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1 Project Overview
The overall objective of this research is to develop novel architecturaltechniques as well as system soft-
ware to achieve a highly secure and intrusion-tolerant computing system. Such system will be autonomous,
self-adapting, introspective, with self-healing capability under the circumstances of improper operations,
abnormal workloads, and malicious attacks.

The scope of this research includes: (1) System-wide, unified introspection techniques for autonomic
systems, (2) Secure information-flow microarchitecture, (3) Memory-centric security architecture, (4) Au-
thentication control and its implication to security, (5) Digital right management, (5) Microarchitectural
denial-of-service attacks on shared resources. During the period ofthe project, we developed several archi-
tectural techniques and system software for achieving a robust, secure, and reliable computing system toward
our goal. We described our research activities and findings chronicallyin the following sections.

2 Research Activities
The descriptions of our research activities on this project are detailed individually in the subsequent sections.
Broadly, we investigated the security and automatic computing capability from several different levels —
microarchitectural, architectural, and memory subsytem. For the detailed intellectual outcomes, please refer
to our project website at http://arch.ece.gatech.edu/research/research-secure.html.

2.1 Memory-centric Security Architecture
2.1.1 Problem Statement and Approaches
There is a growing interest in creating tamper-resistant and copy protection systems that combine the strengths
of security hardware and secure operating systems to fight against bothsoftware attacks as well as physical
tampering. These systems are aimed at solving a variety of security issues such as digital rights manage-
ment, virus/worm detection, rootkit detection, intrusion detection and prevention, digital privacy, etc. Recent
industry thrusts including Intel’s LaGrade Technology using Trusted Platform Module (TPM) and IBM’s Se-
cureBlue 4758 on-a-chip were developed to address these potential threats.

These prior secure systems mostly achieve protection by encrypting the instructions and data of a user’s
process with one single master key burned inside the processor core. Although such a closed system solution
does provide security for software execution, however, they are lesspractical for real world applications
as most of them are multi-domained where a user process often comprises components supplied from het-
erogeneous program sources with distinctive security requirements. One example is the pervasive use of
dynamic linked libraries (DLL) or shared libraries written by various vendors. It is quite natural that these
library vendors would prefer a separate copy protection of their own intellectual properties decoupled from
the user’s application. Furthermore, it is also common for different autonomous software domains to share
and exchange classified information at both the inter- and intra- process levels. To enable the secret shar-
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ing between different software components under the same application space, new solutions are needed to
achieve this goal.

Similar to object-oriented management, the basic idea of our work is to provide protection on software
integrity and confidentiality based on an atomic system element what we callmemory capsules. A memory
capsule is a virtual memory segment with a set of common security attributes associated with it. It itself
is an information container that may hold either code or data memory page or both. It is designed to be
shared among multiple processes. For example, one can consider one DLLprovided by vendor A as a
single code memory capsule. The vendor will designate the security attributesincluding desired security
protection level, one or more symmetric memory encryption keys, the capsule’smemory authentication
signature, access control information, etc. The multi-vendor memory capsules of a running process are
maintained and managed by the secure OS kernel. During software’s distribution, software vendors encrypt
the security attributes associated with a memory capsule using the secure processor’s public key. Then the
secure processor authenticates and extracts the security attributes usingits corresponding private key. Based
on this concept, we develop a secure architecture calledMemory-centric Security Architectureor MESA. To
provide security seamlessly, architectural support and microarchitectural enhancement were proposed for
MESA. They include new instruction support for allocating data on privateheap, passing confidential secrets
between subroutines in a secure way, new memory management modules in the hardware to enforce security
policies defined by software vendors, information access control mechanism in the cache, dynamic checking
hardware for verifying each indirect memory access.

2.1.2 Research Findings
To evaluate our proposed architecture, we used Bochs, an open-source full system emulator and TAXI, an
x86 execution-driven simulator integrated within Simplescalar. In our simulationwork, we assume that the
application software and the system software need to be protected separately. We evaluated seven Windows
NT applications including Internet Explorer 6.0, Acrobat Reader 5.0, Windows Media Player 2, Microsoft
Visual Studio 6.00, Winzip 8.0, Microsoft Word, and Povray 3. We are interested in knowing the perfor-
mance impact when such security features are included into a secure processor. We consider two styles of
secure processors — counter-mode based secure processor and block-cipher based one. On average, we
found that the entire security implementation based on a counter-mode secureprocessor caused roughly
6% performance degradation compared to a baseline processor without any security enhancement. When
switching to a block-cipher based secure processor, the slowdown wasincreased up to 15%. Both results
were based on the assumption that all the software components are to be protected and encrypted. Often-
times, this is not the case. The vendors can choose to selectively protect and encrypt those parts that are
considered secret. To evaluate this more realistic scenario, we leave all thesystem DLLs belonged to the
OS unencrypted. By doing so, we observed the slowdown of a counter-mode processor dropped down to
4.4% while the slowdown of a block-cipher based processor dropped to 9.5%. For supporting security in a
processor, such performance degradation is reasonably tolerable. Please refer to [10] regarding the detailed
architecture design and experimental results.

2.2 InfoShield: Protecting Information Usage
2.2.1 Problem Statement and Approaches
In this particular thrust of our work, we tried to understand the common exploit mechanisms used by ad-
versaries and investigate how secrets and privacy are compromised from the system memory. The exploit
techniques studied include memory scans, buffer overflow exploits, password stealing worms/Trojan horses,
as well as invalid memory pointers manipulation that reveals secrets.

The causes of data privacy violation are diverse, so are the solutions.There are few studies in the past
that directly address the problems from the above attack models. In many cases, data privacy often comes as
a by-product of safe programming practices using either security analysis tools or an intrinsically safe source
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language. Prior research efforts such asaccess controland information flow analysisattempted to address
the data safety issues directly. Nevertheless, traditional access controlapproaches do not provide sufficient
protection on information security because the OS-based access controlis too coarse-grained. On the other
hand, using static information flow analysis to ensure privacy and securityof information is sometimes too
restrictive and cumbersome for real applications where sharing information is mandatory and frequent.

To address these shortcomings, we propose a new concept calledInfoShieldin this work. The fundamen-
tal idea and distinction of our proposed solution is the following. Instead of tracking and protecting informa-
tion flow, we protect the privacy of sensitive information based oninformation usage. As can be readily seen
from Internet viruses and spyware, misuse of information is the major threat to information security. Many
attacks stem from abnormal or unauthorized usage of information. For example, a password or encryption
key must be strictly used for access authentication by the designated functions based on a specific flow of
instruction usage. Any other usage e.g. memory scan or redirecting execution to a different instruction path,
must be considered unsafe and prohibited. Our model provides the most restricted information manipulation
mechanism enforced by both software writers and architectural support. The characteristics of our informa-
tion usage based protection include improved data privacy, increased enforceability, optimized performance
and composable security. Our protection is basically achieved by the use ofa set of new security-aware in-
structions. Note that since we are only interested in protecting critical data such as the code regions that read
and authenticate personal information, hence the overhead of the additional instructions in the code will be
minimal. Conceptually, the implementation of information usage protection is fairly simple. Consider a hy-
pothetical example where an encryption key is created and then used. Upon the declaration of the encryption
key or its pointer, the programmer annotates the source code indicating the contents of the key are sensitive.
When the storage of the key is created (e.g. viamalloc), the compiler inserts secure-aware instructions that
records the returned address with the annotation indicating that it is an address for sensitive data. Prior to
passing the pointer to the surrounding code for proper handling, the compiler inserts additional instructions
to guardthe data itself. Working in tandem with a dedicated hardware security table, thisaddress of the key
is entered along with the PC of thenext instruction that is permitted to access this address. Every single
load and store operation needs to check this security table to ensure that noaccess incurs when the PC is not
the designated next-access PC by the compiler. Such violations raise a security exception. In essence, these
instructions that manipulate sensitive data form an authentication chain. Any attempt to break the chain or
insert bogus security instructions within the chain is subject to be detected, followed by a security exception.

2.2.2 Research Findings
To evaluate the idea of information usage protection and the specifics of InfoShield design, we used a number
of network applications that manipulate sensitive user data such as login passwords, cryptographic keys, or
other credentials. They include FTP server, Apache web server, emailserver, FTP client, web browser (Lynx)
and SSH daemon. Similar to memory tainting techniques, we manually identified sensitive data based on the
application source code and annotate the application for our emulation. Bochs, the x86 full-system emulator
is used again in this work.

Based on our emulation results, the performance impact of InfoShield on application execution is very
small, that is understandable as compared to the entire application, the amount of data and code that handles
passwords, crypto-keys is rather insignificant. For all regular memory accesses, less than 0.002% instructions
access sensitive information for five applications (out of eight we evaluated). The worse case is the Apache
webserver that contains 1.8% of the memory instructions accessing sensitive information. In addition, we
also evaluated the extra hardware requirement based on the workloads we vaulted. For all these applications,
a 32-entry table (consuming around 1KB space) is sufficient to provide needed security of information usage.
For more details, please refer to [4].
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2.3 Autonomic Computing via Multicore Processors
2.3.1 Problem Statement and Approaches
Another area of preventing from security being compromised is to detect, recover and survive through mali-
cious attacks in an autonomic manner. In other words, the system is self-aware and self-healing with built-in
self-recovery mechanism, thus requiring less attention from human staff. In some sense, fault-tolerance and
security are dealing with the same issue from different perspectives: one focuses on events of unintentional
faults due to soft errors or program bugs, while the other fights againstthe intentional exploits from mali-
cious adversaries. An effective solution can alleviate or even eliminate oneissue will be likely to work for
the other. To succeed toward this goal, a system needs to comprehend system behavior, adapt from dynamic
scenarios, and respond with appropriate countermeasures in order to detect or repair itself from damages
caused by either malicious exploits or transient faults. All of which will require additional if not substantial
computational capability. In general, we call such systemsintrospective systems.

We had first examined a system-wide monitoring mechanism calledOwl [3, 11]. The Owl framework
employs pervasive field-programmable gate arrays (FPGA) to perform constant, non-intrusive monitoring at
all event sources such as memory buses. This technique improves the shortcomings of existing performance
counter based approach by employing an active, reconfigurable monitoring hardware. Additionally, it is
flexible and programmable, hence the system owners can update the monitored events and adapt the poten-
tial threats with new software patches from time to time. Due to the emergence of multicore processors (or
chip multiprocessors), on-chip computing power has been largely leveraged. One advantages of a multicore
system is the reduction of core-to-core communication overhead, that enables close-coupled introspection
capability using different cores. We studied the feasibility and published our findings in [8]. Continuing from
our previous effort, we proposed a new system architecture calledINDRA for Integrated framework for De-
pendable and Revivable Architecture. Based on a multicore processor,INDRA integrates novel mechanisms
that perform on-line security/fault detection and recovery with an objective of minimizing performance im-
pact. The basic idea is to configure a multicore processor asymmetrically — somecores are used as normal
cores running generic service applications and other cores are configured to be sentinels monitoring all events
encountered by the service cores. As such, the system creates ahardware sandboxwith security insulation.
With the tightly coupled processor cores on the a single chip, fine-grained instruction level introspection can
be carried out with little performance overhead. In our current work, we also proposed a novel backup and
recovery scheme at the microarchitectural level to provide instant, timely recovery once a threat is detected.
We call our approachDelta page updatecontaining a light-weight cost amortized across the entire software
execution. Since the recovery mechanism is demand-based, a corruptedmemory state is only rolled back on
a per-cache line basis when it is accessed again later in the application.

2.3.2 Research Findings
We used Bochs and TAXI again to evaluate our proposed INDRA architecture. We ran two copies of Bochs
and used the existing network communication ports in Bochs to communicate between two emulated cores.
Several exploits published by Common Vulnerabilities and Exposures (CVE)website were injected into
the application cores to mimic the remote exploits. The applications we experimented include FTP server,
HTTP server, Sendmail, bind DNS server, NFS file server, and IMAP email server. We implemented three
major introspection mechanisms in the software running on the monitoring core. They are: code origin
inspection, return address inspection, and control transfer inspection. In terms of the effectiveness from
security standpoint, INDRA was able to detect and trigger instant recovery in the face of the remote exploits
we injected. Also note that, such introspection is useful in catching transientfaults as well, a by-product
of the INDRA architecture. Compared to the traditional check-pointing scheme which usually suffers large
performance degradation (in our experiment, from 2x to 12x), our INDRA framework only incurs less than
50% slowdown with a worst-case of 2.5x. We also quantified several othersystem behavior. Please refer
to [7] for detailed information.
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Figure 1: Structure of the MACTree in plaintext within protection boundary.Note that a hash value needs to
be encrypted when being evicted out of the protection domain.

2.4 M-TREE Secure Architecture
2.4.1 Problem Statement and Approaches
Secure processor architectures enable new sets of applications such as commercial grid computing, software
copy protection, and secure mobile agents by providing secure computing environments that are immune
to both physical and software attacks. Despite a number of secure processor designs have been proposed,
they typically made trade-offs between security and execution efficiency.To address these shortcomings, we
investigated and proposed a novel secure processor architecture called M-TREE [2] that offers a significant
performance advantage without compromising security strength. The M-TREE architecture uses a novel
technique called hierarchical Message Authentication Tree (MACTree) for protecting applications’ integrity
at a minimal performance overhead. The M-TREE processor also introduces a new one-time-pad class
encryption mechanism that accelerates security computation over the existingblock cipher based schemes
with high security guarantee.

The baseline model of the M-TREE secure processor assumes all data accessed within the processor core
are considered secure whereas once a data block is evicted from the processor, it needs to be protected using
a secret key only visible by the processor hardware itself. This key is provided by application vendors and is
encrypted with the public key of the secure processor at the beginning ofthe application’s execution. Along
with the cipher engine built inside the processor, this key provides confidentiality of data under protection. To
provide a tamper-evident computing environment, any unauthorized modification attempts to the applications
must be detected with a robust integrity check mechanism. Toward this objective, we proposed the MACTree
integrity protection. The construction of the MACTree starts from each datablock, in our case, equivalent
to the size of a cache line. Each cache line address and data along with the application’s secret key are fed
into the SHA-256 hash function to generate a 256-bit MAC. Dividing them into32-bit chunks, we bitwise-
XOR them into one single 32-bit MAC (the root MAC. All 32-bit MACs of data blocks are concatenated in
groups to form the leaf nodes of a hierarchical MACTree shown in Figure 1. Each group consists of one
random initiation value (RIV) with seven MACs. To compute a new node one hierarchical level up, the same
procedure to produce one 32-bit MAC is repeated until only one MAC is achieved. During a cache line
eviction out of the protection boundary (i.e. the secure processor), theRIV/MAC value is encrypted with
AES block cipher as shown inside the dotted box in Figure 1. Note that theroot MAC is always kept inside
the protected boundary to avoid any potential tampering.

The final M-TREE processor architecture integrates the M-TREE encryption and integrity checking
mechanisms with three microarchitectural enhancements: an integrity verification unit (IVU), a RIV/MAC
and MAC cache (RM/MAC Cache), and the encryption/decryption unit (EDU), in order to accomplish all
the protection measures using specialized hardware rather than by software. Conceptually, the RM/MAC
Cache is very similar to a victim cache for those RIV/MAC and MAC values beingcast out of the processor.
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The only difference is that the RIV/MAC and MAC kept inside the cache is unencrypted while the one kept
outside the cache requires encryption protection. This cache serves thepurpose of expediting the process-
ing of decrypting these RM/MAC and MAC values after retrieving them from system memory which could
already take hundreds of cycles in a high performance processor system.

2.4.2 Research Findings
To evaluate the performance implications, we simulate our infrastructure usingSimplescalar executing Alpha
binaries. We used selective SPEC benchmark programs for the applications. The subsetting was carried out
by picking the applications with considerable L2 miss rates to demonstrate the effectiveness of our proposed
architecture. We also implemented AES block cipher in behavioral Verilog HDLand synthesized our design
for obtaining the timing overheads of the encryption and decryption. In addition, we compare to CHTree
proposed by researchers from MIT to understand the pros and consof our architecture. First of all, our
performance results clearly showed the performance advantages of employing the M-TREE. Compared to a
processor without any security protection, our scheme only degrades performance by 8% on average while
the prior CHTree method degrades performance by almost 50% on average. When the size of the L2 cache
is increased, as expected, both schemes will close the gap of performance degradation, with 35% for the
CHTree and 5% for the M-TREE.

We then studied the sensitivity of the size of the RM/MAC and MAC cache and thesensitivity to the
latency of the hash function. First, we found we will suffer approximately 17% performance loss if we did
not employ a separate cache but using the existing L2 to keep these integrity related secret information.
By adding an 8KB RM/MAC and MAC cache, the performance degradation isshrunk to 8% on average,
making our proposed scheme very appealing and practical. With respect tothe hash latency, we did not find
the latency increase from 80ns to 160ns imposes any major performance issue in both our scheme and the
CHTree scheme in general. For more research results, please refer to our publication in Journal of Parallel
and Distributed Computing [2].

2.5 Authentication Point Control in Secure Processors
2.5.1 Problem Statement and Approaches
As mentioned earlier in Section 2.4.1, there are two important properties that a secret needs to be guarded
against — confidentiality and integrity. M-TREE and many other prior secureprocessor designs were tar-
geted to provide both guarantees to achieve a tamper-resistant and tamper-evident computing environment.
Encryption is typically used to protect the confidentiality of secret while authentication (e.g. our MACTree)
was used to detect and manifest any tampering of the protected data during their residence outside the protec-
tion boundary. At the first glimpse, the task of integrating a cryptographic engine into an out-of-order high
performance processor for security support may seem deceptively straightforward. Nevertheless, we investi-
gated such astraightforward assumptionand realized that many prior designs and their security implications
have not been fully understood. In particular, the role of integrity protection and its relationship with pri-
vacy protection in the context of secure processor was not sufficientlyaddressed. These prior performance
techniques often assume that it is secure to disassociate the decryption operation and the authentication op-
eration. For example, they allow the issue of decrypted instructions prior to the completion of verifying their
authenticity.

To understand the potential security implications, in particular caused by side-channel attacks using
memory fetch address as a side-channel, we explored and scrutinized thedesign space of such decryption and
authentication dissociation. We classified, investigated, and evaluated five different design alternatives: (1)
authen-then-issue, (2) authen-then-commit, (3) authen-then-write, (4)authen-then-fetch, and (5) address ob-
fuscation plus authen-then-commit. Under authen-then-issue policy, a conservative secure execution model,
a secure processor is forbidden to issue instructions or any operand whose integrity has not been fully veri-
fied. Under the authen-then-commit policy, a secure processor is allowedto speculatively issue unauthenti-
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cated instructions and data to the pipeline and commits (or retires) completed instructions only after both of
them are authenticated. The option of authen-then-fetch allows bus cyclesto be granted to a memory fetch
only if all the instructions and data that the memory fetch depends on due to dependency are authenticated.
For the authen-then-write, all permanent changes to the memory state must bemade based on the results
derived from the authenticated instructions and operands. Finally, we examined address obfuscation and its
relation to these four options.

In addition to these studies, we also identified a few interesting yet realistic threat models that force
the unauthenticated data as a side-channel through memory fetch to disclosethe secret. First, the adversary
may applypointer conversion exploitwhich converts encrypted sensitive data into pointers such that its
value will be automatically disclosed when the pointers are de-referenced.One such example islinked list
attack. An adversary may use input manipulation or control flow reconstruction based on fetch trace to either
force a linked list to end at some known location or discover when and where a linked list terminates. The
adversary can alter the NULL pointer to point to the secret. When the linked list is traversed, the secret will
automatically be revealed as a fetch address. More details and the threat models were documented in our
publication [5] in MICRO-39.

More in-depth analysis on our original hardware obfuscation techniqueproposed in [14] for preventing
side-channel attacks by exploiting control flow was performed along with this work. This new scheme
published in [1, 13] addresses the issue of excessive memory accesses per address permutation and redundant
permutations performed. It also avoids the large number of page faults. Further details can be found in our
publication [1, 13] in PACT-15 and JPDC.

2.5.2 Research Findings
We followed the same simulation framework we developed for M-TREE to carryout our performance eval-
uation. We evaluated the performance and security implications for these fivespeculative execution models
discussed above. Based on the instruction per cycle (IPC) evaluation, we found the authen-then-issue, the
most conservative approach, and the authen-then-commit + address obfuscation demonstrated the worst
performance. They achieved only 87% and 86% IPC of a baseline implementing decryption but without
integrity checking mechanism. In contrast, authen-then-write shows the best performance at around 98%
performance of the baseline processor model, followed by authen-then-commit which shows a performance
of 96% of the baseline. The authen-then-fetch achieves about 92% IPCof the baseline. However, from
security perspective, authen-then-issue and authen-then-commit + address obfuscation are relatively more
secure while authen-then-commit and authen-then-write are less secure.Obviously, there are trade-offs to
be made between performance and security. The analysis and the results of this work provides valuable risk
assessment for guiding the design of a tamper-proof secure processor. Please refer to our publication in [5]
for further details.

2.6 Digital Rights Management
2.6.1 Problem Statement and Approaches
Another growing interest of security issues is with respect to how to protect digital rights. The industry of
real-time graphics applications such as video games, interactive avatars, 3D online games, handheld mobile
games, etc. grows rapidly. However, it remains a great technological and legal challenge to enforce digital
rights protection for these graphics applications. The problem is getting worse with the emergence of 3D
graphics commerce on the Internet. In the virtual space, these trade-marked and proprietary 3D models or
textures in the forms of digitized sculptures, characters, avatars, vehicles, weapons, outfits, wallpapers, etc.,
possess real monetary values to gamers, collectors and artists. There is littleresearch being performed in the
area of protecting digital rights of graphics data and 3D objects for the consumer market. In this work, we
explored the technologies of digital rights management for graphics processing unit (GPU) for countering
piracy of real-time graphics entertainment software and graphics assets.
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Compared to a conventional GPU architecture, a digital rights enabled GPU contains at least two more
components: acryptographic unitto decrypt protected graphics contents, and alicense verification unitto
process the licenses of graphics data. Figure 2(a) illustrates the concept of a digital rights enabled GPU.
Similar to digital rights licenses used in other content protection cases, the graphics digital rights licenses
released by their content providers specify and designate the desired usage of the graphics data. A digital
rights enabled GPU features the necessary means to authenticate the licenses. During the actual graphics
rendering, it is guaranteed that the graphics data be used strictly in compliance with the license agreement.
Figure 2(b) shows the components and steps for decrypting or authenticating protected geometry data during
graphics processing. Each individual vertex and its attributes are separately encrypted. A MAC is stored
alongside with the vertex attribute for integrity verification.

In addition to the hardware support, we also introduced the idea of restrictive binding in-between ge-
ometry input, textures and shaders. An example of a license of a geometry object is given in the left-hand
side of Figure 3. It comprises of a name, decryption key context, digests of the encrypted geometry data, a
geometry data ID, the binding constraints as to what textures or shaders can be applied to this object, and
the digest of its license signed by a certified content provider. The bindingpermission can be inherited by
all the sub-classes of this object. Given a set of licensed geometry input, textures and shaders, the digital
rights enabled graphics processing system creates a binding context that comprises decryption keys that will
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be used during graphics processing for decrypting protected contentssuch as geometry models or textures
as shown at the right-hand side of this figure.

2.6.2 Research Findings
In this work, we realized that to provide a digital rights enabled GPU, one needs to coordinate the design
effort among the hardware support from processor architects, graphics APIs from programming language
designers, and license context from content providers. To quantify the performance, we used a cycle-time
based GPU architecture model calledQsilverwhich captures OpenGL commands and data traces and models
the flow of data and computation through each state of a generic GPU pipeline including vertex processing,
rasterization, fragment processing, frame buffer and z-buffer. The necessary components to enable digital
rights management were instrumented into Qsilver. In addition, we implemented the AES crypto-standard
and SHA-256 hash function in Verilog and obtained their respective synthesized timing information. The
open source Quake 3 Arena was used as our evaluation workload. All the geometry data such as skinned
characters and mesh objects and textures, mipmap textures for level-of-details were considered protected.
Depending on the cipher chosen, the frame rate will be reduced from lessthan 5% to more than 30%. More
details of our complete proposed mechanisms including hardware and API enhancement, context binding
protocols, etc., can be found in our paper published in ACM SIGGRAPH/Eurographics Workshop on Graph-
ics Hardware [9].

2.7 Security Analysis for Hardware-based Protection
One major goal in this aspect is to enable our system with the capability of autonomic monitoring. The
broader definition of monitoring for the healthiness of a system includes characterizing the following: system
workload characteristics, memory access patterns, and detecting any abnormal application/system behavior
and security-related intrusions. Prior to delving into our solution space, westudied the pitfalls of the exist-
ing hardware-based solutions which were often aimed at addressing software copyright protection. Several
tamper-resistant processors were proposed and studied in literature to prevent illegal software duplication,
unauthorized software modification, and unauthorized software reverse engineering. We found these prior
techniques all focused on feasibility and design details but often neglectedthe analysis of other security
implications and risks, worse, potential attacks from an adversarys perspective. Toward this, we investigated
and performed detailed analysis for potential vulnerability, weakness, pitfalls and attacks on such security
architectures. The objective is to provide useful and valuable insights to the system designers.

In our risk analysis, we examined a few areas in the current security architecture designs and identified
their weakness as well their potential vulnerability. They includelazy authentication, regularity vulnerabil-
ity in encrypted RISC instructions, information control flow leakage, software slice based protection, weak
cipher and short encryption key, limited integrity protection, etc. Our concern came from the recent emerg-
ing side-channel attack models, which bypass the strength of cryptography and exploit the inadvertently
information leaked from so called side channels, including memory addresses, execution time measurement,
power signature, thermal gradient, electromagnetic waves, etc. Our studies presented the arguments for the
necessities of hardware-based cryptography, a detailed analysis andunderstanding of different, innovative,
security break models, a taxonomy of online and offline attack models, the limitationof a single-processor
protection model and per-process protection model, along with new insights for a lower cost implementa-
tion of memory authentication code (MAC). With the thorough understanding ofthe vulnerability of current
systems from our studies, system designers will be able to explore the design space more effectively and
efficiently in facilitating security monitoring detection and protection. Our research findings were reported
in [5].

2.8 Acceleration of Memory Encryption and Authentication
One essential component shared by all the hardware-based tamper resistant systems is hardware protection
of software confidentiality and integrity. When a memory block containing data or instruction (e.g., a cache

9



line) is brought into the secure processor, it is decrypted and verified.When a cache line is evicted from
a secure processor domain, it is re-encrypted prior to being stored to any external memory. This hardware
cryptography is not only necessary for making system difficult to reverse engineer but is also a critical
component for content-based digital rights protection. For protecting randomly accessed memory, standard
encryption modes that directly encrypt memory such as block cipher includingECB, CBC, or OCB, or
counter-mode encryption have been employed in secure architectures proposed by academia as well as in
commercial security co-processor. In addition, authentication mechanism using message authentication code
(MAC) was also proposed to provide integrity guarantee.

From processor architects design perspective, the major overhead ofsuch hardware protection on soft-
ware confidentiality and integrity is the increased memory latency. Both encryption and authentication need
to go through a series of repetitive data scrambling process. Much of oureffort toward this crypto-design
is to minimize or completely hide (in the ideal case) the latency of such operations,thus making the en-
tire protection transparent to the users. Based on our prior experiences and new observations, we proposed
a novel architectural framework to enable cipher-text speculation, a latency hiding mechanism that com-
bines value prediction and hardware cryptography for direct encrypted memory using block cipher. This
technique, frequent value cipher speculation reduces or eliminates the decryption latency by speculatively
encryption frequent values and matching their ciphertext results with the one fetched. In other words, we
use the wait time for fetched data line to perform speculative encryption. Inour findings, 40% of the fetched
data contained frequent values. In this framework, we also introduced anew scheme to accelerate memory
integrity verification by pre-computing of memory blocks MAC value based on frequent value prediction.
This technique, MAC speculation, pre-computes MAC with the corresponding MAC being fetched from
main memory. By combining these techniques in a secure processor, we showsignificant performance im-
provement in instruction per cycle (IPC) ranging from 10 to 30%. This work was published in [6].

2.9 Denial-of-Service Attack on Multicore Processors
Given the continuing miniaturization trend predicted by Moores Law and physical constraint in design veri-
fication and frequency scaling, chip multiprocessor or multicore processor has become the de facto architec-
ture standard for all processors that will be delivered from now on. Through resource sharing, applications
running on a multicore processor can achieve better resource utilization and faster inter-core communica-
tion, leading to higher overall throughput for the entire system. From a security perspective, however, such
architectures are also more susceptible to a new kind of attack — “Denial-Of-Service (DoS)” attack to
their common resources. Furthermore, as the number of cores increases, attacks similar to Distributed DoS
(DDoS) attacks over the Internet can be employed to throttle these on-chip resources with the presence of
multiple, cooperative malicious applications. Such DoS or DDoS attacks aim at reducing performance or
barricading the entire system from making any forward progress.

In this work, different from all prior architecture work, we try to understand such implication from
security standpoint. We focus on the vulnerability of shared last-level cache (LLC). The likely attack models
can be combined with other techniques such as rootkits (See Section 2.4). Anunwanted malicious process
can run in stealth to consume either the capacity of the shared LLC, or the shared bandwidth on a shared-bus
based multi-core system. As we demonstrated, to implement such a malicious program is almost a no-
brainer. All the attackers need to do is to have a program that marches memory locations with a large, fixed
stride. Besides cooking up the malicious attacking codes, we also proposeda few microarchitectural and
OS-level solutions attempting to minimize the impact of such microarchitectural DoS or DDoS attacks. This
ensembles much similarity to other work on so-called fairness issues in a multicoreprocessor, in other words,
to avoid monopoly of certain particular processes, if the system cannot differentiate the good processes from
the bad. One option is to implement monitoring and throttling scheme for those processes that dominate
the use of shared resources (i.e., to be fair for all processing cores). Another option is to segregate these
resource-heavy consumer processes, or simply let the bad guys rot inhell. The idea of this scheme is to

10



let all resource-demanding processes to compete pre-allocated sharedresources and allow the other regular
processors to use a reasonable amount of resources pre-allocated.Our research was published in [12].

3 Scholarly Contributions
The project activities undertaken resulted in several high-quality publications in premium conferences. These
publications are listed in theReferencessection at the end of this final report. We also accumulated our
expertise in multi-domained tools and established our own simulation methodology to continue our future
research endeavor. To summarize, we have made the following researchcontributions in this project over the
years.

• We researched and presented a thorough security analysis and risk assessment for a security computing
system built on tamper-resistant and tamper-evident processors.

• We contrived and detailed several novel and realistic attack models to thesesecurity processors. These
models provide invaluable insights to the requirement of future security architecture design.

• We proposed a memory-centric security architecture or MESA to enable information sharing and ex-
change with their individual security requirement and intellectual proprietary protection.

• We proposed an M-TREE security architecture with a novel hierarchicalmessage authentication tree for
protecting applications’ integrity with minimal performance overhead.

• We investigated microarchitectural techniques to hide the performance penalty caused by memory en-
cryption and authentication, providing a performance-transparent tamper-resistant and tamper-evident
system.

• Information leakage issues in a protected system for confidentiality and integrity was defined and clas-
sified. Attack models of exploiting information leakage to reveal sensitive datawas discussed. We then
proposed hardware-based dynamic obfuscation techniques to address these security issues.

• We studied the emerging issues of digital rights management for virtual properties, a burgeoning business
in the Internet game sector. We proposed hardware enhancement to effectively address the ownership
issue for proprietary virtual assets.

• We identified and studied the often-overlooked security issue in previouslyproposed authentication
mechanisms which leave unnecessary side channels open subject to exploits.

• We studied the architectural support of an introspective architecture withhigh-speed self-recovery mech-
anism based on the emerging multicore processor systems.

3.1 Human Resources
Throughout the project period, we had successfully trained and awarded graduate degrees to the following
students who at certain point were sponsored by this Department of Energy Career Award.

• Weidong Shi, Ph.D. 2006. First employer: Motorola Labs, Motorola, Inc., Schlumberger, Illinois.
Current position: Entrepreneur of a startup company at Canada.

• Mrinmoy Ghosh, Ph.D. 2009. First employer: Corporate Research and Development, ARM, Austin,
Texas.
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