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Abstract

The nonlinear behavior of mechanical joints is a confounding element in modeling the
dynamic response of structures. Though there has been some progress in recent years in
modeling individual joints, modeling the full structure with myriad frictional interfaces has
remained an obstinate challenge.

A strategy is suggested for structural dynamics modeling that can account for the com-
bined effect of interface friction distributed spatially about the structure. This approach
accommodates the following observations:

1. At small to modest amplitudes, the nonlinearity of jointed structures is manifest pri-
marily in the energy dissipation - visible as vibration damping.

2. Correspondingly, measured vibration modes do not change significantly with ampli-
tude.

3. Significant coupling among the modes does not appear to result at modest amplitudes.

The mathematical approach presented here postulates the preservation of linear modes and
invests all the nonlinearity in the evolution of the modal coordinates. The constitutive form
selected is one that works well in modeling spatially discrete joints.

When compared against a mathematical truth model, the distributed dissipation approxi-
mation performs well.
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Chapter 1

Introduction

There is a paradox of structural dynamics

1. On one hand experiment demonstrates distinct nonlinearity, particularly in the form
of amplitude dependence of vibration damping.

2. On the other hand, linear analysis works well enough to be a practical tool so long
as the damping parameters can be tuned to the structure and experiment at hand.
(Different tuning is required for different experiments.)

The twin purposes of this monograph are to reconcile the above observations and to
suggest an effective and efficient method of structural dynamics analysis that accommodates
the observed nonlinearity.

Nonlinearity of Built-Up Structures

Recently there has been a renewed focus on mechanics of joints and the dynamics of built
up structures. This renewed interest appears to derive from the desire to speed the design
process and rely more on computational prediction and less on test. This is a particularly
appealing strategy given the remarkable advances that have taken place in super computing
in recent years.

The goal of predictive computer simulation of structural dynamics requires setting aside
some of the simplifications that have been used in traditional engineering analysis, that
required post test tuning (knobs). The most significant of these knobs in structural dynamics
is modal damping, which must be calibrated for each mode for the level of excitation expected
in the application to be modeled. Even with tuning, linear models are still incapable of
capturing the damping of structures at high amplitude and continuing to model the damped
behavior as the amplitude of vibration declines.
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Features Common to Joints and to Jointed Structures

Mechanical joints and their role in vibration damping has been a topic of research interest
for at least a century. (Extensive reviews can be found in [22] and [23]). Among the features
found in tests of mechanical interfaces are

1. Under harmonic loading, joint dissipation per cycle increases approximately as a power
of load amplitude and that power generally lies between 2.2 and 2.8.

2. Also under harmonic loading and modest load amplitudes, the effective stiffness de-
creases slightly with amplitude of excitation.

3. Though dissipation per cycle shows a strong dependence on load amplitude, it has
little rate dependence.

The above behavior is suggested notionally in Figure 1.1.
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Low Amplitude Excitation
High Amplitude Excitation

Figure 1.1. Transmissibility of Base Excited System con-

veys qualitatively the behavior of individual joints.

Actual experimental data of energy dissipation per cycle versus force is presented in
Figure 1.2. The discrete points in these log-log plots are associate with harmonic axial
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loading of simple lap joints at different levels of axial load. Cases of multiple clamping
loads are considered and power law fits are found for each level of clamping load. Energy
dissipation for the case of a monolithic (joint-free) specimen is also shown. In such cases,
the energy dissipation is orders of magnitude less than that of jointed specimens and the
power-law fit has a slope of approximately 2.0 - substantially less than for the cases of jointed
specimens. This data, due to Danny L. Gregory, is found in [23].

Figure 1.2. Experimental Energy Dissipation of Steel-Steel

Specimens.

Computational Issues in Dynamics of Built-Up Struc-

tures

In general, a majority of the nonlinearity encountered in structural mechanics is due to
nonlinearities at interfaces. There are several flavors of such nonlinearity including micro-slip,
macro-slip, impact, and combinations of all. The problems considered in this formulation
are ones where the magnitude of excitation is low enough that one does not expect impact
or that many of the interfaces go into macro-slip.
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A long history of modeling individual joints is marked by a recent flurry in development
of new model forms and incorporation of those into structural dynamics code. Recent work
in this area was brought together in focused workshops in 2006 [22] and 2009. (A report on
the 2009 workshop is currently undergoing peer review.)

Modeling of Individual Joints and Incorporation of Joint Models

in Finite Element Models

A class of constitutive model that has had some success in modeling mechanical joints is
that associated with Bauschinger[1], Prandtl[18], Ishlinskii [9], and Iwan[11] and [10]. This
model class (referred to in the following as the BPII class) has been used by the above
authors primarily to capture the qualitative properties of metals under large deformation.

The BPII model class is consistent with the sketch in Figure 1.3 In that figure, each

k 3

k 2

k 1

k N

φ~ N

φ~ 1

φ~ 2

φ~ 3

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

f

u

Figure 1.3. The BPII model is consistently represented as

an infinite parallel union of Jenkins elements.

Jenkins element consists of a slider of strength φ̃j and a spring of stiffness kj . Combining
results from [11], [27] and [26], one can show that such models can be represented through
a change of variables without loss of generality by equivalent structures all having stiffness
kj = 1.
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Mathematically, the model form is now expressed:

F (t) =
∫ ∞

0
ρ(φ)[u(t) − x(t, φ)] dφ (1.1)

where F is the force imposed on the joint; u(t) is the joint displacement at time t; ρ() is the
distribution defining the properties of a BPII model; and

ẋ(t, φ) =

{

u̇ if ‖u− x(t, φ)‖ = φ and u̇(u− x(t, φ)) > 0
0 otherwise

(1.2)

is a state variable capturing the history of joint deformation. We are guaranteed that ‖u−
x(t, φ)‖ ≤ φ.

After the change of variables mentioned above, the quantities have dimensions as follows.
“Dummy” parameter φ has dimensions of length. Distribution ρ() , which contains all joint
parameterization,has dimensions of force/length2. The dimensions of the external loads and
displacements applied to the joint remain unchanged.

An instance of this class has been used extensively by Palmov [16] to capture the bulk
response of metals to dynamic problems of large deformation. This model class has been
used in more recent years also to model mechanical joints [17], [12], [27], and [20].

As discussed above, laboratory testing shows that for most frictional joints, when sub-
jected to harmonic excitation of magnitude F0, the resulting energy dissipation per cycle
conforms to a power-law in F0

D(F0) = υF α
0 (1.3)

where 2 < α < 3 ([30],[31],[32],[6]).

One can show mathematically [26] that for the dissipation to behave in a power-law
manner the corresponding distribution must be asymptotically

ρ(φ) ≈ Rφχ for small φ (1.4)

where

χ = α− 3 (1.5)

Consideration of small deformations permits us to deduce that at very small deformation

F (t) = u(t)
∫ ∞

0
ρ(φ) dφ (1.6)
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providing us an expression for tangent stiffness at small load:

KT =
∫ ∞

0
ρ(φ) dφ (1.7)

Note that this demonstrates that admissible ρ must be integrable over the interval (0,∞).

Palmov’s 3-Parameter Model

The simplest model that satisfies this condition is one where one explicitly considers
only small loads and displacements. One assumes that the distribution function behaves as
Equation 1.4 at small loads and that only small load information is available: power-law
dissipation and low-load stiffness, KT .

With small deformations in mind, we re-write Equation 1.1

F (t) =
∫ ǫ

0
ρ(φ)[u(t) − x(t, φ)] dφ+ u

∫ ∞

ǫ
ρ(φ) dφ (1.8)

where ǫ is chosen to be a displacement so small that ρ(u0) is well approximated by Rφχ

for φ < ǫ but that the anticipated simulations or experiments will not cause displacements
exceeding ǫ.

We may now write Equation 1.8 as

F (t) = KT u(t) −
∫ ǫ

0
ρ(φ)x(t, φ) dφ = KT u(t) −

∫ ǫ

0
Rφχx(t, φ) dφ (1.9)

= KT u(t) −
∫ ∞

0
Rφχx(t, φ) dφ (1.10)

since x(t, φ) = 0 for all φ > ǫ. If one does perform simulations such that displacement exceeds
ǫ, pathological behavior results. This model cannot be used to predict large load/deformation
behavior of joints.

This three parameter (KT , R, χ) BPII model is discussed extensively by Palmov [16] and
appears to have been constructed so as to be mathematically equivalent to the Masing model
explored much earlier by Davidenkov [4]. This same Iwan model was explored again much
later by Segalman [26]. Interestingly enough, the Davidenkov Masing model was eventually
rediscovered by Smallwood [29]. (A reasonably good discussion connecting Masing and Iwan
models can be found in [25] and another discussion on using Iwan models to explore the
connections among Masing models can be found in [28].)

At this point, it would be useful to discuss the process of deducing parameters for this
model from experiment. The value of KT is deduced from small load experiments in the
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obvious manner and the value of χ is deduced from the slope of the dissipation power-law
plot with the help of Equation 1.5. As discussed above and frequently in the literature
(for instance, [16] , [26], [27]) the energy dissipation taking place in the joint per cycle in
harmonic loading is

D(u0) =
∫ u0

0
4 [u0 − φ]φρ(φ) dφ (1.11)

where u0 is the maximum displacement resulting from that harmonic loading.

Performing the relevant integration and matching the dissipation with that of Equation
1.3, we deduce that

R = υ(2 + χ)(3 + χ)K3+χ
T /4 (1.12)

The Sandia 4-Parameter Model

Another distribution that satisfies the character of Equation 1.4 but that also has meaning
at large loads was presented and explored in [27]. That distribution has the form

ρ(φ) = Rφχ[H(φ) −H(φ− φmax)] + Sδ(φ− φmax) (1.13)

where H() is the Heaviside step function, δ is the Dirac delta function. The parameters φmax

S and R can be expressed in terms of a preferred set of parameters:

• FS is the force necessary to initiate macro-slip;

• KT is the joint stiffness at small load;

• χ is as defined in Equation 1.5;

• β relates to the shape of the dissipation curve, where it deviates from strict power-law.

Parameter FS has dimensions of force; KT has dimensions of stiffness; and χ and β are
dimensionless. Methods for extracting joint parameters from experimental data are discussed
in [23].

The above 4-parameter model has been incorporated into the massively parallel structural
dynamics finite element code Salinas [19]. In this implementation, the joint is a zero-volume,
one-dimensional nonlinear element and very realistic predictions of the vibration of structures
having a small number of discrete joints are obtained ([2] and [24]).

Of course, the Sandia 4-parameter model reduces to Palmov’s three-parameter model
when loads/deflections are restricted to very small values. These two constitutive model
forms will be discussed further in the following.
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Limitations Associated with Modeling Discrete Joints

The above work is reflective of major advances that have taken place over the last decade
in developing constitutive models for joints and incorporating those models into structural
dynamics codes. This approach is especially useful for cases where nonlinear dynamic re-
sponse is dominated by a small number of joints in the major load path.

Still, there are major limitations with this approach.

1. The most significant difficulty is that of obtaining the necessary parameterization for
every joint in the structure. The experimental process of performing the necessary tests
on each joint is discussed in detail in [23]. Alternatively one could perform fine-mesh-
finite-element simulations of each joint and employ some sort of calibration correcting
for the limitations of the relevant friction model. These laboratory or simulation results
must be processed to obtain parameters for the relevant joints models.

The exhausting process of obtaining parameters for just a few individual joints - par-
ticularly considering the part-to-part variability - precludes the prospect of modeling
every joint individually in a complex structure.

2. The above discrete joint models are still pretty primitive. Among other limitations,
they are intrinsically one-dimensional. Some computational [8] work and some experi-
mental explorations [5] argue that joint response is fundamentally three-dimensional.

Though one-dimensional models are being generalized to three dimensional form in
innumerable ways (for instance using a formalism such as that introduced by Mröz
[14]), accurate models will require both the development of advanced experimental
techniques and extensive exploitation of those techniques to populate models for all of
the relevant joints.

3. Just as creating test specimens for every joint type, material, geometry, and loading of
interest and then performing multiple laboratory measurements on each is prohibitive;
once having all of the resulting parameters, incorporating the myriad discrete joints
into the relevant finite element model for the structure would likely be intractable also.

4. Interestingly, it appears that the more fidelity that a model has to capture the behavior
that joints manifest in laboratory testing, the more difficult the resulting structural
dynamics model is to solve. This difficulty is discussed below.

A typical hysteresis loop for a BPII type model is shown in Figure 1.4. Though the
symmetry relations are those that are used to define generalized Masing models [3],
it has been demonstrated mathematically that the Masing class and the class of BPII
models are mathematically equivalent [25].

As loads increase, the hysteresis loop grows along both dimensions. Additionally, at
small loads, the hysteresis loop has the shape of almost a straight line (limiting elastic
behavior), and the loop opens up as loads increase. As a result, at large loads there is
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Figure 1.4. Hysteresis loop of a Masing model.

a discontinuity in instantaneous stiffness at load reversals (the upper right and lower
left corners of the figure.)

This strong nonlinearity can excite very small amplitude high-frequency resonances
which are not actually relevant to the engineering problem. The combination of high
frequency and strong nonlinearity tends to drive down the time step that must be
employed to make the resulting Newton iterations converge. Thus incorporating high
fidelity discrete models for joints can increase the computational cost of analysis dra-
matically.

Proposed Approach to Distributed Nonlinearity

The notion presented here is fairly elementary; it rests on the following observations:

• Even under loads sufficient to cause structures to manifest significant nonlinearity -
amplitude-dependent damping and apparent softening - linear eigenmodes1 generally
appear to be preserved. This is illustrated by the success of spatial filtering even
beyond the linear regime.

• Coupling among the modes generally does not appear to become significant until very
high loads. (Violation of this is most easily observed when modes appear to be com-
plex.)

1The common arguement about whether to employ a hyphen or a space after the prefix “eigen” is resolved
in this document by using neither. Such is the guidance found in [15].
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• By segregating response modally, we may choose to treat only a subset of those modes
(presumably those for which we have some data) in a nonlinear manner and to treat
the remainder more conventionally.

At its simplest, the approach proposed here is to make the following postulates:

1. Modal forces excite only corresponding modal responses.

2. Modal coordinates evolve according to some simple nonlinear constitutive model.

3. The nonlinear modal constitutive response resolves to linear in the limit of small loads.

Given the above assumptions, we select a consistent constitutive model form that also re-
produces the power-law dissipation seen on built up structures.
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Chapter 2

Derivations

We are interested in modeling the structure in a manner that preserves the mode shapes
and attaches a nonlinear behavior to at least some subset of those modes. Additionally, we
would like to be able to perform this model reduction on a substructure and then to integrate
this model into the full system model. We begin with the substructure model.

Nonlinear Distributed Damping of a Substructure

Consider a substructure labeled B (Figure 2.1), having

• mass matrix MB,

• linear damping matrix CB (none of the joint damping is reflected in this matrix.)

• linearized stiffness matrix K0
B. This is the stiffness matrix that would be deduced from

measurements taken at extremely low levels of excitation.

Initial Spatial Formulation for Substructure

The governing equation is

MBüB + CBu̇B +K∞
B uB = FX

B + F J
B (2.1)

where

• uB are nodal displacements associated with subsystem B,

• MB and CB are the mass and linear damping matrices of the substructure, respectively.
The damping matrix is associated with linear damping processes (the resulting dissi-
pation being quadratic in veleocity components), so it does not capture the dissipation
due to joints.
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involve discrete nonlinearities and there my be nonlinearities
distributed elsewhere in the structure.

• K∞
B is the stiffness matrix of the substructure that would be measured if all joints were

disconnected;

• F J
B is a vector of self-equilibrating, nonlinear joint forces. Note that because these

are forces applied by the joint to the attached nodes, the sign is opposite to that of
Equation 1.1 where forces are applied to the joint

• and FX
B is a vector of external loads

One part of F J
B is the zero-load linearization

F J
B = −∆KB uB + ∆F J

B (2.2)

Adding ∆KB uB to Equation 2.1 and defining

K0
B = K∞

B + ∆KB (2.3)

the low-load stiffness of the subsystem, we obtain the governing equation

MBüB + CBu̇B +K0
BuB = FX

B + ∆F J
B (2.4)
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Modal Formulation for Substructure

Let ΦB be the matrix whose columns are the eigenvectors of the (MB, K
0
B) system above.

We define modal coordinates in body B and use the matrix ΦB to map them to spatial
degrees of freedom:

uB = ΦBαB (2.5)

where αB is a vector of modal coordinates. Here and in the following, ΦB contains all the
eigenvectors of the subsystem, but it will develop that not all of them actually need to be
calculated. Also, we assume that the eigenvectors are mass normalized

ΦT
BMBΦB = I (2.6)

so pre-contracting Equation 2.5 with ΦT
BMB, we obtain:

αB = ΦT
BMBuB (2.7)

We pre-contract Equation 2.4 by ΦT to diagonalize the linear system:

[

ΦT
BMBΦB

]

α̈B +
[

ΦT
BCBΦB

]

α̇B +
[

ΦT
BK

0
BΦB

]

αB = ΦT
BF

X
B + ΦT

B∆F J
B (2.8)

α̈B + diag ({2ζkωk}) α̇B + diag
({

ω2
k

})

αB = ΦT
BF

X
B + ΦT

B∆F J
B (2.9)

Note that we have assumed modal damping for the linear portion of the model.

Enabling Simplifications

Let’s introduce Simplifying Assumption 1: The joint forces project only onto the first
H eigen modes. Mathematically, we express this by decomposing the modal matrix

ΦB = [ΦBN
ΦBL

] (2.10)

where ΦBN
consists of the H deformation modes to which we intend to ascribe nonlinear

constitutive behavior and ΦBL
consists of the remaining columns. We assert that

ΦT
B

(

∆KuB + F J
B

)

=

[

ΦT
BN

ΦT
BL

]

∆F J
B =

[

ΦT
BN

∆F J
B

0

]

(2.11)
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Let’s now postulate Simplifying Assumption 2: The joint forces in Equation 2.9 have
a diagonal form

ΦT
BN

∆F J
B =

{

fk(α
k(s), s = −∞ to t)

}

(2.12)

Specifically, the kth nonlinear modal force depends only on the history of the corresponding
modal displacement.

The dynamic equations for the subsystem in modal coordinates are now

α̈B + diag ({2ζkωk}) α̇B + diag
({

ω2
k

})

αB = ΦT
BF

X
B +

[
{

fk(α
k(s), s = −∞ to t)

}

0

]

(2.13)

where the column vector on the right hand side is nonzero only for terms associated with
the H nonlinearly evolving modes.

Transferring back to nodal degrees of freedom (using Equation 2.7 to express αB in terms
of uB):

ΦT
BMBüB + diag ({2ζkωk}) ΦT

BMBu̇B + diag
({

ω2
k

})

ΦT
BMBuB

= ΦT
BF

X
B +

[

{

fk(α
k(s), s = −∞ to t)

}

0

]

(2.14)

Pre-contracting by MBΦB = Φ−T
B

MBüB + Φ−T
B diag ({2ζkωk}) Φ−1

B u̇B + Φ−T
B diag

({

ω2
k

})

Φ−1
B uB

= FX
B +MBΦB

[

{

fk(α
k(s), s = −∞ to t)

}

0

]

(2.15)

observing that

Φ−T
B diag ({2ζkωk})Φ−1

B = CB (2.16)

Φ−T
B diag

({

ω2
k

})

Φ−1
B = KB, (2.17)

MBΦB = [MΦBN
MΦBL

] (2.18)
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the equation of motion for the subsystem is now

MBüB + CBu̇B + KBuB = FX
B +

[

ΨT
BN

{

fk(α
k(s), s = −∞ to t)

}

0

]

(2.19)

where

ΨBN
= ΦT

BN
MB (2.20)

Any reasonable constitutive equation could be used to capture the modal nonlinearity,
but since BPII models have been successful in capturing the behavior of discrete joints, it
is a natural Constitutive Assumption that nonlinear modal force is also described by a
BPII model.

ΦT
BN

∆F J
B =

{

fk(α
k(s), s = −∞ to t)

}

=
∫ ∞

0
diag ({ρk(φ)}) β(t, φ)dφ (2.21)

where

β̇k(t, φ) =

{

α̇k where α̇k

(

αk − βk
)

> 0 and
∣

∣

∣αk − βk
∣

∣

∣ = φ

0 otherwise
(2.22)

The length of vector β is H and there will be H sets of constitutive parameters required for
that many ρk.

Integration into Full Structure

Let’s now introduce that subsystem damping into a full-system model.

Letting the nodal degrees of freedom of the full system be u, the governing equation is

Mü + Cu̇ + Ku

= FX + F J
D +

∑

n

P T
n ΨT

BN ,n

∫ ∞

0
diag ({ρk,n(φ)})βn(t, φ)dφ (2.23)

where M , K, and C are full system matrices, vector F J
D is the response of any discretely

modeled joints not in any subsystem Bn, and FX is a vector of exteriorly applied loads
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and summation takes place over all subsystems. Operator Pn is the projection matrix of
displacements from the full system to those of subsystem Bn.

uB,n = Pnu (2.24)

The coordinates of the nonlinearly evolving subsystem modes are

αN,n = ΨT
BN,n

uB,n = ΨT
BN,n

Pn u (2.25)

These modal coordinates are used to integrate the state functions β as indicated in
Equation 2.22.

28



Chapter 3

Numerical Verification Calculations at

Low Amplitude

Two-Mass System

Consider the toy problem indicated in Figure 3.1 consisting of two equal masses (M0

each) connected by a spring of stiffness K∞ and a nonlinear element.

M0M0
N

u1 u2

oo

F

K
X1

Figure 3.1. Kinematics of a Two-Mass System.

Governing Equations

The governing equations for this system are written in matrix form:

M0

[

1
1

]{

ü1

ü2

}

= −K∞
[

1 −1
−1 1

]{

u1

u2

}

+ FN

{

−1
1

}

+ FX1

{

1
0

}

(3.1)

where FX1 is the externally applied load on the left hand side and F J = FN [−1 1]T is the
vector of forces that the joints apply to the masses.
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Direct Solution of Two-Mass System

We consider the problem shown in Figure 3.1 where the externally applied load is

FX1(t) = A [H(t) −H(t− π/ω)] sin(ωt) (3.2)

where the excitation frequency ω is chosen to be the highest eigenfrequency of the elastic
system and the nonlinear component is represented by the 4-parameter Iwan model. A
numerical solution for Equation 3.1 can be obtained by use of Hilber, Hughes, Taylor in-
tegration using Newton iteration at each time step. The parameters for this problem are
shown in Table 3.1.

Table 3.1. Parameters for Numerical Simulation

M0 = 10 K∞ = 9 A = 500 ω =
√

2
KT = 1 FS = 10 χ = −0.5 β = 5

The imposed load, the mean system velocity , and the relative acceleration are shown in
Figure 3.2

0 10 20 30 40 50 60
0

50

100

150

200

250

300

350

400

450

500

Time

F
or

ce

Externally Applied Load

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

Time

(v
2 +

v1 )/
2

Velocity. of System CG

0 10 20 30 40 50 60
−80

−60

−40

−20

0

20

40

60

80

Time

a2 −
a1

Relative Accel. of Masses

Figure 3.2. Imposed load, resulting mean acceleration, and

relative accelerations found from direction integration.

Linearized System & Modal Coordinates

In the manner discussed in the subsection Initial Spatial Formulation for Substructure on
page 23, Equation 3.1 can be put into the form of Equation 2.4.

M0

[

1
1

]{

ü1

ü2

}

+ (K∞ +KT )

[

1 −1
−1 1

]{

u1

u2

}
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= ∆FN (u2 − u1)

{

−1
1

}

+

{

FX1

0

}

(3.3)

where ∆FN(u2 − u1) = FN (u2 − u1) +KT (u2 − u1).

The left-hand side of Equation 3.3 is the linear approximation for the two-mass system
about zero-load.

In the following, we shall employ eigenmodes of this elastic problem in evaluating the
joint forces on the right hand side of Equation 3.3. This will involve joint-type evolution
equations employing modal rather than spatial coordinates. Further, this is one of the few
problems for which we can deduce readily the parameters for those modal oriented joint
equations.

In this problem (and in the more complicated ones ahead) each of the modal responses
is represented by the system in Figure 3.3. This is a four-parameter Iwan system in parallel
with a spring; there are five parameters to find. In the following we discuss how these
parameters can be deduced for this simple problem.
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Figure 3.3. The modal response is represented as a 4-

parameter Iwan model in parallel with a spring. There are a

total of five parameters for each modal model.

We shall need the eigenmodes of this elastic system and we proceed in the standard
manner. The linear homogeneous system has the following eigenequation

(

ω2

[

1
1

]

− ω2
0

[

1 −1
−1 1

]){

y1

y2

}

=

{

0
0

}

(3.4)

where ω2
0 = K0/M0 and K0 = K∞ +KT .
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This has eigensolutions

ω2
1 = 0 and y1 = 1√

2M0

{

1
1

}

(3.5)

and

ω2
2 = 2ω2

0 and y2 = 1√
2M0

{

−1
1

}

(3.6)

In the usual manner, we now represent the physical degrees of freedom in terms of modal
coordinates

{

u1

u2

}

= Φ

{

α1

α2

}

(3.7)

where

Φ = γ

[

1 −1
1 1

]

(3.8)

and

γ =
1√
2M0

(3.9)

Similarly, we can represent the modal coordinates in terms of the physical coordinates:

α = Ψu (3.10)

where from Equation 2.20

Ψ = ΦT

[

M0

M0

]

=
1

2γ

[

1 1
−1 1

]

(3.11)

Because the first eigensolution is a rigid-body mode, only deformations aligned with the
second mode contribute to ∆FN response.

α2 = Ψ2,ku
k =

1

2γ

(

u2 − u1
)

(3.12)
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If the physical joint force is f = ∆FN {−1 1}T

ψ = ΦT f =

{

0
2γ∆FN

}

(3.13)

But also

ψ =

{

0

∆F̂N (α2)

}

(3.14)

Equating the components of the modal force vectors, we conclude that

∆F̂N (α2) = 2γ∆FN (u2 − u1) = 2γ∆FN (2γα2) (3.15)

showing that F̂N and FN have the same form. In fact, F̂N is FN scaled both in argument
and magnitude.

Equations 3.15 and 3.12 are sufficient to deduce the parameters [χ̂, β̂, K̂T , F̂S] of a modal
4-parameter Iwan model from the corresponding parameters [χ, β,KT , FS] of a 4-parameter
Iwan model employing physical coordinates. First, noting that ρ̂ is a linear scaling of ρ and
its augment, the two curves must have the same shape. From the above we assert that

1. χ̂ = χ to preserve the shape of ρ.

2. β̂ = β also to preserve the shape of ρ.

3. F̂S = (2γ)FS from Equation 3.15.

4. K̂T = (2γ)2KT from Equations 3.12 and 3.15.

5. K̂∞ = (2γ)2K∞ is deduced using reasoning similar to that of the previous step.

(Note that these relationships also fall out of the results of Appendix B.)

We evaluate the joint force term on the right hand side of Equation 3.3

∆FN (u2−u1)

{

−1
1

}

= ΨT

[

∆F̂N

(

u2 − u1

2γ

){

0
1

}]

=
1

2γ
∆F̂N

(

u2 − u1

2γ

){

−1
1

}

(3.16)
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Numerical Solution With Modal Coordinates

The equations of motion, employing Equation 3.16 were solved numerically and for the
same case as in subsection Direct Solution of Two-Mass System on page 30. The imposed
load and the resulting mean system velocity and the relative acceleration of the two masses
are plotted in Figure 3.4.

We see that the results of these two approaches are identical.

With the little bit of confidence gained from this problem, we go on to a problem that
tests the method of distributed damping of a subsystem of a larger structure.
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merical solution of the formalism including modal joint dis-

sipation. Also shown is the spatial solution.
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Three-Mass System

We consider the system shown in Figure 3.5.

u3u2

M0M0
F

X3

u1

M0

ooKooK

N

oo

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

K

Figure 3.5. Kinematics of a Three-Mass System, of which

the previous system is a part.

As in the previous section, we first solve this problem directly and then again using the
method of distributed damping. The problem parameters are those shown in Table 3.1, but
with the excitation frequency chosen to be ω = 1.74, the highest eigenfrequency of the linear
system.

The governing equation has the form

Mü+Ku = FX + F J (3.17)

where

M =







M0

M0

M0





 and K =







2K∞ −K∞
−K∞ 2K∞ −K∞

−K∞ K∞





 (3.18)

F J = FN











0
1

−1











and FX = Fx











0
0
1











(3.19)

Solution Fully in Physical Coordinates

An integration of Equation 3.17 using only physical coordinates resulted in the plots for
imposed load, acceleration of center mass, and relative displacements of the third and second
masses shown in Figure 3.6.
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Figure 3.6. Imposed load, acceleration of center mass, and

relative displacements of the third and second masses found

from direction integration of the three-mass problem.
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Solution Using Modal Distributed Damping

Here we recognize that the two masses on the right hand side of the structure and the
connections between them are exactly the system examined in Section Two-Mass System
beginning on page 29. In the following, we employ the modal expression for the nonlinear
part of this subsystem in our analysis of the full system.

In the context of the three-mass problem, Equation 2.4 is:

Mü+K0u = FX + ∆F J (3.20)

where

K0 =







2K∞ −K∞
−K∞ 2K∞ +KT −K∞ −KT

−K∞ −KT K∞ +KT





 (3.21)

Because the modal formulation for distributed damping employs subsystem coordinates,
we must introduce the transformation from system coordinates to subsystem coordinates:

u = PU (3.22)

where u are displacements of the subsystem degrees of freedom and U are displacements of
the full system. The projection matrix in our 3-mass problem is

P =

[

0 1 0
0 0 1

]

(3.23)

The modal kinematics are

α = Ψu = ΨPU (3.24)

The projections of the modal forces to the full structure is

F = P Tf = P T ΨTψ (3.25)

The implementation of calculation of subsystem dynamics and mapping to the full system
is illustrated in Figure A.1 in Appendix A.

The calculations of the previous subsystem are repeated using the modal dissipation
method. The corresponding plot for imposed load, acceleration of center mass, and relative
displacements of the third and second masses are shown in Figure 3.7.

The identical agreement between the predictions of the two formulations argues strongly
that they are equivalent in this instance.
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found from numerical solution of the three-mass problem us-

ing modal dissipation for the 2-mass subsystem. The corre-

sponding predictions from the spacial calculation are plotted

also.
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Distributed Damping of the Full Three-Mass Structure

In the above section, we performed the integration of the equations of dynamics for the
full system, employing a nonlinear distributed damping formulation for the subsystem and
integrating that into the full system through a matrix assembly process.

In this section we employ a distributed damping formalism directly on the full system,
using as primary variables the model coordinates of modes corresponding to a linearized
version of the full system. Here we are not so lucky as before; we cannot derive parameters
for those evolution equations in closed form. Instead, we must deduce them indirectly by
examining full system response and matching parameters to that.

Again, referring to Figure 3.5, the equations of motion remain Equations 3.20 and 3.21.
In the context of this problem

∆F J = ∆FN (u3 − u2)











0
−1

1











. (3.26)

The eigenfrequencies and mass-normalized eigenmodes of the linear system are
{

ωi2, ti
}

We consider modal deformations αi : i = 1 : 3 and the resultant joint forces projected back
onto the mode shapes.

ψi = ti
T
∆F J = (ti3 − ti2) ∆FN

(

αi (ti3 − ti2)
)

= ∆F̂N,i

(

αi
)

(3.27)

where F̂N,i as defined in Equation 2.21.

Through a reasoning process such as used earlier, we deduce:

χi = χ (3.28)

βi = β (3.29)

FSi = (ti3 − ti2)FS (3.30)

KT i =
(

ti3 − ti2
)2
KT (3.31)

K∞i
=
(

T TK∞T
)

i,i
(3.32)

where ()i,i is the ith diagonal element of what is in the parentheses.
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The full modal modal stiffness is

ω2
i = K∞i

+KT i (3.33)

Note the two major (and mathematically baseless) made implicitly above:

1. The elastic eigenvectors are preserved.

2. There is no interaction among the eigenvectors.

How well those assumptions work is explored numerically below.

A new excitation form is used:

FX =











0
0
FX3











(3.34)

where FX3 is a Morlet wavelet designed to excite the individual modes selectively.

Selective Excitation of the Third Mode

We begin with selective excitation of the third mode. (See Figure 3.8.)

This is the first example where the modal representation of distributed damping actually
is an approximation to the truth model. Indeed we do see some small disparity between the
approximate and truth models in Figure 3.9.

The distributed damping predictions look surprising good, involving what would appear
to be only a modest amount of error. Examining Figure 3.10 and looking at the acceleration
of the third mode - the one specifically excited by the imposed force - we again see surprisingly
good agreement.

The error appears no worse when we examine the accelerations of the other two modes(Figure
3.11).

We see that for this case - where the third mode was selectively excited - the distributed
dissipation model predicts the acceleration of the third modal coordinate extremely well and
predicts the acceleration of the second modal coordinate just a bit less well.
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Figure 3.8. A Morlet wavelet is employed to excite the

third mode especially strongly
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Figure 3.9. Acceleration of center mass, and relative dis-

placements of the third and second masses found from nu-

merical solution of the three-mass problem using modal dis-

sipation of full system. The corresponding predictions from

the spacial calculation are plotted also.

42



0 50 100 150 200 250 300 350 400
−30

−20

−10

0

10

20

30

Time

M
od

al
 A

cc
el

er
at

io
n

Modal Acceleration 3

 

 

Distributed Dissipation
Spatial Solution

Figure 3.10. The acceleration history of the third modal

coordinate, as calculated using distributed dissipation and as

calculated from a spatial solution and projected to the third

mode.
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Figure 3.11. The acceleration history of the first and sec-

ond modal coordinates, as calculated using distributed dissi-

pation and as calculated from a spatial solution and projected

to those modes.
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Selective Excitation of the Second Mode

Good results occur when we selectively excite the second mode, but in Figure 3.12 we
do see slightly more deviation between the predictions of the distributed dissipation model
and those of the truth model. This is explored a bit more in Figure 3.13 where the second
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Figure 3.12. The excitation designed to excite the second

mode selectively and the resulting acceleration history of the

second mass.

and third modal accelerations are shown. (The first modal acceleration looks similar to
that of the previous case.) Here we see that the second modal acceleration predicted by
the distributed damping model is very close to that of the truth model, but there is some
discernible error on the third mode.

Deducing Model Parameters from Dynamic Data

Often one is presented with an existent structure and required to predict the response of
that structure to broad sets of loadings. For this one would need to calibrate a distributed
damping model from a small number of experiments. Such a process on a very simple
structure is discussed in this section.

First we note that under small excitations, it is generally not possible to deduce all model
parameters - particularly those associated with macro-slip. On the other hand, it is what
can be seen at small and modest amplitudes that needs to be captured in a model. Let’s
look at Iwan models capable of manifesting the dissipative behavior usually seen in jointed
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Figure 3.13. The acceleration of the second and third

modal coordinates for the case where the second mode is se-

lectively excited.

structures. This issue is illuminated by consideration of the class of problems considered by
Palmov.

Later we discuss more intrusive experiments capable of probing for all model parameters.
Both of these studies employ the the three-mass system of Figure 3.5.

Deducing Model Parameters from Small-Amplitude Harmonic Ex-

periments

Fitting a 3-Parameter Palmov Model

Say that we have monochromatic resonance data - either harmonically driven or ring-
down. At this stage, we are thinking of modal data, so the modal mass is taken as 1. From
techniques such as counting zero-crossings or finding the peak of a FRF, we can deduce the
stiffness:

Ki = ω2
i (3.35)

Also determined from those resonance experiments is energy dissipation per cycle as a func-
tion of force amplitude. In harmonic motion, Equation 3.36 yields energy dissipation in
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terms of modal force ψi

D ≈ Ci ψ
χ̂i+3 (3.36)

where

Ci =
4Ri

K3+χ̂i

i (2 + χ̂i)(3 + χ̂i)
(3.37)

From Equation 3.36 and the slope of the power-law dissipation we deduce χ̂i. (For the
specific case investigated here, Appendix B informs us that all the χ̂i are the same and are
equal to the χ of the single joint in this structure.) Equations 3.36 and 3.37 can now be used
to deduce Ri.

Corresponding Behavior from the 4-Parameter Model

The four-parameter Iwan model is an example of the class of constitutive model explored
by Palmov and defined in Equation 1.4. With this model and the mappings from discrete
joint parameters to distributed joint parameters (Equations 3.28-3.31) we have analytic
expressions for the relevant small-amplitude (Palmov) joint parameters:

• Ki is determined per Equations 3.33 and 3.31.

• By Equation 3.28, χ̂i = χ and β̂i = β.

• R can be expressed in terms of the four parameters as follows:

Ri =
FSi(χ+ 1)

φmaxi
χ+2 (β + χ+1

χ+2
)

(3.38)

where

φmaxi =
FSi(1 + β)

KT i (β + χ+1
χ+2

)
(3.39)

An analytic expression for Ci is obtained using Equation 3.37.

A Test of Deducing Model Parameters

Just as was done in Section 3, here we ping the structure in Figure 3.5 using a short
duration pulse of the sort shown in Figure 3.8 in a manner designed to excite one mode
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preferentially and then use Equation 3.10 to map the global accelerations to modal accelera-
tions. It is ring-down of those modal accelerations that is used to estimate the three relevant
parameters. In fact, in the numerical experiments described here, each mode was excited at
a variety of amplitudes and then permitted to ring-down for just enough cycles to obtain an
estimate for stiffness and one for energy dissipation. This information was then assembled
and plotted as in Figures 3 to deduce the 3 relevant parameters.
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Figure 3.14. Modal stiffness and modal energy dissipation

per cycle, each as a function of modal force. Becasue the

modal stiffness decreases so slowly with

Distributed (modal) joint parameters calculated from ring-down experiments of each of
the three modes, along with the analytic values, are presented in Table 3.2.

Table 3.2. Deducing Three Parameters per Mode from
Ring-down Data

Mode 1 Mode 2 Mode 3
Ring-Down Analytic Ring-Down Analytic Ring-Down Analytic

K0,i 0.18016 0.18017 1.4771 1.4779 3.0388 3.0419
χi -0.50635 -0.5 -0.52957 -0.5 -0.44898 -0.5
Ri 8.91e-6 8.75e-6 9.19e-4 9.35e-4 2.88e-3 1.86e-3

We see very good agreement on modal stiffness Ki, but it is difficult to assess how close is
close with respect to χi and Ri. For this we plot the dissipations deduced from the ring-down
experiments along with those associated with the analytically derived parameters.
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Figure 3.15. Energy deduced from ring-down and that as-

sociated with analytic parameters.
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Overall, we see that the above process is reasonably successful in deducing correct model
parameters from ring-down data. One would hope to employ this approach on experimentally
obtained ring-down data with similar success.
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Probing for All Parameters Using High Amplitude Excitation

Though each modal response is characterized by five parameters (K∞,m, KT,m, FS,m,
χm, and βm), small amplitude tests provide only three (R, χ, and KT ). We need two more
“invasive” tests to obtain two more parameters. To this end, the wavelet style pinging
employed in the previous section was performed at much higher amplitudes.

The results are shown in Figures 3.16 and 3.17. The stiffness versus force curve in Figure
3.16 provides one more parameter. The asymptotic behavior at small force is the K0,m

already found from small-amplitude results. On the other hand, the asymptotic value at
high force provides K∞,m.
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Figure 3.16. High amplitude excitation of the structure

results in softening of the modal stiffness from K0,m down to

K∞,m.

The dissipation per cycle versus force plot of Figure 3.17 also provides one more pa-
rameter. As before, the low-force data provides estimates for χm and Rm. The high-force
asymptotic behavior provides another parameter. We note that in the regime of very high
amplitude oscillation, the dissipation per cycle will be 4UFS,m where U is the amplitude of
oscillation. In this one dimensional system U = F/ω2, so FS can be deduced from a linear
fit to the log-log behavior of dissipation at large loads.

We now have five parameters (K0,m, K∞,m, FS,m, χm, and Rm) from which we can solve
for the canonical parameters (KT,m, K∞,m, FS,m, χm, and βm). The solution process is as
follows:
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one associated with micro-slip and one associated with macro-

slip.
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1. K∞,m = K∞,m

2. FS,m = FS,m

3. χm = χm

4. KT,m = K0,m −K∞,m

5. Equations 25 and 27 of [27] are solved numerically for β in favor of R.

Table 3.3. Deducing Five Parameters per Mode from Ring-
down Data

Mode 1 Mode 2 Mode 3
Ring-Down Analytic Ring-Down Analytic Ring-Down Analytic

KT,i 0.0019146 0.0017271 0.079049 0.072533 0.11052 0.12574
K∞,i 0.17825 0.17845 1.398 1.4054 2.9283 2.9162
FS,i 0.4605 0.41559 2.7711 2.6932 4.8469 3.546
χi -0.50635 -0.5 -0.52957 -0.5 -0.44898 -0.5
βi 5.7329 5 6.2431 5 1.1706 5
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Conclusions

1. In the one case that I have found for which the distributed damping is an exact model
for the subsystem (the two mass system), the distributed dissipation model matches
the truth (spatial) model exactly.

2. For the case of a three mass system, the assumptions of modal independence are truly
only a coarse approximation to reality. In this case, overall predictions of acceleration
are pretty good, but there are some errors in detail.

3. The limited sets of simulations explored here suggest that the distributed damping
approximation predicts best the accelerations of modal coordinates corresponding to
the strongest excitation frequencies.

4. The modally distributed damping formalism provides the potential for massive im-
provements in computational efficiency, but whether this approach remains stable for
large systems will require some experimentation.

5. The derivation presented here, as well as the code written to explore it, manifest many
opportunities for sign errors. Let’s be careful about this.
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Appendix A

Illustration of Integration of

Subsystem Dynamics into Full-System

Dynamics

The implementation of calculation of subsystem dynamics and mapping to full system is
illustrated in Figure A.1.
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Figure A.1. Matlab code calculating subsystem distributed

damping and mapping it to the full system coordinates.
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Appendix B

Derivation of Modal BPII

Distribution Function from Joint

BPII Distribution Functions

Among the directions identified in an 2003 LDRD proposal on model reduction by the
author was

“Develop Mathematical Formulation: The first approach to be explored is that of devis-
ing a modal expression for the nonlinear dynamics of jointed structures (or structures
of similar nonlinearity) using the eigenmodes of a corresponding linear structure com-
bined in a nonlinear manner. This will involve using modal participation factors in the
vicinities of the joints along with Hamilton’s principle to derive nonlinear evolution
equations for modal coefficients.”

Despite the small mis-wording (“modal participation factors” should have been “modal
displacements”) the above paragraph captures well the thrust of the research presented in
this document.

Though that proposal did get funded, the particular research thrust identified in that
paragraph was set aside in order to pursue another interesting model reduction approach
[21]. The work presented in the body of this document facilitates the derivation suggested
in that 2003 proposal and that derivation is presented here.

Using the notion introduced in the body of this document, consider a jointed structure
having

• Mass matrix M .

• Linearized stiffness matrix K0.

• Stiffness matrix K∞ if the joints are replaced by gaps.

• Eigenvectors {Φk} of system (M,K0). The full displacement field is represented

u(t) =
∑

k

αkΦk (B.1)
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It is assumed that these eigenvectors are orthonormal with respect to matrix M . The
corresponding eigenvalues are ω2

k.

• ∆Φk,j the gap across the jth joint associated with the kth mode. In general each ∆Φk,j

is a 3-vector representing either rotations or displacements. We represent ∆Φk,j as

∆Φk,j = sk,jvj (B.2)

where sk,j is a scalar and vj is a unit vector: vT
j vj = 1. The gap across the jth joint is

now

∆uj(t) =
∑

k

αksk,jvj (B.3)

The Euler equations associated with Hamilton’s principle are the Lagrange equations and
these are employed in the following to derive the equations of motion associated with each
modal coordinate. We consider one modal coordinate at a time.

The kinetic energy is

T = α̇2
k/2 (B.4)

Exclusive of the strain energy in the joints, the potential energy is

V∞ = α2
k ΦT

kK
∞Φk (B.5)

The generalized forces are those due to the physical forces that the joints apply to the
rest of the structure:

Qk = −
∑

j

(∫ ∞

0

[

αksk,j − xk,j(t, φ)
]

ρj(φ) dφ vT
j

)

(sk,jvj) (B.6)

where ρj is the BPII distribution function for the jth joint and xk,j evolves as

ẋk,j(t, φ) =

{

α̇ sk,j if ‖α sk,j − xk,j(t, φ)‖ = φ and α̇k(αksk,j − xk,j(t, φ)) > 0
0 otherwise

(B.7)

Recalling Equation 2.22, repeated here,

β̇k(t, φ) =

{

α̇k where α̇k

(

αk − βk
)

> 0 and
∣

∣

∣αk − βk
∣

∣

∣ = φ

0 otherwise
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we see that

xk,j(t, φ) = sk,j β
k(t, φ/sk,j) (B.8)

for all j.

Equation B.6 now becomes

Qk = −
∑

j

s2
k,j

∫ ∞

0

[

αk − βk(t, φ/sk,j)
]

ρj(φ)dφ (B.9)

Defining

L = T − V ∞ (B.10)

our equation of motion is

∂L

∂αk
− d

dt

∂L

∂α̇k

= Qk (B.11)

α̈k +



ΦT
kK

∞Φk +
∑

j

s2
k,j

∫ ∞

0
ρj(φ)dφ



 αk =
∑

j

s3
k,j

∫ ∞

0
βk(t, φ́) ρj(sk,jφ́)dφ́ (B.12)

Since for small loads the right hand side of Equation B.12 goes to zero, the left hand side
must be the equation of motion for the linearized system:

ω2
k = ΦT

kK
∞Φk +

∑

j

s2
k,j

∫ ∞

0
ρj(φ)dφ (B.13)

Examination of the right hand side of Equation B.12 provides us an expression for the
BPII distribution function for mode k

ρmodal
k (φ) =

∑

j

s3
k,j ρj(sk,jφ) (B.14)

which defines the constitutive behavior of each mode.
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Appendix C

Calculation of State Variables

Calculation of joint forces (and of generalized forces, in the case of distributed damping)
is one of the more formidable issues in using BPII models. Following, some useful closed-
form and approximate expressions are derived for the case where the joint (or generalized)
displacement is driven harmonically.

The generalized force has the form

∆Qj =
∫ ∞

0
xj(t, φ) ρj(φ) dφ (C.1)

where xj(t, φ) evolves as

ẋj(t, φ) =

{

u̇ if ‖u(t) − xj(t, φ)‖ = φ and u̇(u− xj(t, φ)) > 0
0 otherwise

(C.2)

and u is the joint (or generalized) displacement.

Performing the relevant integrations to evaluate ∆Qj is facilitated by some observations
that can be obtained by scrutiny of Figure C.1. Shown in that figure are cyclic displacements
u(t) = A sin(t) and the x(φ, t) that evolve as in Equation C.2.

This figure suggests the following explicit expressions for x

for u̇ > 0

x =

{

u− φ for 0 < φ < (u+ A)/2
−A + φ for (u+ A)/2 < φ < A

for u̇ < 0

x =

{

u+ φ for 0 < φ < (A− u)/2
A− φ for (A− u)/2 < φ < A

(C.3)

The next step in the evaluation of ∆Qk is the evaluation of the the integral in Equa-
tion C.1 and, for reasons discussed in the body of this monograph, we employ the Palmov
distribution (Equation 1.4)

Q(u) =
∫ ∞

0
x(t, φ)ρ(φ)dφ =

∫ A

0
x(t, φ)Rφχ dφ (C.4)
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Figure C.1. The evolution of state variable x(φ, t) under

harmonic loading.
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where A is the amplitude of displacement u(t). The range of integration is shortened because
‖x‖ < A for all φ and all u.

We find for u̇ > 0

∆Q(u) = R

(

(u+ A)χ+2 2−(χ+1) − Aχ+2
)

(χ+ 1) (χ+ 2)
(C.5)

For u̇ < 0,

∆Q(u) = −R
(

(A− u)χ+2 2−(χ+1) − Aχ+2
)

(χ + 1) (χ+ 2)
(C.6)

We may use the above to plot ∆Q(u) and u vs time for different amplitudes A (Fig
C.2). We see that the modal force is roughly sinusoidal with the period of the imposed
displacement u.
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Figure C.2. The modal force over two cycles for several

amplitudes of displacement.

Letting u(t) = A sin(t), the generalized force is approximated by

∆Q ≈ R [C1(A) sin(t) + C2(A) cos(t)] (C.7)

Performing the relevant evaluation of Equations C.5 and C.6 for multiple values of A we
perform the appropriate least-squares fit to obtain C1(A) and C2(A). Defining

B(A) =
√

C2
1 + C2

2 and γ(A) = tan−1(C2/C1) (C.8)

we now plot each of B(A) and γ(A) vs A in Figure C.3. In the problem presented here,
parameters R and χ were specified as R = 1 and χ = −1/2.
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On the basis of that figure, we express

B(A) = 1.4A3/2 and γ(A) = −0.245 (C.9)

The modal force is now expressed

∆Q(A) = RB(A) [cos(γ) sin(t) + sin(γ) cos(t)] = RB(A) sin(t+ γ) (C.10)

where, for the case of χ = −0.5, B(A) and γ(A) are as given in Equation C.9.

In fact, if we perform the similar calculations for an array of values for χ, we observe
that the relations found in the above case hold for general χ. Letting

B(A, χ) = C(χ)Aθ(χ) (C.11)

where C(χ) and θ(χ) are shown graphically in Figure C.4
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Figure C.4. Coefficient C(χ) and exponent θ(χ) used in

Equation C.11.

We see that C(χ) can be approximated reasonably well by

C(χ) ≈ 1

1 + χ
− 1

2
(C.12)

and that θ(χ) can be approximated with great precision by

θ(χ) = 2 + χ (C.13)
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This last equation should not be too surprising since ∆Q is a dissipative force and u ∼ A
is a displacement, so dissipation goes as u∆Q ∼ A3+χ, which is true by construction.

As was illustrated in the case of χ = −0.5, the phase shift γ remains independent of A
for other values of χ as well. The dependence of γ on χ is shown in Figure C.5.
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Figure C.5. The phase difference between harmonic dis-

placement of joint and the resulting joint force.

In that figure, we see that the phase shift can be represented extremely well by a quadratic
approximation:

γ(χ) ≈ P (χ) = 0.1738χ2 − 0.2155χ− 0.3965 (C.14)

We may now assert that for general χ the generalized force associated with harmonically
driven generalized displacements is represented adequately by Equation C.10 where B(A) is
evaluated using Equations C.11 and Equations C.12 and C.13 and γ(χ) is approximated by
Equation C.14.
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