
FERMILAB-FN-0900-APC

Momentum Compaction and Phase Slip Factor

K.Y. Ng

Fermilab, Batavia, IL 60510

(October, 2010)

Abstract
Section 2.3.11 of the Handbook of Accelerator Physics and Engineering on
Landau damping is updated. The slip factor and its higher orders are given
in terms of the various orders of the momentum compaction. With the aid
of a simplified FODO lattice, formulas are given for the alteration of the lower
orders of the momentum compaction by various higher multipole magnets. The
transition to isochronicity is next demonstrated. Formulas are given for the
extraction of the first three orders of the slip factor from the measurement of
the synchrotron tune while changing the rf frequency. Finally bunch-length
compression experiments in semi-isochronous rings are reported .
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2.3.11 Momentum Compaction and Phase
Slip Factor
K.Y. Ng, FNAL

The phase slip factor η is the relative slip in rev-
olution period T for a particle with fractional off-
momentum δ = Δp/p0, i.e. ΔT/T0 = ηδ, where
the subscript zero stands for on-momentum. The
various orders of momentum-compaction factor
αi give the relative increase in closed-orbit length
C for an off-momentum particle, or ΔC/C0 =∑∞

i=0 αiδ
i+1. With η=

∑∞
i=0 ηiδ

i, we have [1]
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where β0 and γ0 are the on-momentum Lorentz
factors. The transition gamma is defined as γt =√

1/α0. To lowest order, all off-momentum
particles have the same transition gamma when
α1/α0≈−1

2 , and cross transition at the same time
when α1/α0≈−3

2 .
For a FODO lattice with thin quadruples of

length � and strength B′�/(Bρ) = ±S/L, where
L is the half cell length with dipole bending angle
θ, we have [2, 3] (see also Eq.(8), Sec.2.2.3)
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where the dispersions at the F- and D-quadrupoles
have been power expanded, respectively, as D̂ =∑∞

i=0 D̂iδ
i and Ď =

∑∞
i=0 Ďiδ

i. When S � 12,
which is usually true because S = 2 sin μ

2 and μ

is the phase advance per cell, α1/α0 → +3
2 and

reduces to +1
2 after chromaticities are corrected

by sextupoles.
For an isochronous or quasi-isochronous

ring, we must require the spread in η for off-
momentum particles to be small also. Therefore,
α1 and α2 need to be controlled in addition to
α0. In fact, first-order effect of sextupoles alters
α1, that of octupoles alters α2, etc. For exam-
ple, let Sn =B(n)�/(Bρ) be the strength of a thin
quadrupole (n=1), thin sextupole (n=2), or thin
octupole (n = 3) of length � at a location where
the horizontal and vertical dispersions are, respec-
tively Dx and Dy. Their first-order effects are [4]
Δα0 = −S1(D2

x −D2
y)/C0, Δα1 = −S2(D3

x −
3DxD2

y)/C0, Δα2 =−S3(D4
x−6D2

xD2
y+D4

y)/C0.

The Hamiltonian describing the longitudinal
rf phase difference Δφrf is (Sec.2.3.1) [5]
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where Vrf is the rf voltage with synchronous phase
φs and harmonic h, while E0 is the on-momentum
energy. If only the η0 and η1 terms are considered,
the two series of distorted pendulum-like buckets
in the top figure (Δφrf vs δ with φs = 0 or π, see
Ref. [2] for nonzero or non-π φs) begin to merge
to the middle figure when |η0/η1| is lowered to∣∣∣∣η0
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(4)

With further reduction of |η0/η1|, the buckets
become α-like (lower figure), which shrink to
zero when |η0/η1| = 0. The total bucket height
|3η0/(2η1)| is small. It is asymmetric in mo-
mentum spread and is susceptible to longitudinal
head-tail instability. If the η1 term is eliminated,
the Hamiltonian will be dominated by η0 and η2

and the bucket becomes pendulum-like again [3].
If the Hamiltonian is dominated by the η2 term
alone, the kinetic term is similar to a quartic po-
tential providing maximal amount of synchrotron-
frequency spread and therefore Landau damping.

The first three orders of the slip factor can be
extracted by measuring the synchrotron tune νs
while changing the rf frequency frf : [2]
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Notice that Δfrf/frf is typically O(η0).
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For the application of THz near-field imag-
ing, THz spectroscopy, and others, bunch length
compressed to the order of στ ∼ 1 ps is desired.
An obvious advantage is to store the bunch in
the α-like buckets, where the bucket half width,
Δφrf ≈ |η0/η1|

√
2πβ2

0E0h|η0|/(3eVrf | cos φs|),
is intrinsically narrow. Low-alpha operation
modes have been implemented in many light
sources. Essentially, α0 is reduced by making the
dispersion outside the achromats of the Chasman-
Green lattice negative by scaling the quadrupole
strengths. At BESSY II, a reduction from α0 =
7.3×10−4 100-fold or even more is possible. [6]
At SPEAR III, α0 has been reduced from 1.18 ×
10−3 240-fold. However, smaller α0 implies
shorter bucket height and therefore shorter beam
lifetime. [7] To increase bucket height, sextupoles
are used to minimize |α1|. For a more reliable
operation of the machine, the low-alpha mode of
BESSY II is compromised to α0 =3.5×10−5 with
zero-current rms bunch length reduced 5-fold to
στ = 3.5 ps. For such an operation, no injec-
tion tuning of the optics is required and beam ac-
cumulates at a good rate up to a 200-bunch cur-
rent of 5 mA with a 40-h lifetime. At SPEAR
III, the α/21-operation mode incorporates a 21-
fold α0-reduction at 100 mA in 280 bunches with
a 30-h lifetime, and a measured bunch length
στ = 6.9 ps. The shortest bunch length achieved
has been 2.5 ps at the single bunch current 3.5 μA,
when α0 is reduced 240-fold. The beam lifetime
is mostly limited by Touschek effect because of
the short bucket height. When the bunch length is
narrow enough, beam instability often occurs due
to coherent synchrotron radiation.
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