SANDIA REPORT

SAND2010-7471
Unlimited Release
Printed September 2010

Scientific Data Analysis on
Data-Parallel Platforms

Craig Ulmer
Greg Bayer
Yung Ryn Choe
Diana Roe

Prepared by
Sandia National Laboratories
Albugquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http:/www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering: http:/www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND2010-7471
Unlimited Release
Printed September 2010

Scientific Data Analysis on Data-Parallel Platforms

Craig Ulmer
Greg Bayer
Yung Ryn Choe
Diana Roe

Sandia National Laboratories
P.O. Box 969 MS9152
Livermore, CA 94551-0969
cdulmer@sandia.gov
ghayer@sandia.gov
yrchoe@sandia.gov
dcroe@sandia.gov

Abstract

As scientific computing users migrate to petaflop platforms that promise to generate multi-
terabyte datasets, there is a growing need in the community to be able to embed sophisticated
analysis algorithms in the computing platforms’ storage systems. Data Warehouse Appli-
ances (DWAs) are attractive for this work, due to their ability to store and process massive
datasets efficiently. While DWAs have been utilized effectively in data-mining and infor-
matics applications, they remain largely unproven in scientific workloads. In this paper we
present our experiences in adapting two mesh analysis algorithms to function on five differ-
ent DWA architectures: two Netezza database appliances, an XtremeData dbX database,
a LexisNexis DAS, and multiple Hadoop MapReduce clusters. The main contribution of
this work is insight into the differences between these DWAs from a user’s perspective. In
addition, we present performance measurements for ten DWA systems to help understand
the impact of different architectural trade-offs in these systems.

Acknowledgments

The authors gratefully acknowledge that this would not have been possible without the help
and equipment access we received from Netezza, XtremeData, and LexisNexis. From Netezza
we thank Matt Campbell for performing tests on TwinFin and Sridhar Srinivasan and Jim
Searman for their application development suggestions. From XtremeData, we thank Ali
Sajanlal and K. T. Sridhar for adapting our initial implementation to a UDF and performing
tests on our behalf. From LexisNexis we thank Matt Barsalou and Larry Deters for their
support in developing ECL versions of the algorithms as well as optimizing and running the
codes on their DAS system. We also acknowledge Jeffery Howard, David Barrish, Gavin
Halliday, Nisha Bhatt, and John Simmons at LexisNexis for their support in this project.
Finally, we thank Andy Yoo at Lawrence Livermore National Laboratory for his help iden-
tifying DWA machine capabilities.

Contents

1 Introduction

1.1 Mesh-Based Simulations

4 Mesh Schemas

1.2 Capability Computing Storage it
1.3 Data Warehouse Appliances
2 DWAs for Scientific Analysis
3 Data Warehouse Appliances
3.1 Netezza . ..o
3.2 XtremeData
3.3 LexisNexis DAS ...
3.4 Hadoop Clusters
3.5 DWA Test Systems.
3.6 DWA Architectures

5 Threshold Volume Calculation
5.1 Algorithm and Data
5.2 Netezza and XtremeData Implementations
5.3 LexisNexis DAS Implementation
5.4 Hadoop Implementation.

5.5 Performance Comparison

6 Element Pairing

10

11

13

15
15
16
17
18
19

20

23

27
27
28
29
30

31

33

6.1 Algorithm and Data

6.2 Netezza and XtremeData Implementations
6.3 LexisNexis DAS Implementation
6.4 Hadoop Implementation.
6.5 Performance Comparison i

7 Observations

8 Conclusions

Appendix

A Language Examples

A.1 Structured Query Language (SQL)
A.2 Enterprise Control Language (ECL)

A.3 Hadoop Java MapReduce.

39

43

List of Figures

3.1

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4

6.1

6.2

6.3
6.4

Node architectures for (a) Netezza Mustang, (b) Netezza TwinFin, and (c)

XtremeData dbX. 16
Space-efficient schema for structural data. 23
Lookup-efficient schema for structural data. 24
A unified schema for storing variable data. 24
Time-sequence data is stored in node and element variable data tables. 24
Multiple threshold volumes in a simulation. 28
Joining strategy affects performance in the database systems. 29

Hadoop’s volume threshold performance varied for different node configurations. 30

Threshold volume calculation for different DWAs. 31

Element pairing along a fracture. 33

Performance breakdown for element pairing on SQL platforms, truncated to
1,600 seconds. The 100M Netezza Mustang run completed in 25,695 seconds. 35

Performance breakdown for element pairing on Hadoop platforms. 37

Element-pairing performance for different DWAs. For the 100M experiment,
the Netezza Mustang finished in 26,605 s. 38

List of Tables

1.1 A 100M element simulation can generate many terabytes of data.

3.1 Different DWAs utilize different hardware components

Chapter 1

Introduction

In nearly all scientific domains, researchers employ modeling and simulation tools to help
answer complex research questions. In general, scientific users typically model a situation
that is of interest and then utilize simulation tools to evaluate the model. Once a simulation
completes, visualization and analysis tools are used to help users interrogate the results
generated by the simulation in order to gain insight into the details of what took place during
the simulation. Depending on model fidelity and computational complexity, simulations
running at full scale on high-end computing platforms may take days or weeks to complete
and can produce terabytes to petabytes of output data. The shear volume of this data makes
it unwieldy to manage and analyze through traditional, offline approaches.

1.1 Mesh-Based Simulations

Sandia National Laboratories has a long history of using simulation tools on high-performance
computing (HPC) platforms to solve complex problems relating to national security. In the
Advanced Simulation and Computing (ASC) [16] effort, Sandia has developed many par-
allel simulation codes [4] for evaluating mechanical, thermal, and electrical properties of
complex systems that are subjected to harsh environmental factors. These simulations help
determine how well a system will be able to complete its intended function under different
operating conditions. Simulation ultimately provides analysts with an opportunity to gain
insight without necessarily requiring the expensive testing of actual components.

Many mechanical and thermal simulation tools at Sandia are based on meshed represen-
tations of physical objects. For example, finite element method (FEM) [20] codes discretize
each physical object in a simulation into a mesh of elements and then apply numerical analy-
sis on each element to determine how the object interacts with other objects as the simulation
progresses. Mesh-based simulation datasets are generally comprised of two types of data:
structural data and variable data. Structural data provides geometric information about the
objects and is organized in a hierarchical form: a simulation contains multiple objects, an
object is defined by its mesh, a mesh is defined by its elements, and an element is defined by
its vertices. While all elements in a mesh typically share the same geometric shape (e.g., hex-
ahedron or tetrahedron), Sandia’s applications typically employ unstructured meshes with
non-uniform elements. The variable data portion of a dataset contains data values that were

Table 1.1. A 100M element simulation can generate many
terabytes of data.

Table Rows Size
Structural Data Element 100 Million 3.2 GB
Vertex | 100-800 Million | 2.4 GB - 19.2 GB
Element 20 Billion 25 TB

Variable Data

Vertex | 20-160 Billion 25TB-20TB

calculated during the simulation. A variable (e.g., pressure, temperature, or displacement)
is associated with either elements or vertices in the mesh. A variable’s data is generated at
each timestep of the simulation for all elements or vertices. As such, variable data is often
much larger than structural data in a dataset.

High-fidelity simulations can produce datasets that are very large. While typical pro-
duction runs may be on the order of just a few million elements, leading edge computing
platforms have been used to process simulations with more than 100 million elements. As
a means of illustrating how quickly datasets grow, Table 1.1 lists the amount of data that
would be hosted in a hypothetical dataset for a 100M element simulation, where 16 element
and 16 vertex variables are traced for 200 timesteps. While variable data is much larger
than structural data, it is important to note that the structural data can be larger than
main memory in a single host computer. Many existing data analysis tools cannot process
datasets this large because their analysis algorithms were written in an in-core fashion that
assumes structural data can be housed in host memory. As such, there is a strong need in
the scientific community for post-processing analysis tools that can handle massive datasets
in an out-of-core manner. At Sandia, ParaView [9] has become the distributed analysis
framework of choice. However, other solutions are of interest.

1.2 Capability Computing Storage

A universal constant in HPC is that scientific users will always need more computing power
than available systems offer. When new HPC platforms are brought online, they are strategi-
cally designed to improve either the computing capacity of a site or its computing capability.
Capacity computing utilizes a new HPC platform’s resources to process existing simulations
in a shorter amount of time than was previously possible. In contrast, capability computing
systems are designed to allow users to increase the fidelity of their simulation models. Capa-
bility systems typically push the boundaries of what can be accomplished through modeling
and simulation, and are therefore the focus of a considerable amount of research in HPC.

Leading-edge capability systems are custom-built, massively-parallel processing (MPP)
systems. In order to increase the amount of computing that can take place in a given foot-

10

print, capability system architectures typically separate computing resources from storage
resources. For example, Sandia’s Red Storm [14] platform employs close to 13,000 diskless
compute nodes to perform an application’s parallel processing, a separate 1.7PB disk farm
for housing persistent storage, and 320 1/O nodes for handling an application’s disk requests.
Storage systems in HPC systems typically employ a cluster file system such as Lustre [§]
to allow data to be striped across many disk nodes and cached in memory in order to hide
the high cost of disk access. As such, today’s storage systems are often dedicated clusters
running a parallel storage application that services load/store requests in a high-performance
manner.

1.3 Data Warehouse Appliances

The availability of massive customer databases in industry has resulted in a strong demand
by businesses for data mining tools and systems that can allow a company to discover
consumer trends in real time. In response to these data mining needs, a number of companies
have developed stand-alone products known as data warehouse appliances (DWAs) that
enable users to accomplish data analysis operations on parallel platforms without requiring
a detailed knowledge of parallel processing techniques. DWAs typically provide (1) a large
number of parallel storage devices that enable high-performance disk use, (2) near-storage
processing in order to execute computations where the data resides, and (3) a programming
interface that allows users to pose data processing commands. DWAs are very appealing to
industry because they can be treated as appliances. In many cases, a company can simply
purchase one or more racks of a SQL-based DWA and get genuine speedups over a sequential
database without having to make significant modifications to their SQL programs.

There are many DWA systems available today. We divide these systems into two cate-
gories, based on their programming interfaces. First, SQL-based DWAs are designed to be
plug-in replacements for existing database systems. SQL is well known and provides users
with a robust data-processing language that fosters data-parallel operations that can in turn
be parallelized by a database. Netezza, XtremeData, Oracle, Teradata, and Greenplum all
offer SQL-based DWA products. Second, dataflow-based DWAs are designed to provide a
flexible platform for manipulating large-scale datasets when users are more willing to express

their data-processing commands in other data-parallel languages. Examples of these systems
include Hadoop, the LexisNexis DAS, Sector and Sphere [13], and IBM’s InfoSphere [17].

11

12

Chapter 2

DWASs for Scientific Analysis

A number of institutions in the scientific community are currently designing and deploying
a new generation of petaflop-class computing hardware that will be capable of processing
larger, higher-fidelity models than ever before. While these capability systems will enable
researchers to conduct higher-quality science, we make three observations about trends in the
HPC landscape that directly impact how scientific users will make use of capability systems
in the next decade:

Increased Dataset Sizes: Increases in simulation size and fidelity correspond to increases
in the amount of data generated by a simulation. With current capability systems already
generating multi-terabyte datasets, we expect that simulations in the near future will rou-
tinely generate tens to hundreds of terabytes of data.

Constant Disk and LAN Rates: While fast solid-state storage devices (SSDs) are slowly
making their way to market, traditional hard drives are still the dominant storage option
for massive datasets. Given that hard drive transfer rates have not improved significantly in
a number of years, future storage systems will employ larger disk arrays in order to satisfy
simulation 1/O needs. Similarly, link rates for transferring data out of a capability system
are not likely to improve substantially in the upcoming years. As such it will become in-
creasingly more expensive to move data out of the compute platform.

Capability Computing Consolidation: While the per-core cost for computing systems
has dropped dramatically over the years, the total cost to build, power, and maintain a
capability system has not. Under pressure to construct new resources as cost effectively as
possible, multiple institutions and laboratories are pooling their efforts to create shared ca-
pability platforms. These consolidations emphasize the need for better distance computing
practices, where processing and analysis are conducted on equipment that is housed at a
location that may be far away from the user.

Based on these observations, we assert that the age-old model of moving data to the
user’s analysis code is infeasible and must instead be reversed. In order to accommodate
data analysis on massive datasets, the storage systems for capability systems must be en-

13

hanced to provide processing within the storage system. Similarly, these new systems must
take advantage of data-parallel programming interfaces that shift the burden of parallel pro-
gramming from the user to the storage system when possible. DWASs represent an attractive
option for this work, because they are already widely deployed to solve similar problems in
other fields.

While DWAs have been successfully utilized to solve many informatics problems, there
have been relatively few efforts that have examined whether they are applicable in scientific
problems involving massive datasets. The intent of this work is to gain insight into the trade-
offs involved in utilizing a DWA to analyze scientific datasets. For this paper we have adapted
two mesh-based analysis operations to execute on four different DWA families. In addition
to providing implementation details for each DWA, we present performance measurements
for the algorithms on both prototype and production DWA hardware to help identify both
the strengths and weaknesses of each system. Finally, we present a number of observations
based on our experiences with the DWAs in hopes of motivating future work in this field.

14

Chapter 3

Data Warehouse Appliances

For the purposes of this paper we chose to focus on four different DWA platforms that are in
use today. For SQL-based DWAs we selected both Netezza and XtremeData database sys-
tems. For dataflow-based DWAs we selected the LexisNexis Data Analytics Supercomputer
(DAS) and a Hadoop cluster. We adapted our algorithms to run on each system, and then
measured performance on prototype and entry-level production systems.

3.1 Netezza

With the introduction of the Netezza Performance Server (NPS) product line in 2002,
Netezza became one of the first companies to promote data warehouse systems that were
truly standalone appliances for data analytics [10]. The NPS products can be described
as “custom-everything” systems because they employ both custom hardware and custom
software to implement high-performance, parallel databases.

In terms of hardware, Netezza employs a large number of disk blades to perform database
operations in parallel. As illustrated in Figure 3.1(a), each blade is equipped with a processor,
a field-programmable gate array (FPGA) co-processor, DRAM, and a commodity hard drive.
Blades are interconnected through a commodity Gigabit Ethernet (GigE) network. While
adding to the expense of the system, the FPGA co-processor enables Netezza to perform
many unique operations in real time that other systems cannot. For example, the FPGA
can be configured to perform data decompression and column filtering as data is read off
the disk. These capabilities enable the hardware to deliver data to the processor at rates
that are higher than what the disk channel could physically support. Observing that hard
drives are often a bottleneck in I/O intensive applications, this optimization can result in a
significant performance gain for large data applications.

In terms of software, Netezza employs a parallel database engine that allows the system to
stripe data across disk blades and execute a query in parallel. Rather than rely on indexing
to help the database locate relevant records, Netezza performs scans on entire tables. While
this brute-force approach may at first appear to ignore the fundamentals of modern database
design, it results in a scalable system with predictable performance. If a user increases the
dataset size or needs better performance, the user simply adds more nodes. Similar to other

15

| DRAM | | DRAM |
I I

Opteron FPGA
GigEH PowerPC [Pcle InfiniBand|

FPIGA RAD

=] o

_geea) \BEEEEE
(@) (b) (©)

Figure 3.1. Node architectures for (a) Netezza Mustang,
(b) Netezza TwinFin, and (c) XtremeData dbX.

databases, Netezza allows users to supplement the SQL syntax with user-defined operators.
These operators are written in C++ and are either user-defined functions (UDFs) or user-
defined aggregates (UDAs). UDFs operate on a single row at a time, producing one output
value for a given list of column inputs (e.g., compute the squared sum of a set of input
values). UDAs perform the same work as a UDF, but also provide a means of collapsing
the results for all rows into a single value (e.g., find the row in a table with the second
largest squared sum value for specific columns). In our experience, UDFs and UDAs are a
convenient way of expressing data-processing computations that would otherwise be difficult
to construct using only the built-in operators provided in SQL.

During the course of our work we have had the opportunity to experiment with two gener-
ations of Netezza products, each optimized for different design goals. In the older-generation
“Mustang” architecture, Netezza targeted power efficiency and matched an embedded pro-
cessor to every disk in the system in order to achieve high node densities. The Mustang’s
blade employed a PowerPC for computation and housed a SATA controller for the disk in-
side the FPGA. While this architecture performed well for many text-based operations, the
PowerPC’s lack of floating-point hardware made it underpowered for many scientific appli-
cations. In response to these criticisms, Netezza has recently developed a new generation
of hardware named “TwinFin” that leverages commodity x86 hardware (Figure 3.1(b)). A
TwinFin blade houses two FPGA coprocessors (via PCle) and eight disks (via eSAS).

3.2 XtremeData

XtremeData’s dbX product [2] is a SQL-based DWA that utilizes both parallel processing and
custom FPGA hardware accelerators to increase the rate at which the database can satisfy
analytical queries. XtremeData’s design approach in the dbX platform can be described as

16

“custom when needed”, as commodity hardware and software is widely utilized throughout
the DWA. As illustrated in Figure 3.1(c), the individual nodes are server-class workstations,
each equipped with multiple x86 cores, large amounts of DRAM, and a large RAID array of
disks. Workstations are interconnected through a high-speed InfiniBand (IB) network.

The one piece of custom hardware employed in the dbX architecture is an FPGA accel-
erator designed by XtremeData. This accelerator card plugs into an AMD processor socket
on the motherboard and communicates with the CPUs in the node via a high-bandwidth,
low-latency HyperTransport connection. XtremeData’s accelerator features an FPGA that
is faster and has more capacity than Netezza’s current FPGA accelerator. XtremeData’s
FPGA accelerator has benefited from several revisions, and has been productized as a stan-
dalone device that reconfigurable computing researchers have utilized in a variety of ways.

In terms of software, XtremeData has adapted the PostgreSQL database to run in par-
allel on the dbX platform. This software has been modified to make use of the FPGA
accelerator for specific, time-consuming operations such as joins, sorts, groupings, and or-
derings. While the dbX’s FPGA accelerator programming interface is not available to end
users, XtremeData’s application engineers can be contracted to port high-value, application-
specific database operations to the FPGA. The dbX’s software is designed to orchestrate
the flow of data from disks to the FPGA in a pipelined manner, and performs dynamic load
balancing at runtime for every query step.

3.3 LexisNexis DAS

As a company, LexisNexis has a long history of providing both large-scale archival con-
tent and data processing systems that allow users to perform real-time searches on massive
datasets. In response to the growing demand for more flexibility in archival searches, Lex-
isNexis constructed a parallel processing platform called the Data Analytics Supercomputer
(DAS) [3]. DAS can be described as “custom software for commodity hardware”, as it
employs a generic Linux cluster for the underlying hardware and a custom-built software
framework for managing the flow of data through the system. Observing that SQL can be
restrictive in terms of programming ease and parallel performance, LexisNexis developed the
Enterprise Control Language (ECL) as a means of expressing dataflow operations, and then
constructed compiler and linking tools to efficiently map computations to DAS resources.
The framework employs system software and middleware components to provide a custom
execution environment and distributed filesystem.

The DAS is comprised of two different compute environments: the Data Refinery (or
“Thor”) and the Data Delivery Engine (or “Roxie”). The Data Refinery employs a large
number of nodes to perform the core computations specified by the ECL query. Data is stored
in the Data Refinery in a record-oriented, distributed file system that supports multiple data
file formats. Data is partitioned automatically by the system and is replicated at least once
on a neighboring node in order to provide fault resilience. The remaining nodes in the system

17

implement the Data Delivery Engine, which caches and indexes query results to improve the
interactive performance of the system. Due to the nature of our experiments, we did not
utilize the Data Delivery Engine in our work.

ECL is a high-level declarative language that is oriented towards dataflow computations.
ECL can be challenging for new users to master as (1) program execution is derived from the
sequence of dataflows and transformations rather than the order of the program’s statements
and (2) transformations can be applied either locally or globally. However, ECL offers a rich
syntax that features a variety of built-in transformations. Programming is also simplified
through an interactive IDE and debugging tools.

3.4 Hadoop Clusters

Hadoop [6] is an open source framework for performing data-parallel operations on com-
modity cluster hardware. Hadoop was initially constructed by researchers at Yahoo! as an
open source Java clone of the Google File System (GFS) [12] and Google’s MapReduce [11]
framework, but has since grown into the basis for a number of different out-of-core data
processing projects. At its core, Hadoop is comprised of two components. First, the Hadoop
distributed file system (HDFS) [7] provides a scalable, general-purpose file system for dis-
tributing data across the local disks in a cluster in an efficient and reliable manner. HDFS
operates on large blocks of data (64 MB by default) and is responsible for transferring and
synchronizing data between nodes in the cluster as needed by applications. Second, Hadoop
provides a MapReduce framework for performing computations, where map tasks perform
computations on independent regions of data and reduce tasks combine the results of map
tasks. In between map and reduce phases of a job, users may also apply a reduce task on
local data with a combiner task in order to decrease the amount of data that is transmit-
ted over the network. The Hadoop MapReduce framework requires users to organize their
data into a key-value data format. This format enables the framework to provide users
with built-in support for common data processing operations (e.g., sorting key-value lists),
and encourages users to organize their data and computations in a way that maps well to
parallel-processing platforms.

Hadoop has received considerable interest in the data processing community recently
because it is very accessible. In addition to being open source and free to use, Hadoop can
be installed and evaluated on a wide variety of platforms. Hadoop was designed with low-
cost, commodity cluster hardware in mind. While Hadoop clusters typically expect compute
nodes to be equipped with local disks, researchers have demonstrated that high-end, disks-
on-the-side clusters can also be utilized effectively [18]. Hadoop is also supported in several
commercial cloud-computing endeavors, such as Amazon’s elastic compute cloud (EC2) [1].
Thus it is possible for researchers to pay a vendor to run a large Hadoop application at scale
if needed. The main drawback of utilizing a Hadoop cluster as a DWA is that users must
convert their data processing applications to a form Hadoop can process. Additionally, users
often find it is challenging to configure Hadoop in a way that maximizes performance.

18

3.5 DWA Test Systems

As a first step in evaluating whether DWAs can be utilized effectively in mesh analysis appli-
cations, we acquired access to DWA test systems for Netezza, XtremeData, LexisNexis, and
Hadoop. For each of these systems we were able to utilize two different hardware configura-
tions. At a high level the two hardware configurations selected for each DWA in this work
target (1) an prototype-level system suitable for a single researcher and (2) a production-
level system suitable for a small work group. Due to the hardware differences between DWA
products (e.g., CPU speed and count), it is challenging to make a fair performance compar-
ison between these systems without a normalization factor such as price, power, or physical
size. However, the intent of this paper is to report on our mesh analysis experiences with
DWAs and not a detailed performance comparison study. As such, we present performance
measurements in terms of observed wall clock timings, and find that a coarse-grained com-
parison between two levels of platforms is sufficient. The specific systems utilized in this
work are described as follows.

Netezza: For Netezza’s prototype-level system we utilized a Netezza Performance Server
10050 housed at Sandia. This half-rack system employs 54 Mustang-generation blades (Pow-
erPC, 1GB DRAM, FPGA, and a SATA disk). For the production-level system Netezza
provided access to a TwinFin6 system with 6 blades (dual quad-core Xeon CPUs, 16 GB
DRAM, two dual-core FPGAs, and 8 eSAS disks). Both systems utilize GigE internally for
communication and a separate head node for providing an ODBC API to the SQL database.

XtremeData: XtremeData provided access to an 8-node system (dbX 1008) and a 16-node
system (dbX 1016). The nodes in these systems employed substantial compute power (a
six-core Opteron CPU, 32 GB DRAM, an in-socket FPGA, and 12 disks). An InfiniBand
network is utilized for communication between nodes. A separate head node controls the
system and hosts external interfaces.

LexisNexis DAS: The prototype-level DAS system is a Sandia system comprised of 20
nodes (quad-core Xeon CPUs, 4 GB DRAM, and two hard drives), 10 of which perform
Data Refinery computations. LexisNexis provided access to a production-level system com-
prised of 60 nodes (quad-core Xeon CPUs, 8 GB DRAM, and one hard drive), 32 of which

perform Data Refinery computations.

Hadoop Clusters: Hadoop’s accessibility made it possible to perform tests on a number
of different clusters. Initial tests were performed on a retired Sandia cluster named Decline
that is disk-full and comprised of 32 functional nodes (dual AMD Opteron processors, 4 GB
DRAM, a pair of SATA hard drives, and GigE network). In order to test code portability
and scaling, we performed additional Hadoop experiments on Amazon’s EC2 cloud comput-
ing platform. Amazon’s systems differed from the Decline cluster in that compute resources

19

Table 3.1. Different DWAs utilize different hardware com-

ponents.
Compute | Cores/ | Memory/ | Disks/ | FPGAs/
Platform Nodes Node Node Node Node
Netezza Mustang 54 1 PowerPC 1 GB 1 1
Netezza TwinFin6 6 8 x86 16 GB 8 2
XtremeData dbX 1008 8 6 x86 32 GB 12 1
XtremeData dbX 1016 16 6 x86 32 GB 12 1
LexisNexis DAS-20 10 4 x86 4 GB 2 0
LexisNexis DAS-60 32 4 x86 8 GB 2 0
Hadoop-Decline 32 2 x86 4 GB 2 0
Hadoop-Amazon-32 32 2 x86 1.7 GB 1 0
Hadoop-Amazon-128 128 2 x86 1.7 GB 1 0

are virtualized and shared among many users. After experimenting with Amazon’s small,
medium, and large hardware configurations, we selected the medium node configuration as
it most closely resembles Decline’s hardware. Amazon’s description of a medium-sized node
states that it features two virtual Xeon CPUs from 2007, 1.7 GB of DRAM, and “mod-
erate” 1/O performance. We selected 32 and 128 nodes to represent the prototype- and
production-level DWAs. Hadoop versions 0.19.0 and 0.20.1 were used in the Decline and
Amagzon clusters, respectively. On both systems, HDFS was configured to use the default
block size (64 MB).

Characteristics for the different DWAs are summarized in Table 3.1.

3.6 DWA Architectures

Based on the hardware characteristics listed in 3.1, we observe that there are three general
architecture strategies utilized in DWAs.

Large Scale, Embedded Nodes: As seen with Netezza’s Mustang architecture, one ap-
proach to building a high-end DWA is to construct a low-power processor-disk blade and
then replicate the blade to a massive scale. One argument for this approach is that many
information retrieval systems are I/O bound and that embedded processors can keep pace
with rotational hard drives. A criticism of this approach is that these systems may perform
poorly on large data applications where data is frequently exchanged between nodes. This
approach has recently been revitalized in research projects such as the Fast Array of Wimpy

Nodes (FAWN) [5].

20

Medium Scale, Generic Nodes: As observed in both Hadoop clusters and the LexisNexis
DAS, many DWA architects favor a commodity approach that utilizes as many generic work-
stations as possible. A common rule of thumb in this approach is simply to match the number
of disk spindles to the number of processor cores for a node in order to create a balanced ar-
chitecture. This approach is economical at medium scales and accessible to a wide audience
of researchers.

Small Scale, High-Performance Nodes: The third approach is simply to use a smaller
number of high-end workstations, and add hardware accelerators as needed. Netezza Twin-
Fin and XtremeData exemplify this approach, packing as many resources into a single mul-
tiprocessor system as possible. While expensive, these systems perform well in both low and
high data sharing applications. Reducing the number of nodes in a system may also simplify
system management tasks and reduce power and real estate requirements in the data center.

21

22

Chapter 4

Mesh Schemas

The first challenge in adapting mesh analyis algorithms to run on DWAs is defining a suitable
way to represent the mesh’s data in the DWA’s native storage format. An ideal schema strikes
a balance between representing the data in a space-efficient manner and representing it in
a way that makes it easy for users to access efficiently. For example consider the problem
of defining the coordinates for all elements in a mesh. Given that elements often share
vertices with their neighbors, the space-efficient means of representing this information is
to use two tables (Figure 4.1): one for holding the coordinates of all the unique vertices
and another for defining the vertex indices that belong to each element. This approach is
commonly utilized in both computer graphics applications and mesh data files. While the
lookup tables minimize data replication, an application must perform two lookups whenever
an element’s coordinates are required in a calculation.

| NodeID [X | Y | Z |
Node lookup table

’ Element ID ‘ Node 1 ‘ Node 2 ‘ Node 3 ‘ Node 4 | Node 5 | Node 6 | Node 7 | Node 8
Element lookup table

Figure 4.1. Space-efficient schema for structural data.

We initially selected a space-efficient schema for storing our mesh datasets, expecting
that smaller data on disk would ultimately yield better I/O performance. However, early
experiments revealed that the amount of time required to assemble input data from different
tables could significantly hamper performance on all of the DWAs we utilized. Addition-
ally, the task of performing two lookups to determine an element’s coordinates added extra
complexity to an analysis application. In response to these issues, we investigated alternate
schemas that replicated data in the dataset to reduce the number of lookups that are required
to perform common operations. In particular, we decided to extend the element lookup table
to also include the coordinates of all the nodes (Figure 4.2). While this approach increases
the amount of data stored on disk, it greatly simplifies the programming interface for com-
mon operations and improves performance by reducing the number of lookups that must be
performed in key operations. Although the availability of node coordinate information in
the extended element table means the node table is not strictly required, we still make it

23

available in order to improve the speed of node-specific operations.

’NodeID\X\Y\Z‘
Node lookup table

Node 1 | Node 2 | Node 3 | Node 4 | Node 5 | Node 6 | Node 7 | Node 8
Element ID ID, ID, 1D, 1D, 1D, ID, ID, 1D,
XY7Z | XYZ | XY,Z | XY,Z | XYZ | XYZ | XY, Z | X,Y,Z
Ezxtended element lookup table

Figure 4.2. Lookup-efficient schema for structural data.

In addition to structural information, mesh datasets also typically store time-varying data
that represents changes to variables of interest during a simulation. A variable can be associ-
ated with either the mesh’s vertices or its elements. For example, simulations where a mesh
physically moves in space over time usually capture structural changes with a displacement
variable that is associated with the mesh’s vertices. At each time step, the variable provides
position updates for each vertex. We considered multiple schemas for housing time-varying
data. We first considered a unified approach that stored both node and element data in a
single table (Figure 4.3). While this approach simplified the data structures by routing all
requests through a single table, it greatly increased data size and access time because each
entry required its own identifier information. Additionally, this format was inappropriate
when data values used different numerical formats. Ultimately we switched to an approach
that separated element and node data into two tables. In order to save space, all variables
for a particular node or element at a particular timestep are recorded in a single row in the
table (Figure 4.4).

’ Timestep ID ‘ Variable ID ‘ Node/Element ID | Variable Value
Node and Element variable data table

Figure 4.3. A unified schema for storing variable data.

| Timestep ID | Node ID | DISP X | DISP Y | DISP Z | NVARIL | NVAR2 |
Node variable data table

| Timestep ID | Element ID | EVARL | EVAR2 | EVAR3 |

Element variable data table

Figure 4.4. Time-sequence data is stored in node and
element variable data tables.

24

We constructed multiple dataset generators to create data for the experiments presented
in this paper. These generators allowed us to vary dataset size, and also provided us with
reference data that could be moved between platforms without legal issues. Each dataset
generator produces a set of tab-separated text files for the various fields in the dataset.
For the SQL-based DWAs, this information was easily digested into the databases using
built-in command line tools that automatically convert the data to the format specified by
the database schema. Similarly, the LexisNexis DAS’s ability to read from CSV files was
employed to convert data into a format that could then be “sprayed” on compute nodes. For
Hadoop it is desirable to convert the dataset to a binary format (i.e., Hadoop sequence files)
that Hadoop applications can access. We constructed a program to perform this conversion
and then inserted them into HDF'S, which automatically replicates and distributes the data.
A simple Hadoop reader class was then constructed for reading data from the binary format.

25

26

Chapter 5

Threshold Volume Calculation

The first data analysis operation that we adapted to run on our DWAs was a threshold
volume calculation. Analysts often need to determine how large a particular effect is within
a mesh at a specific timestep. For example, one analyst working on safety factors for hydrogen
refueling stations for automobiles conducted a simulation (Figure 5.1) where an open nozzle
leaked hydrogen gas into a room with multiple chambers. The analyst computed the total
volume a particular mole fraction of the gas occupied at each timestep, as well the rate of
change for the volume between timesteps. These numbers quantified the amount of leakage
that took place during the simulation and were also used to determine when the simulation
had reached a steady-state solution.

5.1 Algorithm and Data

The threshold volume calculation can be implemented in a simple, brute-force manner
through a marching-cube [15] style approach that sums the contribution of each element
to a timestep’s total volume estimate. For this work we assume that elements are hexahedra
and that the threshold data variable (e.g., hydrogen mole fraction) is associated with the
mesh’s vertices. For a particular timestep, the algorithm examines each element in the mesh
and determines if the variable at the element’s vertices is above a specified threshold value.
A hexahedron element that has multiple vertices exceeding the threshold is decomposed into
six tetrahedra. Each tetrahedron that has all four vertices above the threshold is included in
the final volume estimate. Tetrahedron volume estimation is accomplished through straight-
forward vector math. Our work also assumes that meshes deform as time in the simulation
progresses, and that the dataset includes displacement information for each vertex at every
timestep. Therefore, in order to accurately compute the threshold volume at a particular
timestep, the mesh’s vertex coordinates must first be updated by their displacement values.

A synthetic mesh dataset generator was constructed for the threshold volume calcula-
tion. It created datasets comprised of many, independent hexahedral elements that are
randomly placed and annotated with randomly-generated variable data. The data generator
was configured to produce a variety of meshes, ranging from 1M elements to 100M elements.
Given that the random data values in these datasets cause different workloads for the vol-
ume calculation algorithm, particular attention was placed on utilizing the same dataset

27

Figure 5.1. Multiple threshold volumes in a simulation.

and algorithm input parameters on all DWAs. These parameters were selected to give a
challenging workload where large amounts of data processing could not be avoided.

5.2 Netezza and XtremeData Implementations

For the SQL platforms we implemented the volume calculation utilizing two different strate-
gies that employed the same three phases of operation. First, a simple threshold operation
is performed on the vertex data to create a smaller temporary table consisting only of ele-
ment vertices that are above the desired cutoff. Second, the relevant data necessary for the
computation is assembled. Finally, a running sum for the threshold volume is computed.

The difference between the two implementations is in the manner that data is assembled.
The first strategy calculates the volume on a per-element basis. It assembles all relevant
values (e.g., coordinate displacements and vertex variable data values) for each element with
one statement for the volume calculation. This operation requires eight joins: one for each
vertex in the element. The volume is calculated through a single SQL statement that is the
union of six subqueries (one for each tetrahedron) and no additional joins. We refer to this
implementation as the 1X8-join approach.

The second strategy calculates the volume on a per-tetrahedral basis. The vertex data is

28

1,800 ‘ ‘ ‘ ®
e—e Netezza Mustang 6x4 !
1,6001| e - Netezza Mustang 1x8 !]
=—a XtremeData 1008 6x4 /

14001 @ - XtremeData 1008 1x8 ,

1,200

1,000 / E

Time (S)

800}

600

400

200}

1M 2M 5M 10M 20M 50M 100M
Mesh Elements

Figure 5.2. Joining strategy affects performance in the
database systems.

joined during each tetrahedral volume subquery. This operation requires only four joins for
each tetrahedral volume calculation (one for each vertex). Processing a full element therefore
requires six subqueries, each with four joins. We refer to this implementation as the 6X4-join
approach.

Both algorithms were executed on both the Netezza Mustang DWA and the XtremeData
prototype system. As illustrated in Figure 5.2, the 6X4-join approach performed better than
the 1X8-join approach in most cases. However, 1X8-join did prove to be slightly better for
small dataset sizes on the XtremeData prototype. Given that this difference was minimal,
we selected the 6X4-join approach as the primary implementation for comparison in both
systems.

5.3 LexisNexis DAS Implementation

The LexisNexis DAS implementation of the threshold volume calculation begins with the
distribution of the dataset’s Element and Node values to different computers in the system.

29

This work is accomplished through a DISTRIBUTE function, which uses the data’s Element
id value as a key for load balancing the distribution. Next, compute nodes filter the Node
data values to eliminate entries that have data values less than the specified threshold. Once
this downselect takes place, Element and Node entries are merged via a JOIN operation. A
ROLLUP operator then gathers all of an element’s node data values into a single record for a
given timestep. Finally, the individual element volumes are calculated through a PROJECT
operation and then combined through a SUM operation.

5.4 Hadoop Implementation

The Hadoop implementation of the threshold volume calculation performs all of its work in
a single pass. A number of map tasks are used to extract and join information from the
binary input data files in parallel and generate all of the data values that are needed for
the computation. Thresholding is performed during this map operation in order to remove
unnecessary data values as early as possible. These map tasks then compute the individual
volumes of elements as they are read. As each volume is calculated, it is appended to the
output key-value list using a key of “1”7. A local combiner task is then used to condense
all entries with the same key (“1”) to a single key-value. Finally, a global reduce operation
merges the results of each node’s combiner into a single sum for the entire cluster.

1,400
ODecline 32
1,200 -
OAmazon 32 small
1,000 -
EAmazon 32 medium
800 - E Amazon 32 large
)
)
£
" 600
400 A
200 A
0 C 1 oo _-

1M 10M 100M
Mesh Elements

Figure 5.3. Hadoop’s volume threshold performance varied
for different node configurations.

30

Hadoop performance measurements were conducted on both the local Decline cluster
and Amazon’s EC2 resources. For the Amazon systems, testing was performed on “small”,
“medium”, and “large” node configurations, with 32 nodes in each configuration. A perfor-
mance comparison of these configurations is presented in Figure 5.3. The medium configu-
ration proved to be the most economical choice among the Amazon configurations, although
the Decline cluster generally provided the best performance. We attribute part of this gain
to having exclusive access on Decline, while all Amazon nodes are shared with other users.
Based on these measurements, we selected Amazon’s medium configuration in our more
detailed experiments.

5.5 Performance Comparison

Following initial prototyping and verification experiments, a suite of detailed performance
measurements were conducted on the DWAs. In preparation for these tests, datasets were
ingested offline to a native format. While static information was flattened to a single, wide
table to remove the need for additional lookups, dynamic data was stored in its original
form, forcing the analysis codes to assemble data values as needed at runtime.

1,600 T T
B Netezza Mustang
L1400 o [l Netezza TwinFin6 [~~~ 77T R N
B XtremeData dbX-1008
1,200 - [] XtremeData dbX—1016 -~ ----------------f---- -
B LexisNexis DAS-20
1000 b B LexisNexisDAS—60 | N ... _
A ’ B Hadoop Decline 32
e [Hadoop Amazon 32
g 800 [B Hadoop Amazon 128 [~~~ TR N
i
($10[0 1 Y A -
21X 010 I e AR B i
0[O I e~ Ry o T
0
1M 2M M 10M 20M 50M 100M
Mesh Elements

Figure 5.4. Threshold volume calculation for different
DWAs.

The DWA performance timings for various dataset sizes are presented in Figure 5.4. As a

31

benchmark, the threshold volume calculation represents a brute-force calculation that largely
depends on the DWA’s ability to read data off disk and perform a simple set of floating-
point computations. While the Netezza Mustang system provided good 1/O performance, its
lack of floating-point hardware significantly degraded performance. The Netezza TwinFin
provided much better performance and was able to achieve the same or better performance
than other systems that utilized many more nodes. The XtremeData systems did not perform
as well as expected. This slowdown can be partially attributed to our use of a nonstandard
join that has not yet been optimized in XtremeData’s architecture. The LexisNexis DAS-60
system proved to be significantly faster than the DAS-20. While the DAS-60 lagged the other
systems in this test, the speedup between the DAS-20 and DAS-60 is promising. Finally, the
Hadoop implementations performed well in this test due to their natural ability to handle
brute-force calculations. The 128-node Amazon “medium” cluster provided a 2.4x speedup
over the 32-node Amazon “medium” cluster. However, it is important to note that Hadoop’s
high startup costs caused it to perform poorly on all small dataset sizes.

32

Chapter 6

Element Pairing

The second analysis algorithm that we adapted to our DWAs is an element-pairing algorithm
that is part of a larger application that quantifies how much damage is caused when two
objects collide. In the example simulation containing this algorithm, an indestructible wedge
object is rammed into a deformable object, as pictured in Figure 6.1. In order to simulate
realistic fractures, the deformable object is modeled as two separate meshes that are bonded
together at the surface where the collision takes place. Analysts are interested in observing
how far element pairs in the seam move apart as the simulation progresses. The distances
between these element pairs help quantify cracks, tears, and holes created in the collision.

The central challenge in implementing this analysis is automatically generating the list
of element pairs that are pressed against each other at the start of the simulation. Due
to the way the meshes are constructed, we cannot assume that a pair of touching elements
will share the same vertices or vertex coordinates. Additionally, numerical precision issues
dictate that the distance between the faces of two touching elements will be small, but
not necessarily zero. Equipped with no additional information about where the meshes are
actually touching, the hardship of this pairing problem is that it may require on order of
NxM element face distance comparisons.

Figure 6.1. Element pairing along a fracture.

33

6.1 Algorithm and Data

Our approach to implementing the element pairing algorithm involves computing the dis-
tances between the exterior faces of the two meshes, and then selecting the pairs with min-
imum distance between their faces. This work is divided into three phases. First, all faces
are generated for each element in each mesh (e.g., six faces per hexahedron). Second, the
face list for a mesh is reduced to the set of exterior faces for the mesh by removing all faces
that appear more than once in the list. It is important to note that this reduction must take
into account the fact that a single face can be represented by different combinations of its
vertices (e.g., ABCD is the same as CDAB). Finally, each exterior face for the first mesh is
paired to the face in the second mesh that is closest, geographically. For simplicity, we use
the distance between face centers as the distance metric.

For the purposes of evaluating the computing performance of the DWAs in the worst
case, we chose to deliberately ignore obvious optimizations that reduce the dataset early
in the analysis process. For example, we developed a simple bounding-box filter for the
first stage of execution that removed all faces in the first mesh that were too far away from
the bounding box of the second mesh to be considered. This filter greatly reduced the
face list sizes and thus dramatically improved performance. We exclude this filter from the
experiments reported in this paper because (1) there are always canonical examples where
these types of filters fail and (2) we wanted to present the pairing portion of the algorithm
with a sizable amount of work to evaluate how well the systems perform at scale.

A second synthetic dataset generator was constructed for the element pairing applications.
This generator produces datasets that are comprised of two meshes that are placed in close
proximity to each other. The meshes are offset by small amounts in each direction to reflect
a more realistic example.

6.2 Netezza and XtremeData Implementations

The Netezza and XtremeData implementations of the element pairing algorithm were written
as a sequence of SQL queries that store intermediate data values in temporary tables in the
database. The first task of generating all possible faces for a mesh is performed through six
insert statements (one for each face in each hexahedron). Each insert requires five joins to
assemble the necessary data: one to locate all of the elements belonging to a mesh and four
to procure the coordinates of the face’s four vertices. During the insertions, the vertices for
a face are averaged together in order to generate a center point that can be used during the
final distance estimation task.

The second task of reducing the face lists to just the external faces proved to be more
challenging because of the vertex ordering problem. Our solution was to generate a unique
key for each face that could be represented as a single data value in the database. This
operation sorts each face’s vertex IDs through a series of min/max comparisons. The sorted

34

T
100M Elements

XtremeData XD1016
XtremeData XD1008
Netezza TwinFin6
Netezza Mustang

10M Elements
XtremeData XD1016

XtremeData XD1008
Netezza TwinFin6|
Netezza Mustang

1M Elements
XtremeData XD1016

XtremeData XD1008 I Generate Faces
[Exterior Faces
Il Nearset Faces

0 200 400 600 800 1,000 1,200 1,400 1,600
Time (S)

Netezza TwinFin6

Netezza Mustang

Figure 6.2. Performance breakdown for element pairing
on SQL platforms, truncated to 1,600 seconds. The 100M
Netezza Mustang run completed in 25,695 seconds.

IDs are then packed into a string that uniquely identifies a face. The unique keys allow us
to utilize SQL’s “Group By” and “Having (Count=1)" directives to reduce the face list to
entries that appear only once in the dataset, and are thus exterior faces. In order to speed
up subsequent operations, the unique key for each exterior face is replaced with a unique
integer ID.

The final task of locating pairs of touching faces is the most time-consuming portion of
the algorithm as it involves NxM comparisons. Similar to the previous step, we utilize the
SQL “Group By” clause to compute the distance between every exterior face in one mesh
(N) and every exterior face in the other mesh (M), followed by a MIN() aggregate function
to reduce the data to the minimal pairings. Through experimentation, we were able to
verify that the MIN aggregate properly discards non-minimal values as it steps through the
dataset, as opposed to computing all values and then selecting the minimum results.

The initial SQL implementation was debugged on the Netezza platforms and then ported
to the XtremeData platforms. While the SQL code functioned properly on XtremeData, the
Cartesian join performed poorly. XtremeData’s application engineers volunteered an alterna-
tive approach that employed a UDF to minimize data transfer for the operation. While this
optimization made XtremeData much more competitive, the same optimization had negligi-
ble impact when it was ported back to the Netezza system. We also investigated additional
UDF optimizations for the first task. However, these optimizations did not significantly
impact overall performance due to the long length of the third task.

Performance experiments were conducted on the final version of the algorithms for various
mesh sizes. Details for the three phases of execution are presented in Figure 6.2. While

35

the Netezza platforms performed well in the first two phases, XtremeData’s third phase
performance was significant enough to give it the lead in the 100M element case. The
Netezza Mustang platform performed poorly in the final phase due to the communication
complexity of distributing data values among a large number of slow nodes. Timing for the
100M case was aborted after 12 hours of execution.

6.3 LexisNexis DAS Implementation

The LexisNexis implementation followed the same three phases of operation as the database
systems. The first task of generating the six faces of each element was accomplished by calling
ECL’s NORMALIZE function six different times to generate the full set of faces for a mesh.
The second phase of reducing the data to the set of exterior faces was then accomplished
through ECL’s SORT and ROLLUP functions, followed by a filter operation to remove non-
unique faces. The final task of finding neighboring faces was then accomplished through
two operations. First, the PROJECT operation iterated over all faces so that a simple
data transformation could be applied to generate a center point for each face. Second, a
DENORMALIZE operation enabled all exterior face centers in one mesh to be compared
to all faces in another. It is important to note that ECL provided built-in operators that
matched the functional requirements of the algorithm, and that the DAS system software
automatically managed the movement of data during the computation.

6.4 Hadoop Implementation

The Hadoop version of the element pairing algorithm merges the first two phases of the
algorithm into a single MapReduce task. Map tasks read in element data from data sequence
files and decompose elements into a collection of faces. Multiple reduce tasks are then used
to remove all but the exterior faces in the mesh. In order to identify faces regardless of

vertex order, a key is generated for each face that is comprised of the ordered list of vertex
IDs.

The final phase performs all distance comparisons between exterior faces. This operation
proved to be challenging to implement in MapReduce because it involves comparing results
from two different data streams. Similar to other researchers faced with the same problem,
we decided to implement this join operation somewhat outside the MapReduce paradigm:
we designed a map task that loaded one mesh’s face values into memory and then streamed
the other mesh’s face values through for comparison. In order to handle memory limitations,
this phase was designed to support an iterative approach that loads only a portion of the first
mesh into memory at a time. If the first mesh fits entirely in memory and multiple output
files are acceptable, there is no need to perform a reduce operation here. The performance
of the join in this phase was further improved by leveraging Hadoop’s Distributed Cache
feature to efficiently distribute data to all maps in the cluster.

36

Amazon 32 large | 100M Elements

Amazon 32 medium |

Amazon 32 small

Decline 32

Amazon 32 large 10M Elements

Amazon 32 medium
Amazon 32 small

Decline 32 []

Amazon 32 large | 1M Elements
Amazon 32 medium

Amazon 32 small [|

Decline 32 | W Generate Exterior Faces ONearest Faces
0 5,000 10,000 15,000 20,000
Time (s)

Figure 6.3. Performance breakdown for element pairing
on Hadoop platforms.

Performance measurements for different 32-node Hadoop clusters are presented in Figure
6.3. Similar to the other platforms, the nearest faces phase of the work consumes the majority
of the processing time in the algorithm and scales with the computational capabilities of the
platform. For example, Amazon’s medium nodes offer slightly faster CPUs than the large
nodes and therefore achieve better performance during this stage. Similarly, the first phase
of generating exterior phases is largely 1/O bound. As such, the Decline cluster performs
better during this phase because its local disk resources are dedicated and not shared in the
way Amazon’s clusters are provisioned.

6.5 Performance Comparison

Following initial prototyping and verification experiments, a suite of detailed performance
measurements were conducted for the element pairing algorithms on each DWA. Datasets
were once again ingested offline in a manner that flattened the static portion of the dataset
to improve access efficiency.

37

12,000 T |

10,000 = ---------- |

O

[|

8,000 [+ Ll

[|

:
§ 6,000 F---------- =
=]

Netezza Mustang
Netezza TwinFin6
XtremeData dbX—-1008
XtremeData dbX-1016
LexisNexis DAS-20
LexisNexis DAS-60
Hadoop Decline 32
Hadoop Amazon 32
Hadoop Amazon 128

N[00 R T R
P[0 e R -
0
M 2M M 10M 20M 50M 100M
Mesh Elements
Figure 6.4. Element-pairing performance for different

DWAs. For the 100M experiment, the Netezza Mustang fin-

ished in 26,605 s.

Figure 6.4 depicts the results of the element pairing experiments for the different DWAs.
While Netezza’s Mustang architecture performed the worst on all tests, its TwinFin6 plat-
form consistently achieved good performance.
best performance in all test cases larger than 20M. LexisNexis DAS was competitive and
demonstrated good scaling properties. Finally, while Hadoop performance did improve when
cluster size was increased from 32 nodes to 128, the overall Hadoop timings were slower than
those for the other DWAs. Part of this loss can be attributed to the out-of-band communi-
cation that the implementation had to do to overcome the limitations of the programming

interface.

38

XtremeData’s dbX platform achieved the

Chapter 7

Observations

This work has provided many insights into utilizing DWAs for scientific dataset analysis.
The following are observations that originate from this effort.

Start Costs

All of the DWAs we investigated have relatively high startup costs for performing opera-
tions. While the database systems and LexisNexis can process trivial queries in less than a
second, Hadoop has a startup cost of 10-20 seconds. However, these overheads emphasize
the importance of performing complex computations on the DWAs when possible.

Floating-Point Limitations

The PowerPC processors in the older Netezza Mustang system do not provide hardware sup-
port for floating-point computations and therefore must perform the calculations in software.
This issue is problematic for scientific datasets, which are largely comprised of floating-point
data. We conducted an experiment replacing floating-point data with integer values on
the Mustang system and found the integer version completed in a third of the time of the
floating-point version. This observation raises issues for the large scale, embedded nodes
design style. All of the other DWAs (including Netezza TwinFin) utilize x86 processors and
do not have floating-point issues.

Tunability

In order to improve performance, we went through several development iterations on each
platform. On the Netezza and XtremeData systems, the major complaint was that there

39

were relatively few means by which we could refactor the algorithm. Most SQL-based DWAs
are designed to do optimization for the user, and therefore do not provide many program-
ming paths that a user can explore to improve performance. In contrast, Hadoop provides
the opposite environment: users can easily be overwhelmed by the variety of ways they can
refactor their algorithms to MapReduce operations. Similarly, Lexis’s environment offers a
rich suite of algorithmic primitives, which allow for many different implementation choices.
As with Hadoop, this flexibility can result in a steeper learning curve.

Programming Interfaces

An ongoing question for our work has been whether or not SQL, MapReduce, and ECL are
sufficient data-parallel languages for implementing nontrivial scientific analysis functions.
The two adaptations presented in this paper confirm that basic algorithms can be adapted
to these languages and executed in a parallel environment. However, it is important to note
that the majority of our effort involved finding ways to get around language limitations. For
our Netezza Mustang SQL implementations, we feel that performance was compromised in
the final phase of the element pairings because there was no obvious way to do an all-to-all
computation efficiently. The performance of this phase was greatly improved on the other
SQL-based platforms, but this positive result was somewhat at the mercy of the query op-
timizers provided by each DWA. Hadoop’s MapReduce provides excellent low-level control,
but we continuously struggle with the problem of merging two data streams when random
access is required. Similar to other developers, we solve this problem by going outside of the
MapReduce paradigm. In contrast to the limiting simplicity of MapReduce, LexisNexis’s
powerful and flexible suite of primitives and predefined functions often obscures how a par-
ticular algorithm will map onto the underlying platform. As a result, we needed to work
with experienced LexisNexis designers to achieve highly optimized performance.

Debugging

Debugging is challenging on any parallel platform. For Netezza and XtremeData we found
SQL debugging to be relatively straight forward, due to the robustness of the SQL standard.
However, UDF's must be developed with caution as programming errors can freeze a node or
crash the system. Hadoop provides a number of facilities for debugging and automatically
generates detailed statistics about jobs through a web interface. Hadoop also allows users to
debug a job on a local machine before it is run on a cluster. Similarly, LexisNexis’s interac-
tive development environment and web-based debugging and profiling tools were invaluable.

40

Portability

Ideally, scientific users need to be able to easily move analysis programs from one platform
to another without drastic changes. Developing in SQL is appealing in that sense because
SQL-compliant code should be portable to different databases. We initially prototyped our
SQL algorithms on a MySQL database and then changed the program to use the Netezza or
XtremeData databases. While transitions between databases were relatively smooth, we did
notice that some operations performed better in one database than another. Database ven-
dors may also provide proprietary commands that have a huge impact on performance (e.g.,
Netezza’s “Generate Statistics” command), but make code less portable. Similarly, UDFs
written for one DWA are generally not usable on another platform. Hadoop on the other
hand can run on a wide variety of platforms, as evidenced by our experience on Amazon’s
EC2. As discussed in the tunability observations, the challenge is often refactoring programs
to maximize cluster resources. Although similar to SQL in some ways, the proprietary na-
ture of LexisNexis’s ECL results in limited portability.

Fault Tolerance

An important consideration in the design of many DWAs is resilience to inevitable hardware
failures. At a minimum, data must be protected from loss and ideally analysis work can
continue in the face of failures. Hadoop provides excellent fault tolerance, as each component
in the framework is designed with the assumption that any other component could fail at
any time. Our testing benefited from the software’s automatic recovery mechanisms when
nodes failed and HDFS’s triple redundancy when hard disks overheated. Netezza’s database
products also exhibit excellent fault tolerance. Netezza system software replicates data
among nodes and automatically reconstructs data on replacement nodes when a blade fails.
Netezza’s switch to commodity hardware is welcomed, as it allows incremental replacement,
as opposed to swapping out a full board. While we did not observe any hardware failures
with LexisNexis, we note that its system software automatically replicates data in the cluster
to improve reliability. Finally, XtremeData’s hardware currently utilizes RAID controllers
to handle reliability at the device level.

41

42

Chapter 8

Conclusions

Scientific applications are generating massive datasets that are difficult to analyze utilizing
traditional, offline approaches. An emerging class of systems known as Data Warehouse
Appliances provides an opportunity to improve the scale at which automatic data analysis
operations can be performed through the use of parallel storage hardware and data-parallel
programming interfaces. In this paper we have explored how two scientific data analysis
algorithms can be adapted to five different DWA architectures. We have confirmed that the
data-parallel programming interfaces for these platforms are sufficient for implementing our
out-of-core algorithms, and that the parallel hardware of these systems could be utilized.
However, it is important to note that the APIs for these platforms required a good bit of
planning and experimentation in order to achieve good parallel performance.

Our inspection of leading-edge DWAs has found that while no system is the clear winner
in all cases, each system excels in its own focus area. Netezza’s aging Mustang architecture
yields good performance in brute-force, integer applications and has scaled well in other
work [10]. The Netezza TwinFin architecture provides a vast improvement over Mustang
and performs well in nearly all our tests. The XtremeData dbX platform provided the best
performance in the most challenging experiment. LexisNexis performed at levels in between
the SQL and Hadoop systems and offered the most flexible means of specifying dataflow
computations. Other researchers have reported that LexisNexis offers exceptional speedups
in graph analysis algorithms [19]. Finally, Hadoop clusters can deliver excellent performance
in brute-force applications, provide high-levels of fault tolerance, and are highly accessible
to researchers.

43

44

Appendix A

Language Examples

This investigation required us to adapt algorithms to different programming languages. In
this appendix we provide code fragments from the different DWA implementations. Our
intention with these listings is not to provide fully functional implementations that can be
run on each DWA. Instead, the listings are presented to provide a high-level programmer’s
view of the different languages.

A.1 Structured Query Language (SQL)

The Structured Query Language (SQL) is a well-known language for performing operations
on large data stores. The following code listings are an implementation of the 6x4-join version
of the threshold volume calculation. As described in Section 5.2, this algorithm performs
computations on a per-tetrahedral basis and assembles vertex data when evaluating each
tetrahedron.

The first step in the algorithm is to create two temporary tables that will be used for
housing intermediate data in the calculation. The first table contains the absolute coordi-
nates for each vertex in the timestep that is above the specified threshold value. The second
table provides a place to store the volumes of relevant tetrahedra.

——create temporary table for wvalues of interest

CREATE TEMPORARY TABLE TEMPVALSNODE (nodeID INTEGER NOT NULL,
x DOUBLE NOT NULL ,
y DOUBLE NOT NULL |,
z DOUBLE NOT NULL);

INSERT INTO TEMPVALSNODE SELECT v .nodelD, n.x+v.x_displacement ,n.y+v.y_displacement ,n.z+v.z_displacement

FROM ValsNode v INNER JOIN Nodeld n ON n.nodelD=v.NodelD
WHERE v .timestep=0 AND v.vall >6;

CREATE TEMPORARY TABLE vols (vol double not NULL);

45

The second step in the algorithm is to compute the individual volumes for each of the six
tetrahedra that make up each element. This operation utilizes inner joins to assemble the
coordinates of each tetrahedron vertex and performs the volume calculation inline. Once the
volume information has been assembled properly, the total volume can be computed through
as standard sum operation.

——begin 6X4 joins
——(can also implement as subquery instead of temporary table but not faster in this case to do so)

INSERT INTO vols SELECT

SUM(ABS(((vl.x)—(v2.x)) * ((v3.y)—(v2.y)) * ((vd.z)—(v2.2))

+ ((vl.y)—(v2.y)) * ((v3.z2)—(v2.z)) * ((vd.x)—(v2.x))

+ ((vl.z)—(v2.2)) * ((v3.x)—(v2.x)) * ((vd.y)—(v2.y))

- ((vli.z)—(v2.2)) * ((v3.y)—(v2.y)) * ((vd.x)—(v2.x))

- ((vl.x)—(v2.x)) * ((v3.z2)—(v2.z)) * ((vd.y)—(v2.y))

- ((vli.y)—(v2.y)) * ((v3.x)—(v2.x))* ((vd.z)—(v2.2))))/6.0 as vol
FROM ElementID e]]\INEl{ JOIN tempValsNode vl ON e.nodel = vl.nodelD

INNER JOIN tempValsNode v2 ON e.node0 = v2.nodelD
INNER JOIN tempValsNode v3 ON e.node3 = v3.nodelD
INNER JOIN tempValsNode v4 ON e.node4 = v4.nodelD;
INSERT INTO vols SELECT
SUM(ABS(((vl.x)—(v2.x)) * ((v3.y)—(v2.y)) * ((vd.z)—(v2.2))
+ ((vi.y)—(v2.y)) ((v3.2z)—(v2.2) ((va.x)—(v2.
+ ((vl.z)—(v2.z ((v3.x)—(v2. ((vd.y)—(v2.
(

y * z x
z * x) y
— ((vl.z)—(v2.2 * ((v3.y)—(v2.y) (vd . x)—(v2.x
x * z) y

Y) z

* K X ¥

))
))
— ((vl.x)—(v2.x)) ((v3.2z)—(v2. ((vd.y)—(v2.
- ((vl.y)—(v2.y)) * ((v3.x)—(v2.x))* ((vd.z)—(v2.))/6.0 as vol

FROM ElementID e INNER JOIN tempValsNode vl ON e.node7 = .nodelD
INNER JOIN tempValsNode v2 ON e.node6 = v2.nodelD
INNER JOIN tempValsNode v3 ON e.node5 = v3.nodelD
INNER JOIN tempValsNode v4 ON e.node2 = v4.nodelD ;
INSERT INTO vols SELECT
SUM(ABS(((vl.x)—(v2.x)) * ((v3.y)—(v2.y)) * ((vd4.z)—(v2.2))
+ ((vi.y)—(v2.y)) * ((v3.z2)—(v2.z)) * ((vd.x)—(v2.x))
+ ((vi.z)—(v2.2z)) = ((v3.x)—(v2.x)) = ((vd.y)—(v2.y))
- ((vi.z)—(v2.2z)) = ((v3.y)—(v2.y)) = ((vd.x)—(v2.x))
- ((vl.x)—(v2.x)) = ((v3.z)—(v2.2z)) = ((vd.y)—(v2.y))
— ((vi.y)—(v2.y)) * ((v3.x)—(v2.x))=* ((v4.z)—(v2.2))))/6.0 as vol
FROM ElementID e INNER JOIN tempValsNode vl ON e.node3 = v1.nodelD

INNER JOIN tempValsNode v2 ON e.nodel = v2.nodelD

INNER JOIN tempValsNode v3 ON e.node2 = v3.nodelD

INNER JOIN tempValsNode v4 ON e.node4 = v4.nodelD ;
INSERT INTO vols SELECT

SUM(ABS(((vl.x)—(v2.x)) * ((v3.y)—(v2.y)) * ((vd.z)—(v2.2))

+ ((vl.y)—(v2.y)) * ((v3.z2)—(v2.2z)) * ((vd.x)—(v2.x))

+ ((vl.z)—(v2.2)) * ((v3.x)—(v2.x)) * ((vd.y)—(v2.y))

- ((vl.z)—(v2.2)) * ((v3.y)—(v2.y)) * ((vd.x)—(v2.x))

- ((vl.x)—(v2.x)) =* ((VS.Z)*(VZ.Z)) * ((vd.y)—(v2.y))

- ((vl.y)—(v2.y)) * ((v3.x)—(v2.x))* ((vd.z)—(v2.2))))/6.0 as vol
FROM ElementID e INNER JOIN tempValsNode vl ON e.nodel = vl1.nodelD

INNER JOIN tempValsNode v2 ON e.node2 = v2.nodelD

INNER JOIN tempValsNode v3 ON e.node5 = v3.nodelD
INNER JOIN tempValsNode v4 ON e.node4 = v4.nodelD ;
INSERT INTO vols SELECT
SUM(ABS(((vl.x)—(v2.x)) *x ((v3.y)—(v2.y)) * ((vd.z)—(v2.2))
+ ((vi.y)—(v2.y)) * ((v3.z)—(v2.z)) * ((v4.x)—(v2.x))
+ ((vi.z)—(v2.2)) * ((v3.x)—(v2.x)) * ((vd.y)—(v2.y))
- ((vli.z)—(v2.2)) * ((v3.y)—(v2.y)) * ((v4.x)—(v2.x))
— ((vl.x)—(v2.x)) * ((v3.z)—(v2.2z)) * ((vd.y)—(v2.y))
— ((vl.y)—(v2.y)) * ((v3.x)—(v2.x))=* ((v4d.z)—(v2.2))))/6.0 as vol
FROM ElementID e INNER JOIN tempValsNode vl ON e.node2 = vl.nodelD

INNER JOIN tempValsNode v2 ON e.node3 = v2.nodelD

INNER JOIN tempValsNode v3 ON e.node7 = v3.nodelD

INNER JOIN tempValsNode v4 ON e.node4d = v4.nodelD ;
INSERT INTO vols SELECT

SUM(ABS(((vl.x)—(v2.x)) * ((v3.y)—(v2.y)) * ((vd.z)—(v2.2))

+ ((vli.y)—(v2.y)) * ((v3.z2)—(v2.z)) * ((vd.x)—(v2.x))

+ ((vi.z)—(v2.2)) * ((v3.x)—(v2.x)) * ((vd.y)—(v2.y))

- ((vi.z)—(v2.2)) * ((v3.y)—(v2.y)) * ((vd.x)—(v2.x))

- ((vl.x)—(v2.x)) = ((v3.z)—(v2.z)) = ((vd.y)—(v2.y))

- ((vi.y)—(v2.y)) * ((v3.x)—(v2.x))* ((vd.z)—(v2.2z))))/6.0 as vol
FROM ElementID e INNER JOIN tempValsNode vl ON e.node2 = vl1.nodelD

INNER JOIN tempValsNode v2 ON e.node5 = v2.nodelD

INNER JOIN tempValsNode v3 ON e.node7 = v3.nodelD

INNER JOIN tempValsNode v4 ON e.node4 = v4.nodelD;

SELECT sum(vol) from vols;

46

A.2 Enterprise Control Language (ECL)

For the LexisNexis, algorithms are defined in the Enterprise Control Language (ECL). This
language mixes concepts from SQL with formatting from other structured languages. The
first step in the ECL implementation of the threshold volume calculation is to distribute data
among different nodes in the cluster to allow computations to be performed in a distributed
manner.

NodeldFileTemp := PROJECT(NodeldInputFile,
TRANSFORM (NodeldRecTemp ,
SELF. elementld := (UNSIGNED3)TRUNCATE((REAL)LEFT. Nodeld/8);
SELF := LEFT));
NodeldFile := DISTRIBUTE(NodeldFileTemp, elementId)

: PERSIST (’distVallOOM ’);

The second step in this algorithm is to remove data values from the input that are below
a specified threshold value.

ThreshValsNodeFile := DISTRIBUTE(ValsNodeFile(vel_-x > 6),
((UNSIGNED3) TRUNCATE ((REAL) Nodeld /8)))
: PERSIST (’distThr100M ’);

Next, the algorithm updates node coordinate data for a particular frame from relative to
absolute positioning.

NodeldRec3 Xform(NodeldRecTemp L, ThreshValsNodeFile R) := TRANSFORM
SELF . meetsThresh := IF(R.vel_-x != 0, TRUE, FALSE);
SELF.X := L.X + R.x_dis;
SELF . L.Y + R.y-dis;
SELF . L.Z 4+ R.z_dis;
SELF := L;
END;

Element and node entries are then merged together using a JOIN operation.

NodeldFileMerged := JOIN(NodeldFile,
ThreshValsNodeFile ,
LEFT. Nodeld = RIGHT. Nodeld ,
Xform (LEFT, RIGHT) ,
LEFT OUTER,
LOCAL)

: PERSIST(’joinl100M ’);

An element’s node data values are collected into a single record for a given timestep using
the ROLLUP command.

NodeldFileDu := PROJECT(NodeldFileMerged ,
TRANSFORM(concatRec ,
SELF . elementld := LEFT.elementld;
SELF . nodes := LEFT),
LOCAL) ;
ElementDsl := ROLLUP(NodeldFileDu, LEFT.elementld = RIGHT.elementld,
TRANSFORM (concatRec , SELF.nodes := LEFT.nodes 4+ RIGHT.nodes; SELF := LEFT), LOCAL)

: PERSIST(’test100M ’);

47

Finally, the six tetrahedra volumes are computed for each element through a PROJECT
operation and then combined using a SUM operation. The results are passed designated
through the use of an OUTPUT operation.

Vols calcVols(concatRec L) := TRANSFORM
al := IF(L.nodes[1].meetsThresh AND L.nodes [2]. meetsThresh AND
L.nodes [4]. meetsThresh AND L.nodes [5]. meetsThresh
, ABS((L.nodes [2].X-L.nodes[1].X) * (L.nodes[4].Y-L.nodes[1].Y) * (L.nodes[5].Z-L.nodes[1].Z)+
(L.nodes [2].Y-L.nodes [1].Y) % (L.nodes[4].Z—L.nodes[1].Z) % (L.nodes[5].X-L.nodes[1].X)+
(L.nodes [2].Z—L.nodes [1].Z) % (L.nodes[4].X—L.nodes[1].X) % (L.nodes[5].Y-L.nodes[1].Y)—
(L.nodes [2].Z-L.nodes [1].Z) % (L.nodes[4].Y-L.nodes[1].Y) % (L.nodes[5].X-L.nodes[1].X)—
(L.nodes [2].X-L.nodes [1].X) % (L.nodes[4].Z—L.nodes[1].Z) * (L.nodes[5].Y-L.nodes[1].Y)—
(L.nodes [2].Y-L.nodes [1].Y) % (L.nodes[4].X-L.nodes[1].X) * (L.nodes[5].Z-L.nodes[1].2))
, 0);
a2 := IF(L.nodes[3].meetsThresh AND L.nodes [6]. meetsThresh AND
L.nodes [7]. meetsThresh AND L.nodes [8]. meetsThresh
, ABS((L.nodes [8].X-L.nodes [7].X) % (L.nodes[6].Y-L.nodes[7].Y) * (L.nodes[3].Z-L.nodes[7].Z)+
(L.nodes [8].Y-L.nodes [7].Y) % (L.nodes[6].Z—L.nodes[7].Z) * (L.nodes[3].X-L.nodes[7].X)+
(L.nodes [8].Z—L.nodes [7].Z) * (L.nodes[6].X—L.nodes[7].X) * (L.nodes[3].Y-L.nodes[7].Y)—
(L.nodes [8].Z—L.nodes [7].Z) * (L.nodes[6].Y-L.nodes[7].Y) * (L.nodes[3].X-L.nodes[7].X)—
(L.nodes [8].X-L.nodes [7].X) * (L.nodes[6].Z—L.nodes[7].Z) * (L.nodes[3].Y-L.nodes[7].Y)—
(L.nodes [8].Y—L.nodes [7].Y) % (L.nodes[6].X-L.nodes[7].X) % (L.nodes[3].Z-L.nodes[7].2Z))
, 0)s
a3 := IF(L.nodes [2]. meetsThresh AND L.nodes [3]. meetsThresh AND
L.nodes [4]. meetsThresh AND L.nodes [5]. meetsThresh
, ABS((L.nodes [4].X-L.nodes [2].X) % (L.nodes[3].Y-L.nodes[2].Y) * (L.nodes[5].Z-L.nodes[2].2Z)+
(L.nodes [4].Y-L.nodes [2].Y) % (L.nodes[3].Z—L.nodes[2].Z) * (L.nodes[5].X-L.nodes[2].X)+
(L.nodes [4].Z-L.nodes [2].Z) % (L.nodes[3].X-L.nodes[2].X) * (L.nodes[5].Y-L.nodes[2].Y)—
(L.nodes [4].Z-L.nodes [2].Z) % (L.nodes[3].Y-L.nodes[2].Y) * (L.nodes[5].X-L.nodes[2].X)—
(L.nodes [4].X-L.nodes [2].X) % (L.nodes[3].Z—L.nodes[2].Z) * (L.nodes[5].Y-L.nodes[2].Y)—
(L.nodes [4].Y-L.nodes [2].Y) % (L.nodes[3].X-L.nodes[2].X) * (L.nodes[5].Z-L.nodes[2].Z))
. 0);
a4 := IF(L.nodes[2]. meetsThresh AND L.nodes [3]. meetsThresh AND
L.nodes [5]. meetsThresh AND L.nodes [6]. meetsThresh
, ABS((L.nodes [2].X-L.nodes [3].X) * (L.nodes[6].Y-L.nodes[3].Y) * (L.nodes[5].Z-L.nodes[3].Z)+
(L.nodes [2].Y-L.nodes [3].Y) * (L.nodes[6].Z—L.nodes[3].Z) * (L.nodes[5].X-L.nodes[3].X)+
(L.nodes [2].Z-L.nodes [3].Z) * (L.nodes[6].X-L.nodes[3].X) * (L.nodes[5].Y-L.nodes[3].Y)—
(L.nodes [2].Z-L.nodes [3].Z) % (L.nodes[6].Y-L.nodes[3].Y) % (L.nodes[5].X-L.nodes[3].X)—
(L.nodes [2].X-L.nodes [3].X) * (L.nodes[6].Z—L.nodes[3].Z) % (L.nodes[5].Y-L.nodes[3].Y)—
(L.nodes [2].Y-L.nodes [3].Y) % (L.nodes[6].X-L.nodes[3].X) * (L.nodes[5].Z-L.nodes[3].2))
, 0);
a5 := IF(L.nodes[3].meetsThresh AND L.nodes [4]. meetsThresh AND
L.nodes [5]. meetsThresh AND L.nodes [8]. meetsThresh
, ABS((L.nodes [3].X-L.nodes [4].X) % (L.nodes[8].Y-L.nodes[4].Y) * (L.nodes[5].Z—L.nodes[4].2Z)+
(L.nodes [3].Y-L.nodes [4].Y) % (L.nodes[8].Z—L.nodes[4].Z) * (L.nodes[5].X-L.nodes[4].X)+
(L.nodes [3].Z-L.nodes [4].Z) % (L.nodes [8].X-L.nodes[4].X) * (L.nodes[5].Y-L.nodes[4].Y)—
(L.nodes [3].Z-L.nodes [4].Z) % (L.nodes [8].Y-L.nodes[4].Y) * (L.nodes[5].X-L.nodes[4].X)—
(L.nodes [3].X-L.nodes [4].X) % (L.nodes [8].Z—L.nodes[4].Z) * (L.nodes[5].Y-L.nodes[4].Y)—
(L.nodes [3].Y-L.nodes [4].Y) % (L.nodes [8].X-L.nodes[4].X) * (L.nodes[5].Z—L.nodes[4].Z))
. 0);
a6 := IF(L.nodes[3]. meetsThresh AND L.nodes [5]. meetsThresh AND
L.nodes [6]. meetsThresh AND L.nodes [8]. meetsThresh
, ABS((L.nodes [3].X-L.nodes [6].X) * (L.nodes[8].Y-L.nodes[6].Y) % (L.nodes[5].Z—L.nodes[6].2Z)+
(L.nodes [3].Y-L.nodes [6].Y) % (L.nodes[8].Z—L.nodes[6].Z) % (L.nodes[5].X-L.nodes[6].X)+
(L.nodes [3].Z-L.nodes [6].Z) % (L.nodes[8].X-L.nodes[6].X) % (L.nodes[5].Y-L.nodes[6].Y)—
(L.nodes [3].Z-L.nodes [6].Z) * (L.nodes[8].Y-L.nodes[6].Y) * (L.nodes[5].X-L.nodes[6].X)—
(L.nodes [3].X-L.nodes [6].X) % (L.nodes[8].Z—L.nodes[6].Z) * (L.nodes[5].Y-L.nodes[6].Y)—
(L.nodes [3].Y-L.nodes [6].Y) % (L.nodes[8].X-L.nodes[6].X) * (L.nodes[5].Z-L.nodes[6].2Z))
, 0);
ac := (al 4+ a2 4+ a3 + a4 + a5 + a6) / 6.0;
SELF.v := ac;
END;
volumes := PROJECT(ElementDsl, calcVols (LEFT));
result := sum(volumes, v);

OUTPUT(result);

48

A.3 Hadoop Java MapReduce

The threshold volume calculation can be implemented in Hadoop’s MapReduce framework in
a straightforward manner. At the top level, a Java class named MeshVolumeNodeThreash-
old is comprised of three components: (1) a mapper class named VolumeMap for computing
the volume of relevant elements, (2) a simple reducer class named VolumeReduce for merg-
ing results, and (3) Hadoop configuration methods for specifying how the work should be
completed. The following listing provides a top-level view of the application.

package gov.sandia.sicaida.hadoop.mapreduce.volume;
import gov.sandia.sicaida.hadoop.util.DoubleWritableTwoDArrayWritable;

import java.io.IOException;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;

import org.apache.hadoop. fs.Path;

import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Writable;

import org.apache.hadoop.mapred. Counters;

import org.apache.hadoop.mapred. FileInputFormat;
import org.apache.hadoop.mapred. FileOutputFormat;
import org.apache.hadoop.mapred. JobClient;

import org.apache.hadoop.mapred. JobConf;

import org.apache.hadoop.mapred. MapReduceBase;
import org.apache.hadoop.mapred.Mapper;

import org.apache.hadoop.mapred. OutputCollector;
import org.apache.hadoop.mapred. Reducer;

import org.apache.hadoop.mapred. Reporter;

import org.apache.hadoop.mapred. RunningJob;
import org.apache.hadoop.mapred. TextOutputFormat;
import org.apache.hadoop.util.Tool;

import org.apache.hadoop.util.ToolRunner;

public class MeshVolumeNodeThreshold extends Configured implements Tool

public static class VolumeMap extends MapReduceBase implements
Mapper<LongWritable, DoubleWritableTwoDArrayWritable, LongWritable, DoubleWritable>

{
public enum Mesh { TetsUsed };
private LongWritable allTheSameKey = new LongWritable ((long) 0);
private int nodeThreshold;
//Methods
public void map (...) { ... }
public void configure (...) { ... }
public boolean checkThreshold (...) { ... }
private double tetVolume (...) { ... }

}

public static class VolumeReduce extends MapReduceBase implements
Reducer<LongWritable, DoubleWritable, LongWritable, DoubleWritable>

{

private double totalVolume = 0;

//Methods

public void reduce (...) { ... }

}
public int run (...) throws Exception { }
public JobConf confMeshVolume (...) }
public static void main (...) throws Exception { }

49

The mapper task performs the bulk of the work in this application. After extracting the
element’s eight xyz coordinates, the mapper examines each of the six internal tetrahedra
that form the element. If a tetrahedron’s data values are all greater than the threshold, the
volume of the tetrahedron is added to the tally.

// VolumeMap : : map ()

public void map(LongWritable key, DoubleWritableTwoDArrayWritable value,
OutputCollector<LongWritable, DoubleWritable> output,
Reporter reporter) throws IOException

{

Writable [][] coord = value.get ();

double Ax = ((DoubleWritable) coord [0][0]). get ();
double Bx = ((DoubleWritable) coord [1][0]). get ();
double Cx = ((DoubleWritable) coord [2][0]). get ();
double Dx = ((DoubleWritable) coord [3][0]). get ();
double Ex = ((DoubleWritable) coord [4][0]). get ();
double Fx = ((DoubleWritable) coord [5][0]). get ();
double Gx = ((DoubleWritable) coord [6][0]). get ();
double Hx = ((DoubleWritable) coord [7][0]). get ();
double Ay = ((DoubleWritable) coord [0][1]). get ();
double By = ((DoubleWritable) coord[1][1]).get ();
double Cy = ((DoubleWritable) coord [2][1]). get ();
double Dy = ((DoubleWritable) coord [3][1]).get ();
double Ey = ((DoubleWritable) coord [4][1]).get ();
double Fy = ((DoubleWritable) coord [5][1]). get ();
double Gy = ((DoubleWritable) coord [6][1]).get ();
double Hy = ((DoubleWritable) coord [T][1]). get ();
double Az = ((DoubleWritable) coord [0][2]). get ();
double Bz = ((DoubleWritable) coord [1][2]).get ();
double Cz = ((DoubleWritable) coord [2][2]).get ();
double Dz = ((DoubleWritable) coord [3][2]).get ();
double Ez = ((DoubleWritable) coord [4][2]).get ();
double Fz = ((DoubleWritable) coord [5][2]). get ();
double Gz = ((DoubleWritable) coord [6][2]).get ();
double Hz = ((DoubleWritable) coord [7][2]).get ();
double tetVector[] = { 0, 0, 0, 0, 0, 0 };

if (checkThreshold (reporter, coord, 0, 1, 3, 4))
tetVector [0] = Math.abs(tetVolume(Bx — Ax, By — Ay, Bz — Az,
Dx — Ax, Dy — Ay, Dz — Az,
Ex — Ax, Ey — Ay, Ez — Az));
if (checkThreshold (reporter, coord, 2, 5, 6, 7))
tetVector [1] = Math.abs(tetVolume(Hx — Gx, Hy — Gy, Hz — Gz,
Fx — Gx, Fy — Gy, Fz — Gz,
Cx — Gx, Cy — Gy, Cz — Gz));
if (checkThreshold(reporter, coord, 1, 2, 3, 4))
tetVector [2] = Math.abs(tetVolume(Dx — Cx, Dy — Cy, Dz — Cz,
Bx — Cx, By — Cy, Bz — Cz,
Ex — Cx, Ey — Cy, Ez — Cz));
if (checkThreshold(reporter, coord, 1, 2, 4, 5))
tetVector [3] = Math.abs(tetVolume(Fx — Cx, Fy — Cy, Fz — Cz,
Bx — Cx, By — Cy, Bz — Cz,
Ex — Cx, By — Cy, Ez — Cz));
if (checkThreshold (reporter, coord, 2, 3, 4, 7))
tetVector [4] = Math.abs(tetVolume(Dx — Cx, Dy — Cy, Dz — Cz,
Hx — Cx, Hy — Cy, Hz — Cz,
Ex — Cx, Ey — Cy, Ez — Cz));
if (checkThreshold (reporter, coord, 2, 4, 5, 7))
tetVector [6] = Math.abs(tetVolume(Fx — Cx, Fy — Cy, Fz — Cz,
Hx — Cx, Hy — Cy, Hz — Cz,
Ex — Cx, Ey — Cy, Ez — Cz));

double elementVolume = 0.0;
for (double tetVolume : tetVector)
elementVolume += tetVolume;

if (elementVolume > 0)
output.collect (allTheSameKey , new DoubleWritable (elementVolume));

50

The configure method provides a way to pass job parameters among components in the
framework. In threshold volume application, the only parameter that needs to be passed to
the mapper is the cutoff threshold value.

// VolumeMap :: configure ()
public void configure(JobConf job)

// Get threshold
String nodeThresholdString = job.get(”nodeThreshold”);
this.nodeThreshold = Integer.parselnt(nodeThresholdString);

}

The checkThreshold() method determines whether a tetrahedron’s four data values are
all above the threshold.

// VolumeMap :: checkThreshold ()

private boolean checkThreshold (Reporter reporter, Writable [][] nodeData, int... nodesToCheck)
{ for (int i : nodesToCheck)

if (((DoubleWritable) nodeData[i][4]).get() <= nodeThreshold)

t return false;

}

}
reporter.incrCounter (Mesh. TetsUsed, 1);

return true;

The tetVolume() method computes the volume of a tetrahedron, given its three defining
vectors.

// VolumeMap :: tet Volume ()

private double tetVolume(double x1, double yl, double z1,
double x2, double y2, double z2,
double x3, double y3, double z3)

double volume = / 6.0) x*
* y2 * z3 + yl % z2 % x3 4+ zl % x2 * y3) —
* y2 % x3 + x1 * z2 % y3 4+ yl % x2 % z3))3

return volume;

The reducer for this application is simply the summation of all volumes that were gener-
ated by the mappers.

// VolumeReduce :: reduce ()

public void reduce(LongWritable key,
Iterator <DoubleWritable> values,
OutputCollector<LongWritable, DoubleWritable> output,
Reporter reporter) throws IOException

while (values.hasNext())

totalVolume 4= values.next ().get ();

output.collect (key, new DoubleWritable(totalVolume));

51

The run() method for this application allows users to supply job paramters to the frame-
work as well as specify the overall data flow of the job.

// MeshVolumeNodeThreshold :: run ()

public int run(String|[] args) throws Exception

{
StringBuilder summaryInfo = new StringBuilder ();
int numMapTasks = 32;
int numReduceTasks = 1;

List<String> other_args = new ArrayList<String >();
for (int i = 0; i < args.length; ++i)

{
try
if (?—m”.equals(args[i]))
{
numMapTasks = Integer.parselnt (args[++i]);
} else if (”—r” .equals(args[i]))
{
numReduceTasks = Integer.parselnt (args[++i]);
} else
{
other_args.add(args[i]);
}
} catch (NumberFormatException except)
{
System.out.println ("ERROR: _Integer_expected_instead_of_.” + args[i]);
return printUsage ();
} catch (ArrayIndexOutOfBoundsException except)
{
System.out.println ("ERROR: _Required_parameter_missing._from.” + args[i — 1]);
return printUsage ();
}
// Make sure there are ezactly 2 parameters left.
if (other_args.size() != 3)
System.out. println ("ERROR: ~Wrong_number_of_parameters:_.” + other_args.size () 4+ ”"_instead_.of_.2.7);
return printUsage ();
¥
String staticDatalnputPath = other_args.get (0);
String variableDatalnputPath = other_args.get (1);

String outputPath = other_args.get (2);
outputPath 4= System.currentTimeMillis () + ”/7;

// Calc Volume Phase
Long jobStartTime = System.currentTimeMillis ();

JobConf confMeshVolume = confMeshVolume(staticDatalnputPath , variableDatalnputPath
outputPath + ”volume”, numMapTasks, numReduceTasks);
RunningJob job = JobClient.runJob (confMeshVolume);

Long jobEndTime = System.currentTimeMillis ();

Counters counters = job.getCounters ();
long tetsUsed = counters.getCounter (MeshVolumeNodeThreshold.VolumeMap.Mesh. TetsUsed);

summaryInfo.append (”Number_of_tets._included_in_volume:.” + tetsUsed + ”\n”);
summaryInfo.append (” MeshVolume—NodeTheshold (” + variableDatalnputPath + ”):_Time:.”
+ ((jobEndTime — jobStartTime) / 1000.0) + 7 _sec.(”
+ ((jobEndTime — jobStartTime) / 60000.0) + ”_min)\n”);
System .out.println (summaryInfo);

return O0;

52

Hadoop utilizes a job configuration object to pass static information to tasks.

confMeshVolume() method creates a JobConf object for this particular application.

The

// MeshVolumeNodeThreshold :: confMeshVolume ()

public

{

JobConf confMeshVolume (String staticDatalntputPath, String variableDatalntputPath ,
String outputPath, int numMaps, int numReduces)

JobConf conf = new JobConf(MeshVolumeNodeThreshold.class);

conf.
conf.
conf.
conf.
conf.

conf.

conf.
conf.

conf.
conf.
conf.

conf.
conf.

conf.
conf.

setJobName (” meshVolume—NodeTheshold”);

set (?valsNode” , variableDatalntputPath + ”ValsNode.csv.bin”);
set (”startingTimestep”, 707);

set (”endingTimestep”, 70");

set ("numNodelds” , 78388608);

set ("nodeThreshold” , 76”7);

setOutputKeyClass (LongWritable. class);
setOutputValueClass (DoubleWritable. class);

setMapperClass (VolumeMap . class);
setCombinerClass (VolumeReduce. class);
setReducerClass (VolumeReduce. class);

setNumMapTasks (numMaps) ;
setNumReduceTasks (numReduces) ;

setInputFormat (MeshDataPreJoinedStaticInputFormat.class);
setOutputFormat (TextOutputFormat. class);

FileInputFormat .setInputPaths (conf, new Path(staticDatalntputPath));
FileOutputFormat.setOutputPath (conf, new Path(outputPath));

return conf;

The main() method for this application creates a new class for the application and passes
the data to the framework.

public

static void main(String[] args) throws Exception

ToolRunner.run (new Configuration (), new MeshVolumeNodeThreshold (), args);

The printUsage() method displays the parameters for launching a job.

static

int printUsage ()

System.out.println (” MeshVolumeNodeThreshold.” +

?”[-m_<maps>|_[—r_<reduces >]_.” +
"<static_input>_<dynamic_input>_<output>”);

return —1;

53

o4

References

1]
2]
3]
[4]

[5]

[10]

[11]

[12]

[13]

[15]

[16]

Amazon elastic compute cloud (ec2). http://www.amazon.com/ec2/, June 2002.

Dbx powered by XtremeData. Product Brief, 2009.

Lexisnexis data analytics supercomputer. LNSSI White Paper, 2009.

K. Alvin. ASC national code strategy simulation-based complex transformation, 2009.

David G. Andersen, Jason Franklin, Michael Kaminsky, Amar Phanishayee, Lawrence

Tan, and Vijay Vasudevan. Fawn: a fast array of wimpy nodes. In Jeanna Neefe
Matthews and Thomas E. Anderson, editors, SOSP, pages 1-14. ACM, 2009.

A. Bialecki, M. Cafarella, D. Cutting, and O. OMalley. Hadoop: A framework for
running applications on large clusters built of commodity hardware. http://lucene.
apache.org/hadoop, June 20009.

D. Borthakur. The hadoop distributed file system: Architecture and design. http:
//lucene.apache.org/, June 2009.

P. Braam. The lustre storage architecture. http://www.lustre.org, 2002.

A. Cedilnik, B. Geveci, K. Moreland, J. Ahrens, and J. Favre. Remote large data
visualization in the paraview framework, May 2006.

G. Davidson, K. Boyack, R. Zacharski, S. Helmreich, and J. Cowie. Data-centric com-
puting with the netezza architecture, April 2006.

J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters,
2004.

S. Ghemawat, H. Gobioff, and S. Leung. The google file system, 2003.

Yunhong Gu and Robert Grossman. Sector and sphere: The design and implementation
of a high performance data cloud, June 2009.

J. Laros, L. Ward, R. Klundt, S. Kelly, J. Tomkins, and B. Kellogg. Red storm io
performance analysis, September 2007.

W. Lorensen and H. Cline. Marching cubes: A high resolution 3d surface construction
algorithm, 1987.

R. Meisner. A platform strategy for the advanced simulation and computing program,

2007.

%)

[17] Roger Rea and Krishna Mamidipaka. Ibm infosphere streams: Enabling complex ana-
lytics with ultra-low latencies on data in motion. IBM White Paper, 2009.

[18] W. Tantisiriroj, S. Patil, and G. Gibson. Data-intensive file systems for internet services:
A rose by any other name , October 2008.

[19] Andy Yoo and Tan Kaplan. Evaluating use of data flow systems for large graph analysis.
In Proceedings of the 2nd Workshop on Many-Task Computing on Grids and Supercom-
puters, 2009.

[20] O. Zienkiewicz, R. Taylor, and J. Zhu. The finite element method: its basis and funda-
mentals; 6th ed. Elsevier, Amsterdam, 2005.

56

v1.35

@ Sandia National Laboratories

