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1 Project Overview

The overall objective of this research is to develop novel architectechiniques as well as system soft-
ware to achieve a highly secure and intrusion-tolerant computing systezh.sgstem will be autonomous,
self-adapting, introspective, with self-healing capability under the cirtamses of improper operations,
abnormal workloads, and malicious attacks.

The scope of this research includes: (1) System-wide, unified intrigpdechniques for autonomic
systems, (2) Secure information-flow microarchitecture, (3) Memoryricesecurity architecture, (4) Au-
thentication control and its implication to security, (5) Digital right managementMibroarchitectural
denial-of-service attacks on shared resources. During the peribeé pfoject, we developed several archi-
tectural techniques and system software for achieving a robustesecutreliable computing system toward
our goal. We described our research activities and findings chroninalig following sections.

2 Research Activities

The descriptions of our research activities on this project are detailadduodlly in the subsequent sections.
Broadly, we investigated the security and automatic computing capability freeraaifferent levels —
microarchitectural, architectural, and memory subsytem. For the detailed intalleatcomes, please refer
to our project website at http://arch.ece.gatech.edu/research/reseatsi-html.

2.1 Memory-centric Security Architecture
2.1.1 Problem Statement and Approaches
There is a growing interest in creating tamper-resistant and copy pratsgstems that combine the strengths
of security hardware and secure operating systems to fight againsddfotlare attacks as well as physical
tampering. These systems are aimed at solving a variety of security issireassdigital rights manage-
ment, virus/worm detection, rootkit detection, intrusion detection and ptievewligital privacy, etc. Recent
industry thrusts including Intel's LaGrade Technology using Trustedd?fatModule (TPM) and IBM’s Se-
cureBlue 4758 on-a-chip were developed to address these poterdatisthr

These prior secure systems mostly achieve protection by encrypting thectimsis and data of a user’s
process with one single master key burned inside the processor coreudtitsuch a closed system solution
does provide security for software execution, however, they arepkessical for real world applications
as most of them are multi-domained where a user process often compnisperamts supplied from het-
erogeneous program sources with distinctive security requirements.example is the pervasive use of
dynamic linked libraries (DLL) or shared libraries written by various vesddt is quite natural that these
library vendors would prefer a separate copy protection of their owliénteal properties decoupled from
the user’s application. Furthermore, it is also common for different amouns software domains to share
and exchange classified information at both the inter- and intra- procesds.|&flo enable the secret shar-



ing between different software components under the same applicatios, spav solutions are needed to
achieve this goal.

Similar to object-oriented management, the basic idea of our work is to provitkectipn on software
integrity and confidentiality based on an atomic system element what wenealbry capsulesA memory
capsule is a virtual memory segment with a set of common security attributegadedowith it. It itself
is an information container that may hold either code or data memory page or Ibashdesigned to be
shared among multiple processes. For example, one can consider onprdlitded by vendor A as a
single code memory capsule. The vendor will designate the security attrinoteding desired security
protection level, one or more symmetric memory encryption keys, the capsugisory authentication
signature, access control information, etc. The multi-vendor memory lespstia running process are
maintained and managed by the secure OS kernel. During software’sutistitsoftware vendors encrypt
the security attributes associated with a memory capsule using the secussorgpublic key. Then the
secure processor authenticates and extracts the security attributegusorgesponding private key. Based
on this concept, we develop a secure architecture cMiEmory-centric Security Architectuoser MESA To
provide security seamlessly, architectural support and microarchié¢emnhancement were proposed for
MESA. They include new instruction support for allocating data on prikat®, passing confidential secrets
between subroutines in a secure way, new memory management modulesdrdivare to enforce security
policies defined by software vendors, information access control mechan the cache, dynamic checking
hardware for verifying each indirect memory access.

2.1.2 Research Findings

To evaluate our proposed architecture, we used Bochs, an opmedall system emulator and TAXI, an
x86 execution-driven simulator integrated within Simplescalar. In our simulatark, we assume that the
application software and the system software need to be protectedtegpaie evaluated seven Windows
NT applications including Internet Explorer 6.0, Acrobat Reader 5.0 ddirs Media Player 2, Microsoft
Visual Studio 6.00, Winzip 8.0, Microsoft Word, and Povray 3. We arer@stied in knowing the perfor-
mance impact when such security features are included into a secuesgoacWe consider two styles of
secure processors — counter-mode based secure processdoekdipher based one. On average, we
found that the entire security implementation based on a counter-mode geouessor caused roughly
6% performance degradation compared to a baseline processor wittyosieeurity enhancement. When
switching to a block-cipher based secure processor, the slowdowmeraased up to 15%. Both results
were based on the assumption that all the software components are tadmqut@nd encrypted. Often-
times, this is not the case. The vendors can choose to selectively pnoteenharypt those parts that are
considered secret. To evaluate this more realistic scenario, we leave sjistieen DLLs belonged to the
OS unencrypted. By doing so, we observed the slowdown of a comtde processor dropped down to
4.4% while the slowdown of a block-cipher based processor droppe®&%. For supporting security in a
processor, such performance degradation is reasonably toleréddsePefer to [10] regarding the detailed
architecture design and experimental results.

2.2 InfoShield: Protecting Information Usage
2.2.1 Problem Statement and Approaches
In this particular thrust of our work, we tried to understand the common gxplechanisms used by ad-
versaries and investigate how secrets and privacy are compromisedhfeosystem memory. The exploit
techniques studied include memory scans, buffer overflow exploitsypesdstealing worms/Trojan horses,
as well as invalid memory pointers manipulation that reveals secrets.

The causes of data privacy violation are diverse, so are the solufitvese are few studies in the past
that directly address the problems from the above attack models. In maesg; dasa privacy often comes as
a by-product of safe programming practices using either security am&dpés or an intrinsically safe source



language. Prior research efforts suchaasess controhndinformation flow analysisttempted to address

the data safety issues directly. Nevertheless, traditional access capprolaches do not provide sufficient
protection on information security because the OS-based access é¢ondmlcoarse-grained. On the other
hand, using static information flow analysis to ensure privacy and sedifiitifjormation is sometimes too

restrictive and cumbersome for real applications where sharing informiatrnandatory and frequent.

To address these shortcomings, we propose a hew conceptloédi8tiieldin this work. The fundamen-
tal idea and distinction of our proposed solution is the following. Insteadoking and protecting informa-
tion flow, we protect the privacy of sensitive information baseihéormation usageAs can be readily seen
from Internet viruses and spyware, misuse of information is the majortttwr@aformation security. Many
attacks stem from abnormal or unauthorized usage of information. Bon@e, a password or encryption
key must be strictly used for access authentication by the designated isbtised on a specific flow of
instruction usage. Any other usage e.g. memory scan or redirectingtiexetua different instruction path,
must be considered unsafe and prohibited. Our model provides theasttted information manipulation
mechanism enforced by both software writers and architectural s characteristics of our informa-
tion usage based protection include improved data privacy, increaf@desability, optimized performance
and composable security. Our protection is basically achieved by the assebvbf new security-aware in-
structions. Note that since we are only interested in protecting critical deltieasithe code regions that read
and authenticate personal information, hence the overhead of the adUitisinuctions in the code will be
minimal. Conceptually, the implementation of information usage protection is fairly sirGolesider a hy-
pothetical example where an encryption key is created and then used tldpdeclaration of the encryption
key or its pointer, the programmer annotates the source code indicatingtieatsoof the key are sensitive.
When the storage of the key is created (e.g.mloc), the compiler inserts secure-aware instructions that
records the returned address with the annotation indicating that it is aessddr sensitive data. Prior to
passing the pointer to the surrounding code for proper handling, theileoimserts additional instructions
to guardthe data itself. Working in tandem with a dedicated hardware security tabledtiisss of the key
is entered along with the PC of theextinstruction that is permitted to access this address. Every single
load and store operation needs to check this security table to ensure #@tass incurs when the PC is not
the designated next-access PC by the compiler. Such violations raiseigyseaeption. In essence, these
instructions that manipulate sensitive data form an authentication chain. tlemyd to break the chain or
insert bogus security instructions within the chain is subject to be deteotledyéd by a security exception.

2.2.2 Research Findings

To evaluate the idea of information usage protection and the specifico@Higid design, we used a number
of network applications that manipulate sensitive user data such as logivgrds, cryptographic keys, or
other credentials. They include FTP server, Apache web server, senedlr, FTP client, web browser (Lynx)
and SSH daemon. Similar to memory tainting techniques, we manually identifiedwedaii® based on the
application source code and annotate the application for our emulations Bbetx86 full-system emulator
is used again in this work.

Based on our emulation results, the performance impact of InfoShieldgitaion execution is very
small, that is understandable as compared to the entire application, the arhdata and code that handles
passwords, crypto-keys is rather insignificant. For all regular menuogszes, less than 0.002% instructions
access sensitive information for five applications (out of eight we eted)laThe worse case is the Apache
webserver that contains 1.8% of the memory instructions accessing semsitiimation. In addition, we
also evaluated the extra hardware requirement based on the workleadsiiied. For all these applications,
a 32-entry table (consuming around 1KB space) is sufficient to proedded security of information usage.
For more details, please refer to [4].



2.3 Autonomic Computing via Multicore Processors
2.3.1 Problem Statement and Approaches
Another area of preventing from security being compromised is to deteoweeand survive through mali-
cious attacks in an autonomic manner. In other words, the system is se-amdhself-healing with built-in
self-recovery mechanism, thus requiring less attention from human stafbnhe sense, fault-tolerance and
security are dealing with the same issue from different perspectivesfoonses on events of unintentional
faults due to soft errors or program bugs, while the other fights agdieshtentional exploits from mali-
cious adversaries. An effective solution can alleviate or even eliminatéessue will be likely to work for
the other. To succeed toward this goal, a system needs to compreh&md bghavior, adapt from dynamic
scenarios, and respond with appropriate countermeasures in ordetett dr repair itself from damages
caused by either malicious exploits or transient faults. All of which will rezjaniditional if not substantial
computational capability. In general, we call such systemtiespective systems

We had first examined a system-wide monitoring mechanism c@leld3, 11]. The Owl framework
employs pervasive field-programmable gate arrays (FPGA) to perfonstant, non-intrusive monitoring at
all event sources such as memory buses. This technique improves tte®shings of existing performance
counter based approach by employing an active, reconfigurable mogitzardware. Additionally, it is
flexible and programmable, hence the system owners can update the ntbaitergs and adapt the poten-
tial threats with new software patches from time to time. Due to the emergence oforeiliocessors (or
chip multiprocessors), on-chip computing power has been largely lex@r&ne advantages of a multicore
system is the reduction of core-to-core communication overhead, thilesndose-coupled introspection
capability using different cores. We studied the feasibility and publishefiraings in [8]. Continuing from
our previous effort, we proposed a new system architecture dBRAfor Integrated framework for De-
pendable and Revivable Architecture. Based on a multicore procHsBiRA integrates novel mechanisms
that perform on-line security/fault detection and recovery with an obat minimizing performance im-
pact. The basic idea is to configure a multicore processor asymmetrically —cewaseare used as normal
cores running generic service applications and other cores arewadfigp be sentinels monitoring all events
encountered by the service cores. As such, the system crelagedveare sandbowith security insulation.
With the tightly coupled processor cores on the a single chip, fine-graisgddtion level introspection can
be carried out with little performance overhead. In our current woekailso proposed a novel backup and
recovery scheme at the microarchitectural level to provide instant, timalyeeconce a threat is detected.
We call our approacbelta page updateontaining a light-weight cost amortized across the entire software
execution. Since the recovery mechanism is demand-based, a comgrtaaty state is only rolled back on
a per-cache line basis when it is accessed again later in the application.

2.3.2 Research Findings

We used Bochs and TAXI again to evaluate our proposed INDRA arthiecWe ran two copies of Bochs
and used the existing network communication ports in Bochs to communicate batmeemulated cores.
Several exploits published by Common Vulnerabilities and Exposures (@B}ite were injected into
the application cores to mimic the remote exploits. The applications we experimeokedeif-TP server,
HTTP server, Sendmail, bind DNS server, NFS file server, and IMARIemiver. We implemented three
major introspection mechanisms in the software running on the monitoring cdrey dre: code origin
inspection, return address inspection, and control transfer inspedtioterms of the effectiveness from
security standpoint, INDRA was able to detect and trigger instant regavéne face of the remote exploits
we injected. Also note that, such introspection is useful in catching trarfsielts as well, a by-product
of the INDRA architecture. Compared to the traditional check-pointingreeh&hich usually suffers large
performance degradation (in our experiment, from 2x to 12x), our INB@&mework only incurs less than
50% slowdown with a worst-case of 2.5x. We also quantified several syfséem behavior. Please refer
to [7] for detailed information.
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Figure 1: Structure of the MACTree in plaintext within protection boundbligte that a hash value needs to
be encrypted when being evicted out of the protection domain.

2.4 M-TREE Secure Architecture

2.4.1 Problem Statement and Approaches

Secure processor architectures enable new sets of applicationsstahmercial grid computing, software
copy protection, and secure mobile agents by providing secure computirgranents that are immune
to both physical and software attacks. Despite a number of securespooaesigns have been proposed,
they typically made trade-offs between security and execution efficidiocddress these shortcomings, we
investigated and proposed a novel secure processor architedterteMar REE [2] that offers a significant
performance advantage without compromising security strength. The EET&chitecture uses a novel
technique called hierarchical Message Authentication Tree (MACToeg)btecting applications’ integrity
at a minimal performance overhead. The M-TREE processor also itesda new one-time-pad class
encryption mechanism that accelerates security computation over the ekistikgcipher based schemes
with high security guarantee.

The baseline model of the M-TREE secure processor assumes all dessed within the processor core
are considered secure whereas once a data block is evicted fronotesgor, it needs to be protected using
a secret key only visible by the processor hardware itself. This keyisddged by application vendors and is
encrypted with the public key of the secure processor at the beginnihg application’s execution. Along
with the cipher engine built inside the processor, this key provides coniidiey of data under protection. To
provide a tamper-evident computing environment, any unauthorized maoidifieatempts to the applications
must be detected with a robust integrity check mechanism. Toward this objeg\proposed the MACTree
integrity protection. The construction of the MACTree starts from eachlalatk, in our case, equivalent
to the size of a cache line. Each cache line address and data along witlplicatag’s secret key are fed
into the SHA-256 hash function to generate a 256-bit MAC. Dividing them 32ttit chunks, we bitwise-
XOR them into one single 32-bit MAGHe root MAC All 32-bit MACs of data blocks are concatenated in
groups to form the leaf nodes of a hierarchical MACTree shown in EidurEach group consists of one
random initiation value (RIV) with seven MACs. To compute a new node omalttieical level up, the same
procedure to produce one 32-bit MAC is repeated until only one MAC lisesed. During a cache line
eviction out of the protection boundary (i.e. the secure processorRIMMAC value is encrypted with
AES block cipher as shown inside the dotted box in Figure 1. Note thabtheMACis always kept inside
the protected boundary to avoid any potential tampering.

The final M-TREE processor architecture integrates the M-TREE etiory and integrity checking
mechanisms with three microarchitectural enhancements: an integrity verificetio(lVU), a RIV/IMAC
and MAC cache (RM/MAC Cache), and the encryption/decryption unityjn order to accomplish all
the protection measures using specialized hardware rather than byrsoft@anceptually, the RM/MAC
Cache is very similar to a victim cache for those RIV/IMAC and MAC values beasj out of the processor.



The only difference is that the RIV/IMAC and MAC kept inside the cache enarypted while the one kept
outside the cache requires encryption protection. This cache servpsriiese of expediting the process-
ing of decrypting these RM/MAC and MAC values after retrieving them frgstemm memory which could
already take hundreds of cycles in a high performance procesdensys

2.4.2 Research Findings

To evaluate the performance implications, we simulate our infrastructure ssnmescalar executing Alpha

binaries. We used selective SPEC benchmark programs for the applécafiom subsetting was carried out
by picking the applications with considerable L2 miss rates to demonstrate ¢otafhess of our proposed
architecture. We also implemented AES block cipher in behavioral Verilog Bzl synthesized our design
for obtaining the timing overheads of the encryption and decryption. litiaddwe compare to CHTree

proposed by researchers from MIT to understand the pros andofang architecture. First of all, our

performance results clearly showed the performance advantages lofyargpghe M-TREE. Compared to a

processor without any security protection, our scheme only degraafsmpance by 8% on average while
the prior CHTree method degrades performance by almost 50% on avéhégen the size of the L2 cache
is increased, as expected, both schemes will close the gap of perfemeg@dation, with 35% for the

CHTree and 5% for the M-TREE.

We then studied the sensitivity of the size of the RM/MAC and MAC cache andedhesitivity to the
latency of the hash function. First, we found we will suffer approximat&B6Jerformance loss if we did
not employ a separate cache but using the existing L2 to keep these intetaigdrsecret information.
By adding an 8KB RM/MAC and MAC cache, the performance degradatiahiignk to 8% on average,
making our proposed scheme very appealing and practical. With resghethash latency, we did not find
the latency increase from 80ns to 160ns imposes any major performaneearidsoth our scheme and the
CHTree scheme in general. For more research results, please retgrpgobdication in Journal of Parallel
and Distributed Computing [2].

2.5 Authentication Point Control in Secure Processors

2.5.1 Problem Statement and Approaches

As mentioned earlier in Section 2.4.1, there are two important properties teatet seeds to be guarded
against — confidentiality and integrity. M-TREE and many other prior septoeessor designs were tar-
geted to provide both guarantees to achieve a tamper-resistant and tavideert- computing environment.
Encryption is typically used to protect the confidentiality of secret while antittetion (e.g. our MACTree)
was used to detect and manifest any tampering of the protected data defingsidence outside the protec-
tion boundary. At the first glimpse, the task of integrating a cryptograpigne into an out-of-order high
performance processor for security support may seem deceptixatytgforward. Nevertheless, we investi-
gated such atraightforward assumptioand realized that many prior designs and their security implications
have not been fully understood. In particular, the role of integrity ptme@nd its relationship with pri-
vacy protection in the context of secure processor was not sufficiadtlyessed. These prior performance
techniques often assume that it is secure to disassociate the decryptiaticopand the authentication op-
eration. For example, they allow the issue of decrypted instructions prioe twothpletion of verifying their
authenticity.

To understand the potential security implications, in particular caused byckatmel attacks using
memory fetch address as a side-channel, we explored and scrutinizkzsige space of such decryption and
authentication dissociation. We classified, investigated, and evaluatedffarermt design alternatives: (1)
authen-then-issue, (2) authen-then-commit, (3) authen-then-writay@én-then-fetch, and (5) address ob-
fuscation plus authen-then-commit. Under authen-then-issue policysammative secure execution model,
a secure processor is forbidden to issue instructions or any opefarskwntegrity has not been fully veri-
fied. Under the authen-then-commit policy, a secure processor is altovggdculatively issue unauthenti-



cated instructions and data to the pipeline and commits (or retires) completedtiosiswonly after both of
them are authenticated. The option of authen-then-fetch allows bus tydesgranted to a memory fetch
only if all the instructions and data that the memory fetch depends on due¢odimpcy are authenticated.
For the authen-then-write, all permanent changes to the memory state nmsidbebased on the results
derived from the authenticated instructions and operands. Finally, amipgd address obfuscation and its
relation to these four options.

In addition to these studies, we also identified a few interesting yet realistiat tmedels that force
the unauthenticated data as a side-channel through memory fetch to dibeleseret. First, the adversary
may applypointer conversion exploiMvhich converts encrypted sensitive data into pointers such that its
value will be automatically disclosed when the pointers are de-refere@me such example ifked list
attack An adversary may use input manipulation or control flow reconstructised on fetch trace to either
force a linked list to end at some known location or discover when andendnénked list terminates. The
adversary can alter the NULL pointer to point to the secret. When the linked timversed, the secret will
automatically be revealed as a fetch address. More details and the threds$ med= documented in our
publication [5] in MICRO-39.

More in-depth analysis on our original hardware obfuscation techrpgugosed in [14] for preventing
side-channel attacks by exploiting control flow was performed along withvilork. This new scheme
published in[1, 13] addresses the issue of excessive memory agpesseldress permutation and redundant
permutations performed. It also avoids the large number of page faultheFdetails can be found in our
publication [1, 13] in PACT-15 and JPDC.

2.5.2 Research Findings

We followed the same simulation framework we developed for M-TREE to @arrpur performance eval-
uation. We evaluated the performance and security implications for thesspeelative execution models
discussed above. Based on the instruction per cycle (IPC) evaluatofgund the authen-then-issue, the
most conservative approach, and the authen-then-commit + addressaiipn demonstrated the worst
performance. They achieved only 87% and 86% IPC of a baseline implemeatgaryption but without
integrity checking mechanism. In contrast, authen-then-write shows thed&désrmance at around 98%
performance of the baseline processor model, followed by authenetiramit which shows a performance
of 96% of the baseline. The authen-then-fetch achieves about 92%flE@ baseline. However, from
security perspective, authen-then-issue and authen-then-commitrgsadibfuscation are relatively more
secure while authen-then-commit and authen-then-write are less s€iwmusly, there are trade-offs to
be made between performance and security. The analysis and the réthiksamrk provides valuable risk
assessment for guiding the design of a tamper-proof secure pracBssase refer to our publication in [5]
for further details.

2.6 Digital Rights Management

2.6.1 Problem Statement and Approaches

Another growing interest of security issues is with respect to how to grdigital rights. The industry of
real-time graphics applications such as video games, interactive avddawsliBe games, handheld mobile
games, etc. grows rapidly. However, it remains a great technologiddegal challenge to enforce digital
rights protection for these graphics applications. The problem is gettingeweith the emergence of 3D
graphics commerce on the Internet. In the virtual space, these tradedranld proprietary 3D models or
textures in the forms of digitized sculptures, characters, avatars, v@hi@@pons, outfits, wallpapers, etc.,
possess real monetary values to gamers, collectors and artists. Thererisdétech being performed in the
area of protecting digital rights of graphics data and 3D objects for theuroer market. In this work, we
explored the technologies of digital rights management for graphics gsioceunit (GPU) for countering
piracy of real-time graphics entertainment software and graphics assets.
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Figure 3: Graphics Asset Licenses and Binding Context

Compared to a conventional GPU architecture, a digital rights enabled GRtdis at least two more
components: aryptographic unitto decrypt protected graphics contents, aridense verification unito
process the licenses of graphics data. Figure 2(a) illustrates the taricepligital rights enabled GPU.
Similar to digital rights licenses used in other content protection cases, theiggaligital rights licenses
released by their content providers specify and designate the desagd af the graphics data. A digital
rights enabled GPU features the necessary means to authenticate theslid®@ngag the actual graphics
rendering, it is guaranteed that the graphics data be used strictly in coogpliaih the license agreement.
Figure 2(b) shows the components and steps for decrypting or authingtipeotected geometry data during
graphics processing. Each individual vertex and its attributes areaselyaencrypted. A MAC is stored
alongside with the vertex attribute for integrity verification.

In addition to the hardware support, we also introduced the idea of resriitiding in-between ge-
ometry input, textures and shaders. An example of a license of a geomgicy isbgiven in the left-hand
side of Figure 3. It comprises of a name, decryption key context, digé#te encrypted geometry data, a
geometry data ID, the binding constraints as to what textures or shadebe @pplied to this object, and
the digest of its license signed by a certified content provider. The birnmngission can be inherited by
all the sub-classes of this object. Given a set of licensed geometry inputege and shaders, the digital
rights enabled graphics processing system creates a binding conteedriiiarises decryption keys that will



be used during graphics processing for decrypting protected comstectisas geometry models or textures
as shown at the right-hand side of this figure.

2.6.2 Research Findings

In this work, we realized that to provide a digital rights enabled GPU, oedsto coordinate the design
effort among the hardware support from processor architectphip APIs from programming language
designers, and license context from content providers. To quangfpehformance, we used a cycle-time
based GPU architecture model call@silverwhich captures OpenGL commands and data traces and models
the flow of data and computation through each state of a generic GPU pipalindiiy vertex processing,
rasterization, fragment processing, frame buffer and z-buffee ridtessary components to enable digital
rights management were instrumented into Qsilver. In addition, we implementedEBerpto-standard
and SHA-256 hash function in Verilog and obtained their respective sgizthd timing information. The
open source Quake 3 Arena was used as our evaluation workload.eAdetbmetry data such as skinned
characters and mesh objects and textures, mipmap textures for levehité-aeere considered protected.
Depending on the cipher chosen, the frame rate will be reduced frorthEs$% to more than 30%. More
details of our complete proposed mechanisms including hardware and ARheament, context binding
protocols, etc., can be found in our paper published in ACM SIGGRAPIgfitaphics Workshop on Graph-
ics Hardware [9].

2.7 Security Analysis for Hardware-based Protection

One major goal in this aspect is to enable our system with the capability of awtomaeonitoring. The
broader definition of monitoring for the healthiness of a system includeactesizing the following: system
workload characteristics, memory access patterns, and detecting aynabbapplication/system behavior
and security-related intrusions. Prior to delving into our solution spacestueied the pitfalls of the exist-
ing hardware-based solutions which were often aimed at addressimgasmtopyright protection. Several
tamper-resistant processors were proposed and studied in literatue/émipillegal software duplication,
unauthorized software modification, and unauthorized software eesmgineering. We found these prior
techniques all focused on feasibility and design details but often negléwegnalysis of other security
implications and risks, worse, potential attacks from an adversarygsamnge. Toward this, we investigated
and performed detailed analysis for potential vulnerability, weaknesa]lpighd attacks on such security
architectures. The objective is to provide useful and valuable insightg wyiem designers.

In our risk analysis, we examined a few areas in the current securhitecture designs and identified
their weakness as well their potential vulnerability. They incllady authentication, regularity vulnerabil-
ity in encrypted RISC instructions, information control flow leakage, soé&whce based protection, weak
cipher and short encryption key, limited integrity protectietc. Our concern came from the recent emerg-
ing side-channel attack models, which bypass the strength of cryptogeapl exploit the inadvertently
information leaked from so called side channels, including memory addtesseution time measurement,
power signature, thermal gradient, electromagnetic waves, etc. Oursspudiented the arguments for the
necessities of hardware-based cryptography, a detailed analysisydadstanding of different, innovative,
security break models, a taxonomy of online and offline attack models, the limitft@single-processor
protection model and per-process protection model, along with new insighsléwer cost implementa-
tion of memory authentication code (MAC). With the thorough understanditigeofulnerability of current
systems from our studies, system designers will be able to explore ther dgsige more effectively and
efficiently in facilitating security monitoring detection and protection. Our netefindings were reported
in [5].

2.8 Acceleration of Memory Encryption and Authentication
One essential component shared by all the hardware-based tanmipemtesystems is hardware protection
of software confidentiality and integrity. When a memory block containing datastruction (e.g., a cache



line) is brought into the secure processor, it is decrypted and veriféten a cache line is evicted from
a secure processor domain, it is re-encrypted prior to being storeq texéarnal memory. This hardware
cryptography is not only necessary for making system difficult to svengineer but is also a critical
component for content-based digital rights protection. For protectirdpraty accessed memory, standard
encryption modes that directly encrypt memory such as block cipher inclug@i, CBC, or OCB, or
counter-mode encryption have been employed in secure architectopesspd by academia as well as in
commercial security co-processor. In addition, authentication mechasisgimessage authentication code
(MAC) was also proposed to provide integrity guarantee.

From processor architects design perspective, the major overhsaglohardware protection on soft-
ware confidentiality and integrity is the increased memory latency. Both etmmygnd authentication need
to go through a series of repetitive data scrambling process. Much affaut toward this crypto-design
is to minimize or completely hide (in the ideal case) the latency of such operatiorssmmaking the en-
tire protection transparent to the users. Based on our prior expesiandenew observations, we proposed
a novel architectural framework to enable cipher-text speculation, aclateiding mechanism that com-
bines value prediction and hardware cryptography for direct etetlymemory using block cipher. This
technique, frequent value cipher speculation reduces or eliminates ¢hgtien latency by speculatively
encryption frequent values and matching their ciphertext results with tadetched. In other words, we
use the wait time for fetched data line to perform speculative encryptiasurifindings, 40% of the fetched
data contained frequent values. In this framework, we also introducewacheme to accelerate memory
integrity verification by pre-computing of memory blocks MAC value basedrequent value prediction.
This technique, MAC speculation, pre-computes MAC with the correspgneliAC being fetched from
main memory. By combining these techniques in a secure processor, wesigimificant performance im-
provement in instruction per cycle (IPC) ranging from 10 to 30%. Thiskweas published in [6].

2.9 Denial-of-Service Attack on Multicore Processors

Given the continuing miniaturization trend predicted by Moores Law andighlysonstraint in design veri-
fication and frequency scaling, chip multiprocessor or multicore procéssdecome the de facto architec-
ture standard for all processors that will be delivered from now dmwodgh resource sharing, applications
running on a multicore processor can achieve better resource utilizatibfaster inter-core communica-
tion, leading to higher overall throughput for the entire system. From@aisgperspective, however, such
architectures are also more susceptible to a new kind of attack — “Deni8k@ice (DoS)” attack to
their common resources. Furthermore, as the number of cores ingratigeks similar to Distributed DoS
(DDoS) attacks over the Internet can be employed to throttle these oneddprces with the presence of
multiple, cooperative malicious applications. Such DoS or DDoS attacks aiadating performance or
barricading the entire system from making any forward progress.

In this work, different from all prior architecture work, we try to unskand such implication from
security standpoint. We focus on the vulnerability of shared last-levakc@id C). The likely attack models
can be combined with other techniques such as rootkits (See Section 2.dhwamted malicious process
can run in stealth to consume either the capacity of the shared LLC, or tregldfendwidth on a shared-bus
based multi-core system. As we demonstrated, to implement such a maliciouarprizgalmost a no-
brainer. All the attackers need to do is to have a program that marches ynewations with a large, fixed
stride. Besides cooking up the malicious attacking codes, we also propdsedmicroarchitectural and
OS-level solutions attempting to minimize the impact of such microarchitectural DD @S attacks. This
ensembles much similarity to other work on so-called fairness issues in a mufifcoessor, in other words,
to avoid monopoly of certain particular processes, if the system canfiertettifiate the good processes from
the bad. One option is to implement monitoring and throttling scheme for thosespescthat dominate
the use of shared resources (i.e., to be fair for all processing coh@®ther option is to segregate these
resource-heavy consumer processes, or simply let the bad guyshel.inThe idea of this scheme is to
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let all resource-demanding processes to compete pre-allocated sbswadces and allow the other regular
processors to use a reasonable amount of resources pre-alld@atedsearch was published in [12].

3 Scholarly Contributions

The project activities undertaken resulted in several high-quality paiolicain premium conferences. These
publications are listed in thReferencesection at the end of this final report. We also accumulated our
expertise in multi-domained tools and established our own simulation methodologgtiouspour future
research endeavor. To summarize, we have made the following reseatdbutions in this project over the
years.

e We researched and presented a thorough security analysis andseskmgnt for a security computing
system built on tamper-resistant and tamper-evident processors.

e We contrived and detailed several novel and realistic attack models togbessty processors. These
models provide invaluable insights to the requirement of future securitytectire design.

e We proposed a memory-centric security architecture or MESA to enablamafimn sharing and ex-
change with their individual security requirement and intellectual propyigtatection.

e We proposed an M-TREE security architecture with a novel hierarchieakage authentication tree for
protecting applications’ integrity with minimal performance overhead.

e We investigated microarchitectural techniques to hide the performancéypeaased by memory en-
cryption and authentication, providing a performance-transparent tam@gistant and tamper-evident
system.

¢ Information leakage issues in a protected system for confidentiality anditytegs defined and clas-
sified. Attack models of exploiting information leakage to reveal sensitivewlasadiscussed. We then
proposed hardware-based dynamic obfuscation techniques to sitftizes security issues.

e We studied the emerging issues of digital rights management for virtualpiese burgeoning business
in the Internet game sector. We proposed hardware enhancemergdtiveffy address the ownership
issue for proprietary virtual assets.

e We identified and studied the often-overlooked security issue in previqusiyosed authentication
mechanisms which leave unnecessary side channels open subject ttsexplo

e \We studied the architectural support of an introspective architecturdngithspeed self-recovery mech-
anism based on the emerging multicore processor systems.

3.1 Human Resources
Throughout the project period, we had successfully trained anddadagraduate degrees to the following
students who at certain point were sponsored by this Department ajyEGareer Award.

e Weidong Shi, Ph.D. 2006. First employer: Motorola Labs, Motorola, Inc., Schlumberger, lllinois.
Current position: Entrepreneur of a startup company at Canada.

e Mrinmoy Ghosh, Ph.D. 2009. First employer: Corporate Research and Development, ARM, Austin,
Texas.
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