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Imaging for dismantlement veri�cation: information

management and analysis algorithms

A. Seifert∗, K.D. Jarman, E.A. Miller, A.C. Misner, M.J. Myjak, W.K. Pitts,
S.M. Robinson, M.L. Woodring

Paci�c Northwest National Laboratory, Richland, Washington 99352 USA

Abstract

The level of detail discernible in imaging techniques has generally excluded them
from consideration as veri�cation tools in inspection regimes. An image will al-
most certainly contain highly sensitive information, and storing a comparison
image will almost certainly violate a cardinal principle of information barriers:
that no sensitive information be stored in the system. To overcome this prob-
lem, some features of the image might be reduced to a few parameters suitable
for de�nition as an attribute. However, this process must be performed with
care. Computing the perimeter, area, and intensity of an object, for example,
might reveal sensitive information relating to shape, size, and material com-
position. This paper presents three analysis algorithms that reduce full image
information to non-sensitive feature information. Ultimately, the algorithms are
intended to provide only a yes/no response verifying the presence of features in
the image. We evaluate the algorithms on both their technical performance in
image analysis, and their application with and without an explicitly constructed
information barrier. The underlying images can be highly detailed, since they
are dynamically generated behind the information barrier. We consider the use
of active (conventional) radiography alone and in tandem with passive (auto)
radiography.

Keywords: arms control, information barrier, treaty veri�cation, warhead
dismantlement

1. Introduction

The dismantlement veri�cation process is de�ned by international treaties or
other multi-party agreements. Inspectors might con�rm that a small number of
dismantled warheads are in a set of storage containers by making key measure-
ments after these containers have been sealed. These measurements form the
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Figure 1: Conceptual illustration of dismantlement veri�cation process.

basis of comparison for later inspections of equivalent sealed containers. Pre-
venting disclosure of sensitive information is critical for multi-party agreements.
Hence, information barriers are typically established using physical obstruc-
tions, instrument �rewalls, volatile data storage, rigorous procedural control,
and other techniques. An information barrier (IB) is a collection of hardware,
software, and procedures designed to prevent disclosure of sensitive information
acquired during measurement.1 The inspections must achieve a balance between
protecting sensitive data and disclosing su�cient information to establish that
the container holds the declared item. Figure 1 gives a conceptual illustration
of the overall veri�cation process.

Radiation imaging is not normally incorporated into the veri�cation process.
However, imaging gives the spatial relationship between subassemblies in the ob-
ject to be veri�ed, which provides one of the strongest diagnostics in assessing
the intended function of that item. As the focus on Arms Control moves to-
ward greater discrimination of items after the reduction in nuclear weapons from
the Cold War era, the simple attributes de�ned for material control may not
have su�cient �delity to distinguish treaty-limited items, such as weapons, from
non-limited items, such as components or stored material. At the same time,
a dismantlement regime might utilize imaging to assess whether a subassembly
is a weapon component, such as a pit, or just a lump of special nuclear ma-
terial (SNM) having a similar radiation signature. Imaging might also have a
role in a material control regime where SNM is stored in a particular declared
con�guration and/or chemical form.2

1As de�ned by the reports of the Authentication Task Force, chartered by the United States
Departments of Defense and Energy, Authentication is the process by which a Monitoring
Party gains the appropriate con�dence that the information reported by a monitoring system
accurately re�ects the true state of the monitored item [1�4].

2A summary of the technical challenges facing Arms Control appears in [5].
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Despite its advantages, imaging has been routinely dismissed as a veri�ca-
tion technique, due in large part to assumptions that it is too invasive and too
di�cult to implement behind an IB. While imaging is invasive, its capability to
assess form and function could be key to enabling future Arms Control agree-
ments. Operating the analysis algorithm reliably and autonomously behind an
IB presents a technical challenge; our work is gauging the magnitude of that
challenge. Whether or not imaging is accepted or rejected is ultimately a policy
decision, not a technical decision.

The main obstacle for using imaging is that simple comparison techniques
require a stored reference image or set of parameters. There has been an implicit
assumption that the stored image is sensitive. Storing sensitive information vio-
lates a cardinal principle of IB design. In addition, there has been a perception
that other measurements, including high-resolution gamma-ray spectroscopy
and neutron counting, give adequate information for many applications, such as
SNM mass attribute measurements. However, as the total number of warheads
is reduced far below historic highs, the time may come when assessing the func-
tion of a SNM item, rather than deciding whether or not the item is SNM in a
given mass range, becomes the primary driver in a dismantlement regime.

In this paper, we �rst brie�y summarize the two primary imaging techniques:
active (conventional) radiography and passive (auto) radiography. Next, we
discuss the utility of imaging in the context of Arms Control, and give some
considerations for information barriers. We then present three potential image
analysis algorithms that do not store nor disclose sensitive information about
the item of interest. Finally, we give some initial results that illustrate the
performance of the algorithms with various objects.

2. Imaging Techniques

A veri�cation system can use radiography in both active and passive modes
for scanning objects. In active radiography, a strong x-ray source is placed on
one side of the object, and a large-area imaging detector is placed on the oppo-
site side. An image is then made from the transmitted photon �ux. The image
formed on the detector is representative of the attenuation of the x-rays through
the intervening materials (including the container and contents). Radiography
techniques range from non-electronic dose-recording �lms to sophisticated im-
agers used for industrial applications. The shortcoming of active imaging is that
it cannot determine the radioactive make-up of the constituent materials.

In passive imaging, or autoradiography, the radioactive object is used as the
source for an imaging system such as a coded aperture imager. A number of
techniques exist for this purpose [6, 7]; coded aperture imaging works well with
the lower-energy gamma rays from SNM. In this technique, emissions from the
target object are attenuated through a mask pattern and create a projection on a
position-sensitive detector. The mask pattern is designed to render the detector
response to a single point source as close to unique as possible [6, 8]. Coded
aperture imaging has found use in imaging objects which are compact in the �eld
of view, ranging in application from gamma-ray astronomy to national security
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[9]. The drawback of passive imaging systems is that a solid mass of SNM could
be replaced with a less dense object without signi�cantly a�ecting the gamma-
ray emissions outside the surface. In addition, the passive radiograph generally
has signi�cantly lower resolution than does an active radiograph. For instance,
the resolution of coded aperture imaging is often limited by the size of the mask
holes and the tradeo� between resolution and sensitivity.

Using both active and passive imaging systems may improve the likelihood
of detecting material diversion, as it would be more di�cult to �spoof� both
systems at the same time. While passive radiography may be more e�ective at
verifying the speci�cs of radioactive material distribution, active radiography
may be more e�ective at verifying material density and structure.

3. The Utility of Imaging

The radiation image of a sealed container contains a large amount of informa-
tion. The active radiograph can be processed to give the overall size, geometry,
edge characteristics, and density of the constituent item. These parameters are
interrelated. Edge characteristics and density should be related to each other
as well as to the chemical form of the item, such as plutonium oxide or metallic
plutonium. The geometry and edge characteristics should be related as well: for
example, a plutonium cylinder (hockey puck) will have signi�cant di�erences in
edge attenuation between the curved sides and �at top or bottom. The pas-
sive autoradiograph generally indicates the distribution of radioactive material
within the container. One can also extract position-dependent spectroscopic
information from the passive imaging system.

Some examples of image information include the following:

• Geometry and shape: active and passive radiographs give an overall image
of the item. Depending upon the quality of the images and characteristics
of the imaging device, the information ranges from a simple high-contrast
image showing the size and shape to a detailed image that can be analyzed
for attenuation along the edges.

• Material composition: spectroscopic imaging with a gamma ray imager
gives the overall isotopic composition of the item in addition to its size
and shape. Passive radiography using a spectroscopic imager would give
an image that could be analyzed to determine if a particular region of
the image had the expected radiation signature. These techniques could
also include a subset of active radiography using an external radiation
source. This source can be used to induce nuclear reactions in the material,
generating a secondary radiation signature [10, 11].

• Edge �nding and density can be analyzed using conventional radiography
with a high energy x-ray source, or with passive radiography using the in-
herent radioactivity of the SNM item. These parameters should be related
back to both the size and shape of the item and to its mass.
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• There is also a subset of imaging techniques in which spectra are com-
pared along di�erent sight lines to the object. This technique might give
some of the same information in a less invasive manner than standard
imaging. For example, if there are two or more SNM-containing regions,
there will be self-occultation e�ects along particular sight lines. In a ma-
terial control regime, for example, the declared form was two distinct but
identical plutonium spheres stored one above the other in a common con-
tainer. Comparing the measured count rates of the 375 keV and 424 keV
plutonium gamma rays from the top and from the side would have given
additional con�rming information for the actual stored con�guration.

4. Information Barrier Considerations

The other necessary component for an imaging system consists of the IB and
associated operating procedures that protect sensitive data from disclosure dur-
ing the inspection. The IB usually has several components: tamper-indicating
enclosures around the measurement system to prevent unauthorized access, in-
terlocks that shut down the system immediately upon tampering, and one-way
data transfers that transmit the minimum required information. A key related
concept is the reduction of measurements to a particular attribute with a de-
�ned yes/no outcome. For example, while a stored mass might be declared,
the de�ned mass attribute might be a yes/no mass measurement within a re-
lated mass range. Reducing a sensitive measurement to an attribute simpli�es
the information barrier: the data output can be a simple yes/no result imple-
mented with a one-way display. At the same time, information into the system
is restricted by reduction to an attribute, thereby closing a possible path for
tampering. The input data path might only be an identi�ed path for a test or
calibration item, for example. In all cases the �ow of information is reduced to
a minimum.

There is one important exception to the de�ned yes/no inputs and outputs
through the IB. Hash functions are one-way transforms that take the entirety
of a large message or �le and reduce it to a condensed output message. It is
fundamental that the hash function output cannot be used to recreate the orig-
inal message. For authenticating the system memory and loaded software, a
hash function can be implemented to assess the loaded software and memory
by reducing an input string and total system memory storage to a de�ned hash
output. The hash function is a component of the authentication process that
assesses con�dence in the overall system performance, including security consid-
erations [12]. Implementing a hash function requires a method to input a data
string and an associated output display system. Because the hash function is
a one-way transform, there is no method to extract the sensitive state of the
stored software and data on the system.
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5. Analysis Algorithms

We explored several possible ways to deal with information security restric-
tions on the use of imaging in an Arms Control context, while maintaining the
ability to distinguish between imaged objects. The �rst approach is to su�-
ciently obscure the image to the point where the information can be displayed.
This process must remove the possibility of inversion in a manner analogous to
hash functions. Another approach is to perform an internal analysis directly
on the sensitive information behind the IB, returning a non-sensitive quantity;
this alternative eliminates the need to store reference images or other sensitive
parameters. A third approach is to compare active and passive radiographs
of the same object behind the IB. This section presents three image analy-
sis algorithms that were inspired by these respective information management
strategies. We focused on two goals when developing the algorithms: the abil-
ity to distinguish between objects of di�erent density, shape, and radioactive
pro�les, and the e�ectiveness of obscuring information more speci�c than the
algorithms are designed to verify.

5.1. Histogram Comparison

The �rst algorithm works by computing a histogram of pixel intensities from
an active radiography image. The histogram from the interrogated object is
compared to a previously generated �template� histogram to determine a de-
gree of similarity with the expected object. This histogram template would be
stored on the system. We will address the question of information protection
momentarily.

To study the capability for distinguishing between objects on the basis of
pixel intensity histograms, we consider a set of image histograms with two or
more groups of like images. We then estimate a comparison metric for every
distinct pair of images, both for the within-group populations and the across-
group populations. The average separation between within-group comparisons
and across-group comparisons was considered to be the �resolving power� of this
method, as greater separation suggests higher discriminating power. We used
a two-sample statistical hypothesis test statistic to represent the average sepa-
ration. Resolving power is quanti�ed by an approximate statistical signi�cance
level.

We tested a number of histogram comparison functions. A simple dot prod-
uct (evaluating the inner product between two vectors of histogram intensities)
produced promising results and is the comparison function considered here. Let
Aij be an image for i = 1, . . . , Mj images in j = 1, . . . , N groups. Let Xij be
the vector representing the histogram of pixel intensities for image Aij , and let
ρijkl = Xij ·Xkl be the dot product. Estimates of the within-group distribution
mean and variance are as follows:

ρjj =

(
Mj

2

)−1∑
i

∑
k>i

ρijkj , s
2
jj =

[(
Mj

2

)
− 1

]−1∑
i

∑
k>i

[
ρijkj − ρjj

]2
.
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This de�nition considers all unique pairs of non-identical images. Similarly,
estimates of the across-group distribution mean and variance are as follows:

ρjl = (MjMl)
−1
∑
i

∑
k

ρijkl, s
2
jl = (MjMl − 1)

−1
∑
i

∑
k

[
ρijkl − ρjl

]2
.

We want to know whether across-group comparisons are signi�cantly di�erent
from within-group comparisons. One way to answer this question is to use a
two-sample t-test for signi�cant di�erence between the means, accounting for
the di�erence in variances [13]. The test statistic∣∣ρjl − ρjj

∣∣√
s2jl (MjMl)

−1
+ s2jj

(
Mj

2

)−1

indicates the resolving power between groups of di�erent images. Applying the
t-test then provides a threshold against which this quantity can be compared to
determine whether the resolving power is signi�cant.

The question remains whether the histogram of pixel intensities is a su�-
cient one-way transform to fully protect sensitive information about the original
image. A given image with m× n pixels can be rearranged in(m× n)! ways to
produce other images with exactly the same histogram. This very large number
of combinations makes any direct inversion prohibitive for all reasonable image
sizes. However, it may be possible to extract some information about the im-
aged object from the intensity histogram. The fraction of �black/very dark� and
�white/very light� pixels gives a measure of the overall size of the item relative
to the imager's �eld of view. In addition, the fraction of �gray/transition� pixels
give an overall estimate of the size of the edge. Using a lower number of pixels
and a limited gray scale range limit the information that can be extracted. The
limits on determining an object's size and edge transition can be found for a
given bin size in the histogram. Once that technical result is known, the next
step is determining whether the histogram binning scheme inherently protects
sensitive information; if so, then the histogram should be viewable through an
information barrier. We plan to pursue these questions in future work.

5.2. Material Recognition

Given an active image of an object, a priori knowledge of the object's general
shape can be exploited to estimate attenuation characteristics and, ultimately,
density of the material. The material recognition approach uses the pixel in-
tensity gradients near the edges of the object to distinguish between lighter and
denser materials. We developed algorithms for spherical objects as a relatively
simple example. Figure 2 illustrates the overall concept behind the algorithm.
The higher the material density, the sharper the edge transition.

In addition to knowing the shape of the object, a rough initial estimate of
location and spatial dimensions is assumed. One way to obtain such an estimate
is to use existing image analysis methods for locating and characterizing speci�c
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Figure 2: Determination of material density examining the intensity gradients at the edge.

shapes within images. The Hough Transform, for example, can be used to locate
circles which could indicate spherical imaged objects [14]. Our initial testing
of the circular Hough transform for this purpose showed promise, but is not
the focus of the present study. Using Beer's Law and the parametrization of a
sphere, we can then estimate attenuation factor by �tting that parametrization
to a set of pixel intensities that correspond to some part of the sphere.

Let Iij = I0 exp (−µdij) be the intensity at pixel (i, j) within the sphere,
where dij is the depth of the sphere at that pixel and µ is the attenuation factor
for the material. The attenuation factor can be used as a discriminator of the
type of material, given assumptions about the nominal densities of possible
materials. An estimate for the unattenuated pixel intensity is assumed to be
obtainable by a �blank� image or portion of the object image outside the sphere.
In units of pixels, a sphere with center (ic, jc) and radius R is de�ned by

(i− ic)
2

+ (j − jc)
2

+ (dij/2)
2

= R2.

Substituting for dij in the equation for the sphere and re-arranging gives the
following equation:

[log(Iij/I0)]
2

= 4µ2
[
R2 − (i− ic)

2 − (j − jc)
2
]
.

Given pixel intensities and an estimate of no-attenuation pixel intensity, param-
eters (ic, jc), R, and µ are simultaneously estimated using nonlinear regression.
The estimate of µ can be compared to empirical or simulated parameter values
for a variety of materials to help verify the presence of a particular material.

Like the histogram comparison algorithm, the material recognition technique
is designed not to disclose sensitive information. Although the radius of the
object is computed as part of the process, only the material attenuation factor
needs to be reported. The technique would be especially useful to distinguish
between chemical forms since the metallic and oxide forms have very di�erent
densities. Hence, the output might be well suited to a metal/oxide attribute.

5.3. Active/Passive Pixel Correlation

The third algorithm studies the correlation between pixel intensities in the
active and passive images of the same object in the same orientation. The key
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Passive image

Active image

Figure 3: Schematic for comparison of active and passive images for identifying dense, emissive
material.

idea behind this algorithm is that the dense items in the container will be the
most radioactive, whereas the surrounding �ller material will be less dense and
not emissive. (The passive image may contain some contributions from the
�ller material due to scattering.) For ease of comparison, we normalize both
images to a set average pixel value, and re-bin the active image to match the
number of pixels and corresponding spatial size of the passive image. (In general,
active radiography systems are expected to have much higher resolution). The
algorithm then groups each pixel from the active image with the corresponding
pixel from the passive image, and records the pair of intensities in a scatter plot.
Figure 3 depicts this process. The deviation of the scatter plot data from the
diagonal indicates whether the object contains distributed, emissive material. If
the dense items in the active image line up with the bright items in the passive
image, the method should yield a strong correlation. If, however, the image
contains less distributed materials or signi�cant dense, non-emissive material
(such as a point source along with a lead brick), the active and passive images
will not match, and the correlation between image data will be much weaker.

Repeating the above description in mathematical terms, the algorithm trans-
forms each active pixel value Aij and passive pixel value Pij so that the average
of all the pixels in each transformed image is 1/2. The value of x increases with
higher density, whereas the value of y increases with higher emissivity.

x = − Aij − Ā

Amax −Amin
+

1

2
, y =

Pij − P̄

Pmax − Pmin
+

1

2

The algorithm then computes the slope of the linear regression model of y as a
function of x. Again, if the images were identical in the sense of having a positive
linear relationship between pixel values, this value would be 1, whereas values
far from 1 suggest little similarity between the active and passive images. Other
metrics could be used to evaluate the similarity, such as the average deviation
of each scatter plot point from the diagonal.

The key advantage of the pixel correlation algorithm is the lack of stored
parameters for image analysis. Hence, there are no information barrier restric-
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Figure 4: Marinelli beaker standards used for radiography.

Figure 5: Example radiographs of Marinelli beaker standards in di�erent orientations.

tions to the technique. While initial results are promising, as presented later
in this paper, further evaluation is necessary to consider a number of practical
limitations: the strong attenuation of the x-ray �ux in conventional radiogra-
phy, the perhaps sparse gamma-ray �ux available for autoradiography, and the
possible presence of other high-Z materials, such as lead shielding in the case
of stored plutonium oxide. One potential alternative is to have the inspection
process use neutron �ux to generate the active and/or passive images [10, 11].

6. Evaluation Methods

We evaluated the performance of the three image analysis algorithms on
idealistic scenarios against a variety of real and simulated objects with di�erent
shapes, orientations, densities, and radioactive content. One set of objects con-
sisted of six Marinelli beakers �lled with epoxy having three di�erent densities.
One set of three beakers also included radioactive constituents homogeneously
mixed in the epoxy. The total volume and densities were selected based on
the parameters of the available radiography systems in the laboratory. Figure
4 gives the speci�cations of these objects. Orienting the Marinelli beakers in
di�erent directions produces interesting radiographs, as shown in Figure 5.

The beakers without included isotopes were imaged with a Varian PaxScan
2520 radiography system in various orientations. We used these images of
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beakers without sources to evaluate the histogram comparison and pixel corre-
lation algorithms. Simulated images of beakers containing radioactive isotopes
were generated using MCNP [15] for a hypothetical passive imaging system. The
model was based on the actual nuclides contained in the beaker as a source. The
simulated passive imager consisted of an ideal pinhole camera with the aperture
100 cm from the front face of the beaker. The pinhole had a diameter of 0.5 cm
and was 9.8 cm from the image plane. The image plane itself was 2 × 2 cm,
containing 150 × 150 pixels. The resulting simulated active and passive images
of the beakers were used for the pixel correlation algorithm.

A second set of objects was scanned with the active system to aid algorithm
development, including rubber, quartz, and marble spheres of several sizes. We
also created a third set of simulated objects for a hypothetical active imager
based on the PaxScan. This dataset contained spheres of di�erent materials and
densities. We used both the actual and simulated sets of spheres to evaluate the
material recognition algorithm. The simulated images were obtained utilizing a
monoenergetic point source and a radiography tally in MCNP. The point source
was placed 90 cm from the rear of the beaker and had an energy of 450 keV.
The image plane was located 23 cm from the front face of the beaker. The
dimensions of the plane were 30 × 30 cm2 with 150 × 150 pixels. We included
Poisson (counting) noise in all simulated images.

7. Results

7.1. Histogram Comparison

We tested the histogram comparison algorithm on a set of �fteen active
images of Marinelli beakers: �ve images in three groups, with each group rep-
resenting a di�erent density of epoxy. The images in each group were taken
under identical conditions, with a slight shift in spatial position of the beaker
between images. Figure 6 depicts the �fteen images and corresponding his-
tograms. These histograms were constructed by binning the pixel intensities
into 5,000 equal bins. One can observe particular feature di�erences between
the histograms in each group, as indicated by the red boxes in the �gure.

Figure 7 compares the sample distributions of histogram comparison values
between the low-density group and the low-, medium-, and high-density groups.
The vertical axis shows the histogram comparison values generated by applica-
tion of the dot product, in arbitrary units. A strong separation is indicated,
and is supported by the results of the two-sample t-test described above. The
signi�cance level (in terms of a P -value) for a di�erence between within-group
and across-group comparison values is below 10 to 15. A similar degree of sep-
aration was also found in the same kind of comparison on the medium- and
high-density objects (not shown).

To check the overall methodology, we performed the same analysis with im-
ages randomly partitioned into three groups. The histogram comparison showed
no similarity between these random groups, as expected. In more realistic sce-
narios, the level of variation in images of objects of interest is likely to be much
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Figure 6: Marinelli beaker images and corresponding image histograms for evaluating the
histogram comparison algorithm. The red boxes indicate a particular feature di�erence across
object densities.
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Figure 8: Results of the material recognition algorithm on real and simulated images of
spheres. Each plotted point corresponds to a sphere of a di�erent radius and material.

greater than that represented in the replicate measurements here, and further
analysis on a broader range of image groups would be necessary to determine
the full power of the approach. The results here show that the histogram com-
parison approach is very capable of distinguishing between the test objects of
di�erent densities and encourage such further study.

7.2. Material Recognition

We applied the material recognition algorithm to active images of real ob-
jects (including rubber, quartz, and marble spheres of several sizes) as well as
simulated images of a range of materials. The active radiographs of real objects
were taken with beam endpoint energies of 110 keV and 160 keV, whereas the
simulated radiographs used a monoenergetic 800 keV or 1200 keV source. Figure
8 summarizes the results. Each point in the �gure corresponds to a sphere of
di�erent radius and material.

The approach results in good discrimination between materials for both real
and simulated images. The estimated µ for the large and small rubber spheres
was very similar, while the estimated µ varied greatly between the rubber and
marble spheres, even when these objects were similar in size. Even the densest
objects considered in simulated images produced well-separated µ estimates for
all seven sizes of spheres considered (noting the higher beam energy used for
the simulations). Moreover, the estimates of this e�ective attenuation factor are
very close to �true� values of the attenuation factors used for image simulation.
This result supports further study of the material recognition algorithm for use
in veri�cation based on identi�cation as well as discrimination.

Occlusion (where additional objects obscure regions of the one being exam-
ined) and regions of zero penetration (where the object is so thick or dense that
the e�ective transmitted �ux drops to zero) leave only portions of sphere images
that can be used in this approach. We studied the e�ect of both these scenarios
on the resulting µ estimates for simulated spheres of size 3 cm to 13 cm. As
a baseline for determining minimal requirements, µ estimates were required to
be within 10% of the calculated true value, and within 5% precision based on
con�dence intervals produced by the sphere �tting.
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Figure 9: Minimum portions of simulated sphere images necessary for the material recognition
algorithm.

Table 1: Correlation values for pixel correlation algorithm, relative to �end-on� active image
of Marinelli beaker.

Passive image Correlation

Beaker end-on 0.98

Beaker tilted 70 degrees 0.77

Beaker upright 0.67

Random �eld 0.01

Point source 0.65

Figure 9 depicts the minimum portions of the simulated images necessary
for the material recognition algorithm to produce good results. The incident
energy was 1200 keV in this case. Using only the outer ring (annulus) of each
sphere image to estimate µ, the accuracy and precision requirements were met
for the denser objects (Al, Fe, Pb) when the annulus consisted of only 36% of
the full area for all sphere sizes. A lower percentage was needed for the larger
spheres. We also studied the e�ects of occlusion by blocking out all pixels above
a line through the sphere image. Again, the algorithm had good performance
for denser objects at all sizes when only 7.2% of the full image could be used.

7.3. Active/Passive Pixel Correlation

To evaluate the pixel correlation algorithm, we took a real active image of
the low-density Marinelli beaker in an �end-on� con�guration. This image ap-
pears in Figure 5 at the far right. We then simulated passive images on the same
beaker in the �end-on� con�guration, tilted 70 degrees, and upright. Further-
more, we created simulated images of a random con�guration (pixels uniformly
distributed between 0 and 1) and a point source. Figure 10 illustrates the output
of the pixel correlation algorithm. The plot on the left contains the noisy data
from the images, whereas the plot on the right depicts the linear regression lines
for the scaled data. The correlation values for these images are reported in Table
1. As expected, a near-perfect correlation is obtained from the active-passive
comparison of end-on images, while a steadily decreasing correlation is found as
the passive image varies, ultimately yielding no correlation for a random image.

The results quantitatively demonstrate the concept of pixel correlation and
suggest that this approach may be useful as a veri�cation concept.



15

0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Active Image Pixel Intensity

P
a
s
s
iv

e
 I

m
a
g

e
 P

ix
e
l 

In
te

n
s
it

y

Comparison of Active and Passive Images

End-on Image

End-on Fit

70 Degree image

70 Degree Fit

0 Degree image

0 Degree Fit

Random Image

Random Fit

Point Source

Point Source Fit

0.2 0.4 0.6 0.8 1 1.2
0.2

0.4

0.6

0.8

1

1.2

Active Image Pixel Intensity

P
a
s
s
iv

e
 I

m
a
g

e
 P

ix
e
l 

In
te

n
s
it

y

Comparison of Active and Passive Images

End-on Fit

70 Degree Fit

0 Degree Fit (Side-on)

Random Fit

Point Source Fit

Figure 10: Results of pixel correlation algorithm. An active image of the Marinelli beaker
in �end-on� con�guration was compared to various simulated passive images. The plot on
the left shows the individual correlation values, whereas the plot on the right gives the linear
regression lines.

8. Conclusions

We have presented three possible techniques for analyzing imaging informa-
tion in an Arms Control context. These algorithms are designed to avoid the
tradeo�s between unambiguous object veri�cation and applicability to environ-
ments where full images may not be retained. Each technique has well-posed
and clear-cut technical questions to be addressed from an information security
standpoint. Speci�cally, the histogram comparison algorithm has a question
that can be rigorously addressed using mathematical analysis. The material
recognition algorithm might be well suited to a metal/oxide attribute. The
pixel correlation algorithm rigorously satis�es IB constraints since it does not
rely on any stored information at all. We do not resort to explicit �blurring� or
removal of image data to provide information security. Together with knowledge
of the radiography systems, the use of these techniques, alone or in combina-
tion, can potentially improve veri�cation capability and increase the likelihood
of detecting material diversion.

The algorithms can be improved in several ways. For subtly di�ering images
with a high degree of internal complexity, histogram comparisons seem to per-
form well. However, this may not be the case when imaged objects are simpler,
or detector settings �uctuate or are unknown. Therefore, further study must
consider these metrics against such images, and should develop other metrics
to examine di�erences between simpler objects. The material recognition algo-
rithm as it was tested presupposed the location of a circular object within the
image and an accurate measurement of its location and radius. Additional noise
is expected when this method is applied to images with objects of unknown size
and location, and further work should provide a complete analysis of the re-
sulting uncertainties. The pixel correlation technique has been performed on a
variety of images, but its actual performance will depend strongly on the variety
and sensitivity of the passive gamma ray imaging system used. A real passive
system for inspection will need to employ an imaging system having resolution
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at least similar to the expected number of spatial bins needed for the anal-
ysis methods outlined in this work. Furthermore, this technique presupposes
minimal additional material or structure. Further research must determine its
sensitivity when additional material is present.
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