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Abstract

This report summarizes SRIs accomplishments on the project, “Spin Properties
of Transition-Metallorganic Self-Assembled Molecules” funded by the Office of Ba-
sic Energy Sciences, U.S. Department of Energy (Grant No. DE-FG02-06ER46325).
We have successfully carried out all tasks identified in our proposal and gained sig-
nificant knowledge and understanding of spin-polarized electronic structure, spin
relaxation, and spin-dependent transport in transition-metallorganic molecules and
endohedral fullerenes. These molecules contain integrated spin and charge com-
ponents and will enable us to achieve sophisticated functions in spintronics and
quantum computing at molecular level with simple circuitry and easy fabrication.
We have developed microscopic theories that describe the underlying mechanisms of
spin-dependent processes and constructed quantitative modeling tools that compute
several important spin properties. These results represent the basic principles gov-
erning the spin-dependent behaviors in nanostructures containing such molecules.
Based on these results we have shown that novel device functions, such as electri-
cally controlled g-factor and noninvasive electrical detection of spin dynamics, can
be achieved in these nanostructures. Some of our results have been published in
peer-reviewed journals and presented at professional conferences. In addition, we
have established a close collaboration with experimentalists at Oxford University,
UK (Dr. J. Morton and Prof. G. Briggs), Princeton University (Dr. A. Tyryshkin
and Prof. S. Lyon), University of Delaware (Prof. E. Nowak), and University of Cal-
ifornia (Profs. R. Kawakami and J. Shi), who have been studying related systems
and supplying us with new experimental data. We have provided our understanding
and physical insights to the experimentalists and helped analyze their experimen-
tal measurements. The collaboration with experimentalists has also broadened our
research scope and helped us focus on the most relevant issues concerning these
materials.
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1 Introduction

Organic molecules for charge transport, as in molecular wire junctions, or for magnetism,
as in nanomagnets, are being extensively investigated. The stimulated quest for spin
electronics and quantum computing renders it desirable to synthesize nanostructures with
integrated spin and charge components. These nanostructures will enable us to achieve so-
phisticated functions with much simpler circuitry and less demanding fabrication. Among
these nanostructures are transition-metallorganic self-assembled molecules (TMSAMs)
and endohedral fullerenes. The localized electron spin at the central transition-metal ion
or atom in such a molecule possesses quantum information, while the π-conjugated ligand
or fullerene cage provides an efficient pathway for charge transport without spoiling the
spin. Because of the unique synergy of spin, charge, and lattice in these molecules and
their great potential in nanotechnology, the DOE Office of Basic Energy Sciences funded
SRI International in Sepetember 2006 to conduct a theoretical research project to system-
atically and fundamentally study electronic and transport properties of these molecules,
with emphasis on spin-related properties. We have successfully performed all the project
tasks and developed microscopic theories and modeling tools to describe spin-polarized
electronic structure, spin resonance and relaxation, and spin-dependent electrical trans-
port in these molecules and device structures. Our achievements are described in detail
below.

2 Spin states in TMSAMs and endohedral N@C60

We have obtained the accurate electronic structure and optimized lattice configuration of
representative transition-metal self-assembled molecules (TMSAMs) containing Fe3+ and
Mn2+, as shown in Fig. 1, and N@C60, one of the most interesting endohedral fullerenes,
as shown in Fig. 2, using two first-principles approaches, DMOL3 and SIESTA.

2.1 TMSAMs

We have established a model Hamiltonian to describe spin states on Fe and Mn in these
two TMSAMs based on the obtained first-principles electronic structure. Several impor-
tant features in this Hamiltonian are as follows.

Strong ligand field regime. The interaction between the ligands and the metal ion
breaks the five-fold degenerate d orbitals of Mn (II) into doubly degenerate eg (dz2 and
dx2−y2) states and triply degenerate t2g states (dxy, dyz, and dxz) with an energy separation
∆. The 5 d electrons in Mn (II) and Fe(III) can arrange themselves in two possible
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Figure 1: A representative conjugated metallorganic molecule containing an ion, Fe III.
The surrounding ligands are phenanthroline, a strong ligand used in various complexes.
One of the phenanthroline ligands is decorated by two dithiol (i.e., SH) groups at the ends
for good contact with the electrodes.

configurations: one has a high spin of 5/2 if the exchange interaction of d electrons
(Hunds rule) is stronger than the ligand field ∆; the other has a low spin of 1/2 with all
5 electrons occupying t2g levels if the exchange interaction is much weaker than ∆. From
the first-principles calculations we find that it is the latter scenario that occurs in this
kind of molecule and that ∆ is very large (∆ = 3.2 eV for Fe3+ and 2.2 eV for Mn2+),
indicating that eg states can be safely neglected in studying spin states in these TMSAMs.

Hole representation. We have noticed that 5 d electrons occupying 3 t2g levels are
equivalent to 1 hole in a closed t2g shell. So instead of the conventional electron represen-
tation we use the hole representation, which greatly simplifies the Hamiltonian. In the
hole representation, the spin-orbit coupling has the opposite sign compared to that in the
electron representation.

Small splitting between t2g levels. The octahedral symmetry of the ligand field is
slightly broken in the TMSAM because one ligand has two (SH) groups but the other two
ligands do not. A careful analysis indicates that this small difference can be described by
a tetragonal distortion, which creates an energy splitting between dxy and the degenerate
dxz and dyz. From the first-principles results, the splitting in these molecules is about
0.02 eV.
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Covalence π-bonding between d orbitals and p orbitals of N atoms. Our first-principles
results suggest that there is considerable π-bonding between the Mn t2g orbitals and p
orbitals of the 6 N atoms surrounding the Mn ion. The p orbitals with t2g symmetry were
constructed and included as part of the basis set of the Hamiltonian.

Denoting d1 = dxy, d2 = dxz, d3 = dyz, and 〈di|VT |di〉 = Ei for electrons, where VT

is the potential due to the ligands, and using the basis of (di ↑, di ↓), we can write the
Hamiltonian for the relevant spin states as

H =

















−E1 + µBHz µB(Hx − iHy) −iµBHx − i
2
ξ iµBHy

1
2
ξ

µB(Hx + iHy) −E1 − µBHz − i
2
ξ −iµBHx −1

2
ξ iµBHy

iµBHx
i
2
ξ −E2 + µBHz µB(Hx − iHy) − i

2
ξ − iµBHz 0

i
2
ξ iµBHx µB(Hx + iHy) −E2 − µBHz 0 i

2
ξ − iµBHz

−iµBHy −1
2
ξ i

2
ξ + iµBHz 0 −E3 + µBHz µB(Hx − iHy)

1
2
ξ −iµBHy 0 − i

2
ξ + iµBHz µB(Hx + iHy) −E3 − µBHz

















.

(2.1)
where ξ is the SO coupling, Hq (q = x, y, z) is the applied magnetic field, and muB the
Bohr magneton.

2.2 N@C60

Both experimental observations and first-principles calculations indicate that the elec-
tronic configuration of the N atom in N@C60 retains its atomic form and that no chemical
bonding between the N and the C60 cage takes place. In the ground state of a free N
atom, three 2p electrons align their spins in parallel according to Hund’s rule, forming
a degenerate quartet, 4S, with total spin S = 3/2 and total orbital angular momentum
L = 0. Its orbital wavefunction, in terms of single-electron 2p orbitals, is

4S = − 1√
6

∣

∣

∣

∣

∣

∣

φ−1(1) φ0(1) φ1(1)
φ−1(2) φ0(2) φ1(2)
φ−1(3) φ0(3) φ1(3)

∣

∣

∣

∣

∣

∣

, (2.2)

where φ1 = − 1√
2
(px + ipy), φ0 = pz, and φ−1 = 1√

2
(px − ipy). Because of its zero orbital

angular momentum, the SO interaction does not have any effect within the quartet.
To account for spin relaxation, one must consider the SO interaction between the

ground state and excited states. The lowest excited states are doublets (S = 1/2), 2P
(L = 1) and 2D (L = 2). For doublets 2P and 2D, without loss of generality, we assume
electron 2 and 3 are spin-up and electron 1 is spin-down, and their orbital wavefunctions,
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Figure 2: A representative endohedral fullerene, N@C60, where a nitrogen atom with spin
3/2 is located at the center of a C60 cage.

2Lm (m = −L,−L+ 1, ..., L), can be written as

2D2 =
1√
2
φ1(1)

∣

∣

∣

∣

φ0(2) φ1(2)
φ0(3) φ1(3)

∣

∣

∣

∣

, (2.3)

2P1 =
1

2
φ1(1)

∣

∣

∣

∣

φ−1(2) φ1(2)
φ−1(3) φ1(3)

∣

∣

∣

∣

− 1

2
φ0(1)

∣

∣

∣

∣

φ0(2) φ1(2)
φ0(3) φ1(3)

∣

∣

∣

∣

. (2.4)

The orbital wavefunctions of other 2Dm and 2Pm can be obtained by applying the operator
L̂− = (L̂x − iL̂y) to 2D2 and 2P1.

Since N has a rather weak SO coupling, the SO interaction is aptly described by the LS
scheme, where states are denoted as 2S+1LM

J with J = |L−S|, ..., L+S and M = −J, ..., J .
Hence through the SO coupling, S4 forms 4S3/2,

2P forms 2P3/2 and 2P1/2, and 2D forms
2D5/2 and 2D3/2,

2PM
1/2(3/2) =

√

3/2 − (+)M

3
2P+

M−1/2 − (+)

√

3/2 + (−)M

3
2P−

M+1/2, (2.5)

2DM
3/2(5/2) =

√

5/2 − (+)M

5
2D+

M−1/2 − (+)

√

5/2 + (−)M

5
2D−

M+1/2, (2.6)

where 2L
+(−)
m denotes the up-spin (down-spin) state with an orbital 2Lm.
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The electronic Hamiltonian for the N 2p electrons is H = U+(H0 +HSO)U , where the
basis set U = (4S 3

2

,2D 3

2

,2 P 3

2

,2D 5

2

,2 P 1

2

)T . H0 describes the term energies of the 4S, 2D,

and 2P ,

H0 =













E1 0 0 0 0
0 E2 0 0 0
0 0 E3 0 0
0 0 0 E2 0
0 0 0 0 E3













, (2.7)

where E1 = ES, E2 = ED, E3 = EP , and the SO interaction is

HSO =
1

2
ζp













0 0 2 0 0

0 0
√

5 0 0

2
√

5 0 0 0
0 0 0 0 0
0 0 0 0 0













, (2.8)

where ζp is the SO coupling strength for a single 2p electron. In the LS scheme, 2P 1

2

and 2D 5

2

are not mixed with states with J = 3/2. By diagonalizing the Hamiltonian, we

obtain in the J = 3/2 manifold the three eigen-energies Ẽi and eigenstates, denoted by
2S+1L̃J , which is related to 2S+1LJ through a transformation matrix K. In particular, the
ground state is

4S̃M
3

2

= K11
4SM

3

2

+K12
2DM

3

2

+K13
2PM

3

2

. (2.9)

Hence these eigenstates 2S+1L̃J are not pure spin states and transitions between them will
cause spin relaxation. Using the experimental values ED −ES = 2.38 eV, EP −ES = 3.58
eV, and ζp = 76 cm−1 for a free N atom, we obtain K11 = 1.0, K12 = 1.2 × 10−5,
K13 = 2.6 × 10−3, and Ẽi ≃ Ei.

3 Electron spin relaxation

3.1 TMSAMs

We have identified the spin relaxation mechanism in the TMSAM and developed a theoret-
ical model to calculate spin relaxation times. The predominant spin relaxation mechanism
is through orbit-lattice coupling between the t2g electrons and the vibrational modes of
the molecule. We supplement the obtained Hamiltonian described in Eq. (2.1) above
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Figure 3: Distribution of vibrational frequencies in the TMSAM of Fig. 1.

with the following orbit-vibration coupling

HOV = g1





0
√

2Q3 −
√

2Q2√
2Q3 Q3 Q2

−
√

2Q2 Q2 −Q3



 + g2





2Q4 Q6 Q5

Q6 −
√

2Q6 −Q4

√
2Q5

Q5

√
2Q5

√
2Q6 −Q4



 ,

(3.1)
where Qi (i = 2, , 6) are relevant normal modes that contribute to the spin relaxation and
g1 and g2 are the coupling strength. We consider HOV as a perturbation but treat the
spin-orbit interaction exactly, which goes beyond the work of Van Vleck, where both the
spin-orbit and orbit-lattice interactions were treated perturbatively.

3.1.1 Phonon modes

We have carried out the first-principles calculations to obtain the frequencies of the vibra-
tional modes in the TMSAM. The vibrational spectrum is plotted in Fig. 3. By analyzing
the eigen-functions of normal vibrational modes, the frequencies of the relevant modes to
spin relaxation are found to be between 200 cm−1 and 350 cm−1.

3.1.2 Spin relaxation processes

Spin-lattice relaxation occurs through either the one-phonon (direct) process or the two-
phonon (Raman) process. In the former, an up-spin electron (or hole) emits a phonon
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and flips its spin, and the transition rate is

W ∝ |〈−|HOV |+〉δ(Ez − ~ω), (3.2)

where Ez is the Zeeman energy. In the latter, an up-spin electron (or hole) absorbs a
phonon with frequency ω1 and emits another phonon with frequency ω2, and flips its
spin. The probability of this transition can be calculated via

W ∝
∣

∣

∣

∑

t

[〈−|HOV |t〉〈t|HOV |+〉
E+ −Et + ~ω1

+
〈−|HOV |t〉〈t|HOV |+〉
E+ −Et − ~ω2

]∣

∣

∣

2

δ(Ez + ~ω1 − ~ω2) (3.3)

where |t〉 denotes intermediate states. We emphasize that since |+〉, |−〉, and |t〉 are
the exact eigenstates of our Hamiltonian that includes the spin-orbit interaction, they
are not pure spin states, meaning that |+〉 (|−〉) contains a portion of down (up) spin
states, which makes spin relaxation possible through the spin-independent HOV . In a
solid, both processes can be important to spin relaxation. In the TMSAMs, we find that
the direct process is not functional, because the phonon energies of the 5 relevant modes
in a TMSAM are all much larger than the Zeeman energy. Thus the Raman process is
the only process that gives rise to spin relaxation. We have calculated the transition rate
W of the Raman process in the TMSAM in Fig. 1. We find that the relaxation time can
be expressed as

1

T1
=

∑

l

Al
exp(−~ωl/kBT )

[1 − exp(−~ωl/kBT )]2
, (3.4)

where ωl (l = 2, , 6) are the frequencies of the 6 relevant vibrational modes and Al is a
constant that does not depend on temperature.

3.2 N@C60

We have developed a comprehensive microscopic model to describe both the spin relax-
ation time T1 and the spin decoherence time T2 in N@C60 and quantitatively explained
the experimentally measured T1 and T2. This is the first microscopic theory of electron
spin relaxation in this type of nanostructure.

3.2.1 Orbit-vibration coupling

In N@C60 the three 2p electron orbitals of a N atom at the center of C60 transform
like t1u in the icosahedral group Ih. According to the Jahn-Teller theorem, t1u ⊗ t1u =
Ag⊕T1g⊕Hg, they can couple only to vibrations with these three representations. Among
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them the total symmetric Ag and antisymmetric T1g are ineffectual because the former
cannot break the degeneracy of 2p orbitals, and the latter cannot couple. C60 has eight
Hg(k) branches (k = 1, .., 8) and each branch is five-fold degenerate in energy. We focus
only on the lowest branch, k = 1, since other Hg modes have much higher energies and
are not much excited at room temperature. The orbital-vibration coupling between the
pq orbital and the five Hg modes, Qi (i = 1, ..., 5) is

HOV =
1

2
g





Q5 −
√

3Q4 −
√

3Q1 −
√

3Q2

−
√

3Q1 Q5 +
√

3Q4 −
√

3Q3

−
√

3Q2 −
√

3Q3 −2Q5



 , (3.5)

where g is the coupling strength.

3.2.2 Coupling strength g

We estimate the coupling strength g by setting Qi = 0 for i = 1 − 4 and a nonzero
Q5 = δQ(3 cos2 θ − 1) with θ being the polar angle, and evaluating the energy change of
a N 2p electron. The 2p electron wavefunctions in a free N atom are

|2pz〉 =
1√
π
α

5/2
0 re−α0r cos θ (3.6)

|2px〉 =
1√
π
α

5/2
0 re−α0r sin θ cos φ, (3.7)

where α0 = Z∗/2a0, a0 is the Bohr radius, and Z∗ = 3 is the valence charge. These
wavefunctions are the eigenstates of a Schrödinger equation with a Coulomb potential
(−e)V0 = −Z∗e2/r in a free space.

In the presence of C60, the boundary condition and the potential will change. To
the 2p electrons, the C60 cage is essentially a cavity with r0 = 1.74 Å in a dielectric
medium. The nonzero Q5 makes the C60 sphere shrink along one direction but elongate
along the other two normal directions, resulting in an ellipsoid described by the equation
ρ2/a2 + z2/c2 = 1, where ρ2 = x2 + y2, c = r0 − 2δQ, and a = r0 + δQ. The potential
created by a point charge Z∗e at the center of such an ellipsoidal cavity is

V1 =







Z∗e√
a2−c2

tan−1
√

a2−c2

ξ+c2
: a2 − c2 < ξ < 0

Z∗e
ǫ
√

a2−c2
tan−1

√

a2−c2

ξ+c2
: ξ > 0,

(3.8)

where ξ and η are ellipsoidal coordinates, which are related to the Cartesian coordinates

through x =
√

(ξ+a2)(η+a2)
a2−c2

cosφ, y =
√

(ξ+a2)(η+a2)
a2−c2

sinφ, z = ±
√

(ξ+c2)(η+c2)
c2−a2 , and φ is the

azimuthal angle.
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The energy changes of the 2p electrons due to δV ≡ V1−V0 are δEq = 〈2pq|−eδV |2pq〉,
and the coupling strength is g = 1

2
δEz−2δEx

δQ
. We obtain g = 1.4 eV/Å for ǫ = 5 and

g = 1.37 eV/Å for ǫ = 4.5. It is noted that this value is considerably larger than the
coupling between a C π-electron and the vibrations in C60, but similar to the displacement
derivative of electrostatic energy of an electron centered in a C60 cage, ≃ 1 eV/Å, from
ab initio calculations.

3.2.3 Effective spin Hamiltonian

For spin relaxation, the energy loss due to spin flip must be dissipated into a local envi-
ronment. Since the energy involved in spin flips is ∼ 10−5 eV with a Larmor frequency at
9.7 GHz, whereas the lowest energy of C60 vibrations is about 30 meV, it is impossible to
flip a spin by absorbing or emitting a single C60 vibration quanta (one-phonon process).
One must consider a higher-order Raman process. Using the second-order perturbation
of HOV , we derive an effective Hamiltonian between the ground-state quartets, 4S̃i

3

2

,

〈4S̃i
3

2

|Heff |4S̃j
3

2

〉 =
∑

µν

(

∑

LJM

〈4S̃i
3

2

, n−
µn

+
ν |HOV |LJM, n−

µnν〉〈LJM, n−
µnν |HOV | 4S̃j

3

2

, nµnν〉
ES − ELJ − ~ωµ

+
∑

LJM

〈4S̃i
3

2

, n−
µn

+
ν |HOV |LJM, nµn

+
ν 〉〈LJM, nµn

+
ν |HOV |4S̃j

3

2

, nµnν〉
ES −ELJ + ~ων

)

,(3.9)

where nµ is the phonon number of the µth mode, ωµ is its frequency, and n±
µ = nµ ± 1.

The intermediate states |LJM〉 include all D̃M
3

2

, P̃M
3

2

, DM
5

2

, and PM
1

2

. Since |ES −ELJ | > 2

eV ≫ ~ωµ ≡ ~ω ≃ 30 meV, the energy of the Hg modes, we can safely neglect ~ωµ

in the denominators in Eq. (3.9). After a lengthy calculation, we find the fluctuating
Hamiltonian HI(t) = Heff −Heff (A is the time average of A) due to C60 Hg vibrations
can be summarized in terms of spin operators

HI(t) = γ
[

(λ1 − λ̄1)
(

Ŝ2
z −

5

4

)

+ (λ2 − λ̄2)(Ŝ+Ŝz + ŜzŜ+

+ Ŝ−Ŝz + ŜzŜ−) + (λ3 − λ̄3)(Ŝ
2
+ + Ŝ2

−)
]

, (3.10)
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γ =
K2

12

ES − EP
− 5

3

K2
13

ES − ED
,

λ1 =
9g2

40
(4Q2

1 −Q2
2 −Q2

3 + 4Q2
4 − 4Q2

5),

λ2 = −3g2

40
[3(Q2 + iQ3)(Q4 − iQ1) +

√
3Q5(Q2 − iQ3)],

λ3 =
3g2

80
[4
√

3Q5(Q4 − iQ1) − 3(Q2 − iQ3)(Q2 − iQ3)],

where Qµ = ( f~

Mω
)1/2(aµ + a†µ), M = 60MC with MC being the mass of the C atom, a†µ

is the phonon creation operator for the µth mode, and f =
√

5/2 is the normalization
factor for Hg modes.

3.2.4 Spin relaxation time T1

In a system with a definable spin temperature, the spin relaxation time T1 can be calcu-
lated from

T−1
1 =

∑

ξη

Wξη(Eξ − Eη)
2/2

∑

η

E2
η , (3.11)

where Eξ is the energy of state ξ in the presence of an applied magnetic field and Wξη is
the transition rate from ξ to η,

Wξη =
2π

~
|〈η|HI(t)|ξ〉|2ρ(E). (3.12)

with ρ(E) being the density of final states in energy. For the vibrational excitations with
a line width Γ,

ρ(E) =
~Γ

2π
[E2 + (~Γ/2)2]−1. (3.13)

The transition rate in Eq. (3.2) can be equivalently expressed in terms of temporal
correlation functions,

Wξη =

∫ +∞

−∞

eiωξητ

~2
〈ξ|HI(t)|η〉〈η|HI(t− τ)|ξ〉dτ, (3.14)

where ~ωξη = Eξ−Eη. For a commonly used correlation time assumption, HI(t)HI(t− τ) =

|HI(t)|2e−|τ |/τc , the two transition rate expressions are identical if Γ = 2/τc. In the mo-
tional narrowing regime, ~Γ > 2E, we obtain the expression of T1,

1

T1
= 2w ≡ 567

8
γ2 g4

(Mω)2Γ

e−β~ω

(1 − e−β~ω)2
. (3.15)
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Figure 4: Logarithm of 1/T1 against 1/T . Circles are measured data of N@C60 Solid
line is our theoretical results with ~ω = 30 meV, g = 1.4 eV/Å, and ~Γ = 10−4 meV
(corresponding to a lifetime of 10 ps). The dashed line is obtained by multiplying the
solid line by a constant 2.46.

Figure 4 compares the measured T1 of N@C60 in a non-polar CS2 solvent with results from
Eq. (3.15). We see an excellent agreement between theory and experiment. The factor
of 2.5 difference is considered to be rather small in spin relaxation studies, and may be
attributed to the fact that the N properties in N@C60 may slightly deviate from its free
atomic values.

3.2.5 Spin decoherence time T2

Experiments suggest that the system may have more than one T2 constant. To identify
all possible T2, we solve the Redfield equation in the interaction representation,

dS∗
ξξ′/dt =

∑

ηη′

Rξξ′,ηη′S∗
ηη′ , (3.16)
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where S∗
ξξ′ ≡ 〈ξ|Ŝ∗

x|ξ′〉 and Ŝ∗
x(t) = e−i

H0t

~ Ŝx(t)e
i
H0t

~ . H0 is the time-independent Zeeman
term that determines spin resonance frequency and the Redfield matrix is

Rξξ′,ηη′ =
1

2~2

[

Jξηξ′η′(ωξ′η′) + Jξηξ′η′(ωξη)

− δξ′η′

∑

ζ

Jζηζξ(ωζη) − δξη

∑

ζ

Jζξ′ζη′(ωζη′)
]

,

Jξξ′ηη′(ω) =

∫ +∞

−∞
〈ξ|HI(t)|ξ′〉〈η′|HI(t− τ)|η〉e−iωτdτ.

Focusing on η − η′ = 1 and denoting X1 = S∗
3

2

1

2

, X2 = S∗
1

2
− 1

2

, X3 = S∗
− 1

2
− 3

2

, we obtain

the general solution of normalized X(t),

X(t) = C1U1e
−t/T ′

2o + C2U2e
−t/T ′′

2o + C3U3e
−t/T2i , (3.17)

where U1 = (1, 0, 1)T/
√

2, U2 = (1, 0,−1)T/
√

2, U3 = (0, 1, 0)T , and Ci (
∑

i |Ci|2 = 1) are
coefficients determined by the initial condition. T ′

2o = 1/4w = T1/2 and T ′′
2o = 1/2w = T1

are two independent T2 constants for outer transitions and T2i = 1/2w = T1 is the T2

constant for inner transitions. In the literature a single T2 time is always assumed for the
outer transitions. Our results suggest that new experiments and data extraction schemes
are needed to resolve multiple T2 constants. The measured T2i is similar to but smaller
than T1 (T2i ≃ 0.7T1) and this discrepancy may be explained by the motional narrowing
approximation used in the theory. Figure 5 compares the measured T−1

2o and ratio T2i/T2o

with the theory and shows good agreements. The excellent agreement on the ratio, which
is independent of model parameters, is particularly remarkable.

This microscopic theory consistently explains recently measured T1 and T2 and their
temperature dependence and predicts additional T2 constants in N@C60, suggesting a
universal importance of the two-phonon Raman process in nanostructures. The com-
plete microscopic theory was published in the paper, “Microscopic theory of electron spin
relaxation in N@C60”, Phys. Rev. B 77, 205439 (2008).

4 Magnetic-field effect on electron spin relaxation in

N@C60

Our experimental collaborators at Oxford and Princeton measured spin relaxation T1 and
T2 at 35 GHz (Q-band), 3.7 GHz (S band), and 100 GHz (W-band) (the corresponding
magnetic fields being about 3.6 T, 0.1 T, 10 T) and found that spin relaxation in N@C60
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Figure 5: Logarithm of 1/T2o against 1/T . Circles are measured values and the solid line
is our theoretical results. The dashed line is obtained by multiplying the solid line by a
constant 4.0. The inset shows the ratio of T2i/T2o from experiment (circles) and theory
(solid line).

strongly depends on the magnetic field and that the dependence cannot be explained by
a mere Zeeman-energy change in the system. In light of the experimental observation,
we have also studied the magnetic-field effect on electron spin relaxation to explain the
experiments.

According to the microscopic theory described in the previous section, the excited
state 2P and 2D play a central role in spin relaxation. After taking into account the spin-
orbit coupling, these states can be grouped by the total angular momentum J = L + S.
For example, 2P states form 2P1/2 with J = 1/2, and 2P3/2 with J = 3/2. In the
absence of magnetic field, states with different J values do not mix. In the presence of
a magnetic field, however, J is no longer a good quantum number, but the magnetic
quantum number mJ (mJ = −J,−J + 1, , J) still is. Thus states 2P1/2 and 2P3/2 with a
same mJ (mJ =?1/2, 1/2) mix with each other. The amount of admixture is determined
by the relative importance of the Zeeman energy caused by the magnetic field and the
energy splitting between states with different J (spin-orbit coupling). For a free N atom,
the energy splitting between 2P3/2 and 2P1/2 from experiment is unusually small, 0.386
cm?1, corresponding to 11.57 GHz. Hence for the Q-band and W-band experiments, this
mixing becomes so significant that our theory becomes inadequate. The magnetic-field
effect described above is essentially the Paschen-Back effect in atomic physics, where a
strong magnetic field disrupts the coupling between the orbital and spin angular momenta,
resulting in a different pattern of splitting than that under a weak magnetic field, where
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the spin-orbit coupling is dominant. However, this effect is rarely seen in condensed
matters because of their large spin-orbit couplings. It is interesting to note that N@C60

provides such an unusual platform that bridges atomic physics and condensed matter
physics.

To assess the magnetic-field effect on spin relaxation and decoherence in N@C60, we
incorporate the mixing among states with different J values in our microscopic model for
spin relaxation. For example, the true eigen states for P3/2 and P1/2 would be

P̃
1/2
3/2 = cos θ1P

1/2
3/2 + sin θ1P

1/2
1/2 , (4.1)

P̃
−1/2
3/2 = cos θ2P

−1/2
3/2 + sin θ2P

−1/2
1/2 , (4.2)

where

tan 2θ1 =
2
√

2~ωs

~ωs + 6∆
, (4.3)

tan 2θ2 =
2
√

2~ωs

−~ωs + 6∆
, (4.4)

ωs/2π is the electron spin resonance frequency, and ∆ = 0.386 cm−1 is the splitting be-
tween 2P3/2 and 2P1/2. The effective spin Hamiltonian needs modification to accommodate
the magnetic-feild-induced mixing between 2P1/2 and 2P3/2, HI → HI(t) +H ′

I(t), with

H ′
I(t) = γ

[

(λ′1 − λ̄′1)
(

Ŝ2
z − 9

4

)

+ 2
√

2(λ2 − λ̄2)[Ŝ+(Ŝ2
z − 1) + (Ŝ2

z − 1)Ŝ+

+ Ŝ−(Ŝ2
z − 1) + (Ŝ2

z − 1)Ŝ−] + 2
√

2(λ3 − λ̄3)(Ŝ
2
+Ŝz + ŜzŜ

2
+ + Ŝ2

−Ŝz + ŜzŜ
2
−)

]

.(4.5)

Using HI(t) and H ′
I(t), we express the electron spin relaxation time T1 for N@C60 as

1

T1

=
1

5

[

W 3

2

1

2

+W 1

2
− 1

2

+W− 1

2
− 3

2

+ 4(W 3

2
− 1

2

+W 1

2
− 3

2

)
]

, (4.6)

where

W 3

2

1

2

= w0(1 + t1/
√

2)2 Γ

ω2
s + (Γ/2)2

(4.7)

W 1

2
− 1

2

=
3

2
w0(t1 + t2)

2 Γ

ω2
s + (Γ/2)2

(4.8)

W− 1

2
− 3

2

= w0(1 − t2/
√

2)2 Γ

ω2
s + (Γ/2)2

(4.9)

W 3

2
− 1

2

= w0(1 − t2
√

2)2 Γ

4ω2
s + (Γ/2)2

(4.10)

W 1

2
− 3

2

= w0(1 + t1
√

2)2 Γ

4ω2
s + (Γ/2)2

(4.11)
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where

w0 =
567

64
γ2 g4

Mω

e−β~ω

(1 − e−β~ω)2
, (4.12)

and t1 = tan θ1 and t2 = tan θ2. We use Eq. (4.6) to fit the experimental data and find
that Γ = 2π × 20 GHz can explain the experimentally observed magnetic field depen-
dence of spin relaxation time in N@C60. This theory, together with related experimental
measurements, is being written as a manuscript for publication.

5 Polaron formation in TMSAMs

We have established a tight-binding Hamiltonian for the ligand (as shown in Fig. 6) based
on the first-principles electronic and lattice structures, in which each C, N, and S atom
contributes one π electron,

HL = −
∑

<ij>s

tij(c
†
iscjs + H.c.) +

∑

i

[

ǫic
†
iscis + Uini↑ni↓

]

+
∑

<ij>

K

2
(ui − uj)

2 +
J

2

∑

s

(c†N1sσss′cN1s · S + .c†N2sσss′cN2s · S) (5.1)

Here c†is creates a π-electron with spin s at atomic site i, tij is the electron hopping between
nearest neighboring site i to site j. The electron-lattice coupling is included by assuming
that the hopping integral across a bond depends on the bond-length tij = t0[1−α(ui−uj)],
where ui is the displacement of the ith atom. The σ-bond between two adjacent atoms
in the ligand are described by a bond-streching spring with an elastic constant K. The
second term describes the energy of the π-orbital at each atom. The on-site Coulomb
interaction is included in the fourth terms. The last term describes the magnetic coupling
between electron spins in the N atoms and in the transition-metal ion, which is originated
from the covalence π-bonding between transition-metal d orbitals and p orbitals of the N
atoms. Based on our first-principles calculations, the parameters in the above Hamiltonian
are estimated to be α = 5 eV/Å, K = 32 eV/Å2, U = 1 eV, t0 = 1.7 eV, and J0 = 0.1 eV.
The site energies, ǫi, for C, N, and S are set 0, −0.8 eV, and 1.3 eV, respectively, which
were extracted from systematic local-density functional studies of conjugated polymers.

We have studied polaron formation in the ligand by solving the obtained Hamiltonian.
In this system, because of the strong electron-lattice interaction, an excess electron will
be accompanied by a lattice distortion, forming a self-trapped polaron. The magnetic
coupling between transition-metal ion and N π-electrons gives rise to spin-dependent po-
larons. Consequently, the spin distribution of the excess carrier is sensitive to the interplay
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Figure 6: A conjugated ligand coupled with a transition-metal ion. C and N atoms in the
ligand are labeled.

of the electron-lattice interaction and the magnetic coupling. From Fig. 7, we see that the
electron-lattice interaction can significantly modify the spatial spin-density distribution.
With increase of the electron-lattice interaction, the high spin-density regions can shift
from the N atoms to C atoms.

We have identified the lowest up-spin and down-spin polaron levels and studied how
their energies depend on the interplay of the electron-lattice and magnetic interactions.
For a system without the magnetic coupling, the up-spin and down-spin polaron states
are always degenerate in energy. The energy splitting between up-spin and down-spin
polarons can be exploited to make devices using the spin degree of freedom. Figure 8
shows this energy splitting as a function of the magnetic coupling J for different electron-
lattice interaction strengths. We see that the electron-lattice interaction in general reduces
this energy splitting, leading to a smaller effective magnetic coupling.

6 Electrically controlled g-factor in TMSAMs

For a free transition-metal ion, because of its spin-orbit (SO) interaction, the total angular
momentum, j (j = l+ s, l+ s− 1, ..., |l− s|, with l and s being orbital and spin angular
momenta), is a good quantum number to characterize an eigenstate, which will be split
up into 2j+1 sublevels with an equal spacing, gµBH , upon the application of a magnetic
field, H , where g is the Landé g-factor,

g = 1 +
j(j + 1) − l(l + 1) + s(s+ 1)

2j(j + 1)
. (6.1)
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Figure 7: Spin density on each atom with site labels described in Fig. 6. Circles and
squares are for α = 0 and 5 Å−1, respectively. The magnetic coupling J = 0.1 eV.

Figure 8: Energy difference between the lowest up-spin and down-spin polaron levels as
a function of the magnetic coupling. Solid and dashed lines correspond to α = 0 and 5
Å−1, respectively.
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The g-factor determines the ion’s magnetic properties including the magnetic moment
of each sublevel, −gµBmj (mj = −j, ..., j), and the electron spin resonance frequency,
ω = |g|µBH/~.

A metal ion in a compound, however, can exhibit multifarious magnetic behaviors
because the magnetic moment and g-factor can be strongly influenced by the local envi-
ronment. Here we show that in a conjugated metallorganic molecule the magnetism and
g-factor can be electrically tuned to a great extent, by modifying the charge distribution
in one of the ligands. The capability of controlling the g-factor and magnetism at the
molecular level will enable simple and versatile manipulation of individual electron spins.

We examine how the g-factor and magnetism change when the three t2g orbitals have
slightly different energies. To see the interplay of the SO coupling and the energy splitting
among t2g states more clearly, for simplicity we assume that dxy always resides at the
middle of dxz and dyz in energy, δ = E2 − E1 = E1 − E3. The SO coupling of Fe(III) is
fixed ξ = −300 cm−1. We obtain the magnetic properties of the system by diagonalizing
the Hamiltonian Eq. (2.1) at a small magnetic field (linear response).

Since the system has an odd number of electrons, according to Kramer’s theorem, the
six eigenstates in this system can be grouped into three Kramer’s doublets, ψ2k−1 and
ψ2k (k = 1, 2, 3), which is split upon the application of magnetic field Hν along the ν-axis
(ν = x, y, z) with an energy difference of gν

kµBHν . The magnetic moments of each doublet,
accordingly, have the same magnitude but are opposite in sign, µν

2k−1 = −µν
2k = gν

kµB/2,
where µν

k = µB〈ψk|lν + 2sν |ψk〉. In Fig. 9, we plot the energies and |gν
k | for the three

doublets as a function of the energy splitting factor, δ. We see that the g-factor can be
dramatically modified, from 0 to over 3, within a relatively small δ change of 0.1 eV. In
addition, gx (gy) becomes 0 at a finite δ for both the ground and excited states, as shown
in Figs. 9(c) and 9(d), indicating that the system with that δ cannot be magnetized when
the magnetic field is along the x (y) axis.

To further understand the g-factor change, we plot in Fig. 10 the contributions from
the orbital and spin angular momenta to the magnetic momentum along the magnetic
field direction for both the ground and excited states. When |δ| > |ξ| = 0.03 eV, where the
energy splitting dominates over the SO coupling, the increase of δ always diminishes the
magnitude of the orbital, |〈lν〉|, which is the so-called orbital quenching due to the energy
splittings. Meanwhile the spin keeps increasing, approaching 1/2, its free-electron value.
Consequently the g-factor approaches 2 and becomes isotropic when δ is large. When
|δ| < |ξ|, however, the dependences of spin and orbital on δ become more complicated. In
this regime, the SO interaction, which connects states with different orbitals and spins, can
partially reinstate the orbital angular momentum and meanwhile suppress the spin from
its free-electron value. Compared to 〈lz〉 and 〈sz〉, 〈lx〉 and 〈sx〉 change more dramatically
as δ varies, as shown in Figs. 10(c) and 10(d). In particular, a discontinuity, where both
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Figure 9: Energy (a), |gz| (b), |gx| (c), and |gy| (d) of the eigenstates as a function of
energy splitting δ between t2g levels. Solid, dotted, and dashed lines correspond to the
ground state and the first and second excited states, respectively. The SO coupling is
ξ = −300 cm−1.

the spin and the orbital change their signs, occurs when gx or gy becomes zero at the
finite δ.

The energies of the t2g orbitals, Ei, ultimately come from the interaction between
the ion and ligands, and particularly the excess charges on the N atoms surrounding the
ion. The charges on the N atoms can be modified by applying a gate voltage across the
ligand with the dithiol groups. To demonstrate this, we solve Hamiltonian Eq. (5.1) for
the ligand self-consistently by using the unrestricted Hartree-Fock approximation. The
excess charges in the two N atoms for V = 0 are found to be equal, −0.12|e|, where e is
the electron charge, according to the first-principles calculations. The four N atoms in the
other two ligands also have this excess charge, which remains constant and independent to
V . In Fig. 11, we plot the result for the case where the electrostatic potential in the ligand
depends on V in a simple linear form, ǫi(V ) = ǫ0i + (z/L)V , with L being the distance
between the two electrodes attached to the S atoms and z the distance between the ith
atom to the anode. We see from Fig. 11(a) that the applied voltage induces a change in
excess charges of the two N atoms, which in turn gives rise to energy splittings among
the t2g orbitals, as shown in Fig. 11(b). Substituting the obtained Ei in Hamiltonian
(2.1), we calculate the g-factor of the ground state and the magnetic susceptibility at
room temperature as a function of the applied voltage and plot them in Figs. 11(c) and
11(d). The anisotropic g-factors can be tuned between 0 and over 3 under a voltage less
than 1 V, and the magnetic susceptibility can be significantly increased or decreased by
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Figure 10: Magnetic-moment contributions from the orbital and spin angular momenta
for the ground states (a) and (c) and for the first excited state (b) and (d). Red and green
lines represent the orbital and spin respectively.

the electric voltage, depending on the magnetic-field direction. The tunability of g-factor
in such a molecule is extraordinary in terms of both range and responsivity.

The electrically controlled g-factor and magnetism in conjugated metallorganic molecules
will allow electron spin resonance with a spatial resolution at the molecular level under
a homogeneous magnetic field, which is important to coherently manipulate individual
electron spins, a prerequisite to quantum computations. In addition, by controlling the
magnetic moment and susceptibility, quantum information in individual spins can be se-
lectively exposed, hidden, or processed, which can be used for quantum encryption, smart
memory, and other spin logic devices. The complete model of TMSAMs and the electri-
cally controlled g-factor in TMSAMs were published in the paper, “Electrically controlled
g-factor and magnetism in conjugated metallorganic molecules”, Phys. Rev. B 78, 212411
(2008).

7 Spatially correlated fluctuations of donor and ac-

ceptor in FRET

We have applied our knowledge on polarons gained in this study to understand the single-
molecule fluorescent energy transfer (FRET) in polyproline. FRET is a powerful and
convenient optical tool to track biological conformational changes. In FRET, a donor
fluorophore is excited by incident light to create an exciton, which can transfer to an
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Figure 11: Voltage-dependent charge of the two N atoms in the ligand with the dithiol
groups (a), energy Ei of the t2g orbitals (b), |gν| of the ground state (c), and magnetic
susceptibility χν (d). Solid and dotted lines in panel (a) plot the charge on individual N
atoms, and the dashed line is the average. Dotted and dashed lines in panel (b) plot the
energies of dxz and dyz, respectively. The energy of dxy is fixed at 0. Solid, dotted, and
dashed lines in panel (c) and (d) are for ν = z, x, and y, respectively.

acceptor in close proximity, leading to a reduction in the donor’s fluorescence intensity
and an increase in the acceptor’s emission intensity. Förster showed several decades ago
that the transfer rate k depends on the donor-acceptor distance r in a power law, k ∝ 1/r6,
which is the scientific foundation of using FRET as a “spectroscopic ruler”.

The Förster’s theory assumes that motions of donors and acceptors are completely
decoupled, i.e., 〈x1x2〉 = 0 with xi being the fluctuations in donor (i = 1) and accptor (i =
2). Recent advancement in the FRET technology makes it possible to detect biological
activity at the single-molecule level. Fundamentally, as the size of a system reduces to
such a microscopic level, the atomic motions become less stochastic but more coherent.
Since a donor-acceptor pair in most single-molecule FRET measurements is connected
through a common molecule, one expects that coherent atomic motions in the molecule
would translate into an undiminished correlation between fluctuations of the donor and
the acceptor.

We note that a donor and an acceptor in single-molecule FRET are attached to a
same molecule, as shown in Fig. 12, or more generally, a common environment, which
has low-energy excitations with a typical dispersion ωq ∝ |q|, where q is the momentum
and ωq the frequency. Consequently, the equilibrium position x0

i of the displacement xi

are slowly fluctuating. For a quasi one-dimensional (1d) long molecule, such as DNA and
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Figure 12: Schematic diagram showing the donor-acceptor correlation and its effect on
the donor and acceptor baths. The donor and the acceptor are attached to a molecule,
represented by the long bar, which mediates the interaction between the two baths, resp-
resented by the two ring areas.

polyproline, where acoustic phonons are the main low-energy excitations,

x0
1x

0
2 ∝

∑

|q|≥ξ−1

1

NMβω2
q

eiqR ∝
∫

dq
eiqR

β(q2 + ξ−2)
∝ e−R/ξ

β
,

where β ≡ 1/kBT with kB being the Boltzmann constant and T temperature, R =
|R1 −R2| is the molecular contour length between donor and acceptor, and β~ωq ≪ 1 has
been used. Here we have introduced a low-momentum cut-off ξ−1, which is due to the
finite length of a molecule. For a flexible molecule, ξ is determined by a persistence length
beyond which the bending become significant. Defining Γ as the correlation strength, we
can write

x0
1x

0
2 =

Γ

β
e−R/ξ. (7.1)

Hence a correlation between the donor and acceptor fluctuations entails an effective cou-
pling between the two baths, 〈Q1λQ2λ〉 6= 0, where Qiλ are normal coordinates in bath
i.

To describe the interacting baths, we augment the noninteracting H0
b , which can be

written in terms of normal coordinates, H0
b = 1

2

∑

iλ(P
2
iλ + ω2

λQ
2
iλ), by a crossing term

Hb = H0
b −

∑

λ

γλω
2
λQ1λQ2λ. (7.2)

Under this new Hamiltonian of the baths, 〈Q1λQ2λ〉 can be evaluated via

〈Q1λQ2λ〉 =

∫

dQ1λdQ2λQ1λQ2λe
−βHb =

γλ

βω2
λ(1 − γ2

λ)
.
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If we assume that γλ is independent of λ, γλ = γ, we obtain, from Eqs. (6) and (7),

γ

1 − γ2
=

Γ

η
e−R/ξ, (7.3)

where η ≡
∫ ∞

0
dωJ(ω)/ω is the reorganization energy. For the widely used Debye spectral

density, JDe(ω) = η0ωcω
ω2+ω2

c
, η = η0. The positive definitiveness of Hb requires γ < 1.

Equation (7.3) relates the coupling between two baths to the correlation function in a
molecule that connects them.

We derive the rate of energy transfer in the presence of the spatial correlation,

k ∝
√

β(1 + γ)

η
exp

{

− β[(1 + γ)∆ − η]2

4η(1 + γ)

} 1

r6
, (7.4)

which extends the original Förster’s theory. If we write the transfer rate at γ = 0 as
k0 = τ−1

D (r0/r)
6 with τD being the donor fluorescent lifetime in the absence of an acceptor,

the transfer rate of Eq. (7.4) is k = Λ(R)k0, where

Λ(R) = (1 + γ)
1

2 exp
{

− β
γ

4(1 + γ)η

[

(1 + γ)∆2 − η2
]

}

. (7.5)

Consequently the fluorescent transfer efficiency, E ≡ 1−τ ′D/τD (τ ′D is the donor fluorescent
lifetimes in the presence an acceptor), as a function of R is

E(R) =
[

1 + Λ−1(R)
( r

r0

)6]−1

. (7.6)

It is readily seen that when γ = 0, Λ = 1 and the above expression reduces to the
Förster formula, E = [1 + (r/r0)

6]−1. In the case of weak correlations, where γ ≪ 1,
Λ ∝ exp[−βγ(∆2 − η2)/4η], and we see that nonzero γ would reduce the transfer rate.
This can be understood by noticing that the transfer is facilitated only by the out-of-phase
modes, which have higher frequencies because of the couplings between the baths and are
therefore more difficult to be excited. Figure 13 illustrates effects of the donor-acceptor
correlation on the exciton transfer rate k and efficiency E in a system with representative
parameters, ∆ = 0.45 eV, η = 0.1 eV, and r0 = 5.4 nm (see below). It is also temporarily
set R = r, i.e, the molecule is rigid. We see that at short distances, the transfer rate
is reduced in the presence of the donor-acceptor correlation, compared to that from the
Förster formula. This reduction decreases with the donor-acceptor distance and eventually
diminishes when the distance is greater than ξ. From the transfer-efficiency plot in the
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Figure 13: Transfer rate kτD as a function of distance for different correlation lengths
ξ. Dashed, solid, and dot-dashed lines correspond to ξ = 0 (no correlation), 2.4, 5 nm,
respectively. The inset shows the transfer efficiency E as a function of r. Other parameters
are Γ = 0.05 eV, ∆ = 0.45 eV, η = 0.1 eV, and r0 = 5.4 nm.
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Figure 14: Transfer efficiency E as a function of the contour length. Filled and open
circles are the mean transfer efficiencies from SMM and TCSPM, respectively. The lines
are theoretical results from Eq. (21) with three parameter sets: (1) Γ = 0.05 eV and
ξ = l0 = 2.4 nm (solid); (2) Γ = 0 and l0 = 2.4 nm (dashed); (3) Γ = 0 and l0 = ∞
(dot-dashed). The inset shows γ as a function of the contour length. Other parameters
are as in Fig. 2.
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inset of Fig. 13, we see that the donor-acceptor correlation leads to a smaller effective
Förster radius.

We apply the theory to a recent systematic single-molecule FRET study of 1d polypro-
line. Such a long molecule is susceptible to bending. The straight-line distance r between
two points with contour length R in the chain can be written as

〈r2〉 = 2α2β2
( R

αβ
− 1 + e−

R
αβ

)

, (7.7)

where 2α−1 = α−1
1 + α−1

2 . From Eq. (7.6), we have

E(R) =
[

1 + 8Λ−1(R)
( l0
r0

)6(R

l0
+ e

− R
l0 − 1

)3]−1

. (7.8)

where l0 ≡ αβ defines the persistence length of a flexible molecule. An excellent fit
is found, as shown by the solid line in Fig. 14 for the entire experimentally measured
range of R, by using Γ = 0.05 eV and ξ = 2.4 nm. If both Γ and ξ are set zero,
namely, the donor-acceptor correlation is absent and the molecule is rigid, the transfer
rate reduces to the well-known Förster result, as shown by the dot-dashed line in Fig.
14, which, compared to the experimental data, overestimates the transfer efficiency at
shorter contour lengths (< 5 nm) and underestimates the efficiency at longer contour
lengths (> 5 nm). If we neglect the correlation but allow the molecule to bend, the
transfer rate is in a fairly good agreement with experiment for contour lengths larger
than 10 nm, but seriously overestimates the rate at shorter contour lengths, suggesting
that the donor-acceptor correlation is particularly important at short contour lengths,
where the molecular bending is weak. The strong correlation effect at short distances is
also reflected in the γ versus R plot, as shown in the inset of Fig. 14, where γ ≥ 0.2 for
R ≤ 2.0 nm, suggesting that the donor and acceptor baths are strongly coupled at those
distances.

The complete theory that describes the correlated fluctuations in the donor and ac-
ceptor and their effect on FRET and its application to polyproline were published in
the paper, “Fluorescent resonant energy transfer: Correlated fluctuations of donor and
acceptor”, J. Chem. Phys. 127, 221101 (Communications) (2007). This theory comple-
ments the original Förster theory, where motions of donor and acceptor are completely
uncorrelated. Because of the theorys simplicity and importance, our paper, was the 3rd
most downloaded papers of the journal in December of 2007.
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8 Electrical transport and noninvasive detection of

spins in N@C60 and TMSAMs

The electron spin at the central N atom in endohedral N@C60 or at the transition-metal
ion in a TMSAM has a very long electron spin relaxation time, showing its great potential
in quantum information storage and processing. For applications in the fields of quantum
information and spintronics, it is desired that dynamics of individual spins rather than
an ensemble average of spins be measured and recorded, which requires a highly sensitive
probe of electron spin resonance (ESR) and more generally spin dynamics. ESR, which
is commonly measured from microwave absorption, can also be detected electrically by
observing the change in the conductivity of the system and electrically detected ESR
(EDESR) has been extensively used in studies of defects in semiconductors with sensitivity
often higher than conventional ESR detection by several orders of magnitude. In N@C60

and TMSAMs, because of the intimate coupling between the central spin and delocalized
π electrons in the conjugated C60 and ligands, as well as the high conductance of π-
conjugated C60 and ligands, we expect that a much higher sensitivity in EDESR, possibly
to a single molecule resolution, can be achieved in N@C60 and TMSAM. This electrical
detection of spin dynamics is noninvasive in that an injected electron into N@C60 or
a TMSAM would traverse along the π-conjugated pathways without spoiling the central
spin at the N atom or at the transition-metal ion. This is in contrast to quantum dots and
related structures where an injected electron into a system with an electron spin would
destroy the original spin (invasive), resulting in loss of quantum information contained in
that spin.

8.1 Device structure and Hamiltonian

We consider a device structure (shown in Fig. 15), where an N@C60 molecule is placed
between two metallic electrodes. A scanning tunneling microscope (STM) tip can also
serve as an electrode. A DC magnetic field H0 is along the z axis, H0 = H0ez, and the mi-
crowave magnetic H1 is in the x-y plane. The proposed device structure is experimentally
feasible since all essential components have been successfully demonstrated.

The Hamiltonian of the system comprises four parts,

H = Hα +Hα′ +HN@C60
+HC. (8.1)

Here Hα(α′) describes the left (right) electrode, which is assumed to be a conventional
metal or ferromagnet, with a Fermi energy µα(α′) and a spin-polarised density of states,
ρα(α′)(ω) = ρα(α′)↑(ω) + ρα(α′)↓(ω), where ω is the energy. HN@C60

represents an isolated
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endohedral N@C60 molecule, HN@C60
= HC60

+ Hex, where HC60
is the Hamiltonian of a

C60 molecule,

HC60
= −

∑

〈ij〉σ
[t0 −α0(dij −d0)](c

†
iσcjσ +H.c.)+

∑

iσ

ǫi(V )c†iσciσ +
1

2
K

∑

〈ij〉
(dij −d0)

2. (8.2)

and Hex is the exchange interaction between electrons in C60 and the central spin S at
the N atom,

Hex = J
∑

iσσ′

c†iσσ̂σσ′ciσ′ · S. (8.3)

Here we use a tight-binding π-electron model for C60, which resembles the Su-Schrieffer-
Heeger (SSH) model for π-conjugated polymers. c†iσ creates a π electron at site i with
spin σ (↑ or ↓) along the spin quantization axis ez, i.e., the direction of H0), α0 is the
electron-lattice coupling, dij is the bond length between the adjacent ith and jth atoms
and K is the elastic constant for C-C σ bonds. ǫi is the electron energy at site i, which is
a function of an applied voltage V . The coupling between the spin at the central N atom,
S, and π electrons in the C60 cage is through an exchange interaction, which originates
from the overlap between electron wave functions of the N atom and of the C60, and σ̂ are
Pauli matrices. The exchange strength is about J = 10−4 eV. HC is the coupling between
the electrodes and N@C60, and it is assumed that only the four atoms that are closest to
the electrodes have a direct electronic coupling to the electrodes,

HC =
∑

σσ′,a={1,5}
[Tσσ′c†ασ′caσ + T ∗

σ′σc
†
aσcασ′ ] +

∑

σσ′,b={51,56}
[T ′

σσ′c
†
α′σ′cbσ + T ′∗

σ′σc
†
bσcα′σ′ ], (8.4)

where c†ασ (c†α′σ) creates an electron with spin σ in the left (right) electrode along the
electrode magnetization, mL(R), and Tσσ′ (T ′

σσ′) is the electron hopping matrix element
from spin σ in the C60 to the spin σ′ in the left (right) electrode, which depends on the
relative orientation between ez and mL(R). One possible model for T and T ′ is that the
spin dependence is due purely to an SU(2) spin rotation

T = t

(

cos θL

2
eiφL/2 sin θL

2
eiφL/2

− sin θL

2
e−iφL/2 cos θL

2
e−iφL/2

)

, T ′ = t′
(

cos θR

2
eiφR/2 sin θR

2
eiφR/2

− sin θR

2
e−iφR/2 cos θR

2
e−iφR/2

)

,

where mL(R) = (sin θL(R) cos φL(R), sin θL(R) sinφL(R), cos θL(R))
T , t and t′ are the magni-

tudes of hopping integral. These hopping matrices exclude spin-flip hopping between the
electrode and the molecule. When the spin-flip hopping is not entirely forbidden, due, for
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example, to the spin-orbit coupling in the electrode, Tσσ′ (T ′
σσ′) should be augmented by

δTσσ′ (δT ′
σσ′),

δT = t

(

−λ∗ sin θL

2
eiφL/2 λ cos θL

2
e−iφL/2

λ∗ cos θL

2
eiφL/2 λ sin θL

2
e−iφL/2

)

, δT ′ = t′
(

−λ∗ sin θR

2
eiφR/2 λ cos θR

2
e−iφR/2

λ∗ cos θR

2
eiφR/2 λ sin θR

2
e−iφR/2

)

,

where λ ≡ λ1 + iλ2 characterizes the relative importance of spin-flip hopping with respect
to spin-conserve hopping, and |λ| in general is much less than 1.

8.2 Keldysh non-equilibrium Green’s function formalism

In detection of coherent spin dynamics, it is important to retain the phase information. To
this end, we use the Keldysh non-equilibrium Green’s functions to evaluate the current
across the electrode/N@C60/electrode configuration. The current flowing out the left
electrode is

IL = −e〈ṄL〉 =
−ie
~

〈[H,NL]〉 =
e

~

∑

σσ′

∫ +∞

−∞

dω

2π
[Tσσ′G+

aσ,ασ′(ω) − T ∗
σ′σG

+
ασ′,aσ(ω)] (8.5)

where NL =
∑

ασ c
†
ασcασ. The Green’s functions G+ in the time domain are defined as

G+
ij(t, t

′) ≡ i〈c†j(t′)ci(t)〉 and G−
ij(t, t

′) ≡ −i〈ci(t)c†j(t′)〉. Using the Dyson equations for the
non-equilibrium Green’s functions, we obtain that for a device under an applied voltage
V = (µα′ − µα)/e,

IL =

∫ µL+eV

µL

dω

2π
g(ω, V ) ≡

∫ µL+eV

µL

dω

2π

∑

a={1,6},b={51,56}

∑

ηη′

e

~
Cηη′Aη′η (8.6)

where g(ω, V ) is the conductance and

Cηη′ = Tη↑ρα↑(ω)T↑η′ + Tη↓ρα↓(ω)T↓η′ ,

Aη′η =
∑

σσ′

Gr
aη′,bσ(ω)[T ′

σ↑ρα′↑(ω)T ′
↑σ′ + T ′

σ↓ρα′↓T
′
↓σ′ ]Ga

bσ′,aη(ω),

where the advanced and retarded Green’s functions in the time domain defined asGa
ij(t, t

′) ≡
iθ(t′ − t)〈{ci(t), c†j(t′)}〉 and Gr

ij(t, t
′) ≡ −iθ(t− t′)〈{ci(t), c†j(t′)}〉, where θ(x) is the Heav-

iside step function and {, } is the anticommutator.
Equation (8.6) expresses the device conductance in terms of the Green’s function of

N@C60, G
r(a)
aσ,bσ′ . Note that the Green’s function G

r(a)
aσ,bσ′ is the full Green’s function with

the effect of the electrodes contained in its self energy. Consequently, both sequential
tunneling and co-tunneling processes are included in Eq. (8.6).
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Figure 15: (a) Schematic diagram of electrical detection of electron spin dynamics in the
ferromagnet/N@C60/ferromagnetic structure. The central N atom inside the C60 cage has
an electron spin S = 3/2. Electrons flow in C60 from the magnetic electrodes via the four
C atoms (1, 6, 51, and 56). The static and microwave magnetic fields, H0 and H1, are
used to change spin dynamics. An electrical gate (not shown) can be included to modify
the charge state of N@C60. (b) I-V characteristics of the device structure in equilibrium
(H1 = 0). The black line describes the case where the site energy in a neutral C60 is
independent of voltage, and the red line describes the case where the site energy change
is proportional to the voltage. The blue bars indicate the energy levels of a neutral C60,
and the bar height represents the energy degeneracy.
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8.3 Green’s functions of N@C60

Since the exchange energy between the central spin and C60 electrons, J = 10−4 eV,
is very small compared to any energy scales in HC60

, it does not affect the geometry
of the C60, which can be obtained by minimizing the total energy Et (summation of
π-electron energies and elastic energy from σ bonds) of the single-electron Hamiltonian
HC60

, ∂Et/∂dij = 0. With the optimized geometry HN@C60
can be written as

HN@C60
=

∑

mσ

ǫmc
†
mσcmσ +

∑

mσσ′

Jmc
†
mσσ̂σσ′cmσ′ · Ŝ. (8.7)

where ǫm is eigen energy of the mth eigen state, ψm, c†m creates an electron at the mth
eigenstate, and Jm =

∑

i〈i|ψm〉〈ψm|i〉 = J is the exchange coupling between the mth
eigen state and S. To the leading term of J , the eigen energy of each level is

λm± = ǫm ± Jm|〈Ŝ〉| ≡ ǫm ± JmS, (8.8)

where S =
√

S2
x + S2

y + S2
z with Sq = 〈Ŝq〉 (q = x, y, z), and ± represents up- and down-

spin state along the direction of the averaged 〈Ŝ〉. The Green’s function in the spin space
is a 2×2 matrix, which can be written as a summation of a scalar and a vector,

Ĝij(ω) =

(

Gi↑j↑ Gi↑j↓
Gi↓j↑ Gi↓j↓

)

≡ G
r(a)

ij (ω)1̂ + G
r(a)
ij (ω) · σ̂. (8.9)

G
r

ij(ω) =
∑

m

(ω − ǫm)〈i|ψm〉〈ψm|j〉
(ω − λm+ + iΓ/2)(ω − λm− + iΓ/2)

,

Gr
ij(ω) =

∑

m

JmS〈i|ψm〉〈ψm|j〉
(ω − λm+ + iΓ/2)(ω − λm− + iΓ/2)

≡ gr
ijS.

Ĝa
ij can be obtained by replacing Γ by −Γ in Ĝr

ij. We see that the Green’s function
between any two sites in the C60 molecule depends on the central spin S in a transparent
manner.

For detection of spin dynamics, a quick electrical response to spin dynamics is neces-
sary. Thus we focus our attention in this paper on the non-resonant co-tunneling regime
at a low voltage, where the current is controlled by conductance g(µα = µα′ = µ, V = 0).
At the Fermi level, the density of states for the electrodes can be approximately written
as ρα↑(↓)(µ) = ρα(µ)[1+ (−)pα]/2 and ρα′↑(↓)(µ) = ρα′(µ)[1+ (−)pα′]/2, where pα(α′) is the
spin polarization of the conductivity in the electrode. If spin-flip hopping at the contacts
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is forbidden, i.e., λ = 0 in T and T ′, and the magnetizations of the two electrodes are
parallel to the quantization axis, we have

g(µ, 0) ∝
∑

ab

[(1+pαpα′)(|Gr

ab|2+ |gr
ab|2S2

z )+2(pα+pα′)G
r

abg
a
abSz +(pα−pα′)|gr

ab|2(S2
x +S2

y)].

(8.10)
According to Eq. (8.10), the electrical detection is much more sensitive to the longitudinal
spin component than the transverse one. Furthermore, that linear term is proportional to
the total spin polarization of the two electrodes, pα + pα′ , suggesting that ferromagnetic
electrodes would greatly enhance the spin signals in electrical transport compared to
nonmagnetic electrodes that are used in most EDESR experiments.

If the spin-flip hopping is partially allowed, the conductance

gsf(µ, 0) ∝
∑

ab

[2gr
abG

a

ab(λ1Sx − λ2Sy) + (pα + pα′)|gr
ab|2(λ1Sx − λ2Sy)Sz]. (8.11)

We see that the real (λ1) and imaginary (λ2) parts of the spin-flip hopping exposes the
transverse components Sx and Sy to the electrical transport. We see that the real (λ1)
and imaginary (λ2) parts of the spin-flip hopping exposes the transverse components Sx

and Sy to the electrical transport.

8.4 Spin dynamics and its signatures in transport

The spin dynamics, including resonance, precession, and relaxation, can be described by
the Bloch equation,

dS

dt
= γS × H − Sxex + Syey

T2
− Sz − S0

T1
ez. (8.12)

The Bloch equation is valid for both an individual spin and an ensemble average of spins
(magnetization). Here γ = gNµB/~ is the magnetogyric ratio with gN being the g-factor
for the electron spin in N@C60, which is 2, identical to that for a free electron, and µB

the Bohr magneton. H is the total applied magnetic field, consisting of a DC field H0

along the z-axis and a circularly polarised microwave field with a frequency ω in the
neighborhood of the resonance frequency ω0 = γH0, H1 = H1(ex cosωt+ ey sinωt). S0 is
the equilibrium value of the spin, and T1 and T2 are the longitudinal and transverse spin
relaxation times.

The Bloch equation is analytically solvable, and the general solution of S can be
written as q = (x, y, z),

Sq = C1e
−ζτ + C2e

−ξτ cos ητ +
C3

η
e−ξτ sin ητ + C4, (8.13)
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Figure 16: Electrically detected electron spin resonance in N@C60 when slowly sweeping
the DC magnetic field H0 = H0ez under a fixed microwave frequency ω. Panels (a), (b)
and (c) describe the longitudinal spin component Sz, relative conductance change ∆g/g0,
and derivative d(∆g/g0)/dH0 as a function of ∆H = H0 − ω/γ. Solid and dashed lines
correspond to H1 = 1/2γ

√
T1T2 and 1/γ

√
T1T2, respectively. Black (red or gray) lines are

for ferromagnetic electrodes pα = pα′ = 0.5 (nonmagnetic electrodes pα = pα′ = 10−4).
The parameters are T1 = 2T2 = 2 ms, γ = 1.76 × 107 s−1G−1, ω = 5.28 × 1010 s−1,
S0 = 0.25, Γ = 2 × 10−5 eV, and J = 10−4 eV.

where τ = γH1t, and the eigen values ζ and ξ ± iη are the three roots of the cubic
equation, (x + φ)(x + η)2 + x + η + κ2(x + φ) = 0, where φ = 1/γH1T1, η = 1/γH1T2,
and κ = (ω0 − ω)/γH0. The coefficients Ci (i = 1, ..., 4) are determined by the initial
conditions and asymptotic behavior at t = ∞.

The Bloch equation has a steady-state solution, where Sx and Sy precess around H0

at frequency ω and Sz remains constant. In most EDESR experiments, the microwave
frequency ω is xed and the DC magnetic eld H0 is swept to meet the resonance condition.
Figure 16 shows the calculated conductance change, ∆g = g(µ, 0) − g0, with g0 being
g(µ, 0) in the absence of the microwave H1, as a function of ∆H = ω/γ −H0. S0 is fixed
at S0 = 0.25. The conductance reaches maximum at the resonance, and its dependence
of ∆H is a mirror image of that of Sz. The relative conductance change of ∆g/g0 ∼ 10−4

is remarkable, for EDESR can routinely detect the relative current change of 10−9. The
derivative plot, d∆g/dH versus H , also shown in Fig. 16, is widely used to pinpoint
the magnetic field H0 at which the spin resonance occurs [(d∆g/dH)H0

= 0], and the
material g-factor can be obtained from gN = ω/µBH0. We also compare the signals
between ferromagnetic and nonmagnetic electrodes in Fig. 16. For a small pα = 10−4, a
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Figure 17: Transient relative conductance change due to longitudinal and transverse
spin relaxation in N@C60. Panel (a) describes the free relaxation of Sz after a π-pulse,
and panels (b) and (c) plot the corresponding evolution of ∆g/g0 with spin-flip hopping
forbidden (λ = 0) and spin-flip hopping allowed (λ1 = λ2 = 0.05), respectively. Panels
(d) describes the damped precession of transverse spin components, Sx (red line) and Sy

(green line) after a π/2-pulse followed by an on-resonance microwave H1 = H1(cosω0tex+
sinω0tey). Panels (e) and (f) plot the corresponding ∆g/g0 as a function of time with
λ = 0 and λ1 = λ2 = 0.05, respectively. T1 = 10T2 = 10−5 s. Other parameters are the
same as in Fig. 16.
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typical value for nonmagnetic electrodes, the signals are four orders of magnitude smaller
than those with pα = 0.5, a typical value for magnetic electrodes.

We also study the transient response in conductance after short microwave pulses. The
transient response in conductance can be used to measure T1 and T2. To measure T1, we
can apply a π-pulse at t = 0, and then turn off H1 and monitor the conductance change.
To measure T2 we can follow a π/2 pulse with a large H1 at the resonance frequency. The
corresponding transient signals are displayed in Fig. 17.

An alternative and more appealing way to measure T2 is to use transient nutation,
which employs a large H1 with γH1 ≫ 1/T2. Under this condition, the spin precesses
around H1 in the rotating frame, which makes Sz subject to both longitudinal and trans-
verse spin relaxation. The initial condition before the application of H1 is S̃x = S̃y = 0
and Sz = S0, at resonance (κ = 0), from the general solution,

Sz ≃ S0 exp
[

− 1

2

( 1

T1
+

1

T2

)

t
]

(cos τ +
η − φ

2
sin τ), (8.14)

we see that Sz decays with a time constant 2(T−1
1 +T−1

2 )−1, which is 1/2T2 when T2 ≪ T1

and T2 if T2 = T1. Thus the transient nutation allows a sensitive measurement of T2 in the
conductance change. We solve the Bloch equation for different microwave frequency ω and
calculate the conductance change as a function of ω and t, which is displayed in the color
map of Fig. 18. We see that the change in conductance exhibits a damped oscillation.
The oscillation is most pronounced near the resonance ∆ωT2 ≤ 1 and becomes diminished
when away from the resonance. The time constant for the envelope function both on- and
off-resonance is comparable to T2. This color map resembles that in measured EDESR in
C60, and its features survive when the spin-flip hopping is allowed, as shown in the figure.
The small splitting in the conductance peak around ∆ωT2 = 0 can be used to estimate
the relative importance of the spin-flip hopping.

The complete theory on spin-dependent transport across N@C60 and TMSAMs and
its dependence on the dynamics of the central spin were contained in the manuscript,
“Noninvasive electrical detection of electron spin dynamics at the N atom in N@C60”,
which has been accepted by J. Phys: Condens. Matter.

9 Transfer lengths and spin injection from a 3d fer-

romagnet into graphene

Recent demonstration of large spin injection from a ferromagnetic electrode into graphene,
together with graphene’s outstanding transport attributes, suggest a promising potential
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Figure 18: Conductance change spectrum due to transient nutation in the presence of a
DC magnetic field H0 and a strong microwave H1 = H1(cosωtex + sinωtey). ∆g/g0 as a
function of ∆ω ≡ ω− ω0 and t are plotted in color map for λ = 0 (e) and λ1 = λ2 = 0.05
(f). Panels (a) and (b) describe ∆g/g0 as a function t/T2 for ∆ωT2 = 0 (on-resonance)
and 5 (off-resonance), respectively. Panels (c) and (d) describe ∆g/g0 as a function ∆ωT2

for t/T2 = 1 and 3, respectively. Black lines are from Panel (e) and green lines from Panel
(f). H1 = 0.18 G. Other parameters are the same as in Fig. 17.
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of graphene-based spintronic devices. Spin injection into graphene was mostly studied
in a nonlocal structure, where the spin injection signal (voltage) is probed in a separate
circuit than the current injection circuit. By using the AC lock-in technique, the nonlocal
spin-injection signal is found to depend strongly on an applied DC-current bias (nonlinear
spin transport) in devices with an Al2O3 layer between Co and graphene and devices with
a transparent interface. Nonlinear spin transport is important in that it allows a thorough
comparison between theory and experiment. To date, no systematic theory is available
to describe spin injection and nonlinear spin transport in graphene devices. Here we
develop such a theory and show that the observed spin transport in both kinds of devices
can be consistently modeled by properly describing contact between 3d electrode and
2d graphene, and in particular its spin-dependent transfer lengths, which are short in
the transparent-interface devices but long in the devices with Al2O3. We find that these
transfer lengths largely determine efficacy of spin injection and detection. The concept of
spin-dependent transfer lengths introduced in this paper can be extended to other lateral
spintronic devices.

9.1 Spin-dependent transfer length

Consider a ferromagnetic electrode on top of a graphene sheet with a current injected from
the electrode into graphene (along the z axis). The injected current flows in graphene
along the x axis and the width of the graphene sheet, w, is perpendicular to the x axis.
The spin-polarized current, Is, in graphene at x is

Is(x) = w
1

Rs
�

dµs(x)

dx
. (9.1)

Here µs is the spin-polarized electrochemical potential and s =↑ or ↓ represents spin
polarization. Rs

�
is the graphene sheet resistance for spin s. When the magnetic proximity

is neglected, Rs
�

= 2R� with R� being the sheet resistance of graphene. Because of the
current injection, from x to x+ dx, the current will increase by an amount of

dIs = wdx[µs(x) − µf
s ]/ρ

s
c ≡ wdx∆µs(x)/ρ

s
c (9.2)

where ρs
c is the spin-dependent intrinsic contact resistivity, which arises from carrier

thermionic emission and/or tunneling and is present even without an interfacial layer
between electrodes and graphene, and µf

s is the spin-dependent electrochemical potential
at the electrode surface next to the graphene (z = 0). The value µf

s is independent of x
because in the electrode the current is presumably along the z direction. From Eqs. (1)
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and (2), we obtain
d2∆µs(x)

dx2
− ∆µs(x)

L2
s

= 0 (9.3)

where Ls = (ρs
c/R

s
�
)1/2 is the transfer length for spin s, which measures how fast the cur-

rent transfers from under the contact (lateral) into the contact (vertical). For a magnetic
electrode, L↑ 6= L↓, indicating that up-spin and down-spin currents have different paths
when injected from the electrode to graphene.

For a finite electrode located at −a0 < x < 0, the general solution to Eq. (3) is
∆µs(x) = Ae−x/Ls +Be(x+a0)/Ls , and from Eq. (1), it can readily be verified that

Is(x) = Is(0) cosh
x

Ls
+ ∆µs(0)

w

Rs
�
Ls

sinh
x

Ls
(9.4)

∆µs(x) = ∆µs(0) cosh
x

Ls
+ Is(0)

Rs
�
Ls

w
sinh

x

Ls
. (9.5)

These are nothing but the transmission line equations of the circuit shown in Fig. 1,
where G = (w/ρs

c) and R = Rs
�
/w. We emphasize that there is a significant distinction

between the contact resistance for charge and spin transport. For charge transport the
current outside the circuit must be zero. Whereas for spin transport, up-spin and down-
spin currents are finite and opposite in sign outside the current circuit, which is in fact the
foundation of nonlocal spin detection. The contact resistance obtained from resistance
measurements is

1

Rc
=

∑

s

Is(0)

∆µs(0)

∣

∣

∣

Is(−a0)=0
=

∑

s

w

2R�Ls
tanh

a0

Ls
, (9.6)

which is not scaled with the contact size a0. Equation (6) suggests that the spin-dependent
transfer lengths can be determined by measuring Rc as a function of a0.

9.2 Transfer length and spin injection

We examine how the spin-dependent transfer lengths affect spin injection. We consider
a current of I0 + I injected into graphene from an electrode at −a0 < x < 0 (the other
electrode in the current circuit is assumed at x = ∞), where I0 is a DC bias current and
I is a low-frequency AC current, and study the spin-injection signals at the same AC
frequency. The DC bias current gives rise to an electric field E = dµ0/dx = I0R�/w,
where µ0 is the average (spin-independent) electrochemical potential in graphene. Spin
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Figure 19: Spin-dependent currents (b) and spin accumulation (c) as a function of location
in a ferromagnet/graphene structure. The inset of panel (b) shows a top view of the
ferromagnet from which an electrical current is injected into graphene and flows to right
(x > 0). Panel (a) shows an equivalent circuit for an electrode/graphene contact. Solid
(dashed) lines in panel (b) describe the up-spin (down-spin) current. Red and green curves
correspond to L↑ = 0.2a0 and 5a0, respectively. a0 = 1µm, σf = 1.7 × 105, Lf = 50 nm,

L = 1µm, (σf
↑ − σf

↓ )/σf = 0.5, R� = 1 kΩ.
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transport in graphene was experimentally found to quantitatively follow the spin drift-
diffusion equation derived for semiconductors, which can be written in terms of spin-
dependent electrochemical potentials,

d2(µ↑ − µ↓)

dx2
+
νE

D

d(µ↑ − µ↓)

dx
− µ↑ − µ↓

L2
= 0, (9.7)

where ν is the carrier mobility, D is the diffusion constant, E is the applied electric field,
and L is the intrinsic spin diffusion length. For ferromagnetic electrodes, the second term
in the above equation can be neglected, and Eq. (9.7) becomes the conventional spin
diffusion equation.

When I0 = 0, i.e., the linear regime of spin injection, the spin splitting in electrochem-
ical potential, µ↑(x) − µ↓(x), is proportional to the AC current I, and we define the spin
accumulation and the spin injection efficiency as

RSA(x) =
µ↑(x) − µ↓(x)

I
, α =

I↑ − I↓
I

|z=0. (9.8)

Figure 19 shows spin-polarized currents, Is, and spin accumulation, RSA, as a function of
x for different transfer lengths. We see that when the transfer lengths are much smaller
than the contact size, both the spin current and accumulation concentrate at the inner
edge of the circuit. When the transfer lengths are much greater than the contact size, the
spin current and accumulation spread across the entire contact.

The injected spin current into the graphene will flow out at the two edges of the elec-
trode. The relative weights of spin currents at the two edges are Pl = (I↑−I↓)x=−a0

/(I↑−
I↓)z=0 and Pr = −(I↑−I↓)x=0/(I↑−I↓)z=0, where Pl +Pr = 1. In Fig. 20, we depict Pl, Pr

and the spin injection efficiency, α, as a function of the transfer length. We see that for
Ls/a0 < 1, most of the spin current flows to the inner edge, where the charge current is
finite, and the spin injection efficiency is small. As the transfer length increases, the spin
currents are equally distributed between the two edges and the spin injection efficiency
increases. Since spin injection signals are measured in a voltage circuit next to the current
circuit, it is spin accumulation and current at the outer edge, RSA(−a0) and Pl, that are
more important to the measurements. In literature, spin accumulation and spin current
are always implicitly assumed to be symmetric at the two edges, which, as shown in Figs.
19 and 20, is valid only when Ls/a0 ≫ 1.

9.3 Transfer length and spin detection

To understand spin detection and its dependence of transfer lengths, we consider explicitly
only two contacts, p with size c0 from the voltage circuit and l with size a0 from the current
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circuit, separated by d, as schematically shown in Fig. 21. The other two contacts in
the voltage and current circuits can be regarded to be located at x = −∞ and x =
+∞. Because of spin injection in the current circuit, a finite difference in electrochemical
potential between the two electrodes in the voltage circuit will be developed, µp

0 − w2,
where w2 is the electrochemical potential at x = −∞. The nonlocal resistance is defined
as

Rnl =
µp

0 − w2

I
, (9.9)

It is easy to verify that µp
0 − w2 flips the sign if electrode p reverses its magnetization.

Experimentally the nonlocal resistance is often defined as Re
nl =

µp
0
(p)−µp

0
(ap)

I
, where µp

0(p)
(µp

0(ap)) represents the electrochemical potential when the magnetization of electrode p

is parallel (antiparallel) with that of electrode l. Hence Re
nl = 2Rnl.

Since electrode p is used for probing the spin accumulation at electrode l, it is desired
that the measured signal be independent of properties of electrode p. Spin currents in
electrode p come from the spin currents at electrode l, which flows into electrode p at
its right edge and then splits into two portions: one into graphene at the left edge with a
percentage of P̃l, and the other into the electrode with a percentage of P̃e, P̃l + P̃e = 1.
We plot in Fig. 21 P̃l, P̃e, and Rnl/RSA as a function of the transfer length. We find that
when Ls/a0 > 1, P̃e is small, and both Rnl and RSA(−a0) depend very weakly on Ls with
their ratio remaining constant. Whereas for Ls/a0 < 1, P̃e is large. Both the nonlocal
resistance and the spin accumulation depend strongly on Ls, and the ratio between them
also is strongly varying with Ls, suggesting that the measured nonlocal resistance does
not accurately reflect the spin accumulation at electrode l. This indicates that a “leaking”
spin current into the electrode is undesirable for a reliable measurement of spin signals.
This resembles measurement of electrical voltage: a good voltmeter must have a very
large resistance (small leaking current).

9.4 Nonlinear spin transport: comparison with experiment

To quantitatively model experimental measurements, we consider both the electrodes in
the current circuit and the electrode in the voltage circuit that is next to the current
circuit, as schematically shown in Fig. 22(a). The experimentally measured signals for
the transparent-interface device and for the device with Al2O3 are plotted in Fig. 22(a)
and Fig. 22(b), respectively. We examine the bias-current dependence of the the nonlo-
cal resistance by solving the spin drift-diffusion equation in Eq. (9.7) with appropriate
boundary conditions Eqs. (9.4) and (9.5).

We fix L↓/L↑ = 1.3 and fit the data by adjusting L↑. Good agreement between theory
and experiment is obtained when the transfer lengths L↑ = 40 nm is used for n-type and
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L↑ = 33.5 nm for p-type graphene. These lengths correspond to the contact resistance
of 43 and 69 Ω for n-type and p-type, respectively, which is in the range of measured
contact resistance for the same device and consistent with the observed larger contact
resistance in p-type than in n-type. Thus the electron-hole asymmetry for structures with
a transparent interface can be attributed to their different contact resistances for n- and
p-type graphene. For the device with Al2O3, the transfer length used is 800 nm, which
corresponds to a contact resistance of 16.3 kΩ for the 90 nm electrode, again consistent
with the contact resistance measurements of the same device. We see from panels (c) and
(d) that the DC-bias current greatly modifies Pl and Pr with Pl + Pr = 1 maintained,
i.e., redistributes the spin currents between the two edges. The negative Pl in Fig. 22(d)
indicates the sign change of the spin current. The current dependence of Pl and Re

nl have a
very similar shape, suggesting that the observed current-dependent nonlocal resistance is
due mainly to the electric-field-induced spin current redistribution rather than the change
of spin injection efficiency, which depends on the current weakly, as shown in panels (c)
and (d).

The above results indicate that the spin-dependent transfer length, which measures
the length required for a current to change from lateral in 2d graphene to vertical in
a 3d electrode, largely determines efficacy of spin injection and detection. The theory
quantitatively explains seemingly conflicting experimental measurements in these devices
by different groups and indicates that the observed DC-bias dependence is due mainly to
redistribution of the spin current near the ferromagnetic electrode but not to a DC bias-
induced change in the spin-injection efficiency, as believed in the literature. The excellent
agreement between theory and experiment underscores the necessity of the spin-dependent
transfer length in describing graphene and other lateral spintronic device structures. The
complete theory and its application to various experimental structures were included in the
manuscript, “Transfer lengths and spin injection from a 3d ferromagnet into graphene”,
which has been accepted by Phys. Rev. B.

10 Spin injection into organics

We have collaborated with Prof. E. Nowak from University of Delaware to demonstrate
spin injection into organic materials. Magnetoresistance MR measurements for structures
with micrometer-thick regioregular, polythiophene rr-P3HT polymer layers between two
ferromagnetic contacts indicate a large spin injection. Hole spin transport through the
polymer layer leads to a relative MR value in 300 mT fields of 0.3% at 300 K and increasing
to 18% at 25 K. Based on our theory of spin transport in organic materials we infer
intrinsic spin lifetime and diffusion length to be about 7 ms and 0.4 m, respectively. The
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Figure 22: (Color online) Nonlocal resistance for device structures with a transparent
interface (a) and with an Al2O3 interfacial layer (b) as a function of DC-bias current.
Solid (open) circles in (a) are experimental data for the n-type (p-type) graphene when
electrode p flips its magnetization. Blue (green) circles in (b) are for experimental signals
when electrode l (p) flips its magnetization. Solid lines in (a) and (b) are theoretical
results. Panels (c) and (d) are calculated spin injection efficiency α (dot-dashed lines),
spin current distribution Pl (solid lines), and Pr (dashed lines) at the left and right edges
of electrode l for p-type graphene when the electrodes magnetizations are parallel for the
devices in panels (a) and (b), respectively. All three Co electrodes have σf = 1.7 × 105

and (σf
↑ − σf

↓ )/σf = 0.5. The spin diffusion length in graphene is 1 µm.
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spin transport coherence length is enhanced by the electric field, as suggested by the
theory. leading to an enhancement in MR with increasing applied voltage. This work
was published in the paper, “Large magnetoresistance of thick polymer devices having
La0.67Sr0.33MnO3 electrodes”, Appl. Phys. Lett. 95, 232507 (2009).
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