.434139e+00 1.039056e+00

3. RCP_referenceCountManipulationOverhead_UnitTest ...

Messuring the overhead of incrementing and deincrementing the reference count
comparing RCP to raw pointer and boost::shared_ptr.

array dim num loops raw shared_ptr RCP RCP/raw RCP/shared_ptr
--------- --------- -------------- -------------- -------------- -------------- --------------

64 65224 1.554978e-09 4.145809e-09 6.009579e-09 3.864736e+00 1.449555e+00
256 21676 7.138151e-10 4.221439e-09 5.832524e-09 8.170916e+00 1.381644e+00

1024 6769 6.919181e-10 4.224365e-09 5.589158e-09 8.077773e+00 1.323076e+00
4096 2030 6.863599e-10 4.226880e-09 6.094856e-09 8.879972e+00 1.441928e+00

16384 592 6.854083e-10 4.224623e-09 6.234040e-09 9.095367e+00 1.475644e+00
65536 169 6.848397e-10 4.228219e-09 6.216828e-09 9.077785e+00 1.470318e+00

165

Listing 131 : RawRCP timing data on Intel ICC 10.1

0. RCP_createDestroyOverhead_UnitTest ...

Messuring the overhead of creating and destorying objects of different sizes
using raw C++ pointers, shared_ptr, and using RCP.

Number of loops = relCpuSpeed/relTestCost = 5e+03/0.001 = 5e+06

obj size num loops raw shared_ptr RCP shared_ptr/raw RCP/raw
--------- --------- -------------- -------------- -------------- -------------- --------------

1 3465735 1.157942e-07 1.941906e-07 2.041379e-07 1.677032e+00 1.762938e+00
4 2011797 1.194609e-07 1.984465e-07 2.031149e-07 1.661184e+00 1.700263e+00

16 885379 1.200751e-07 2.013262e-07 2.105720e-07 1.676669e+00 1.753668e+00
64 326124 1.390085e-07 2.170309e-07 2.277876e-07 1.561279e+00 1.638660e+00

256 108380 3.299409e-07 4.036446e-07 4.223381e-07 1.223384e+00 1.280041e+00
1024 33849 6.118349e-07 7.350291e-07 7.567432e-07 1.201352e+00 1.236842e+00
4096 10153 1.724909e-06 1.833645e-06 1.851472e-06 1.063039e+00 1.073374e+00

16384 2961 6.138467e-06 6.252955e-06 6.269504e-06 1.018651e+00 1.021347e+00
65536 846 2.482151e-05 2.497754e-05 2.505437e-05 1.006286e+00 1.009381e+00

1. RCP_dereferenceOverhead_UnitTest ...

Messuring the overhead of dereferencing RCP, shared_ptr and a raw pointer.

array dim num loops raw shared_ptr RCP RCP/raw RCP/shared_ptr
--------- --------- -------------- -------------- -------------- -------------- --------------

64 3261240 6.909757e-10 3.551453e-09 1.027399e-09 1.486881e+00 2.892897e-01
256 1083803 7.113406e-10 3.384829e-09 7.973226e-10 1.120873e+00 2.355577e-01

1024 338498 6.914017e-10 2.841675e-09 7.658747e-10 1.107713e+00 2.695152e-01
4096 101538 6.864300e-10 3.701316e-09 9.940787e-10 1.448187e+00 2.685744e-01

16384 29614 7.319499e-10 3.367334e-09 9.934011e-10 1.357198e+00 2.950112e-01
65536 8461 7.317167e-10 2.931704e-09 9.912099e-10 1.354636e+00 3.381003e-01

2. RCP_memberAccessOverhead_UnitTest ...

Messuring the overhead of dereferencing RCP, shared_ptr and a raw pointer.

array dim num loops raw shared_ptr RCP RCP/raw RCP/shared_ptr
--------- --------- -------------- -------------- -------------- -------------- --------------

64 3261240 6.899839e-10 6.952541e-10 8.252660e-10 1.196066e+00 1.186999e+00
256 1083803 7.112650e-10 7.159684e-10 7.949727e-10 1.117688e+00 1.110346e+00

1024 338498 6.911940e-10 6.924634e-10 7.741691e-10 1.120046e+00 1.117993e+00
4096 101538 6.863435e-10 7.000054e-10 9.928501e-10 1.446579e+00 1.418346e+00

16384 29614 7.326919e-10 8.507246e-10 9.953219e-10 1.358445e+00 1.169970e+00
65536 8461 7.315725e-10 8.489935e-10 9.923713e-10 1.356491e+00 1.168880e+00

3. RCP_referenceCountManipulationOverhead_UnitTest ...

Messuring the overhead of incrementing and deincrementing the reference count
comparing RCP to raw pointer and boost::shared_ptr.

array dim num loops raw shared_ptr RCP RCP/raw RCP/shared_ptr
--------- --------- -------------- -------------- -------------- -------------- --------------

64 65224 1.032260e-09 5.619576e-09 8.805472e-09 8.530285e+00 1.566928e+00
256 21676 7.246278e-10 5.881181e-09 8.692109e-09 1.199527e+01 1.477953e+00

1024 6769 7.678041e-10 6.050677e-09 8.797574e-09 1.145810e+01 1.453982e+00
4096 2030 7.621277e-10 5.988180e-09 8.991230e-09 1.179754e+01 1.501496e+00

16384 592 8.004678e-10 6.102691e-09 8.966497e-09 1.120157e+01 1.469269e+00
65536 169 7.999578e-10 6.108933e-09 8.973161e-09 1.121704e+01 1.468859e+00

166

Listing 132 : RawRCP timing data on MSVC++ 2009

0. RCP_createDestroyOverhead_UnitTest ...

Messuring the overhead of creating and destorying objects of different sizes
using raw C++ pointers, shared_ptr, and using RCP.

Number of loops = relCpuSpeed/relTestCost = 5e+003/0.001 = 5e+006

obj size num loops raw shared_ptr RCP shared_ptr/raw RCP/raw
--------- --------- -------------- -------------- -------------- -------------- --------------

1 3465735 2.628591e-007 3.641363e-007 4.117453e-007 1.385291e+000 1.566411e+000
4 2011797 2.390897e-007 3.718069e-007 4.130635e-007 1.555094e+000 1.727651e+000

16 885379 2.484812e-007 3.885342e-007 4.303242e-007 1.563636e+000 1.731818e+000
64 326124 2.882339e-007 4.262182e-007 4.660804e-007 1.478723e+000 1.617021e+000

256 108380 4.336593e-007 5.628345e-007 5.997416e-007 1.297872e+000 1.382979e+000
1024 33849 9.749180e-007 1.093090e-006 1.122633e-006 1.121212e+000 1.151515e+000
4096 10153 3.250271e-006 3.250271e-006 3.348764e-006 1.000000e+000 1.030303e+000

16384 2961 1.182033e-005 1.350895e-005 1.215805e-005 1.142857e+000 1.028571e+000
65536 846 4.609929e-005 4.609929e-005 4.609929e-005 1.000000e+000 1.000000e+000

1. RCP_dereferenceOverhead_UnitTest ...

Messuring the overhead of dereferencing RCP, shared_ptr and a raw pointer.

array dim num loops raw shared_ptr RCP RCP/raw RCP/shared_ptr
--------- --------- -------------- -------------- -------------- -------------- --------------

64 3261240 1.034882e-009 1.034882e-009 6.995039e-010 6.759259e-001 6.759259e-001
256 1083803 1.052428e-009 1.052428e-009 7.136329e-010 6.780822e-001 6.780822e-001

1024 338498 1.035711e-009 1.038596e-009 6.952820e-010 6.713092e-001 6.694444e-001
4096 101538 1.021881e-009 1.043521e-009 1.012263e-009 9.905882e-001 9.700461e-001

16384 29614 1.088221e-009 1.141807e-009 1.020207e-009 9.375000e-001 8.935018e-001
65536 8461 1.082056e-009 1.141569e-009 1.011722e-009 9.350000e-001 8.862559e-001

2. RCP_memberAccessOverhead_UnitTest ...

Messuring the overhead of dereferencing RCP, shared_ptr and a raw pointer.

array dim num loops raw shared_ptr RCP RCP/raw RCP/shared_ptr
--------- --------- -------------- -------------- -------------- -------------- --------------

64 3261240 1.039674e-009 1.044465e-009 1.015718e-009 9.769585e-001 9.724771e-001
256 1083803 1.045220e-009 1.048824e-009 7.136329e-010 6.827586e-001 6.804124e-001

1024 338498 1.032826e-009 1.038596e-009 6.923970e-010 6.703911e-001 6.666667e-001
4096 101538 1.029094e-009 1.053139e-009 1.009859e-009 9.813084e-001 9.589041e-001

16384 29614 1.077915e-009 1.135624e-009 1.007841e-009 9.349904e-001 8.874773e-001
65536 8461 1.080252e-009 1.137962e-009 1.018936e-009 9.432387e-001 8.954041e-001

3. RCP_referenceCountManipulationOverhead_UnitTest ...

Messuring the overhead of incrementing and deincrementing the reference count
comparing RCP to raw pointer and boost::shared_ptr.

array dim num loops raw shared_ptr RCP RCP/raw RCP/shared_ptr
--------- --------- -------------- -------------- -------------- -------------- --------------

64 65224 7.186772e-010 5.270299e-009 1.413398e-008 1.966667e+001 2.681818e+000
256 21676 3.604217e-010 4.144849e-009 1.261476e-008 3.500000e+001 3.043478e+000

1024 6769 1.442698e-010 4.183825e-009 1.269575e-008 8.800000e+001 3.034483e+000
4096 2030 2.405326e-010 4.089055e-009 1.274823e-008 5.300000e+001 3.117647e+000

16384 592 3.092998e-010 4.227097e-009 1.278439e-008 4.133333e+001 3.024390e+000
65536 169 2.708661e-010 4.153280e-009 1.291128e-008 4.766667e+001 3.108696e+000

167

D.2 Raw Array performance data

Li sting 133 : Raw Array timing data on GCC 4.1.2

0. Array_braketOperatorOverhead_UnitTest ...

Measuring the overhead of the Array braket operator relative to raw pointers.

Number of loops = relCpuSpeed/relTestCost = 5e+03/0.0001 = 5e+07

array dim num loops raw ptr vector Array vector/raw Array/raw
--------- --------- -------------- -------------- -------------- -------------- --------------

100 2307560 4.244007e-10 4.244137e-10 4.244440e-10 1.000031e+00 1.000102e+00
400 749245 3.631856e-10 3.629053e-10 3.629787e-10 9.992283e-01 9.994304e-01

1600 230574 3.475457e-10 3.475999e-10 3.476270e-10 1.000156e+00 1.000234e+00
6400 68470 5.450882e-10 5.452091e-10 5.367154e-10 1.000222e+00 9.846397e-01

1. Array_iteratorOverhead_UnitTest ...

Measuring the overhead of the Array iterators relative to raw pointers.

Number of loops = relCpuSpeed/relTestCost = 5e+03/0.0001 = 5e+07

array dim num loops raw ptr vector Array vector/raw Array/raw
--------- --------- -------------- -------------- -------------- -------------- --------------

100 2307560 4.620638e-10 4.725251e-10 4.757363e-10 1.022640e+00 1.029590e+00
400 749245 3.722247e-10 3.979673e-10 3.989416e-10 1.069159e+00 1.071776e+00

1600 230574 3.498009e-10 3.796775e-10 3.797046e-10 1.085410e+00 1.085488e+00
6400 68470 5.465578e-10 5.450813e-10 5.454967e-10 9.972986e-01 9.980585e-01

2. ArrayRCP_braketOperatorOverhead_UnitTest ...

Measuring the overhead of the ArrayRCP braket operator relative to raw pointers.

Number of loops = relCpuSpeed/relTestCost = 5e+03/0.0001 = 5e+07

array dim num loops raw ptr ArrayRCP ArrayRCP/raw
--------- --------- -------------- -------------- --------------

100 2307560 4.620552e-10 4.449722e-10 9.630283e-01
400 749245 3.722748e-10 3.680972e-10 9.887783e-01

1600 230574 3.498687e-10 3.486869e-10 9.966221e-01
6400 68470 5.456381e-10 6.259333e-10 1.147158e+00

3. ArrayRCP_iteratorOverhead_UnitTest ...

Measuring the overhead of the ArrayRCP iterators relative to raw pointers.

Number of loops = relCpuSpeed/relTestCost = 5e+03/0.0001 = 5e+07

array dim num loops raw ptr ArrayRCP ArrayRCP/raw
--------- --------- -------------- -------------- --------------

100 2307560 4.414750e-10 4.451065e-10 1.008226e+00
400 749245 3.670995e-10 3.679571e-10 1.002336e+00

1600 230574 3.485405e-10 3.488902e-10 1.001003e+00
6400 68470 5.448531e-10 5.452068e-10 1.000649e+00

4. ArrayRCP_selfIteratorOverhead_UnitTest ...

Measuring the overhead of the ArrayRCP as a self iterataor relative to raw pointers.

Number of loops = relCpuSpeed/relTestCost = 5e+03/0.0001 = 5e+07

array dim num loops raw ptr ArrayRCP ArrayRCP/raw
--------- --------- -------------- -------------- --------------

100 2307560 4.587616e-10 8.386087e-10 1.827984e+00
400 749245 3.713705e-10 7.234583e-10 1.948077e+00

1600 230574 3.497250e-10 6.945384e-10 1.985956e+00

168

6400 68470 5.297461e-10 6.887003e-10 1.300057e+00

5. ArrayView_braketOperatorOverhead_UnitTest ...

Measuring the overhead of the ArrayView braket operator relative to raw pointers.

Number of loops = relCpuSpeed/relTestCost = 5e+03/0.0001 = 5e+07

array dim num loops raw ptr ArrayView ArrayView/raw
--------- --------- -------------- -------------- --------------

100 2307560 4.621072e-10 4.244570e-10 9.185250e-01
400 749245 3.722814e-10 3.627618e-10 9.744291e-01

1600 230574 3.499283e-10 3.474156e-10 9.928192e-01
6400 68470 5.455994e-10 5.369824e-10 9.842065e-01

6. ArrayView_iteratorOverhead_UnitTest ...

Measuring the overhead of the ArrayView iterators relative to raw pointers.

Number of loops = relCpuSpeed/relTestCost = 5e+03/0.0001 = 5e+07

array dim num loops raw ptr ArrayView ArrayView/raw
--------- --------- -------------- -------------- --------------

100 2307560 4.588396e-10 4.552254e-10 9.921232e-01
400 749245 3.716074e-10 3.705230e-10 9.970818e-01

1600 230574 3.495732e-10 3.493184e-10 9.992711e-01
6400 68470 5.299196e-10 5.453255e-10 1.029072e+00

169

Listing 134 : Raw Array timing data on ICC 10.1

0. Array_braketOperatorOverhead_UnitTest ...

Measuring the overhead of the Array braket operator relative to raw pointers.

Number of loops = relCpuSpeed/relTestCost = 5e+03/0.0001 = 5e+07

array dim num loops raw ptr vector Array vector/raw Array/raw
--------- --------- -------------- -------------- -------------- -------------- --------------

100 2307560 9.041672e-10 1.092201e-09 1.092210e-09 1.207964e+00 1.207973e+00
400 749245 8.995689e-10 1.207742e-09 1.121359e-09 1.342579e+00 1.246551e+00

1600 230574 8.816611e-10 1.154434e-09 1.172907e-09 1.309385e+00 1.330338e+00
6400 68470 9.466212e-10 1.240822e-09 1.252366e-09 1.310790e+00 1.322986e+00

1. Array_iteratorOverhead_UnitTest ...

Measuring the overhead of the Array iterators relative to raw pointers.

Number of loops = relCpuSpeed/relTestCost = 5e+03/0.0001 = 5e+07

array dim num loops raw ptr vector Array vector/raw Array/raw
--------- --------- -------------- -------------- -------------- -------------- --------------

100 2307560 6.093189e-10 6.334830e-10 5.921796e-10 1.039657e+00 9.718714e-01
400 749245 6.862308e-10 6.941621e-10 6.795441e-10 1.011558e+00 9.902559e-01

1600 230574 6.543805e-10 6.653910e-10 6.629027e-10 1.016826e+00 1.013023e+00
6400 68470 7.261278e-10 7.312829e-10 7.259452e-10 1.007099e+00 9.997486e-01

2. ArrayRCP_braketOperatorOverhead_UnitTest ...

Measuring the overhead of the ArrayRCP braket operator relative to raw pointers.

Number of loops = relCpuSpeed/relTestCost = 5e+03/0.0001 = 5e+07

array dim num loops raw ptr ArrayRCP ArrayRCP/raw
--------- --------- -------------- -------------- --------------

100 2307560 7.565177e-10 1.091967e-09 1.443413e+00
400 749245 7.061542e-10 1.116170e-09 1.580633e+00

1600 230574 6.943432e-10 1.171088e-09 1.686613e+00
6400 68470 6.937756e-10 1.305848e-09 1.882234e+00

3. ArrayRCP_iteratorOverhead_UnitTest ...

Measuring the overhead of the ArrayRCP iterators relative to raw pointers.

Number of loops = relCpuSpeed/relTestCost = 5e+03/0.0001 = 5e+07

array dim num loops raw ptr ArrayRCP ArrayRCP/raw
--------- --------- -------------- -------------- --------------

100 2307560 3.658930e-10 3.765406e-10 1.029100e+00
400 749245 3.789682e-10 3.671329e-10 9.687698e-01

1600 230574 3.575045e-10 3.575994e-10 1.000265e+00
6400 68470 5.485934e-10 5.484793e-10 9.997920e-01

4. ArrayRCP_selfIteratorOverhead_UnitTest ...

Measuring the overhead of the ArrayRCP as a self iterataor relative to raw pointers.

Number of loops = relCpuSpeed/relTestCost = 5e+03/0.0001 = 5e+07

array dim num loops raw ptr ArrayRCP ArrayRCP/raw
--------- --------- -------------- -------------- --------------

100 2307560 3.729480e-10 1.878863e-09 5.037869e+00
400 749245 3.919746e-10 1.754433e-09 4.475884e+00

1600 230574 3.606841e-10 1.922398e-09 5.329866e+00
6400 68470 5.474158e-10 2.262937e-09 4.133853e+00

5. ArrayView_braketOperatorOverhead_UnitTest ...

170

Measuring the overhead of the ArrayView braket operator relative to raw pointers.

Number of loops = relCpuSpeed/relTestCost = 5e+03/0.0001 = 5e+07

array dim num loops raw ptr ArrayView ArrayView/raw
--------- --------- -------------- -------------- --------------

100 2307560 7.635771e-10 1.092032e-09 1.430153e+00
400 749245 7.155570e-10 1.121049e-09 1.566680e+00

1600 230574 7.017405e-10 1.160129e-09 1.653217e+00
6400 68470 7.770807e-10 1.261093e-09 1.622860e+00

6. ArrayView_iteratorOverhead_UnitTest ...

Measuring the overhead of the ArrayView iterators relative to raw pointers.

Number of loops = relCpuSpeed/relTestCost = 5e+03/0.0001 = 5e+07

array dim num loops raw ptr ArrayView ArrayView/raw
--------- --------- -------------- -------------- --------------

100 2307560 3.629461e-10 3.765493e-10 1.037480e+00
400 749245 3.772431e-10 3.936763e-10 1.043561e+00

1600 230574 3.589737e-10 3.622779e-10 1.009205e+00
6400 68470 5.477992e-10 5.479590e-10 1.000292e+00

171

Listing 135 : Raw Array timing data on MSVC++ 2008

0. Array_braketOperatorOverhead_UnitTest ...

Measuring the overhead of the Array braket operator relative to raw pointers.

Number of loops = relCpuSpeed/relTestCost = 5e+003/0.0001 = 5e+007

array dim num loops raw ptr vector Array vector/raw Array/raw
--------- --------- -------------- -------------- -------------- -------------- --------------

100 2307560 7.757111e-010 6.110350e-010 5.243634e-010 7.877095e-001 6.759777e-001
400 749245 3.803829e-010 3.837196e-010 4.037398e-010 1.008772e+000 1.061404e+000

1600 230574 3.523814e-010 3.605133e-010 3.550921e-010 1.023077e+000 1.007692e+000
6400 68470 5.203009e-010 5.157368e-010 5.225829e-010 9.912281e-001 1.004386e+000

1. Array_iteratorOverhead_UnitTest ...

Measuring the overhead of the Array iterators relative to raw pointers.

Number of loops = relCpuSpeed/relTestCost = 5e+003/0.0001 = 5e+007

array dim num loops raw ptr vector Array vector/raw Array/raw
--------- --------- -------------- -------------- -------------- -------------- --------------

100 2307560 5.416977e-010 5.373641e-010 5.546985e-010 9.920000e-001 1.024000e+000
400 749245 3.903930e-010 3.837196e-010 3.903930e-010 9.829060e-001 1.000000e+000

1600 230574 3.550921e-010 3.794877e-010 3.659346e-010 1.068702e+000 1.030534e+000
6400 68470 5.294289e-010 5.203009e-010 5.225829e-010 9.827586e-001 9.870690e-001

2. ArrayRCP_braketOperatorOverhead_UnitTest ...

Measuring the overhead of the ArrayRCP braket operator relative to raw pointers.

Number of loops = relCpuSpeed/relTestCost = 5e+003/0.0001 = 5e+007

array dim num loops raw ptr ArrayRCP ArrayRCP/raw
--------- --------- -------------- -------------- --------------

100 2307560 5.330306e-010 8.753835e-010 1.642276e+000
400 749245 4.938305e-010 8.642033e-010 1.750000e+000

1600 230574 3.605133e-010 8.375836e-010 2.323308e+000
6400 68470 5.317110e-010 8.169636e-010 1.536481e+000

3. ArrayRCP_iteratorOverhead_UnitTest ...

Measuring the overhead of the ArrayRCP iterators relative to raw pointers.

Number of loops = relCpuSpeed/relTestCost = 5e+003/0.0001 = 5e+007

array dim num loops raw ptr ArrayRCP ArrayRCP/raw
--------- --------- -------------- -------------- --------------

100 2307560 5.460313e-010 5.460313e-010 1.000000e+000
400 749245 4.170865e-010 4.037398e-010 9.680000e-001

1600 230574 3.578027e-010 3.578027e-010 1.000000e+000
6400 68470 5.203009e-010 5.339930e-010 1.026316e+000

4. ArrayRCP_selfIteratorOverhead_UnitTest ...

Measuring the overhead of the ArrayRCP as a self iterataor relative to raw pointers.

Number of loops = relCpuSpeed/relTestCost = 5e+003/0.0001 = 5e+007

array dim num loops raw ptr ArrayRCP ArrayRCP/raw
--------- --------- -------------- -------------- --------------

100 2307560 5.460313e-010 2.452807e-009 4.492063e+000
400 749245 4.904938e-010 2.375725e-009 4.843537e+000

1600 230574 3.578027e-010 2.355534e-009 6.583333e+000
6400 68470 5.362750e-010 2.471429e-009 4.608511e+000

5. ArrayView_braketOperatorOverhead_UnitTest ...

172

Measuring the overhead of the ArrayView braket operator relative to raw pointers.

Number of loops = relCpuSpeed/relTestCost = 5e+003/0.0001 = 5e+007

array dim num loops raw ptr ArrayView ArrayView/raw
--------- --------- -------------- -------------- --------------

100 2307560 5.330306e-010 5.286970e-010 9.918699e-001
400 749245 3.803829e-010 4.004031e-010 1.052632e+000

1600 230574 3.550921e-010 3.605133e-010 1.015267e+000
6400 68470 5.111728e-010 5.180188e-010 1.013393e+000

6. ArrayView_iteratorOverhead_UnitTest ...

Measuring the overhead of the ArrayView iterators relative to raw pointers.

Number of loops = relCpuSpeed/relTestCost = 5e+003/0.0001 = 5e+007

array dim num loops raw ptr ArrayView ArrayView/raw
--------- --------- -------------- -------------- --------------

100 2307560 5.373641e-010 5.460313e-010 1.016129e+000
400 749245 3.970664e-010 3.970664e-010 1.000000e+000

1600 230574 3.550921e-010 3.523814e-010 9.923664e-001
6400 68470 5.294289e-010 5.408391e-010 1.021552e+000

173

DISTRIBUTION:

1 An Address
99 99th street NW
City, State

3 Some Address
and street
City, State

12 Another Address
On a street
City, State
U.S.A.

1 MS 1319 Rolf Riesen, 1423

1 MS 1110 Another One, 01400
1 M9999 Someone, 01234
1 MS 0899 Technical Library, 9536 (electronic)

174

v1.32

	Preface
	Introduction
	Fundamental problems with raw C++ pointers
	Problems using raw C++ pointers for handling single objects
	Problems using raw C++ pointers for handling arrays of objects
	Problems with the incompatibility of new/delete and try/throw/catch

	Problems with common approaches for addressing memory management in C++
	Problems with using std::vector for handling all arrays
	Problems with relying on standard memory checking utilities

	Important prerequisites
	Value types versus reference types
	Non-persisting versus persisting and semi-persisting associations

	Teuchos classes for safer memory management and usage
	Overview of basic approach employed by Teuchos memory management classes
	The proper role of raw C++ pointers
	Common aspects of all Teuchos memory management classes
	Memory management classes replacing raw pointers for single objects
	Teuchos::Ptr<T>
	Teuchos::RCP<T>
	Raw C++ references

	Memory management classes replacing raw pointers for arrays of objects
	Teuchos::ArrayView<T>
	Teuchos::ArrayRCP<T>
	Teuchos::Array<T>
	Teuchos::Tuple<T,N>
	Array views

	Const versus non-const pointers and objects
	Conversions
	Implicit and explicit raw-pointer-like conversions
	Conversions between different memory management types
	Implicit type conversion problems and shortcomings

	Core idioms for the use of the Teuchos memory management classes
	The non-member constructor function idiom
	General idioms for handling arrays of objects
	Idioms for class object data members and local variables
	Idioms for the specification of formal arguments for C++ functions
	Idioms for returning objects from C++ functions

	Reference-counting machinery in-depth
	Basic reference counting machinery
	Circular references and weak pointers
	Customized deallocators
	Embedded objects
	Extra data

	Roles and responsibilities for persisting associations: factories and clients
	Debug-mode runtime checking
	Detection of null dereferences and range checking
	Detection of circular references
	Detection of dangling references
	Detection of multiple owning RCP objects
	Performance of debug-mode checking versus memory checking tools
	Limitations of debug-mode runtime checking
	Exception handling and debugging

	Optimized performance
	Reference counting overhead
	Array access and iterator overhead
	Performance tuning strategies, semi-persisting associations

	Related idioms and design patterns
	The inverted object ownership idiom
	The separate construction and just-in-time initialization idioms
	The object self-reference idiom
	The generalized view design pattern

	Comparison with other class libraries and the standard C++ library
	Advice on refactoring existing software

	Miscellaneous topics
	Essential and accidental complexity, making implicit concepts explicit
	Philosophy of memory management: Safety, speed, flexibility and 100% guarantees

	Conclusions
	References
	Summary of Teuchos memory management classes and idioms
	Commandments for the use of the Teuchos memory management classes
	Argument for using an signed integer for size_type in the Teuchos array classes
	Raw performance data
	Raw RCP performance data
	Raw Array performance data

