

 iTOUGH2 Universal Optimization

Using the PEST Protocol

User’s Guide

Stefan Finsterle

Earth Sciences Division
Lawrence Berkeley National Laboratory

University of California
Berkeley, CA 94720

July 2010

This work was supported, in part, by the Assistant Secretary for Energy Efficiency and Renewable
Energy, Office of Wind and Geothermal Technologies, of the U.S. Department of Energy, and as
part of the Subsurface Science Scientific Focus Area funded by the U.S. Department of Energy,
Office of Science, Office of Biological and Environmental Resources under Contract Number DE-
AC02-05CH11231.

dshawkes
Typewritten Text
LBNL-3698E

dshawkes
Typewritten Text

dshawkes
Typewritten Text

iTOUGH2-PEST USER’S GUIDE

DISCLAIMER

This document was prepared as an account of work sponsored by the
United States Government. While this document is believed to contain
correct information, neither the United States Government nor any
agency thereof, nor The Regents of the University of California, nor
any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed,
or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or
service by its trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or any agency thereof, or
The Regents of the University of California. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof, or The Regents of the
University of California.

Ernest Orlando Lawrence Berkeley National Laboratory is an equal
opportunity employer.

TABLE OF CONTENTS

1. INTRODUCTION ... 7
2. INSTALLATION AND EXECUTION ... 9
3. THE PEST PROTOCOL ... 10

3.1 General Concept ... 10
3.2 Template File .. 11
3.3 Instruction File.. 13

4. iTOUGH2-PEST INPUT FORMATS ... 18
4.1 Introduction... 18
4.2 Generic iTOUGH2-PEST Input File .. 18
4.3 PEST-Related iTOUGH2 Commands .. 20

5. EXAMPLES .. 30
5.1 Polynomial Fitting Using iTOUGH2-PEST ... 30
5.2 Parallel Inversion of TOUGHREACT Model .. 37
5.3 Evaluating Parallelization of TOUGH2-MP Models.. 43
5.4 Adjusting Pre-Processor and Simulation Parameters ... 49
5.5 Pareto Frontier .. 58

6. CONCLUDING REMARKS... 62
7. ACKNOWLEDGMENT.. 62
8. REFERENCES .. 63

iTOUGH2-PEST USER’S GUIDE iii TABLE OF CONTENTS

LIST OF FIGURES

Figure 1. iTOUGH2-PEST architecture.. 8
Figure 2. Example model input file... 12
Figure 3. Template file corresponding to model input file of Figure 2... 12
Figure 4. Example model output file... 13
Figure 5. Example instruction file related to the output file of Figure 4....................................... 13
Figure 6. Generic iTOUGH2 input file with PEST-related blocks. .. 19
Figure 7. FORTRAN program that evaluates a polynomial for a given set of coefficients.......... 31
Figure 8. Text file Polynomial.in providing input required by program Polynomial.exe. 32
Figure 9. Text file Polynomial.out with screen output from program Polynomial.exe................. 32
Figure 10. Template file Polynomial.tpl, creating input files Polynomal.in for different values of

the polynomial coefficients.. 33
Figure 11. Instruction file Polynomial.ins used to peruse output file Polynomial.out, extracting 21

values y(x).. 33
Figure 12. iTOUGH2 input file Poli for polynomial fit.. 35
Figure 13. Dummy TOUGH2 input file.. 36
Figure 14. Data (symbols), polynomial with initial guess of coefficients (dash-dotted line), and fit

after three iTOUGH2 Levenberg-Marquardt iterations (solid line). 36
Figure 15. Parameter block for TOUGHREACT inversion, also showing corresponding PEST

control file entry. ... 38
Figure 16. Excerpt of observation block for TOUGHREACT inversion.. 39
Figure 17. Computational parameter block for TOUGHREACT inversion. 40
Figure 18. Excerpt of template file for TOUGHREACT inversion. ... 41
Figure 19. Excerpt of instruction file for TOUGHREACT inversion... 41
Figure 20. Unstructured grid with approximately 90,000 elements and 270,000 connections,

generated using WinGridder [Pan, 2007].. 44
Figure 21. PEST template file it2mp.tpl that creates a Unix shell script file for running

TOUGH2_MP flow and transport simulations on an adjustable number of processors.44
Figure 22. PEST instruction file it2mpF.ins that reads performance metrics from TOUGH2_MP

flow simulation output file OUTPUT_F.. 45
Figure 23. Parameter and observation block of iTOUGH2-PEST input file. 45
Figure 24. Computation block of iTOUGH2-PEST input file. ... 46
Figure 25. CPU time and iteration statistics as a function of processors. 47
Figure 26. Unix script file that generates mesh for discrete fracture network model. 50
Figure 27. Template file input.tpl. .. 51
Figure 28. Four realizations of the base discrete fracture network, permeability field, and steady-

state saturation distribution.. 52
Figure 29. TOUGH2 input file DFNM for simulating unsaturated flow through discrete fracture

network and seepage into underground opening. .. 53
Figure 30. iTOUGH2 input file DFNMi, PARAMETER block.. 54

iTOUGH2-PEST USER’S GUIDE iv LIST OF TABLES

Figure 31. iTOUGH2 input file DFNMi, OBSERVATION block. .. 55
Figure 32. iTOUGH2 input file DFNMi, COMPUTATION block. .. 56
Figure 33. (a) Histogram of number of fractures generated for different statistical input parameters,

and (b) resulting distribution of annual seepage per meter of tunnel. 57
Figure 34. Template file for creating an iTOUGH2 input file with adjustable weights for different

observations that represent different objectives... 59
Figure 35. Instruction file to for extracting residual contaminant mass in place and mean pumping

rate. .. 59
Figure 36. iTOUGH2-PEST input file for running multiple iTOUGH2 inversions to create Pareto

frontier. .. 60
Figure 37. Pareto frontier. ... 61

LIST OF TABLES
Table 1. Summary Table of Search Directives in Instruction File .. 16
Table 2. iTOUGH2-PEST-PVM and PPEST Inversion Results of TOUGHREACT Model 42
Table 3. Steps to Generate Discrete Fracture Network Model.. 49

iTOUGH2-PEST USER’S GUIDE v LIST OF TABLES

iTOUGH2-PEST USER’S GUIDE vi LIST OF TABLES

PAGE INTENTIONALLY LEFT BLANK

1. INTRODUCTION

iTOUGH2 (http://www-esd.lbl.gov/iTOUGH2) is a computer program for parameter estimation,
sensitivity analysis, and uncertainty propagation analysis [Finsterle, 2007a, b, c]. iTOUGH2
contains a number of local and global minimization algorithms for automatic calibration of a model
against measured data, or for the solution of other, more general optimization problems (see, for
example, Finsterle [2005]). A detailed residual and estimation uncertainty analysis is conducted to
assess the inversion results. Moreover, iTOUGH2 can be used to perform a formal sensitivity
analysis, or to conduct Monte Carlo simulations for the examination for prediction uncertainties.
iTOUGH2’s capabilities are continually enhanced.

As the name implies, iTOUGH2 is developed for use in conjunction with the TOUGH2 forward
simulator for nonisothermal multiphase flow in porous and fractured media [Pruess, 1991].
However, iTOUGH2 provides FORTRAN interfaces for the estimation of user-specified parameters
(see subroutine USERPAR) based on user-specified observations (see subroutine USEROBS). These
user interfaces can be invoked to add new parameter or observation types to the standard set
provided in iTOUGH2. They can also be linked to non-TOUGH2 models, i.e., iTOUGH2 can be
used as a universal optimization code, similar to other model-independent, nonlinear parameter
estimation packages such as PEST [Doherty, 2008] or UCODE [Poeter and Hill, 1998]. However,
to make iTOUGH2’s optimization capabilities available for use with an external code, the user is
required to write some FORTRAN code that provides the link between the iTOUGH2 parameter
vector and the input parameters of the external code, and between the output variables of the
external code and the iTOUGH2 observation vector. While allowing for maximum flexibility, the
coding requirement of this approach limits its applicability to those users with FORTRAN coding
knowledge.

To make iTOUGH2 capabilities accessible to many application models, the PEST protocol
[Doherty, 2007] has been implemented into iTOUGH2. This protocol enables communication
between the application (which can be a single “black-box” executable or a script or batch file that
calls multiple codes) and iTOUGH2. The concept requires that for the application model:

 (1) Input is provided on one or more ASCII text input files;

 (2) Output is returned to one or more ASCII text output files;

 (3) The model is run using a system command (executable or script/batch file); and

 (4) The model runs to completion without any user intervention.

For each forward run invoked by iTOUGH2, select parameters cited within the application model
input files are then overwritten with values provided by iTOUGH2, and select variables cited within
the output files are extracted and returned to iTOUGH2. It should be noted that the core of
iTOUGH2, i.e., its optimization routines and related analysis tools, remains unchanged; it is only
the communication format between input parameters, the application model, and output variables
that are borrowed from PEST. The interface routines have been provided by Doherty [2007]. The
iTOUGH2-PEST architecture is shown in Figure 1.

iTOUGH2-PEST USER’S GUIDE PAGE 7 OF 64

http://www-esd.lbl.gov/iTOUGH2

Input Parameter Set p

Output Variables z

z/pp=f(z*-z) F(z(p))

Further Analyses

PEST
Template

File

PEST
Instruction

File

Input
File

Output
File

Figure 1. iTOUGH2-PEST architecture.

This manual contains installation instructions for the iTOUGH2-PEST module, and describes the
PEST protocol as well as the input formats needed in iTOUGH2. Examples are provided that
demonstrate the use of model-independent optimization and analysis using iTOUGH2.

iTOUGH2-PEST USER’S GUIDE PAGE 8 OF 64

2. INSTALLATION AND EXECUTION

Compilation and installation of iTOUGH2 is described in Section 5 of Finsterle [2007a] as well as
in read-me files distributed with the code. To make the PEST protocol available in iTOUGH2, the
following steps have to be performed:

(1) Edit file it2stubs.f and rename subroutines INPEST, INITIALIZEPEST, UPDATEPEST,
OBSERVATPEST, and FINALIZEPEST (e.g., by adding an “x” at the end of the
subroutine name); recompile it2stubs.f.

(2) Adjust maximum array dimensions in file maxsize.inc. If iTOUGH2 is intended to be used
for non-TOUGH2 models only, memory can be saved by minimizing TOUGH2-related
parameters, specifically MAXEL, MAXCON, MAXSS, MAXR, MAXTIMES, etc. A run-time
error message will be issued if arrays are insufficiently dimensioned.

(3) Compile file it2pest.f and mio.f90 and link them to the standard iTOUGH2 object files to
create the executable. (On Unix platforms, you may use the script it2make with option
-pest, or you may edit file Makefile, assign object files it2pest.$(EXO) and mio.$(EXO) to
the environment variable SPECIAL.)

(4) Even if iTOUGH2-PEST is to be used for non-TOUGH2 models only, an equation-of-state
(EOS) module needs to be selected and linked to the code, even though the TOUGH2
simulation part will be bypassed during execution of iTOUGH2-PEST. There are two
options:

a. Any regular EOS module can be selected for compilation and linking. During
execution, a dummy TOUGH2 input file needs to be provided, with the keyword
PEST in the first line.

b. The special EOS module eospest.f can be compiled and linked, in which case no
TOUGH2 input file is needed during execution.

Like any iTOUGH2 run, iTOUGH2-PEST reads in two main input files: an iTOUGH2 and a
TOUGH2 input file. The latter is required even if no TOUGH2 forward model is used, in which
case a dummy TOUGH2 input file must be provided, containing the word PEST in Columns 1–4 of
the first line.

On Unix platforms, the script file itough2 is used, which copies all input and data files to a
temporary directory. The PEST template and instruction files, as well as the executable or script file
used to run the forward model, also need to be copied to the temporary directory. This is achieved
by simply adding lines with the statement “FILE: filename” (one line for each PEST file)
anywhere in the iTOUGH2 input file.

iTOUGH2-PEST USER’S GUIDE PAGE 9 OF 64

3. THE PEST PROTOCOL

The PEST protocol is described in full in Doherty [2008]. (Note that programs of the USGS
JUPITER suite [Banta et al., 2008] use the same protocol.) The following subsections provide a
brief overview of the key concepts and features. For a detailed description of the interface, the
reader is referred to Section 3 of Doherty [2008].

3.1 General Concept

For iTOUGH2 to be model-independent, the communication between the optimization routines and
the forward model must be general and defined with a clear, simple interface, across which
parameter values (updated by iTOUGH2) and resulting model output at the calibration points
(calculated by the forward model) are exchanged. Moreover, iTOUGH2 must be able to call the
forward model (or series of forward models) using a simple system command. Finally, the forward
model must run without user intervention. These conditions can be described in more detail as
follows:

(1) The input file or files that contain the parameters to be estimated or modified by iTOUGH2
must be ASCII text files. Note, however, that models that receive their input directly from the
user through keyboard entry can also be used, as keyboard inputs can be typed ahead of time
into a file, and the model can be directed to look to this file for its input using “< filename”
on the model command line, which indicates redirection of standard input from the keyboard to
the specified file.

(2) A so-called template file (see detailed description in Section 3.2) is used to identify which input
variables are subject to parameter estimation.

(3) The output file that contains the model calculated values of the observable variables that will be
compared to the corresponding measured data needs to be an ASCII text file. Note, however,
that models that use screen output can also be used by using “> filename” on the model
command line, which indicates redirection of standard output from the screen to the specified
file.

(4) A so-called instruction file (see detailed description in Section 3.3) is used to extract output
variables at calibration points.

(5) The code must be capable of being run using a system command. The code itself can be written
in any programming language; no access to the source code is required.

(6) This system command can be (a) the name of an executable (e.g., model.exe), (b) an
executable with arguments (e.g., “model.exe < input > output”; or “./model –i
input –o output”) or (c) a batch or script file that executes multiple, linked programs
(e.g. “run-models.bat” or ”cat run-models | sh”).

iTOUGH2-PEST USER’S GUIDE PAGE 10 OF 64

(7) The code must be capable of being run to completion without interactive user intervention (see
(1) above for comment about keyboard input).

3.2 Template File

iTOUGH2 requests a model evaluation each time a new parameter vector is proposed. The updated
parameter values need to be written to the model input files which hold them. A template file is
used to identify those parameters in the input file that iTOUGH2 is allowed to vary. A template file
is a replica of a model input file except that the space occupied by each variable parameter is
replaced by a sequence of characters which identify the space occupied by that parameter. A
template file is required for each input file that contains one or more parameters to be adjusted for
model calibration, sensitivity analysis, or uncertainty propagation analysis.

To construct a template file, a copy of the model input file should be made, and each space
occupied by a parameter needs to be replaced by a set of characters that both identify the parameter
and define its location (i.e., position and width) in the input file. A parameter is identified by a
unique name of up to twelve characters in length. A given parameter can be referenced once or
many times, i.e., a single parameter value to be estimated may refer to multiple input variables. For
each simulation run invoked by iTOUGH2, the template is copied to the model input file, and each
parameter space is replaced with the appropriate parameter value.

A model input file can be of any length. However, a line cannot be longer than 2000 characters. The
same applies to template files. It is suggested that template files be provided with the extension
“.tpl” in order to distinguish them from other types of files. Figure 2 shows a simple input file, and
Figure 3 is the corresponding template file. The meaning and purpose of each of the numbers in the
input file are of no relevance here, as they are also unknown to iTOUGH2. We assume that the first
three real values (in rows 2–4) hold three coefficients that we would like to estimate using
iTOUGH2.

Figure 3 shows, the first line of a template file must contain the letters “ptf” (which stands for
“PEST template file”), followed by a space, followed by a single character. The character following
the space is the “parameter delimiter”. In a template file, a “parameter space” is identified as the set
of characters between and including a pair of parameter delimiters. When iTOUGH2 writes a model
input file based on a template file, it replaces all characters between and including these parameter
delimiters by a number representing the current value of the parameter that owns the space; that
parameter is identified by name within the parameter space, between the parameter delimiters.

The parameter delimiter can be any (special) character except [a-z], [A-Z] and [0-9]. Moreover, the
parameter delimiter character must not appear anywhere within the template file except in its
capacity as a parameter delimiter.

All parameters are referenced by name. The parameter names in template files (where the locations
of parameters on model input files are identified) must be identical to those in the > PARAMETER
block of the iTOUGH2 input file (which is the equivalent of the PEST control file). Parameter
names can be from one to twelve characters in length, any characters being legal except for the
space character and the parameter delimiter character. Parameter names are case-insensitive. Each
parameter space is defined by two parameter delimiters; the name of the parameter to which the
space belongs must be written between the two delimiters. The minimum allowable parameter space
width is thus three characters: one character each for the left and right delimiters and one for the
parameter name.

Section 3.3 of Doherty [2008] contains more details about the template file. The PEST utility
program TEMPCHEK can be used to check whether the template file obeys the PEST protocol, and

iTOUGH2-PEST USER’S GUIDE PAGE 11 OF 64

to generate a model input file from a template file given a set of parameter values (see Section 10.1
f Doherty [2008]). o

2
 0.5000000E+00
 2.0000000E+00
 1.5000000E+00
5
0.25
0.50
1.00
1.50
2.00

Figure 2. Example model input file.

ptf #
2
#coeff0 #
#coeff1 #
#coeff2 #
5
0.25
0.50
1.00
1.50
2.00

Figure 3. Template file corresponding to model input file of Figure 2.

iTOUGH2-PEST USER’S GUIDE PAGE 12 OF 64

3.3 Instruction File

The instruction file directs the interface to identify and extract from one or multiple ASCII output
files those “observable” values for which a corresponding measured value (or target value) is
available. Since output files often change from run to run, the simple template concept used for
locating variables in an input file (see Section 3.2) cannot be applied; instead, a relatively small set
of basic search directives for locating fields in the output file are provided in the instruction file.

Details about the concept and search directives of an instruction file can be found in Doherty
[2008]. Here, we provide a simple example (Figure 5) and summarize the search directives (Table
1). The basic concept is that each output file is parsed line by line from top to bottom, until a
Primary Marker is identified. Line advances and Secondary Markers are used to find further
reference points and eventually to locate an observation.

Simulation Output File
======================
Iteration No. 1 Time = 0.2 years
...
Iteration No. 5 Time = 1.0 years
 Depth Pressure
 1.00 1.21072
 2.00 1.51313
 3.00 2.07536
 4.00 2.95097
 5.00 4.19023
 6.00 5.87513
 7.00 8.08115

Figure 4. Example model output file.

pif @
@Iteration@ @1.0 years@
l2 [pres1]21:27
l1 (pres2)11:25
l1 t20 !pres3!
@ 4.00 @ !pres4!
l1 w w !pres5!
l2 !dum! !pres7!

Figure 5. Example instruction file related to the output file of Figure 4.

The first line of an instruction file must begin with the three letters “pif” (which stand for “PEST
instruction file”), followed, after a single space, by a single character, the marker delimiter. The role
of the marker delimiter in an instruction file is to define the extent of a marker; a marker delimiter
must be placed just before the first character of a text string comprising a marker and immediately

iTOUGH2-PEST USER’S GUIDE PAGE 13 OF 64

after the last character of the marker string. The text between a pair of marker delimiters is not
interpreted as a list of search instructions, but is used as a marker.

A Marker Delimiter must not be one of the characters A–Z, a–z, 0–9, !, [,], (,), :, or &. The marker
delimiter must not occur within the text of any markers.

Each observation must be provided with a unique name. An Observation Name must be 20
characters or less in length. These 20 characters can be any ASCII characters except for [,], (,), or
the marker delimiter character. These same observation names must also be cited in the
> OBSERVATION block of the iTOUGH2 input file.

Each observation name is unique and thus may occur only once in all instruction files. There is one
observation name, however, to which these rules do not apply—the dummy observation name
“dum”—which is simply a mechanism for model output file navigation. It may occur many times, if
necessary, in an instruction file. While “dum” is used to located a field in an output file, the value is
not extracted and passed to iTOUGH2 as an observation

If a number of instruction items appear on a single line of an instruction file (see Figure 5), these
items must be separated from each other by at least one space. Instructions pertaining to a single
line on a model output file are written on a single line of an instruction file. Thus, the start of a new
instruction line signifies that at least one new model output file line must be read. However, if the
first instruction on the new line is the character “&”, the new instruction line is simply a
Continuation of the old one.

Unless it is a continuation of a previous line, each instruction line must begin with either of two
instruction items: a primary marker or a line advance item. The Primary Marker is a string of
characters, bracketed by a pair of marker delimiter characters. If a marker is the first item on an
instruction line, then it is a primary marker; if it occurs later in the line, following other instruction
items, it is a secondary marker. On encountering a primary marker in an instruction file, the model
output file is read line by line, searching for the string between the marker delimiter characters.
When the string is found, the “cursor” is placed at the last character of the string; further
instructions pertain to the parts of the model output file line following the string identified as the
primary marker.

The syntax for the Line Advance item is “ln” or “Ln” where n is the number of lines to advance.

A Secondary Marker is a marker which does not occupy the first position of an instruction line. It
moves the cursor along the current model output file line until it finds the secondary marker string,
and places its cursor on the last character of that string. If the secondary marker is not found, the
line is advanced.

The Whitespace instruction is a simple “w”, separated from its neighboring instructions by at least
one blank space. The instruction moves the cursor forward from its current position until it
encounters the next blank character, and then moves the cursor forward again until it finds a
nonblank character, finally placing the cursor on the blank character preceding this nonblank
character.

The Tab instruction places the cursor at a user-specified character position (i.e., column number) on
the model output file line which is currently processed. The instruction syntax is “tn” where n is
the column number.

iTOUGH2-PEST USER’S GUIDE PAGE 14 OF 64

A Fixed Observation can be found between, and including, columns n1 and n2 on the model
output file line on which the cursor is currently resting. The instruction item for a fixed observation
consists of two parts. The first part consists of the observation name enclosed in square brackets,
while the second part consists of the first and last columns from which to read the observation. No
space must separate these two parts of the observation instruction.

Semi-Fixed Observations are located by two numbers identifying two column numbers n1 and
n2. An observation is read if it is fully contained, starts, or ends somewhere between columns n1
and n2 However, reading of an observation fails if no non-blank characters are found in the space
between the column numbers, or if more than one space-separated word is found. Note that the
width of the observation value can be greater than the difference between the column numbers cited
in the semi-fixed observation instruction. The instruction item for a semi-fixed observation consists
of two parts. The first part consists of the observation name enclosed in parentheses, while the
second part consists of the two column numbers, separated by a colon. There must be no space
separating these two parts of the semi-fixed observation instruction.

A Non-Fixed Observation instruction does not include any column numbers because the number is
found using secondary markers and/or other navigational aids such as whitespace and tabs which
precede the non-fixed observation on the instruction line. The non-fixed observation is read as a
free-format number following the current cursor position. The end of the number is indicated by a
blank character, end of line, or the first character of a secondary marker. A non-fixed observation is
represented by the name of the observation surrounded by exclamation marks.

It is suggested that instruction files be provided with the extension “.ins” in order to distinguish
them from other types of files. The instruction file can be checked for syntactical correctness and
consistency using the PEST utility program INSCHEK (see Section 10.2 of Doherty [2008]).

iTOUGH2-PEST USER’S GUIDE PAGE 15 OF 64

Table 1. Summary Table of Search Directives in Instruction File

Instruction
Item

Description Example Instruction

General Output file parsed from top to bottom; lines
from left to right.

Instruction lines must start either with a
Primary Marker, a Line Advance, or the
continuation character “&”.

If a number of instruction items appear on a
single line of an instruction file, these items
must be separated from each other by at least
one space.

Instructions pertaining to a single line on a
model output file are written on a single line of
an instruction file.

@OUTPUT@ w !obs1!

& w w !obs2!

First line Keyword and marker delimiter pif @

Marker
Delimiter

A marker delimiter must not be one of the
characters A–Z, a–z, 0–9, !, [,], (,), :, or &.

The marker delimiter must not occur within the
text bracketed by any markers.

pif @

Observation
Name

Unique name identifying observation;

maximum 20 characters long;

any ASCII characters except for [,], (,), or the
marker delimiter character.

arg1

y2

obs3

pressure_at_X=4

conc-after-5-year

Dummy
Observation

Dummy observation can be used to navigate
line by reading non-fixed observations;
however, values are not extracted.

The observation name for dummy variables
must be dum.

l1 !dum! !dum! !sat!

Primary
Marker

Marker at beginning of instruction line.

Bracketed by Marker Delimiter

@OUTPUT@

Line Advance At beginning of instruction line.

Ln advances by n lines

l1

L56

Secondary
Marker

Marker that does not occupy first instruction
item

Searches within current line from left to right.

Advances to next line of not found.

@OUTPUT@ @TIME IS@

iTOUGH2-PEST USER’S GUIDE PAGE 16 OF 64

iTOUGH2-PEST USER’S GUIDE PAGE 17 OF 64

Table 1. (cont) Summary Table of Search Directives in Instruction File

Whitespace Moves cursor forwards from its current
position until it encounters the next blank
character, and then moves the cursor forward
again until it finds a nonblank character, finally
placing the cursor on the blank character
preceding this nonblank character.

@DEPTH =@ w w !p!

Tab Places cursor at a user-specified character
position on current model output file line.

@DEPTH =@ t56 !p!

Fixed
Observation

Reads observation between columns n1 and
n2.

Observation name in brackets; column
numbers separated by colon; no spaces.

l1 [pres]13:25

Semi-Fixed
Observation

Reads observation that is contained, starts, or
ends somewhere between columns n1 and n2.

Observation name in parentheses; column
numbers separated by colon; no spaces.

l1 (pres)19:20

Non-Fixed
Observation

Reads observation in free format at current
location.

Observation name between exclamation points.

l8 w !pres!

l8 !dum! !dum! !pres!

l5 *=* !sat! *%*

4. iTOUGH2-PEST INPUT FORMATS

4.1 Introduction

The PEST protocol described in Section 3 provides the interface between the vector of input
parameters adjusted by iTOUGH2 and the (non-TOUGH2) forward model (or set of models), and
between select output values calculated by this model and the iTOUGH2 vector of observable
variables. The usage and format of the template and instruction files needed to facilitate this data
exchange between iTOUGH2 and the forward model are identical to those used by PEST and
UCODE. However, the actual analysis of these parameters and observations is done using the
iTOUGH2 capabilities, i.e., all input and output options, the local and global optimization
algorithms, the sensitivity, residual, error, and uncertainty analyses commonly done for TOUGH2
models are performed for the user-provided model (or series of models).

While all relevant commands described in the iTOUGH2 Command Reference [Finsterle, 2007b]
are available, new commands are needed to identify the universal parameter and universal
observations, and to specify the model executable, template and instruction files.

4.2 Generic iTOUGH2-PEST Input File

Figure 6 shows the syntax of the new PEST-related commands in a generic template; only the new
or necessary commands are shown; complete examples can be found in Section 5. Unlike in
iTOUGH2 applications that use one of the TOUGH2 modules [Pruess et al., 1999] as the forward
model, no knowledge about the potential types and properties of the parameters to be adjusted is
available to the code if a non-TOUGH2 model is used. Therefore, a generic parameter-selection
command >> PEST is used in the > PARAMETER block to signify that the parameter refers to an
unknown, user-supplied forward model, and will be adjusted through the PEST template file (see
Section 3.2). The name of the parameter is then supplied through the >>>> ANNOTATION
command. This (case-insensitive) name has to be identical to the parameter name in the template
file. Since the parameter does not refer to a TOUGH2 material name or model region, the third-
level command >>> NONE must be used. An initial value of the parameter must be given either
through the >>>> GUESS or >>>> PRIOR command. All other fourth-level commands of the
> PARAMETER block are also available for further parameter specification.

Similarly, since observations are taken from the output file of a model that is unknown to
iTOUGH2, the definition of calibration points as points in space and time is not applicable, and a
more general (less controllable) approach must be taken. As a first consequence, the >> TIMES
block (which is essential in regular iTOUGH2 applications) is not needed or used for identifying
observations that refer to a non-TOUGH2 model (it is still needed when combining PEST-type and
TOUGH-type observations in a single inversion). This does not mean that PEST-type observations
do not refer to time, but it is up to the user to identify the observation time through appropriate
parsing of the output file using the search directives in the instruction file (see Section 3.3).

iTOUGH2-PEST USER’S GUIDE PAGE 18 OF 64

> PARAMETER
 >> PEST
 >>> NONE
 >>>> NAME : parameter-name
 >>>> GUESS : initial-parameter-value
 >>>> PRIOR : prior-information-value
 (GUESS or PRIOR is required)
 >>>> other fourth-level commands
 <<<<
 <<<
 <<

> OBSERVATION
 (TIMES block not required)
 >> PEST
 >>> UNIVERSAL/MODEL/NONE (: data-set-name)
 >>>> DATA
 observation-name-1 value-1 (weight-1)
 observation-name-2 value-2 (weight-2)
 observation-name-... value-... (weight-...)
 >>>> other fourth-level commands
 <<<<
 <<<
 <<

> COMPUTATION
 >> OPTION
 >>> PEST
 >>>> TEMPLATE: number-of-template-files
 template-file-1.tpl input-file-1

 template-file-ntpl.tpl input-file-ntpl

 >>>> INSTRUCTION: number-of-instruction-files (NO DELETE)
 instruction-file-1.ins output-file-1

 instruction-file-ntpl.ins output-file-nins

 >>>> EXECUTABLE: executable-name (BEFORE/AFTER)
 >>>> PRECISION : SINGLE/DOUBLE
 >>>> DECPOINT : NOPOINT/POINT
 <<<<
 <<<

Figure 6. Generic iTOUGH2 input file with PEST-related blocks.

iTOUGH2-PEST USER’S GUIDE PAGE 19 OF 64

The observation type is also unknown; therefore, a generic type >> PEST is used to signify that the
observation refers to an unknown user-supplied forward model, and will be read by means of the
PEST instruction file.

The third-level command of block > OBSERVATION usually is used to identify the spatial point in
the model that corresponds to the location where the measurements are taken. Again, iTOUGH2 has
no notion of how points in space are defined in the unknown forward model. Therefore, a generic
third-level command >>> UNIVERSAL, >>> NONE, or >>> MODEL is used to identify a data
set. This data set may or may not consist of data that refer to a particular point in space.
Nevertheless, it is recommended to structure data into data sets as some of the a posteriori analyses
pertain to individual data sets. Each data set can be given a name (either on the third-level command
line or through command >>>> ANNOTATION). This data set name should not be confused with
the observation name used to extract individual values from the non-TOUGH2 output file.

Unique observation names need to be given for each data point. The measured values are provided
through command >>>> DATA (either following this command line or on an external file; see
syntax of command >>>> DATA for details). However, unlike in a regular iTOUGH2 data block,
where a data line includes the measurement time, the measured value, and (optionally) the standard
deviation of the measurement error, a PEST-type data line consists of (1) a unique observation
name (consistent with the name given in the instruction file), followed by (2) the measured value,
and (3) (optionally) the weight to be attached to the corresponding residual. If no weight is given in
the third column, the corresponding iTOUGH2 fourth-level commands (>>>> WEIGHT,
>>>> DEVIATION, >>>> VARIANCE, >>>> RELATIVE) can be used to assign weights to all
observations in the corresponding data set. Note that this format is compatible with the way
observation data are provided through the PEST control file (see Section 4.2.7 of Doherty [2008]),
i.e., standard observation data blocks from a PEST control file can directly be used in iTOUGH2
input files (the name of the observation group given in the fourth column of a PEST data definition
block is ignored, with similar functionality provided through other iTOUGH2 features).

The > COMPUTATION, >> OPTION, >>> PEST block is used to (1) identify the executable (or
script or batch) file of the forward model, (2) relate the template file(s) to the corresponding input
file(s), (3) relate the instruction file(s) to the corresponding output file(s), and (4) to specify the
precision with which parameter values are to be written to the input file, and whether the value
should include a decimal point (see Section 3.2.6 of Doherty [2008]).

On Unix systems, it is suggested that the keyword FILE: followed by a file name is provided in
the iTOUGH2 input file lines, one line for each file used by the PEST interface. This ensures that
the itough2 script automatically copies all the needed files to the temporary directory.

4.3 PEST-Related iTOUGH2 Commands

The new, PEST-related iTOUGH2 commands are described on the following pages in the standard
format of the iTOUGH2 Command Reference [Finsterle, 2007b]. They are also available at
http://esd.lbl.gov/iTOUGH2/Command/cgmmand.html.

iTOUGH2-PEST USER’S GUIDE PAGE 20 OF 64

http://esd.lbl.gov/iTOUGH2/Command/cgmmand.html

Command
>> PEST

Parent Command
> PARAMETER

Subcommand
>>> NONE

Description
This command signifies that a parameter related to a user-supplied model (i.e., not a
TOUGH2 module) be selected. The parameter will be identified and updated using the
template file of the PEST interface. An initial guess must be provided for all non-TOUGH2
parameters through commands >>>> GUESS or >>>> PRIOR. All PEST-related
parameters must be specified before any TOUGH2-related are selected.

Example
> PARAMETER
 >> PEST
 >>> NONE
 >>>> NAME : coefficient-A
 >>>> LOGARITHM
 >>>> GUESS : -3.0
 >>>> RANGE : -6.0 0.0
 <<<<
 <<<
 <<

See Also

>> PEST (o), >>> PEST

iTOUGH2-PEST USER’S GUIDE PAGE 21 OF 64

Command
>> PEST

Parent Command
> OBSERVATION

Subcommand
>>> NONE
>>> MODEL
>>> UNIVERSAL

Description
This command selects an (unknown) observation type related to a user-supplied model. The
calculated value is identified and extracted from the output files using the search directives
of a PEST instruction file. Unique observation names must be provided in the first data
column, followed by the measured values, and (optionally) the weight attached to the
residual. The case-insensitive observation names must be identical to those used in the
instruction file(s). All PEST-related observations must be specified before any TOUGH2-
related observations are selected.

Example
> OBSERVATION
 >> PEST
 >>> UNIVERSAL
 >>>> ANNOTATION : Total Costs
 >>>> DATA
 capital-cost 0.0
 operating-cost 0.0
 >>>> WEIGHT : 1.00531 [dollar/CHF]
 <<<<

 >>> UNIVERSAL: pumping rates
 >>>> DATA
 pH-after-0-yr 7.2 1.0 pump
 pH-after-1-yr 5.8 0.5 pump
 pH-after-2-yr 3.6 0.5 pump
 <<<<
 <<<

See Also

>> PEST (p), >>> PEST

iTOUGH2-PEST USER’S GUIDE PAGE 22 OF 64

Command
>>> PEST

Parent Command
>> OPTION

Subcommand
>>>> DECPOINT
>>>> EXECUTABLE
>>>> INSTRUCTION
>>>> PRECISION
>>>> TEMPLATE

Description
This command invokes fourth-level commands to specify files and options for the PEST
interface between iTOUGH2, a user-supplied model, and its input and output files. It is
used to (1) identify the executable (or script or batch) file that calls the forward model, (2)
relate the template file(s) to the corresponding input file(s), (3) relate the instruction file(s)
to the corresponding output file(s), and (4) to specify the precision with which parameter
values are to be written to the input file, and whether the value should include a decimal
point.

Example
> COMPUTATION
 >> OPTION
 >>> PEST
 >>>> TEMPLATE : 1
 input.tpl input.txt

 >>>> INSTRUCTION: 2
 cost.ins cost.out
 pump.ins pump.out

 >>>> EXECUTABLE : pumpcost.bat
 >>>> PRECISION : SINGLE
 >>>> DECPOINT : POINT
 <<<<
 <<<
 <<

See Also

>> PEST (o), PEST (p)

iTOUGH2-PEST USER’S GUIDE PAGE 23 OF 64

Command
>>>> EXECUTABLE: FILE (BEFORE/AFTER)

Parent Command
>>> PEST

Subcommand
-

Description
iTOUGH2 capabilities can be applied to non-TOUGH2 models using the PEST interface
[Doherty, 2008]. The user-supplied model must be an executable that can be run from a
system command prompt. The system command can also be a script or batch file, in which
multiple models can be combined. The model must be able to be executed without user
interference or intervention. It must get its input through one or multiple ASCII text files,
and write its output to one or multiple ASCII text files. Communication between
iTOUGH2 and the model’s input and output occurs through PEST-style template and
instruction files, respectively.

The user-supplied model can be run by itself, before (default) or after (keyword AFTER) a
TOUGH2 run. The latter two options are useful for estimating parameters that relate to pre-
or postprocessors of TOUGH2, respectively. The name of the executable, script, or batch
file is provided following the colon. If the executable name contains spaces, the command
line must be in quotes. Under Unix, it is recommended to add the keyword FILE to the
command line or on a separate line, so the executable is automatically copied to the
temporary directory. Examples include:

>>>> EXECUTABLE : myModel.exe
>>>> EXECUTABLE : Run-ModelA-and-ModelB.bat
>>>> EXECUTABLE FILE : UnixScript.sh run AFTER TOUGH2
>>>> EXECUTABLE : “a.out < input > output”
 FILE : a.out

Example
> COMPUTATION
 >> OPTION
 >>> PEST
 >>>> EXECUTABLE FILE : this-is-not-TOUGH.exe
 >>>> TEMPLATE : 1
 input.tpl input.txt
 >>>> INSTRUCTION : 1
 output.ins output.txt

See Also

>>>> INSTRUCTION, >>>> TEMPLATE

iTOUGH2-PEST USER’S GUIDE PAGE 24 OF 64

Command
>>>> TEMPLATE: num-template-files

Parent Command
>>> PEST

Subcommand
-

Description
iTOUGH2 capabilities can be applied to non-TOUGH2 models using the PEST interface
[Doherty, 2008]. Template files are used to communicate between iTOUGH2 parameters
and the input variables of the user-supplied model which must be provided through one or
multiple ASCII text files. (Note that if the model expects input from the keyboard, the ‘<’
symbol can be used on the command line (see >>>> EXECUTABLE) to redirect standard
input from the keyboard to a text file.)

A template file must be provided for each input file that contains a parameter adjusted by
iTOUGH2; num-template-files is the number of template files provided.
Template files are matched to their corresponding input files on the lines following the
>>>> TEMPLATE command. Under Unix, it is recommended to add separate lines with
the keyword FILE: followed by the file name, so the files are automatically copied to
the temporary directory. This can occur anywhere in the iTOUGH2 input file.

Example
> COMPUTATION
 >> OPTION
 >>> PEST
 >>>> EXECUTABLE FILE : Run-ModelA-and-ModelB.bat
 >>>> TEMPLATE : 2
 ModelA.tpl inputA.txt
 ModelB.tpl inputB.txt
 >>>> INSTRUCTION : 1
 outputB.ins outputB.txt
 <<<<
 <<<

copy FILE: ModelA.tpl to temporary directory
copy FILE: ModelB.tpl to temporary directory
copy FILE: outputB.ins to temporary directory

See Also

>>>> EXECUTABLE, >>>> INSTRUCTION

iTOUGH2-PEST USER’S GUIDE PAGE 25 OF 64

Command
>>>> INSTRUCTION: num-instruction-files (NO DELETE)

Parent Command
>>> PEST

Subcommand
-

Description
iTOUGH2 capabilities can be applied to non-TOUGH2 models using the PEST interface
[Doherty, 2008]. Instruction files are used to communicate between the output variables of
the user-supplied model (which must be provided through one or multiple ASCII text files)
and the iTOUGH2 observation vector. (Note that if the model writes output to the screen,
the ‘>’ symbol can be used on the command line (see >>>> EXECUTABLE) to redirect
standard output from the screen to a text file.)

An instruction file must be provided for each output file that contains an observable
variable used by iTOUGH2 for model evaluation; num-instruction-files is the
number of instruction files provided. Instruction files are matched to their corresponding
output files on the lines following the >>>> INSTRUCTION command.

Upon initialization, all output files are deleted unless keyword NO DELETE is present.

PEST requires that at least one PEST observation is provided. However, if the external
model is a preprocessor to TOUGH2, all observations may be internally taken from
TOUGH2 arrays, without the need for an observation that is read from an external output
file. Dummy instruction and output files can be automatically generated by providing their
respective file names as dummy.ins and dummy.out. A "measured" value of zero will be
generated and returned for comparison to an observation named dummy that needs to be
defined in the iTOUGH2 input file.

Under Unix, it is recommended to add separate lines with the keyword FILE: followed
by the file name, so the files are automatically copied to the temporary directory. This can
occur anywhere in the iTOUGH2 input file.

iTOUGH2-PEST USER’S GUIDE PAGE 26 OF 64

Example
> COMPUTATION
 >> OPTION
 >>> PEST
 >>>> EXECUTABLE : “idratherusetough.exe > nowwhat”
 >>>> TEMPLATE : 1
 input.tpl input.txt

 >>>> INSTRUCTION : 2
 output1.ins nowwhat
 output2.ins some_results.txt
 <<<<

copy FILE: input.tpl to temporary directory
copy FILE: output1.ins to temporary directory
copy FILE: output2.ins to temporary directory
copy FILE: idratherusetough.exe to temporary directory

The following example shows the use of dummy instruction and output files:

> COMPUTATION
 >> OPTION
 >>> PEST
 >>>> EXECUTABLE : TOUGH-pre-processor
 >>>> TEMPLATE : 1
 meshgen.tpl meshgen.txt

 >>>> INSTRUCTION : 1 NO DELETE
 dummy.ins dummy.out
 <<<<

A dummy PEST observation needs to be provided as follows:

> OBSERVATION
 >> PEST
 >>> UNIVERSAL
 >>>> DATA
 dummy 0.0 1.0E-20
 <<<<

See Also

>>>> EXECUTABLE, >>>> TEMPLATE

iTOUGH2-PEST USER’S GUIDE PAGE 27 OF 64

Command
>>>> DECPOINT: POINT/NOPOINT

Parent Command
>>> PEST

Subcommand
-

Description
iTOUGH2 capabilities can be applied to non-TOUGH2 models using the PEST interface
[Doherty, 2008]. By selecting the keyword NOPOINT, the decimal point in the
representation of a parameter in the input file is omitted, potentially increasing the accuracy
of a parameter value. However, this should be done with great caution, as fields read by
FORTRAN programs that read fields using format specifiers such as “(F6.2)” or “(E8.2)”
may insert a decimal point incorrectly if none is specified; for details, see Section 3.2.6 of
Doherty [2008]. Therefore, POINT is the default option.

Example
> COMPUTATION
 >> OPTION
 >>> PEST
 >>>> EXECUTABLE : pointnopoint.exe
 >>>> TEMPLATE : 1
 pointnopoint.tpl whatsthepoint.in

 >>>> INSTRUCTION : 1
 pointnopoint.ins pointless.out

 >>>> DECPOINT: NOPOINT
 <<<<

See Also

-

iTOUGH2-PEST USER’S GUIDE PAGE 28 OF 64

iTOUGH2-PEST USER’S GUIDE PAGE 29 OF 64

Command
>>>> PRECISION: SINGLE/DOUBLE

Parent Command
>>> PEST

Subcommand
-

Description
iTOUGH2 capabilities can be applied to non-TOUGH2 models using the PEST interface
[Doherty, 2008]. The >>>> PRECISION command determines whether single or
double precision protocol is to be observed in writing parameter values. Unless a parameter
space is greater than 13 characters in width, it has no bearing on the precision with which a
parameter value is written to a model input file, as this is determined by the width of the
parameter space. If keyword SINGLE is selected, exponents are represented by the letter
“e”; also, if a parameter space is greater than 13 characters in width, only the last 13 spaces
are used in writing the number representing the parameter value, any remaining characters
within the parameter space being left blank. If keyword DOUBLE is selected, up to 23
characters can be used to represent a number and the letter “d” is used to represent
exponents; also, the double-precision range of real numbers is available.

Example
> COMPUTATION
 >> OPTION
 >>> PEST
 >>>> EXECUTABLE : “precise.exe < imsingle.in”
 >>>> TEMPLATE : 1
 precisely.tpl imsingle.in

 >>>> INSTRUCTION : 1
 precisely.ins nodifference.out

 >>>> DECPOINT: SINGLE
 <<<<

See Also

-

5. EXAMPLES

The examples in this section are all tutorial. Their purpose is to demonstrate the usage of
iTOUGH2-PEST features; they are not designed to be useful, efficient or elegant, and are not
intended to be of scientific value.

5.1 Polynomial Fitting Using iTOUGH2-PEST

In this example, iTOUGH2-PEST is used to estimate the coefficients of a polynomial. Consider the
simple FORTRAN program of Figure 7. It prompts the user to enter the degree n of a polynomial

 (1) 



n

i

i
i xaxy

0

)(

The program then expects n+1 coefficients ai, followed by the range [xmin, xmax] and number of
points m for which the polynomial shall be evaluated. This information is entered by the user
through the keyboard, and m pairs of points, x and y(x), are displayed on the screen.

The FORTRAN source code is compiled and linked into an executable named Polynomial.exe. This
executable needs to be copied to the working directory or added to the command search path. For
this program to serve as the forward operator in an iTOUGH2-PEST inversion, the input (i.e.,
responses to the prompted question marks) must be pre-typed into a text file, here named
Polynomial.in (see Figure 8). The corresponding screen output, redirected into a text file
Polynomial.out, is shown in Figure 9.

The template file Polynomial.tpl (see Figure 10) is a copy of the input file, with the header line
“ptf #” added, and the slots for the parameters to be estimated replaced by user-specified
parameter names, bracketed by the parameter delimiter #.

Figure 11 shows the instruction file Polynomial.ins used to parse through the output file
Polynomial.out and to find and extract the values y(x). It starts with the keyword pif @, where @
is the marker delimiter. It then searches for the primary marker “y(x)”, arriving at the line before
the output of interest is found. All the following lines start with the line advance command l1,
which instructs the parser to read and interpret one line at a time.

For demonstration purposes, different search directives are used to identify the values to be
extracted (see Table 1). The first value (i.e., the polynomial evaluated at x=xmin for the three
coefficients a0, a1, and a2 provided by iTOUGH2-PEST) is read as a fixed observation, i.e., the
number is expected to be found between columns 18 and 34. The second value, named y2, is
extracted using the semi-fixed observation format, i.e., it extracts the number that starts or ends
within or spans columns 29 to 31. To find the third value, y3, two white spaces are bridged, and the
next word is read as a free observation. Finally, values y4 through y21 are extracted by first
reading (and discarding) a dummy observation (the reported xi value), and then reading and
extracting the result yi = y(xi) using the free-observation format.

Next, the PEST control capabilities of iTOUGH2 are selected through the iTOUGH2 input file.

iTOUGH2-PEST USER’S GUIDE PAGE 30 OF 64

CCC
 program polynomial
CCC
C
C --- Evaluates polynomial
C
 dimension c(9)
C
C --- Read degree of polynomial, coefficients, x-value range and
C number of evaluation points
C
 write(*,*) ' Evaluate Polynomial'
 write(*,*) ' *******************'
 write(*,*)
 write(*,*) ' Degree of polynomial : ?'
 read(*,*) n
 do i=1,n+1
 write(*,7000) i-1
 7000 format(' Coefficient a',i1,7x,': ?')
 read(*,*) c(i)
 enddo
 write(*,*) ' Range of x: Xmin : ?'
 read(*,*) xmin
 write(*,*) ' Xmax : ?'
 read(*,*) xmax
 write(*,*) ' Number of points : ?'
 read(*,*) m
 dx=(xmax-xmin)/(max(m,2)-1)
C
C --- Calculate and output f(x)
C
 write(*,7001) n
 7001 format(/,/,' Polynomial of degree',i2,' with coefficients:')
 do i=1,n+1
 write(*,7002) i,c(i)
 7002 format(' a(',i1,') =',f9.5)
 enddo
 write(*,*)
 write(*,*) ' x y(x)'
 x=xmin
 do j=1,m
 y=c(1)
 do i=2,n+1
 y=y+c(i)*x**(i-1)
 enddo
 write(*,'(2f17.10)') x,y
 x=x+dx
 enddo
 end

Figure 7. FORTRAN program that evaluates a polynomial for a given set of coefficients.

iTOUGH2-PEST USER’S GUIDE PAGE 31 OF 64

 2 Degree of polynomial, n
 5.0 Coefficient a0
 4.0 Coefficient a1
 3.0 Coefficient a2
-2.0 xmin
 2.0 xmax
21 Number of points, m

Figure 8. Text file Polynomial.in providing input required by program Polynomial.exe.

 Evaluate Polynomial

 Degree of polynomial : ?
 Coefficient a0 : ?
 Coefficient a1 : ?
 Coefficient a2 : ?
 Range of x: Xmin : ?
 Xmax : ?
 Number of points : ?

 Polynomial of degree 2 with coefficients:
 a(1) = 5.00000
 a(2) = 4.00000
 a(3) = 3.00000

 x y(x)
 -2.0000000000 9.0000000000
 -1.7999999523 7.5199995041
 -1.5999999046 6.2799992561
 -1.3999998569 5.2799992561
 -1.1999998093 4.5199995041
 -0.9999998212 3.9999997616
 -0.7999998331 3.7199997902
 -0.5999998450 3.6800000668
 -0.3999998569 3.8800001144
 -0.1999998540 4.3200006485
 0.0000001490 5.0000004768
 0.2000001520 5.9200010300
 0.4000001550 7.0800008774
 0.6000001431 8.4800014496
 0.8000001311 10.1200017929
 1.0000001192 12.0000009537
 1.2000001669 14.1200027466
 1.4000002146 16.4800014496
 1.6000002623 19.0800037384
 1.8000003099 21.9200038910
 2.0000002384 25.0000038147

Figure 9. Text file Polynomial.out with screen output from program Polynomial.exe.

iTOUGH2-PEST USER’S GUIDE PAGE 32 OF 64

ptf #
2 Degree of polynomial, n
coeff0 # Coefficient a0, replaced by variable coeff0
coeff1 # Coefficient a1, replaced by variable coeff1
coeff2 # Coefficient a2, replaced by variable coeff2
-2.0 xmin
 2.0 xmax
21 Number of points, m

Figure 10. Template file Polynomial.tpl, creating input files Polynomal.in for different values of
the polynomial coefficients.

pif @
@y(x)@
l1 [y1]18:34
l1 (y2)29:31
l1 w w !y3!
l1 !dum! !y4!
l1 !dum! !y5!
l1 !dum! !y6!
l1 !dum! !y7!
l1 !dum! !y8!
l1 !dum! !y9!
l1 !dum! !y10!
l1 !dum! !y11!
l1 !dum! !y12!
l1 !dum! !y13!
l1 !dum! !y14!
l1 !dum! !y15!
l1 !dum! !y16!
l1 !dum! !y17!
l1 !dum! !y18!
l1 !dum! !y19!
l1 !dum! !y20!
l1 !dum! !y21!

Figure 11. Instruction file Polynomial.ins used to peruse output file Polynomial.out, extracting 21
values y(x).

iTOUGH2-PEST USER’S GUIDE PAGE 33 OF 64

Figure 12 shows a complete iTOUGH2 input file used to perform the polynomial fit. The
> PARAMETER block defines the three parameters to be estimated. The generic parameter type
PEST must be selected; it refers to no particular domain, thus the third-level command
>>> NONE. The parameter names provided through the >>>> NAME command must be identical
to the names given in the template file Polynomial.tpl (see Figure 10). An initial value must be
given either through command >>>> GUESS or >>>> PRIOR. In this example, the
>>>> VALUE of the polynomial coefficient is directly estimated (rather than its logarithm, or a
multiplication factor).

In the > OBSERVATION block, the generic observation type >> PEST is defined. Since it is
unknown at which time a PEST observation was taken, there is no >> TIMES command.
Similarly, since the locations of PEST observations are unknown, the generic command
>>> UNIVERSAL has to be selected, optionally followed by a name describing the data set. The
measured data points (against which the model is calibrated) are specified after command
>>>> DATA. Each data point is identified by its name, which must be identical to the observation
name used in the instruction file Polynomial.ins (see Figure 11), followed by the measured value.
Since no weight is given on each individual data line, all residuals of this data set are weighted by
the inverse of the standard deviation given after command >>>> DEVIATION.

In the > COMPUTATION block, the template file Polynomial.tpl is attached to the actual input
file—Polynomial.in—it creates after each parameter update, and which is read by the external
program Polynomial.exe. Similarly, the instruction file Polynomial.ins is attached to the output file
Polynomial.out it searches after each completion of a Polynomial.exe forward run. Finally, the
command to be executed for running the external program is provided. The command line includes
the redirection of standard input (keyboard) and output (screen) to the input and output text files.
Since this command is comprised of multiple words, it has to be surrounded by quotes. Parameters
are written to the input file using single precision format and including a decimal point. Three
Levenberg-Marquardt iterations are considered sufficient to identify the three coefficients.

When running this sample problem (using iTOUGH2 with an arbitrary EOS module linked to it),
the iTOUGH2 input file Poli (Figure 12) has to be provided along with a dummy TOUGH2 input
file, which needs to have the keyword PEST at the beginning of the first line, as shown in Figure
13.

Output can be found on the output files generated by the external program (here, file
Polynomial.out) and all the standard iTOUGH2 output files, specifically Poli.out. The plotting file
(Poli.tec) is also created, but instead of the (unknown) observation times, it prints the observation
number within each data set as a floating point value in the times column. Obviously, no TOUGH2
output files are created.

The inversion results are not further examined here. Figure 14 shows that the data are matched after
three non-linear iTOUGH2 optimization steps. This demonstrates that a non-TOUGH inversion is
not tough for iTOUGH2, as expected.

iTOUGH2-PEST USER’S GUIDE PAGE 34 OF 64

iTOUGH2 input file demonstrating parameter estimation (polynomial fit)
using external program and PEST protocol

> PARAMETER
 >> PEST
 >>> NONE
 >>>> NAME : coeff0
 >>>> VALUE
 >>>> GUESS: -1.0
 <<<<
 >>> NONE
 >>>> NAME : coeff1
 >>>> VALUE
 >>>> GUESS: -1.0
 <<<<
 >>> NONE
 >>>> NAME : coeff2
 >>>> VALUE
 >>>> GUESS: -1.0
 <<<<
 <<<
 <<

> OBSERVATION
 >> PEST
 >>> UNIVERSAL: y=f(x)
 >>>> DATA
 y1 0.94179E+01
 y2 0.71294E+01
 y3 0.69108E+01
 y4 0.65802E+01
 y5 0.41660E+01
 y6 0.57779E+01
 y7 0.38172E+01
 y8 0.24940E+01
 y9 0.50483E+01
 y10 0.32697E+01
 y11 0.64006E+01
 y12 0.60516E+01
 y13 0.60600E+01
 y14 0.96430E+01
 y15 0.10834E+02
 y16 0.12887E+02
 y17 0.14458E+02
 y18 0.16869E+02
 y19 0.18289E+02
 y20 0.21521E+02
 y21 0.25278E+02
 >>>> DEVIATION: 1.0
 <<<<
 <<<
 <<

Figure 12. iTOUGH2 input file Poli for polynomial fit.

iTOUGH2-PEST USER’S GUIDE PAGE 35 OF 64

> COMPUTATION
 >> STOP
 >>> ITERATIONS: 3
 <<<

 >> OPTION
 >>> PEST
 >>>> TEMPLATE file : 1
 Polynomial.tpl Polynomial.in

 >>>> INSTRUCTION file: 1
 Polynomial.ins Polynomial.out

 >>>> EXECUTABLE : &
 'Polynomial.exe < Polynomial.in > Polynomial.out'

 >>>> PRECISION : SINGLE
 >>>> DECPOINT : ADD POINT
 <<<<
 <<<
 <<
<

Figure 12. iTOUGH2 input file Poli for polynomial fit. (cont.)

 PEST is not TOUGH

Figure 13. Dummy TOUGH2 input file.

x

y
=

f(
x)

-2 -1 0 1 2
-10

0

10

20

30

Figure 14. Data (symbols), polynomial with initial guess of coefficients (dash-dotted line), and fit
after three iTOUGH2 Levenberg-Marquardt iterations (solid line).

iTOUGH2-PEST USER’S GUIDE PAGE 36 OF 64

5.2 Parallel Inversion of TOUGHREACT Model

The name TOUGH2 in iTOUGH2 indicates that the forward simulator TOUGH2 is integrated into
the inversion code. iTOUGH2 provides inverse modeling capabilities for many but not all of the
members of the TOUGH family of non-isothermal multiphase flow simulators. A list of publicly
available modules that are fully integrated into iTOUGH2 can be seen at the TOUGH+ web site at
http://esd.lbl.gov/TOUGH+/software-itough2.html. The close integration of a module into the
inversion framework has considerable advantages over the loose coupling provided by the PEST
protocol, as the code is aware of space and time, parameter and observation types, and the optimizer
has direct access to variables of the forward simulator, and thus can partly control input to and
execution of the TOUGH model. Integration of a modified or newly developed TOUGH2 module
into the iTOUGH2 framework is relatively straight-forward. However, the rate at which TOUGH2
modules are integrated into iTOUGH2 cannot keep up with the rate at which new modules are
developed or modified. Furthermore, integration of the more complex TOUGH2 codes, particularly
TOUGHREACT [Xu et al., 2004] is challenging. The iTOUGH2-PEST interface closes this gap,
providing inversion capabilities for TOUGHREACT models (and other advanced simulators of the
TOUGH family, see, e.g., Section 5.3).

This example demonstrates parameter estimation for a TOUGHREACT model using the parallel
version iTOUGH2-PVM [Finsterle, 1998]. The same problem has been solved using Parallel Pest
(PPEST) [Doherty, 2008]. TOUGHREACT is applied to simulate urea hydrolysis (ureolysis) as a
means to remediate 90Sr contamination in the saturated zone [Spycher et al., 2009]. Ureolysis
consumes hydrogen ions and produces ammonium and bicarbonate ions. Consequently, the
injection of urea into groundwater causes pH and alkalinity to increase, driving calcite precipitation.
90Sr, which strongly partitions into soils, exchanges with ammonium ions produced by ureolysis;
the exchanged 90Sr then precipitates with calcite. This reaction network is simulated for a column
experiment, in which water with added urea was injected for 15 days, and water composition was
obtained at the outlet. Prior to urea injection, molasses was added to the injected solution for a short
period of time to stimulate ureolytic activity in the column.

The one-dimensional column model is discretized into 205 gridblocks at regularly spaced intervals
of 1 mm. A sequential-iterative (transport/reaction) method is implemented, using a maximum time
step of 500 s. The model considers ureolysis as an enzymatic reaction. It accounts for calcite
precipitation, ion exchange, and ammonium oxidation. Details about the system behavior and
TOUGHREACT model can be found in Spycher et al. [2009].

The iTOUGH2 parameter block (Figure 15) shows the five parameters to be estimated: the initial
and boundary concentration of the urease enzyme (zh_ini), the initial and boundary concentration
of the nitrosomonas biomass (zn_ini), the logarithm of the precipitation rate constant for calcite
and strontianite (rate-cc), the exchange coefficient (selectivity) of kalium (k-sel), and the
cation exchange capacity (cec). These parameters enter the TOUGHREACT file chemical.inp,
which holds all geochemical parameters and properties of the aqueous component species, minerals,
gases, and sorbed species. Initial guesses of all these parameters along with lower and upper bounds
are provided, as well as whether the value or the logarithm of the parameter is to be estimated. The
corresponding information as entered into the PEST control file is also shown in Figure 15.

iTOUGH2-PEST USER’S GUIDE PAGE 37 OF 64

http://esd.lbl.gov/TOUGH+/software-itough2.html

> PARAMETER
 >> PEST

PEST: zh_ini none relative 3.000000E-10 1.00e-12 0.40e-09 zh 1 0.00 1
 >>> NONE
 >>>> NAME : zh_ini
 >>>> VALUE
 >>>> GUESS: 3.0E-10
 >>>> RANGE: 1.0E-12 4.0E-10
 <<<<

PEST: zn_ini none relative 1.022300E-14 1.00e-15 1.00e-10 zn 1 0.00 1
 >>> NONE
 >>>> NAME : zn_ini
 >>>> VALUE
 >>>> GUESS: 1.0223E-14
 >>>> RANGE: 1.0E-15 1.0E-10
 <<<<

PEST: rate-cc log factor 4.000000E-08 1.E-10 1.E-5 rate 1 0.00 1
 >>> NONE
 >>>> NAME : rate-cc
 >>>> LOGARITHM
 >>>> GUESS: -7.39794
 >>>> RANGE: -10.0 -5.0
 >>>> STEP : 2.0
 <<<<

PEST: k-sel none relative 0.49 0.01 4.00 sel 1 0.00 1
 >>> NONE
 >>>> NAME : k-sel
 >>>> VALUE
 >>>> GUESS: 0.49
 >>>> RANGE: 0.01 4.00
 >>>> STEP : 0.2
 <<<<

PEST: cec none relative 10. 2. 200. sel 1 0.00 1
 >>> NONE
 >>>> NAME : cec
 >>>> VALUE
 >>>> GUESS: 10.0
 >>>> RANGE: 2.0 200.0
 >>>> STEP : 2.0
 <<<<
 <<<
 <<

Figure 15. Parameter block for TOUGHREACT inversion, also showing corresponding PEST
control file entry.

iTOUGH2-PEST USER’S GUIDE PAGE 38 OF 64

Time series of measured concentrations of NH4
+, NO3

-, dissolved O2, Urea, Ca, Sr, Na, and K are
available and entered into the > OBSERVATION block as separate data sets (see Figure 16). Each
measurement point has its own weight specified. The data format chosen here is exactly the same as
that in the PEST control file.

> OBSERVATION

 >> PEST

 >>> UNIVERSAL: NH4+
 >>>> DATA
 NH4-1day 3.9444E-05 2.5352E+04 NH4+
 NH4-2day 2.5111E-04 3.9823E+03 NH4+
 NH4-3day 3.9111E-04 2.5568E+03 NH4+
 NH4-4day 5.4556E-04 3.8330E+03 NH4+
 NH4-5day 4.5722E-04 2.1871E+03 NH4+
 NH4-6day 5.4222E-04 3.8443E+03 NH4+
 NH4-7day 5.3444E-04 1.8711E+03 NH4+
 NH4-8day 5.4167E-04 1.8461E+03 NH4+
 NH4-9day 5.3778E-04 1.8595E+03 NH4+
 NH4-10day 5.3833E-04 1.8576E+03 NH4+
 NH4-11day 5.1722E-04 1.9334E+03 NH4+
 NH4-12day 4.8222E-04 2.0737E+03 NH4+
 NH4-13day 5.5167E-04 1.8127E+03 NH4+
 NH4-14day 5.2222E-04 1.9149E+03 NH4+
 NH4-15day 5.1500E-04 1.9417E+03 NH4+
 <<<<

 >>> UNIVERSAL: NO3-
 >>>> DATA
 NO3-1day 4.4200E-05 2.2624E+04 NO3-
 NO3-2day 5.9700E-05 1.6750E+04 NO3-

 NO3-15day 8.1000E-05 1.2346E+04 NO3-
 <<<<

 >>> UNIVERSAL: XXXX

 similar blocks are provided for XXXX = O2(aq), Urea, Ca, Sr, Na, and K

 >>>> DATA
 XXXX-1day VALUE WEIGHT XXXX
 XXXX-2day VALUE WEIGHT XXXX

 XXXX-15day VALUE WEIGHT XXXX
 <<<<
 <<<
 <<

Figure 16. Excerpt of observation block for TOUGHREACT inversion.

iTOUGH2-PEST USER’S GUIDE PAGE 39 OF 64

The > COMPUTATION block (Figure 17) relates the template file to the TOUGHREACT input file
chemical.inp, and the instruction file to the plot file tec_conc.dat, from which the concentration data
are to be extracted. The TOUGREACT executable happens to be called tr2.056_e1x. Since this
inversion is performed on a Linux cluster, all input files need to be copied to the temporary
directory, which is accomplished by listing them on separate lines following the keyword FILE:.
Finally, the >>> PVM command invokes embarrassingly parallel execution of TOUGREACT for
the calculation of the columns of the Jacobian matrix and the evaluation of a potential update step
with different Levenberg parameters  (see Finsterle [1998] for details about iTOUGH2-PVM).
Since only five parameters are estimated, parallelization is limited to five nodes, which are listed
after the command. Five Levenberg-Marquardt iterations will be performed using default options.

 > COMPUTATION

 >> OPTION
 >>> PEST
 >>>> TEMPLATE: 1
 ureolysis.tpl chemical.inp

 >>>> INSTRUCTION: 1
 ureolysis.ins tec_conc.dat

 >>>> EXECUTABLE FILE: tr2.056_e1x

 FILE: ureolysis.tpl template file
 FILE: ureolysis.ins instruction file
 FILE: tk-mtq.v4_1.02y.dat geochemical data base
 FILE: flow.inp TOUGHREACT input file for flow
 FILE: solute.inp TOUGHREACT input file for transport
 FILE: MESH TOUGHREACT mesh file
 FILE: INCON TOUGHREACT initial conditions file
 FILE: GENER TOUGHREACT generation files
 <<<<

 >>> PVM: 5
 HOST1PVM node0010
 HOST2PVM node0011
 HOST3PVM node0012
 HOST4PVM node0013
 HOST5PVM node0014
 <<<

 >> STOP
 >>> ITERATIONS: 5
 <<<
 <<
<

Figure 17. Computational parameter block for TOUGHREACT inversion.

iTOUGH2-PEST USER’S GUIDE PAGE 40 OF 64

An excerpt of the template file ureolysis.tpl is shown in Figure 18, showing how the precipitation
rate for calcite and strontianite are linked simply by using the same parameter name in the template
file.

Figure 19 shows the first few lines of the instruction file ureolysis.ins, which extracts simulation
results from file tec_conc.dat, which is usually used for plotting purposes.

ptf #
'Ureolysis’
'---------'
'DEFINITION OF THE GEOCHEMICAL SYSTEM'
...
'*'
'MINERALS' !equilibrium minerals go first
'CO2-3.4' 0 0 0 0
0. 0. 0.
'calcite' 1 3 1 0
1.00e-07 0 1.0 1.0 48.1 0.0 0.0 0.0
rate-cc # 0 1.0 1.0 48.1 0.0 0.0 0.0 1.e-6 0
0. 0. 0.
'strontianite' 1 3 1 0
1.00e-07 0 1.0 1.0 48.1 0.0 0.0 0.0
rate-cc # 0 1.0 1.0 48.1 0.0 0.0 0.0 1.e-6 0
0. 0. 0.
'*'
...

Figure 18. Excerpt of template file for TOUGHREACT inversion.

pif @
@ZONE T= "0.273785E-02 yr"@
l1
l1 [Na-1day]94:104 [K+-1day]130:140 [Ca-1day]142:152
& [Sr-1day]154:164 [NO3-1day]202:212 [O2-1day]226:236
& [Urea-1day]238:248 [NH4-1day]274:284
@ZONE T= "0.547570E-02 yr"@
l1
l1 [Na-2day]94:104 [K+-2day]130:140 [Ca-2day]142:152
& [Sr-2day]154:164 [NO3-2day]202:212 [O2-2day]226:236
& [Urea-2day]238:248 [NH4-2day]274:284
@ZONE T= "0.821355E-02 yr"@
l1
...

Figure 19. Excerpt of instruction file for TOUGHREACT inversion.

iTOUGH2-PEST USER’S GUIDE PAGE 41 OF 64

The inversion results are summarized in Table 2 and compared to the results obtained with Parallel
PEST (PPEST). Both codes converged to the same objective function value and the same solution
in the parameter space. The differences between the estimated parameters are a result of the
different implementation of the Levenberg-Marquardt algorithm, and specifically the different
default values of computational parameters (such as the initial values of the Levenberg and
Marquardt parameters, step size limitations, etc.) However, these differences are much smaller than
the estimation uncertainty, which is also consistently calculated by the two optimization codes.
PPEST took almost twice as many TOUGHREACT simulation runs as iTOUGH2 did, mainly
because it switched to central finite differences for evaluating derivatives after two iterations.

Table 2. iTOUGH2-PEST-PVM and PPEST Inversion Results of TOUGHREACT Model

Best Estimate Uncertainty
Parameter Initial

PPEST iTOUGH2 PPEST iTOUGH2

Obj. Function 7.3034 5.2356 5.2356 n/a n/a

Model Runs n/a 91 51 n/a n/a

zh_ini 3.000  10-10 1.847  10-10 1.845  10-10 0.239  10-10 0.238  10-10

zn_ini 1.022  10-14 1.026  10-14 1.026  10-14 0.092  10-14 0.093  10-14

log10(rate-cc) -7.398 -7.302 -7.304 0.051 0.055

k-sel 0.49 0.538 0.535 0.129 0.125

cec 10.000 8.608 8.580 1.148 1.090

This particular inversion took approximately 16 hours to complete on a Linux cluster. Almost all
CPU time is used for repeatedly running the TOUGHREACT simulation model; only a negligible
fraction is used by the minimization algorithm, residual, and uncertainty analyses. Evaluating the
Jacobian matrix and testing Levenberg parameters in parallel on five processors sped up the
inversion by a factor of 2.5, which is only a moderate gain because of the relatively small number
of parameters to be estimated.

iTOUGH2-PEST USER’S GUIDE PAGE 42 OF 64

5.3 Evaluating Parallelization of TOUGH2-MP Models

In this example, the CPU-time and other simulation performance metrics are evaluated for flow and
transport simulations performed in parallel using an increasing number of processors. This example
will demonstrate (1) that iTOUGH2-PEST can be used to run the MPI-based parallel version of the
TOUGH2 simulator, i.e., TOUGH2-MP [Zhang et al., 2007, 2008], (2) that the forward model can
consist of multiple parallel models run in series, and (3) that the tool can be used to evaluate the
scalability of TOUGH2-MP. (Needless to say that this exercise could be done using a simple Unix
script file; however, to qualify as an example in this manual, the problem is solved using
iTOUGH2-PEST, at the expense of losing elegance, simplicity, and transparency.)

The forward model consists of two sequential TOUGH2_MP simulations. The first simulation uses
T2EOS9_MP to establish a steady-state flow field, which is passed on to the second simulation to
calculate radionuclide transport in the vicinity of an underground research facility using
T2R3D_MP. The model domain is discretized into approximately 90,000 grid blocks with about
270,000 connections between them (Figure 20). (Unfortunately, discussing the simulation results is
beyond the scope of this manual. The only objective is to see how fast the simulation is performed
as a function of the number of processors.)

This sequence of two TOUGH2_MP simulations is set up using a Unix shell script file, which is
created by the PEST template file shown in Figure 21. The two simulations are invoked using the
mpirun command, which has as an argument the number of processors. Instead of specifying a
fixed for the –np argument, the PEST parameter #nproc# is inserted. The script also provides the
appropriate input files and renames the relevant output from the flow and transport simulations as
files OUTPUT_F and OUTPUT_T for subsequent parsing by the two PEST instruction files, one of
which is shown in Figure 22. The primary marker (“WRITE FILE *SAVE* AFTER”) ensures
that the final CPU time, number of times steps, number of Newton-Raphson iterations, and number
of Aztec iterations are extracted from the output file.

Figure 23 shows the > PARAMETER and > OBSERVATION blocks of the iTOUGH2-PEST input
file. The > COMPUTATION block is shown in Figure 24. A single parameter named nproc is
adjusted: it is the number of processors to be used in a parallel TOUGH2_MP simulation invoked
by command mpirun (see Figure 21). The number of processors evaluated using iTOUGH2’s grid
search method ranges from 2 to 48 in increments of 2, selected by command >>>> RANGE in
combination with command >>> GRID SEARCH: 23 (see Figure 24 below).

The > OBSERVATION block contains four PEST-related data sets: CPU time, number of time
steps, number of Newton-Raphson iterations, and number of Aztec iterations. Each set contains two
observation points, one for the flow and one for the transport simulation. A value of 0.0 is provided
as a dummy measurement, so that the first residual will be the CPU time used for the flow
simulation. (Note that the weight of each residual is 1.0 by default.) Consequently, all residuals are
equal to the corresponding performance metrics themselves. Moreover, because the L1 estimator is
selected (see Figure 24 below), the absolute values (rather than the squares) of the residuals are
taken and added to the data-set-specific contributions to the objective function. As a result, the
objective function for the first data set is the total CPU time, i.e., the sum of the CPU times used for
the flow and transport simulations. Similarly, the sums of the other performance metrics will be
calculated and reported as the result of the grid search. The grid search thus provides the
performance statistics as a function of the number of processors used.

iTOUGH2-PEST USER’S GUIDE PAGE 43 OF 64

.

Figure 20. Unstructured grid with approximately 90,000 elements and 270,000 connections,
generated using WinGridder [Pan, 2007].

ptf #
echo iTOUGH2-PEST run of two TOUGH2-MP models > mpirun.msg
echo == >> mpirun.msg
date >> mpirun.msg
cp INFILE_F INFILE >> mpirun.msg
cp INCON_F INCON >> mpirun.msg
echo Run flow simulation >> mpirun.msg
echo =================== >> mpirun.msg
mpirun --hostfile hf -np #nproc# t2eos9_mp >> mpirun.msg
cp OUTPUT OUTPUT_F >> mpirun.msg
cp INFILE_T INFILE >> mpirun.msg
cp GENER_T GENER >> mpirun.msg
echo Run transport simulation >> mpirun.msg
echo ======================== >> mpirun.msg
mpirun --hostfile hf -np #nproc# t2r3d_mp >> mpirun.msg
cp OUTPUT OUTPUT_T >> mpirun.msg
date >> mpirun.msg

Figure 21. PEST template file it2mp.tpl that creates a Unix shell script file for running
TOUGH2_MP flow and transport simulations on an adjustable number of processors.

iTOUGH2-PEST USER’S GUIDE PAGE 44 OF 64

pif @
@ WRITE FILE *SAVE* AFTER@
@ EEE Time@ @=@ !cpu-timeF!
@ Total number of time steps =@ !time-stepsF!
@ Total number Newton steps =@ !newtonF!
@ Total number of iter in Aztec =@ !aztec-iterF!

Figure 22. PEST instruction file it2mpF.ins that reads performance metrics from TOUGH2_MP
flow simulation output file OUTPUT_F.

> PARAMETER
 >> PEST
 >>> NONE
 >>>> NAME : nproc
 >>>> VALUE
 >>>> GUESS: 16.0
 >>>> RANGE: 2.0 20.0
 <<<<
 <<<
 <<

> OBSERVATION
 >> PEST
 >>> UNIVERSAL : "CPU Time"
 >>>> DATA
 cpu-timeF 0.0
 cpu-timeT 0.0
 <<<<
 >>> UNIVERSAL : "Time Steps"
 >>>> DATA
 time-stepsF 0.0
 time-stepsT 0.0
 <<<<
 >>> UNIVERSAL : "Newton Iterations"
 >>>> DATA
 newtonF 0.0
 newtonT 0.0
 <<<<
 >>> UNIVERSAL : "Aztec Iterations"
 >>>> DATA
 aztec-iterF 0.0
 aztec-iterT 0.0
 <<<<
 <<<
 <<

Figure 23. Parameter and observation block of iTOUGH2-PEST input file.

iTOUGH2-PEST USER’S GUIDE PAGE 45 OF 64

> COMPUTATION
 >> OPTION
 >>> PEST
 >>>> EXECUTABLE : "sh mpirun.sh"

 >>>> TEMPLATE : 1
 it2mp.tpl mpirun.sh

 >>>> INSTRUCTION : 2
 it2mpF.ins OUTPUT_F
 it2mpT.ins OUTPUT_T

 copy FILE : t2eos9_mp to temporary directory
 copy FILE : t2r3d_mp to temporary directory
 copy FILE : it2mp.tpl to temporary directory
 copy FILE : it2mpF.ins to temporary directory
 copy FILE : it2mpT.ins to temporary directory
 copy FILE : hf to temporary directory
 copy FILE : INFILE_F to temporary directory
 copy FILE : INFILE_T to temporary directory
 copy FILE : INCON_F to temporary directory
 copy FILE : GENER_T to temporary directory
 copy FILE : MESH to temporary directory
 copy FILE : PARAL.prm to temporary directory
 <<<<

 >>> L1-ESTIMATOR
 >>> GRID SEARCH: 18
 <<<
 <<
<

Figure 24. Computation block of iTOUGH2-PEST input file.

The > COMPUTATION block of Figure 24 starts with the PEST command. The executable in this
case is the Unix shell script file mpirun.sh. Recall that it is generated from the template file
it2mp.tpl (Figure 21), i.e., it is a simple text file that has read and write, but not execute
permissions. Consequently, it is not possible to just start it as a command itself, but it has to be
executed through the Bourne shell command sh. The space in the executable command calls for
quotes.

The template file it2mp.tpl is associated with the script file mpirun.sh through command
>>>> TEMPLATE. There are two instruction files in this example, one reading the output from the
flow simulation, and one for the transport simulation. The files are properly assigned in command
>>>> INSTRUCTION. The following lines are not commands interpreted by iTOUGH2-PEST (no
command-level markers >), but by the itough2 script file used on Unix machines to start an
iTOUGH2 application. This script file generates local directories (so multiple inversions can be run
at the same time without creating file sharing conflicts). It parses through the iTOUGH2 input file
and looks for the keyword FILE, reads the file name that follows the colon, and then copies the file

iTOUGH2-PEST USER’S GUIDE PAGE 46 OF 64

to the temporary directory. Therefore, to make sure all the files needed by the external program
(here the input and control files for the TOUGH2_MP flow and transport simulator), as well as the
template and instruction files, are available in the temporary directory, they are listed here (or
anywhere else in the iTOUGH2 input file) for the itough2 script file to read and copy.

As explained before, the L1 estimator is selected to yield an objective function that directly reflects
the CPU time and the other performance measures.

Next, iTOUGH2 is instructed to do a simple grid search, i.e., to evaluate the objective function for
24 parameter values by subdividing the >>>> RANGE given in the > PARAMETER block into 18
intervals. For this unusual application, it is essential that this subdivision yields values that are
whole numbers, as the parameter in question is the number of processors, and a fractional processor
does not do a satisfactory job. Here, the command will create a series of whole numbers 2, 3, 4,…,
20. Note, however, that iTOUGH2 only creates real parameter values, not integers. Fortunately, the
–np argument of the mpirun command seems to accept whole numbers with a decimal point as a
proper argument. Also note that the decimal point cannot be removed simply by using the
>>>> DECPOINT: NOPOINT command for reasons that become only evident when fully
understanding the workings of this PEST option see Section 3.2.6 of Doherty [2008].

The results are visualized in Figure 25. The total CPU time generally decreases with increasing
number of processors in a somewhat erratic way as a result of the varying number of time steps,
Newton-Raphson iterations, and Aztec iterations needed. Running this problem using 18 processors
would be optimal, reducing the CPU time by a factor of over seven compared to a run on two
processors.

Number of Processors

C
P

U
T

im
e

[s
e

c]

T
im

e
S

te
p

s,
N

e
w

to
n

It
e

ra
tio

n
s

A
zt

e
c

It
e

ra
tio

n
s

5 10 15 20
0

500

1000

1500

2000

2500

3000

3500

4000

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

Newton-Raphson
Iterations

Time Steps

A
zt

ec
It

er
at

io
n

s

C
P

U
T

im
e

Figure 25. CPU time and iteration statistics as a function of processors.

iTOUGH2-PEST USER’S GUIDE PAGE 47 OF 64

iTOUGH2-PEST USER’S GUIDE PAGE 48 OF 64

iTOUGH2-PEST USER’S GUIDE PAGE 49 OF 64

5.4 Adjusting Pre-Processor and Simulation Parameters

GH2-PEST code can be used to simultaneously adjust parameters of an external model
odel is either a pre- or postprocessor of

or (which produces the grid representing a
ecreated and used as input to a TOUGH2

mesh generator (here, the number of
s) and the flow simulator (seepage into an opening excavated from the fractured formation)

valuated for an uncertainty analysis. Multiple steps are needed to generate a discrete fracture

Software

The iTOU
and a TOUGH2 model. This is useful if the external m
TOUGH2. In this example, parameters of a mesh generat
discrete fracture network) are updated, and the mesh is r

page simulation. Select output from both the external see
fracture
are e
network model (see Table 3).

odel Table 3. Steps to Generate Discrete Fracture Network M

Step Activity

0 Script file invoking mesh generation steps 1–6

External executable called before each TOUGH2 simulation

sh.DFNMgen

(see Figure 26)

1 Generate 2D network o
cture

f fracture traces based on statistical
density, fracture length, and fracture

xDFNM
parameters on fra
orientation provided through an input file that is created by the
PEST template file

Remove unconnected fractures

Discretize fracture traces, assign aperture and permeabilities to
fracture elements, create TOUGH2 ELEME and CONNE blocks

2 Concatenate ELEME and CONNE block to create base MESH file sh.DFNMgen

3 Move X and Z coordinates of mesh xMoveMesh8

4 Add top boundary element xAddBound8

5 Add bottom boundary element xAddBound8

6 Cut out niche from mesh, adjust permeabilities near niche to reflect
excavation disturbed zone

xCutNiche8

teps are executThese mesh generation s ed by a Linux shell script file sh.DFNMgen (see Figure 26);
ulation. The parameters

t.dat, which is
consists of two

 a power-law

ture length (for details, see Liu et al.
s in the excavation disturbed zone.

cted fractures are removed, the fracture
al discretization scheme, an opening
d boundary elements are created. The

t from these mesh generation steps is a MESH file that is read by TOUGH2 for the subsequent
he niche.

it is the executable called by iTOUGH2 prior to each TOUGH2 forward sim
to be varied by iTOUGH2 are input to the program xDFNM, stored on file inpu
created by the PEST template file input.tpl (see Figure 27). The fracture network
fracture sets generated using six statistical parameters: fracture trace length follows
distribution, with the coefficient  and exponent –a as its parameters; the orientations of the two

 mean and standard deviation. Fracture fracture sets follow normal distributions, each with a given
aperture—and thus permeability—is correlated to the frac
[2002] and Zhang et al. [2010]), with increased permeabilitie

Once the base fracture network has been generated, unconne
traces are discretized according to the TOUGH2 spati

enting an excavated niche is cut form the mesh, anrepres
tpuou

simulation of unsaturated flow through the discrete fracture network and seepage into t

iTOUGH2-PEST USER’S GUIDE PAGE 50 OF 64

#! /bin/sh
Unix shell script file sh.DFNMgen

xDFNM
cat ELEME > DFNM_mes
cat CONNE >> DFNM_mes
cat >> DFNM_mes << eof

eof

xMoveMesh8 << eof
DFNM_mes # input mesh file
temp1.mes # output mesh file
-5.0 # dx
 0.0 # dy
-0.25 # dz
eof

echo
echo Add top boundary
echo ----------------
xAddBound8 << eof
temp1.mes # input mesh file
temp2.mes # output mesh file
TOP99999 # boundary element name
BOUND # boundary material type
0.3 # boundary element volume
1.0e-5 # nodal distance to boundary element
-100.0 # xmin
 100.0 # xmax
-100.0 # ymin
 100.0 # ymax
10.0 # zmin
11.0 # xmax
eof

echo
echo Add bottom boundary
echo -------------------
xAddBound8 << eof
temp2.mes # input mesh file
temp3.mes # output mesh file
BOT99999 # boundary element name
DRAIN # boundary material type
1.0E+20 # boundary element volume
1.0e-5 # nodal distance to boundary element
-100.0 # xmin
 100.0 # xmax
-100.0 # ymin
 100.0 # ymax
-1.00 # zmin
 1.00 # zmax
eof

Figure 26. Unix script file that generates mesh for discrete fracture network model.

iTOUGH2-PEST USER’S GUIDE PAGE 51 OF 64

echo
echo Cut out niche
echo -------------
xCutNiche8 << eof
temp3.mes # input mesh file
temp4.mes # output mesh file
2000.0 # niche volume
 1.0e-10 # nodal distance niche - wall
 1.0 # cosine multiplication factor
 -2.0 # Xmin
 2.0 # Xmax
-10.0 # Ymin
 10.0 # Ymax
 0.0 # Zmin
 2.5 # Zmax
 0.0 # Xcenter
 0.2083 # Zcenter
 3.0417 # Radius
 1.0 # thickness of skin zone
100.0 # skin zone permeability modifier
 1 # gradual skin zone
eof

Remove connections between niche and bottom boundary
Remove ‘+++’ from GENER file

grep -v "NIC98 BOT99999" temp4.mes | grep -v "NIC99" > MESH
cat GENER | sed 's/+++/ /g' > dum.gen
mv dum.gen GENER

echo
echo Shell script sh.DFNMgen terminated
echo ==================================

Figure 26 (cont.): Unix script file that generates mesh for discrete fracture network model

ptf #
1 10 ! number of layers, number of profiles
10.0 10.5 ! the 2-D domain size x and Z
10.5 ! Thickness of the layers
 1.0 10. #a # #alpha # ! lmin, lmax, a, alpha
#angle1 # #anglesd1 # #angle2 # #anglesd2 # ! mean and sigma
0.1 ! a small angle value used to adjust fracture orientation
1 1 0 ! control parameters
0.10 1. ! max length of TOUGH2 element

Figure 27. Template file input.tpl.

also shown.

Figure 28 visualizes the sequence of mesh generation steps, and shows some realizations obtained
by varying the statistical input parameters. The permeability and steady-state saturation fields are

iTOUGH2-PEST USER’S GUIDE PAGE 52 OF 64

X [m]

D
e

p
th

[m
]

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

X [m]

D
e

p
th

[m
]

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

X [m]

D
e

p
th

[m
]

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

X [m]

D
e

p
th

[m
]

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

X [m]

D
e

p
th

[m
]

-4 -2 0 2 4
1

2

3

4

5

6

7

8

9

10

-9.50
-9.75

-10.00
-10.25
-10.50
-10.75
-11.00
-11.25
-11.50
-11.75
-12.00
-12.25
-12.50

log(k [m2])

X [m]

D
e

p
th

[m
]

-4 -2 0 2 4
1

2

3

4

5

6

7

8

9

10

0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10

Sliq.

Figure 28. Four realizations of the base discrete fracture network, permeability field, and steady-
state saturation distribution.

iTOUGH2-PEST USER’S GUIDE PAGE 53 OF 64

The TOUGH2 input file for simulating unsaturated flow through the discrete fracture network and
excavated opening is shown in Figure 29. Note that blocks ELEME and CONNE

be read from an external file MESH, which is generated by the script file
ulation starts at a large negative time. Once steady state is

 element representing the niche is reset. Seepage continues for one
f liquid accumulated in the niche element being the result of

ck of the iTOUGH2 input file, defining the five statistical
by the xDFNM mesh generator. The parameters are written to the xDFNM input
h the PEST template file input.tpl (Figure 27).

ng discrete fracture network model

seepage into the
are absent; the mesh will
sh.MESHgen (Figure 26). The sim

thereached, the saturation in
more year, with the total amount o
interest.

Figure 30 shows th
ameters needed

e > PARAMETER blo
par
file input.dat throug

DFNM: seepage into niche usi
ROCKS----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8
FRACT 0 2650. 1.0 1.0E-12 1.0E-12 1.0E-12 -1000.
SKINZ 0 2650. 1.0 1.0E-12 1.0E-12 1.0E-12 -1000.
NICHE 2 2650. 1.0 1.0E-08 1.0E-08 1.0E-08 1000.

 3 0.99
 9
BOUND 2 2650. 1.0 1.0E-08 1.0E-08 1.0E-08 100000.

 3 0.01
 9
DRAIN 2 2650. 1.0 1.0E-08 1.0E-08 1.0E-08 100000.
REFCO 0 1.0E5 20.0 1.0E+03 1.0E-03 4.4E-10 100000.

RPCAP----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8
 11 0.00 0.00
 11 1.5 -5000.0
PARAM----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8
 39999 9999100000900021100100005000
-1.000E+10 0.100E+06 -9.81
 1.000E-04
 0.01
MOMOP----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8
38
GENER----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8
TOP99999INF 0 0 COM1 6.3420E-06

START----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8
INCON----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8

ENDCY----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8

Figure 29. TOUGH2 input file DFNM for simulating unsaturated flow through discrete fracture
und opening. network and seepage into undergro

iTOUGH2-PEST USER’S GUIDE PAGE 54 OF 64

> PARAMETER
 >> PEST
 >>> NONE
 >>>> NAME: a
 >>>> VALUE
 >>>> GUESS: 1.03
 >>>> RANGE: 1.01 1.05
 >>>> VARIATION: 0.01
 <<<<

 >>> NONE
 >>>> NAME: alpha
 >>>> VALUE
 >>>> GUESS: 100
 >>>> RANGE: 50 150
 >>>> VARIATION: 10.0
 <<<<

 >>> NONE
 >>>> NAME: angle1
 >>>> VALUE
 >>>> GUESS: 0.0001
 >>>> RANGE: -25.0 25.0
 >>>> VARIATION: 10.0
 <<<<

 >>> NONE
 >>>> NAME: anglesd1
 >>>> VALUE
 >>>> GUESS: 10.0
 >>>> RANGE: 5.0 15.0
 >>>> VARIATION: 2.0
 <<<<

 >>> NONE
 >>>> NAME: angle2
 >>>> VALUE
 >>>> GUESS: 90.0
 >>>> RANGE: 70.0 110.0
 >>>> VARIATION: 10.0
 <<<<

 >>> NONE
 >>>> NAME: anglesd2
 >>>> VALUE
 >>>> GUESS: 10.0
 15.0 >>>> RANGE: 5.0
 >>>> VARIATION: 2.0
 <<<<
 <<<
 <<

Figure 30. iTOUGH2 input file DFNMi, PARAMETER block.

iTOUGH2-PEST USER’S GUIDE PAGE 55 OF 64

Figure 31 shows the
 year is specified,

 > OBSERVATION block of the iTOUGH2 input file. A single point in time at
at which the change in total mass of water is extracted. Soon after beginning of

te portion of the simulation, the niche element volume is set to 1050 m3, making it a
he volume of the niche element is set at 1,000 m3,

ass reflects the cumulative amount of
ater seeping into the opening within 1 year.

total number of fractures of the base network and the
nt in time, and dummy

om file fracture.frq,
put parameter is varied through the
ation, even if the output of interest

a point read from a dummy file.

1
the steady-sta
Dirichlet boundary condition. At restart time 0, t

tion is reset at its initial value, so the change in mand its satura
w

There are also two PEST parameters: the
number of connected fractures. These data are not related to a particular poi

ation is read frdata values of zero and weights of one are provided. This inform
which is an output file from the xDFNM code. Note that if an in
PEST protocol, it is necessary to select at least one PEST observ
comes from the TOUGH2 simulation. This may be a dummy dat

> OBSERVATION

 >> TIMES: 1 year
 1.0

 >> RESTART TIMES: 1
 -9998000000.0
 NICHE 0 1.0E50

 >> RESTART TIMES: 1 reset water in niche
 0.0
 NICHE 0 1.0E3
 NICHE 1 0.01

 >> PEST
 >>> UNIVERSAL: fractures
 >>>> DATA
 num_fract_tot 0.0 1.0
 num_fract_con 0.0 1.0
 <<<<
 <<<

 >> CHANGE TOTAL MASS
 >>> MATERIAL: NICHE
 >>>> COMPONENT: 1
 >>>> ZERO DATA
 <<<<
 <<<
 <<

Figure 31. iTOUGH2 input file DFNMi, OBSERVATION block.

iTOUGH2-PEST USER’S GUIDE PAGE 56 OF 64

> COMPUTATION

 >> STOP
 >>> Number of SIMULATIONS: 500
 <<<

 >> ERROR propagation analysis
 >>> MONTE CARLO SEED: 5555
 >>> LATIN HYPERCUBE SAMPLING CORRELATION MATRIX: 6
 1E-4 0.0 0.0 0.0 0.0 0.0
 0.0 100.0 0.0 0.0 0.0 0.0
 0.0 0.0 100.0 0.0 0.9 0.0
 0.0 0.0 0.0 4.0 0.0 0.5
 0.0 0.0 0.9 0.0 100.0 0.0
 0.0 0.0 0.0 0.5 0.0 4.0
 <<<

 >> OPTION
 >>> PEST
 >>>> EXECUTABLE : sh.DFNMgen run BEFORE TOUGH2!
 >>>> TEMPLATE : 1
 input.tpl input.dat
 >>>> INSTRUCTION : 1
 fracture.ins fracture.frq

 FILE: input.tpl
 FILE: fracture.ins
 FILE: sh.DFNMgen

 <<<<

 >>> STEADY STATE

 >>> PVM: 30 FILE: NODEFILE
 HOST1PVM
 HOST2PVM
 ...
 HOST30PVM
 <<<

 <<
<

Figure 32. iTOUGH2 input file DFNMi, COMPUTATION block.

Figure 32 shows the > COMPUTATION block of the iTOUGH2 input file. In this application, the
execution of 500 Monte Carlo simulations based on the Latin hypercube sampling strategy is used
to examine the impact of the characteristics of the discrete fracture network on seepage. A
covariance/correlation matrix of the six PEST parameters is provided, with the variances on the
diagonal, and correlation coefficients on off-diagonal elements. Here, it is assumed that the two
fracture sets are approximately orthogonal to each other; a correlation coefficient of 0.9 between the
third and fifth parameters (those representing the mean angles for each fracture set) induces this

iTOUGH2-PEST USER’S GUIDE PAGE 57 OF 64

statistical correlation. A
deviations.

 weaker correlation coefficient of 0.5 is given for the respective standard

The PEST-related commands and related input files have been previously discussed. The names of
external input files—input.tpl, fracture.ins, and sh.MESHgen—are repeated on separate lines
following keyword FILE: to make sure the itough2 shell script copies these files to the temporary
directory where the iTOUGH2 run is executed. Keyword BEFORE is used to indicate that the PEST
executable—the Unix script file sh.MESHgen—shall be run before the TOUGH2 simulation.
(Keyword AFTER would be used if the external code were a postprocessor of the TOUGH2 output
file.) The 500 Monte Carlo simulations are evaluated in parallel on 30 processors on a Linux
cluster. The names of the nodes are stored on file NODEFILE, which is generated by the scheduler.

Figure 33 shows the results of the analysis, which evaluates the uncertainty in the conceptual
model, i.e., the characteristics of the fracture network, on seepage.

Number of Fractures

F
re

q
u

e
n

cy

150 200 250
0

10

20

30

40

50

60

Total number of fractures

Number of connected fractures

(a) (b)

Figure 33. (a) Histogram of number of fractures generated for different statistical input
parameters, and (b) resulting distribution of annual seepage per meter of tunnel.

iTOUGH2-PEST USER’S GUIDE PAGE 58 OF 64

.5 Pare5 to Frontier

er can be considered to be the set of solutions to a multicriteria optimization
elative weights of the criteria are varied to examine the tradeoffs between

e determine the Pareto frontier by running multiple iTOUGH2
sted in predefined increments. The grid-search option
eter to be varied is the weight assigned to the two

ferent objective. For each weight combination, an
n is performed, and the mean residual of each observation type is extracted and

rontier plot. In this example, iTOUGH2 controls iTOUGH2 optimization

tion problem considered is a remediation design problem, where the tradeoff between
jectives is examined. These competing objectives are (1) maximization of contaminant

e of 5 years, and (2) minimization of cleanup costs,
tal amount of water pumped from six wells during a pump-and-treat
minimization problem of determining optimal pumping rates (assuming

s of pumping and residual contamination are known) is described in Finsterle
oblem is now solved repeatedly for different weights of the two

weight to the remediation goal, pumping rates are expected
s placed on reducing pumping costs, the pumping rates will

e of increased residual contamination. The tradeoff between these
 relative weights (wp and wc) for the pumping

n objectives, respectively, under the constraint that wp + wc = 1. The weights are
GH2 input file, which is created by the PEST template file pareto.tpl (Figure
combination, the optimal distribution of pumping rates in the six wells is

ation that minimizes both the (weighted) total amount of water
l contaminant mass. The total rate and residual contaminant

idual analysis section of the iTOUGH2 output
e 35). Plotting the two objectives against each

s the Pareto frontier.

36 shows the iTOUGH2-PEST input file that performs a 40-point grid search. The only
is the weight of the pumping rate criterion, wp; its value is varied from (almost)
ne (the endpoints of the interval are avoided because no residual analysis is

residuals are zero). The second parameter (representing the weight
ot a free parameter. It is tied to the first parameter

p, which is implemented using the commands >>>> TIED TO,
LTIPLY. The 40 iTOUGH2 inversions are invoked through the

x script command itough2 (or the equivalent WINDOWS batch file), which is provided
a

g
defined optim o much tradeoff.

The Pareto fronti
problem, where the r
competing objectives. Here, w
inversions, where the relative weights are adju

, where the paramof iTOUGH2-PEST is used
observation types, each representing a dif
iTOUGH2 inversio
used to create the Pareto f

ns. ru

The optimiza
two ob
removal within a specified cleanup tim
simplified here as the to

idual operation. The indiv
at the relative costth

[2005]. This optimization pr
competing objectives. By giving higher

 emphasis ito go up; conversely, if
generally go down at the expens
two objectives is evaluated at 40 discrete points with
cost and remediatio
entered into the iTOU

t 34). For each weigh
determined by an iTOUGH2 optimiz

iduapumped and the (weighted) res
mass after each optimization is extracted from the res

 instruction file pareto.ins (Figurfile using the PEST
other provide

Figure
parameter adjusted

st) ozero to (almo
performed by iTOUGH2 if all
given to the residual contamination criterion) is n
using the equation wc = 1 - w

>>>> MU>>>> ADD, and
d Unistandar

as the execut ble.

The resultin Pareto frontier is shown in Figure 37, demonstrating that there is a relatively well-
al solution, where both criteria can be met without to

iTOUGH2-PEST USER’S GUIDE PAGE 59 OF 64

ptf #

> parameters

 >> generation
 >>> source: INJ_1
 >>>> annotation: Well SW
 >>>> value
 >>>> range: -0.75 -0.01
 <<<<

... other wells

 <<<
 <<

> observation
 >> times: 2 year
 4.999 5.0

 >> total generation
 >>> source: INJ_1 +5
 >>>> sum
 >>>> zero data
 >>>> weight: #criterion_q#
 <<<<
 <<<
 >> total mass
 >>> model
 >>>> component: 3
 >>>> zero data
 >>>> weight: #criterion_m#
 <<<<
 <<<
 <<

> computation
 >> stop
 >>> iteration: 15
 <<<
 >> option
 >>> l1-estimator
 <<<
 <<

Figure 34. Template file for creating an iTOUGH2 input file with adjustable weights for different
sent different objectives. observations that repre

pif @
@RESIDUAL ANALYSIS@
@MASS IN PLACE [kg]@ w w !resid_m!
@GENERATION RATE [kg/sec]@ w w !resid_q!

Figure 35. Instruction file to for extracting residual contaminant mass in place and mean pumping
rate.

iTOUGH2-PEST USER’S GUIDE PAGE 60 OF 64

> PARAMETER
 >> PEST
 >>> NONE
 >>>> NAME : criterion_q
 >>>> VALUE
 >>>> GUESS : 0.5
 >>>> RANGE : 0.001 0.999
 <<<<
 >>> NONE
 >>>> NAME : criterion_m
 >>>> VALUE
 >>>> GUESS : 0.5
 >>>> TIED TO : 1
 >>>> ADD : 1.0
 >>>> MULTIPLY : -1.0
 <<<<
 <<<
 <<

> OBSERVATION
 >> PEST
 >>> UNIVERSAL: Pumping Rate
 >>>> DATA
 resid_q 0.0 1.0
 <<<<

 >>> UNIVERSAL: Residual Contamination
 >>>> DATA
 resid_m 0.0 1.0
 <<<<
 <<<
 <<

> COMPUTATION
 >> OPTION
 >>> GRID SEARCH: 39 intervals
 >>> PEST
 >>>> EXECUTABLE : “itough2 remi rem 10”
 >>>> TEMPLATE : 1
 pareto.tpl remi
 >>>> INSTRUCTION: 1
 pareto.ins remi.out
 <<<<

 FILE: pareto.tpl
 FILE: pareto.ins

 <<<
 <<
< .

Figure 36. iTOUGH2-PEST input file for running multiple iTOUGH2 inversions to create Pareto
frontier.

iTOUGH2-PEST USER’S GUIDE PAGE 61 OF 64

Residual Contamination [kg]

P
u

m
p

in
g

R
a

te
[k

g
/s

]

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Figure 37. Pareto frontier.

iTOUGH2-PEST USER’S GUIDE PAGE 62 OF 64

6. CONCLUDING REMARKS

nume
by th ion analyses (specifically

proble large variety of scientific analysis and

forward sim

TOUG simulators with routines for automatic model

invest and often highly

based ation solver.

ing routines

of thi stant Secretary for Energy Efficiency
. Department of

Numb

In the indirect approach to inverse modeling, optimization algorithms are wrapped around the
rical model whose parameters are to be estimated based on select output variables calculated
is model. Similarly, sensitivity analyses and uncertainty propagat

sampling-based methods) often treat the underlying model as a black box model. The fact that the
optimization algorithms generally can be decoupled from the algorithms that solve the forward

m provides great flexibility in applying them to a
engineering design problems. On the other hand, a tight link between the forward and inverse
problem also has significant advantages, specifically in terms of numerical accuracy, control of the

ulator by the optimizer, and convenience in specifying input parameters and extracting
output variables. The latter approach has been the tenet of iTOUGH2, which tightly integrates the

H2 suite of nonisothermal multiphase flow
calibration, sensitivity, and uncertainty propagation analyses.

With the support of the PEST protocol as described in this manual, iTOUGH2 now has the
flexibility and all the other advantages of a universal, model-independent optimization code. The

ments made into the solution of the challenging, strongly nonlinear
parameterized TOUGH2 inverse problems are now available for use in conjunction with any text-

 numerical simulator or analytical equ

7. ACKNOWLEDGMENT

I would like to thank John Doherty for making the PEST protocol and related pars
publicly available. I am also grateful to Yingqi Zhang and Mike Kowalsky for their careful reviews

s manual. This work was supported, in part, by the Assi
and Renewable Energy, Office of Wind and Geothermal Technologies, of the U.S
Energy, and as part of the Subsurface Science Scientific Focus Area funded by the U.S. Department
of Energy, Office of Science, Office of Biological and Environmental Resources under Award

er DE-AC02-05CH11231.

iTOUGH2-PEST USER’S GUIDE PAGE 63 OF 64

Banta
int Universal Parameter IdenTification and Evaluation of Reliability

Doher

8. REFERENCES

, E.R., M.C. Hill, E. Poeter, J.E. Doherty, and J. Babendreier, Building model analysis
applications with the Jo
(JUPITER) API, Computers and Geosciences, 34, 310–319, 2008.

ty, J., PEST: Model-Independent Parameter Estimation, Watermark Numerical Computing,
Brisbane, Australia, 2008. http://pesthomepage.org/

ty, J., FORTRAN 9D 0 Modules for Implementation of Parallelised, Model-Independent, Model-
Based Processing, Watermark Numerical Computing, Australia, March 200

oher
7.

Finsterle, S., Parallelization of iTOUGH2 Using PVM, Report LBNL-42261, Lawrence Berkeley
National Laboratory, Berkeley, Calif., 1998.
http://esd.lbl.gov/TOUG HPLUS/manuals/iTOUGH2_PVM_Users_Guide.pdf

Finste LBNL-40040, Lawrence Berkeley National
Laboratory, Berkeley, Calif., 2007a.
 http://esd.lbl.gov/TOUGHPLUS/manuals/iTOUGH2_Users_Guide.pdf

Finsterle, S., Demonstration of optimization techniques for groundwater plume remediation using
iTOUGH2, Environmental Modelling and Software, 21(5), 665–680, 2005.

rle, S., iTOUGH2 User’s Guide, Report

insterle, S., iTOUGH2 Command Reference, Report LBNL-40041 (Updated reprint), Lawrence
Berkeley National Laboratory, Berkeley, Calif., 2007b.

 http://esd.lbl.gov/TOUGHPLUS/manuals/iTOUGH2_Command_Reference.pdf

F

Finsterle, S., iTOUGH2 Sample Problems, Report LBNL-40042 (Updated reprint), Lawrence
Berkeley National Laboratory, Berkeley, Calif., 2007c.

 http://esd.lbl.gov/TOUGHPLUS/manuals/iTOUGH2_Sample_Problems.pdf

Liu, H. H., G. S. Bodvarsson, and S. Finsterle, A note on unsaturated flow in two-dimensional
fracture networks, Water Resour. Res., 38(9), 1176, doi:10.1027/2001WR000977, 2002

Pan, L., User Information Document for: WinGridder Version 3.0, Document ID 10024-UID-3.0-
00, 2007.

 http://esd.lbl.gov/TOUGHPLUS/manuals/WinGridder-V3_Users_Guide.pdf

Poeter, E.P., and M.C. Hill, Documentation of UCODE, a Computer Code for Universal Inverse
Modeling, U.S. Geological Survey Water-Resources Investigations Report 98-4080, 1998.
http://water.usgs.gov/software/ucode.html

Pruess, K., C. Oldenburg, and G. Moridis, TOUGH2 User’s Guide, Version 2.0, Report LBNL-
43134, Lawrence Berkeley Laboratory, Berkeley, Calif., 1999.

 http://esd.lbl.gov/TOUGHPLUS/manuals/TOUGH2_V2_Users_Guide.pdf

Spycher, N., G. Zhang, S. Sengor, M. Issarangkun, T. Barkouki, T.Ginn, Y. Wu, R. Smith,
S. Hubbard, Y. Fujita, R. Sani, and B. Peyton, Application of TOUGHREACT V2.0 to
environmental systems, Proceedings, TOUGH Symposium 2009, Lawrence Berkeley
National Laboratory, Berkeley, Calif., September 14–16, 2009.

http://esd.lbl.gov/TOUGHPLUS/manuals/TOUGH2-MP_Users_Guide.pdf

iTOUGH2-PEST USER’S GUIDE PAGE 64 OF 64

Xu, T., E.L. Sonnenthal, N. Spycher, and K. Pruess, TOUGHREACT User's Guide: A Simulation
Program for Non-Isothermal Multiphase Reactive Geochemical Transport in Variably
Saturated Geologic Media, Report LBNL-55460, Lawrence Berkeley National Laboratory,
Berkeley, Calif., 2004.

Zhang, K., H. Yamamoto, and K. Pruess, TMVOC-MP: A Parallel Numerical Simulator for Three-
Phase Non-isothermal Flows of Multicomponent Hydrocarbon Mixtures in Porous/Fractured
Media, Report LBNL-63827, Lawrence Berkeley National Laboratory, Berkeley, Calif.,
September 2007.

 HUhttp://esd.lbl.gov/TOUGHPLUS/manuals/TMVOC-MP_Users_Guide.pdfU

Zhang, K., Y.-S. Wu, and K. Pruess, User's Guide for TOUGH2-MP — A Massively Parallel
Version of the TOUGH2 Code, Report LBNL-315E, Lawrence Berkeley National Laboratory,
Berkeley, Calif., 2008.

 HUhttp://esd.lbl.gov/TOUGHPLUS/manuals/TOUGH2-MP_Users_Guide.pdfUH

Zhang, Y., C.M. Oldenburg, and S. Finsterle, Percolation-theory and fuzzy rule-based probability
estimation of fault leakage at geologic carbon sequestration sites, Env. Earth Sci., 59, 1447–
1459, doi:10.1007/s12665-009-0131-4, 2010.

	LIST OF FIGURES
	LIST OF TABLES
	1. INTRODUCTION
	2. INSTALLATION AND EXECUTION
	3. THE PEST PROTOCOL
	3.1 General Concept
	3.2 Template File
	3.3 Instruction File

	4. iTOUGH2-PEST INPUT FORMATS
	4.1 Introduction
	4.2 Generic iTOUGH2-PEST Input File
	4.3 PEST-Related iTOUGH2 Commands

	5. EXAMPLES
	5.1 Polynomial Fitting Using iTOUGH2-PEST
	5.2 Parallel Inversion of TOUGHREACT Model
	5.3 Evaluating Parallelization of TOUGH2-MP Models
	5.4 Adjusting Pre-Processor and Simulation Parameters
	5.5 Pareto Frontier

	6. CONCLUDING REMARKS
	7. ACKNOWLEDGMENT
	8. REFERENCES

