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Contained modes in mirrors with sheared rotation
Abraham J. Fetterman and Nathaniel J. Fisch

Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08540,
USA

(Dated: 14 October 2010)

In mirrors with E ×B rotation, a fixed azimuthal perturbation in the lab frame can appear as a wave in the
rotating frame. If the rotation frequency varies with radius, the plasma-frame wave frequency will also vary
radially due to the Doppler shift. A wave that propagates in the high rotation plasma region might therefore
be evanescent at the plasma edge. This can lead to radially localized Alfven eigenmodes with high azimuthal
mode numbers. Contained Alfven modes are found both for peaked and non-peaked rotation profiles. These
modes might be useful for alpha channeling or ion heating, as the high azimuthal wave number allows the
plasma wave frequency in the rotating frame to exceed the ion cyclotron frequency.

I. INTRODUCTION

Rotating mirrors exhibit the simplicity, high beta, and
steady state operation of axisymmetric mirrors as well
as enhanced confinement and stability due to super-
sonic rotation.1,2 For these reasons, mirrors with centrifu-
gal confinement have been proposed as attractive fusion
reactors.3–5 A major impediment to progress on these de-
vices is the Alfven critical ionization velocity (CIV) limi-
tation. The Alfven CIV limitation occurs at the interface
between the moving plasma and stationary electrode or
insulator.1,6,7 It has been suggested that the CIV limit
could be overcome by driving a radial current to produce
rotation using waves rather than end electrodes.8–11

The method for driving rotation with waves is an ex-
tension of the alpha channeling effect in tokamaks and
stationary mirrors.12–15 In alpha channeling, radio fre-
quency waves are used to create diffusion paths for alpha
particles from the hot center of the plasma to the cold
edge. The energy lost by the alpha particle in exiting
the plasma is transferred to the wave. In rotating plas-
mas, when the alpha particles interact with the wave and
diffuse outward, they increase their potential energy at
the expense of kinetic energy, effectively creating a radial
current that drives rotation.8

The branching ratio fE was used to describe the wave-
particle interaction in rotating plasmas. The branching
ratio is the ratio of the increase in potential energy to the
decrease in kinetic energy of a particle, which in a slab
geometry is fE = vE/(vE − vph), where vE = E/B is the
drift velocity and vph = ω/k is the phase velocity. One
can see that a fixed ripple in the lab frame, with vph = 0,
will have fE = 1, so no energy is transferred to or from
the wave.10 This is a simple, passive way to drive rotation
and utilize alpha particle energy, in addition to removing
the fusion ash. One challenge is that high mode-number
waves are required to satisfy the alpha particle cyclotron
resonance condition, m ≈ −Ωi/Ω >∼ 20, where Ω is the
rotation frequency and Ωi is the cyclotron frequency.
These modes are mostly evanescent in the plasma.

Although these waves are evanescent near the antenna,
it turns out that they may be excited efficiently as inter-
nal modes, much like in tokamaks. In the tokamak geom-

etry, contained Alfven modes exist that are destabilized
by alpha particles and are responsible for turbulence in
the ion cyclotron range of frequencies.16 These modes
may be useful in alpha channeling in tokamaks, where
there are advantages to using low frequency waves, like
the ion Bernstein wave,14,17 although for somewhat dif-
ferent reasons than in mirror machines.18

However, when ion Bernstein waves were excited in
the Tokamak Fusion Test Reactor (TFTR) to test al-
pha channeling, the surprising result was diffusion rates
fifty times higher than those predicted by quasilinear
theory.19,20 Although it seemed implausible, the only
explanation for such a dramatic increase in diffusion
was that a toroidal cavity mode was excited. The ex-
istence of such high-Q cavity modes was later shown
to in fact be quite plausible,21 and has recently been
supported by measurements on the National Spherical
Torus Experiment.22 If the very large diffusion achieved
by these modes can also be accomplished in a tokamak
reactor, then the reactor costs would be significantly re-
duced.
What most interests us here is that there has been con-

siderable experimental and theoretical support for these
kinds of modes and the effects they can play in alpha
channeling in similar geometries. This lends support to
the proposals outlined in this paper, where we describe
a similar contained mode for plasmas with sheared rota-
tion. Consider a low frequency wave that is evanescent
outside the plasma. Inside the rotating plasma, this wave
may appear at a higher frequency due to the Doppler
shift. As the rotating frame frequency increases, the
evanescent wave may go through a cutoff and become a
propagating wave. As it propagates inward, it will reach
another cutoff, either due to convergence (since k2θ in-
creases as the radius decreases) or due to a decreasing
rotation frequency (for example if there is an inner wall).
The Alfven wave is reflected at these cutoffs, so the en-
ergy is contained and high amplitudes can be achieved.
Rotation shear has been found to stabilize high mode

number, low frequency modes in mirror plasmas.23–25 It
is therefore unusual that sheared rotation should lead
to waves with high mode numbers. However, in this
case higher mode numbers have higher frequencies in the
plasma frame, and we will show that they are not effec-
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tively damped by the velocity shear.
Because the modes can have high azimuthal mode

numbers and zero frequency in the lab frame, they may
couple to the fixed ripple used for alpha channeling. This
would increase the alpha channeling efficiency by increas-
ing the wave amplitude in the peak rotation region where
most alpha particles are produced. This mode may also
provide an efficient method of plasma heating if the rotat-
ing frame frequency coincides with a cyclotron harmonic.
Because the wave phase velocity is near the Alfven ve-

locity, we expect zero frequency contained modes to ex-
ist only if the rotation speed is near the Alfven speed.
Recent experiments on MCX have suggested that the
Alfven mach number cannot exceed unity.30,31 These ex-
periments observe a limit on the average Alfven mach
number defined by M̄A = Vp/aBv̄A, where Vp is the
voltage across the plasma, a is the plasma width, and
v̄A is the Alfven velocity based on a line-averaged den-
sity. The theory supporting the Alfven mach number
limit requires a cylindrical plasma with uniform rota-
tion. Because the rotation profile is nonuniform, there
is no conflict with the requirement that the peak Alfven
mach number MA > 1. In fact for values of M̄A near
unity it is very likely that MA > 1. We therefore think
that the modes described here are of interest in MCX
and other supersonically rotating plasmas.
This paper will be organized as follows. In Section II,

we will derive the eigenmode equation for the contained
modes. We will then in Section III find the properties
of contained modes assuming a peaked rotation profile.
Mode properties for plasmas without a strong peak will
be addressed in Section IV. We will then discuss ion cy-
clotron absorption of these modes in Section V. Our con-
clusions will be presented in Section VI.

II. EIGENMODE EQUATION

The contained modes are localized eigenmode solutions
to the MHD equations,

ρ

(

∂

∂t
+ v · ∇

)

v =
1

c
J×B, (1)

0 = E+
1

c
v ×B−

1

cne
J×B. (2)

The first of these is the force balance equation, and
the second is Ohm’s law. We will assume the equi-
librium is B0 = B0ẑ, J0 = 0, v0 = rΩ(r) θ̂, and
E0 = −rΩ(r)B0r̂/c. We have defined Ω(r) as the ro-
tation frequency at radius r. This equilibrium neglects
the diamagnetic effect of the centrifugal force. Because
we will find localized solutions, this is a good approxima-
tion even for finite beta plasmas.
We seek solutions proportional to

exp
(

imθ + ik‖z − iωt
)

. The linearization of the
second term on the left of Eq. (1) is, to first order,

v · ∇v = Ωimv1 − 2v1θΩr̂ + 2Ωv1r θ̂ + v1rrΩ
′θ̂. (3)

Here we have omitted the dependence of Ω on r and
use primes to denote radial derivatives. The terms on
the right of Eq. (3) represent the Doppler, centrifugal,
Coriolis, and convection terms respectively. We will ne-
glect the centrifugal and Coriolis effects, which are much
smaller than the Doppler term assuming m & 2. The
linearized form of Eq. (1) is then,

ρ (−iω + Ωim)v1 =
1

c
J1 ×B0 − ρv1rrΩ

′θ̂. (4)

When we take the curl of Eq. (2), apply Faraday’s law
and linearize, we find,

−iωB1 = ∇×
[

v1 ×B0 + v0 ×B1 −
1

ne
J1 ×B0

]

. (5)

We finally get a single differential equation for B1 by
substituting Ampere’s law, J1 = c

4π∇×B1, and the ve-
locity from Eq. (4) into Eq. (5). We define the plasma-
frame frequency as ω̃ = ω −mΩ, and find,

−iωB1 = ∇×
[(

i
1

4πρω̃
(∇×B1)×B0

)

×B0

− i
v1rr

ω̃
Ω′θ̂ ×B0 + v0 ×B1

−
c

4πne
(∇×B1)×B0

]

. (6)

Using this equation, one can find expressions for B1r

and B1θ in terms of B1z and its derivative. A differential
equation for B1z can then be obtained. These calcula-
tions are performed in the Appendix.
A rough approximation of the result may be found by

considering a plasma with solid body rotation (Ω′ = 0)
and waves with k‖ = 0. In this case, we recover the equa-
tion from Coppi,16 with the substitution of the rotating
frame frequency,

1

r

d

dr

(

r
dB1z

dr

)

+

[

ω̃2

v2A
− k2θ

]

B1z = 0.

If we scale B1z to b1 = B1z
√
r, we can write this in terms

of an effective potential Veff ,

d2b1
dr2

− Veff (r, ω) b1 = 0; Veff = k2θ −
ω̃2

v2A
. (7)

The first term in the above effective potential varies with
a scale length of the device radius, since k2θ = m2/r2.
For solid body rotation, the second term is constant,
but with sheared rotation the plasma frame frequency
ω̃ = ω −mΩ(r) can vary rapidly over the plasma width.
If the potential has a minimum below zero, there can be
a localized solution to the oscillator equation. Because
the plasma width is much smaller than the device radius,
the second term will be dominant in determining the lo-
cation of the potential minimum. For the solution to be
bounded we must also have Veff > 0 in a region inside
and outside the local minumum.
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FIG. 1. Rotation frequency (s−1) versus radius (in cm) for
the peaked case (solid) and non-peaked (dashed).

35 40 45 50
r

"0.10

"0.05

0.05

0.10
Veff

FIG. 2. Example effective potential (cm−2) versus radius (in
cm) for the peaked case (solid) and non-peaked (dashed). The
mode parameters are m = −20, ω = 0, and MA = 1.2.

In many rotating plasma experiments, there is super-
sonic rotation in the middle of the plasma region, but at
walls near the axis of rotation and outside the plasma,
the rotation goes to zero (Fig. 1, solid line).1,26,27 In these
devices, low frequency waves with high azimuthal mode
number will produce a minimum in Veff near where the
peak rotation frequency Ω0 occurs, at radius rΩ0 (see
Fig. 2). If Veff(rΩ0, ω) < 0, then a contained mode may
exist near rΩ0.

Because we expect the modes to be approximately per-
pendicular, we will continue to assume that k‖ = 0. In
addition, we will assume that the rotation scale length
d ( r, and that Ω ( Ωi, the ion cyclotron frequency.
When we apply these assumptions, we find that the ef-
fective potential for rotating plasmas with shear is,

Veff ≈
(

1 +
Ω

Ωi

)

k2θ−
ω̃2

v2A
+2

mΩ′

ω̃r
+2

m2Ω′2

ω̃2
+
mΩ′′

ω̃
. (8)

Because the mode is localized near the radius of peak
rotation, we will find that the Ω′ terms do not contribute
significantly to the first order mode behavior.

III. CONTAINED MODE

To find a localized solution, we can treat the po-
tential Veff as parabolic by expanding around its min-
imum rm. For this expansion we adopt the ordering
k2θ & 1/∆2 & 1/r2, valid for m2 & 1, where ∆ is the
width of the localized mode b(r). A solution to the dif-
ferential equation is then,

b(r) = bHs

(

r − rm
∆

)

exp

(

−
(r − rm)2

2∆2

)

. (9)

Here Hs is the Hermite polynomial of order s, s is a
positive integer, rm is the mode radius and ∆ is the mode
width. The width, radius and frequency must satisfy the
relationships,

Veff (rm, ω) = −
2s+ 1

∆2
, (10)

dVeff (rm, ω)

dr
= 0, (11)

d2Veff (rm, ω)

dr2
=

2

∆4
. (12)

We will assume that the rotation frequency is peaked
at some value Ω0 at radius rΩ0, and that the ω̃2 term
in Eq. (8) dominates the radial variation. We then use
radius rΩ0 as an approximate value for rm, the location
of the potential minimum.
In order to estimate Veff near rΩ0, we expand Ω(r) as

a series around rΩ0 using r = rΩ0 + r1, and define the
rotation scale length d through Ω(r) = Ω0

(

1− r21/d
2
)

.
Then defining MA = Ω0rΩ0/vA, kθ = m/rΩ0, and ε =
ω/mΩ0,

V ′′
eff ≈

4

d4

(

k2θd
2M2

A (1− ε) +
3

(1− ε)2

)

. (13)

The approximation uses the assumptions d2 ( r2Ω0
and χ = Ω0/Ωi ( 1. Using Eqs. (12) and (13), we

find that the mode width ∆ ≈ d/
(

2k2θd
2M2

A + 6
)1/4

for
small ε. For this result to be consistent with the ordering
k2θ & 1/∆2, we consider mode numbers k2θd

2 & 3. Using
this assumption along with ε ( 1 we may further simplify
Eq. (13),

V ′′
eff ≈

4k2θM
2
A

d2
. (14)

This result may also be obtained directly from the sim-
plified form for the potential, Eq. (7).
We can now use Eq. (11) to find the distance of the

mode from the radius of peak rotation δr = rm − rΩ0,

0 = −2 (1 + χ)
m2

r3Ω0

+ V ′′
effδr. (15)

Substituting in Eq. (13),

δr =
k2θd

4 (1− ε)2 (1 + χ)

2rΩ0

(

k2θd
2M2

A (1− ε)3 + 3
) . (16)
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Because δr ≈ d2/2rΩ0 is small compared to d, we have
verified that the mode location is near the radius of peak
rotation.
We finally will find the potential at rm, which will

allow us to determine the normalized frequency ε =
ω/mΩ0 of the mode using Eq. (10). To simplify the
expression, we note that at rm, V ′

eff(rm) = 0 and
1
2V

′′
effδr

2/k2θ
<∼ d2/r2Ω0 ( 1. Therefore, the potential

Veff(rm) ≈ Veff(rΩ0),

Veff (rm) ≈ k2θ − (1− ε)2 k2θM
2
A +

2

(1− ε) d2
. (17)

This equation may be combined with Eqs. (10), (12) and
(13), defining α = (2s+ 1). The result is,

0 = 1− (1− ε)2 M2
A +

2

(1− ε) k2θd
2

+

√
2α

k2θd
2

(

k2θd
2M2

A (1− ε) +
3

(1− ε)2

)1/2

. (18)

We use our previous orderings together with ε ( 1,
and find to first order

ε ≈
M2

A − 1−
√
2αMA/ |kθd|

2M2
A − αMA/ |kθd|

√
2

. (19)

We can now find the rotation speed necessary for con-
tained modes to be resonant with a stationary perturba-
tion (ε = 0), assuming |kθd| ( α,

MA ≈ 1 +
α/

√
2

|kθd|
. (20)

This implies that the Alfven mach number needs to be
just above unity. Accurate values for the rotation speed
at which ε = 0 should be obtained by solving Eq. (18)
directly. For very large values of kθd, the χ and δr2

terms will be relevant in Eq. (17) and therefore should
be included in the calculation.
We finally want to know how finite values of k‖ will

effect our results. Assuming k2‖ ( ω̃2/v2A, we may red-
erive the potential Veff using the equations in the Ap-
pendix. We find that the largest contribution is from
an additional term equal to k2‖

(

1 + ω̃2/Ω2
i

)

. The second
derivative of this term is,

δV ′′
eff = −

4

d4
k2θd

2k2‖r
2
Ω0χ

2 (1− ε) . (21)

Comparing this to the first term in Eq. (13), we find that
the k2‖ contribution to V ′′

eff is small if k2‖r
2
Ω0χ

2 ( 1.

Finite values of k2‖ enter Eq. (18) for the frequency both

through the added term proportional to k2‖ and through

the contribution of that term to V ′′
eff . These terms have

opposite signs, and so the resulting change in frequency
(and therefore necessary rotation speed) may be either
positive or negative.

IV. MONOTONIC ROTATION PROFILE

In plasmas with sheared rotation, it may be desirable
to have a monotonic rotation profile so that the region
without shear is minimized (see Fig. 1, dashed line). In
this case there can still be contained modes, as the ra-
dial mode number kr goes through a cutoff because of
increasing k2θ = m2/r2 at smaller radii. Because rotation
shear and the second derivative of the rotation frequency
are smaller near the mode, we will apply the simplified
potential of Eq. (7).
We will not choose a specific rotation profile in this

case, but will assume that there is some radius r0 where
the rotation frequency is Ω0, at which Eq. (11) is satisfied,

0 = −2
m2

r30
+

2 (ω −mΩ0)mΩ′

v2A
. (22)

The result is Ω′(r0) = −Ω0 (1− ε) /M2
Ar0, where MA =

Ω0r0/vA. We will assume that this slope is changing over
length scale d/2, so Ω′′(r0) = 2Ω′(r0)/d, and that d ( r0.
With this assumption, we find the second derivative of
the potential,

V ′′
eff ≈ 4 (1− ε)

k2θ
r0d

, (23)

where kθ = m/r0. Therefore the width ∆ ≈
(

r0d/2k2θ
)1/4

, which is slightly wider than the width for
the peaked rotation profile, because the mode is not in
such a steep potential well (see Fig. 2).
Now using Eq. (10),

0 = k2θ − (1− ε)2 k2θM
2
A + α

√

(1− ε)2
2k2θ
r0d

. (24)

Assuming ε is small, we find,

ε =
M2

A − 1−
√
2α/

√

k2θr0d

2M2
A −

√
2α/

√

k2θr0d
. (25)

The Alfven mach number for fixed waves to be resonant
with contained modes is then MA = 1 +

√
2α/

√

k2θr0d.
This is also just above unity, but is different from the
requirement for the peaked rotation case.

V. CYCLOTRON DAMPING

A possible application for the contained modes is ion
heating. The rotating frame frequency of an azimuthal
magnetic ripple may be tuned to a high ion cyclotron har-
monic, or to a minority ion cyclotron frequency. No wave
power is absorbed because the wave has no energy in the
rest frame. The dissipated power is provided through the
radial electric field, which does not suffer from the cou-
pling inefficiency of radio frequency waves. Ion heating
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FIG. 3. A cross section of the plasma region near the mid-
plane. The shaded region indicates the location of reso-
nant absorption. Dashed lines indicate magnetic field lines,
and the center line is at the peak rotation frequency. Here
−mΩ0/Ωs0 = 1.05 and k‖vth/Ωs0 = 0.01.

may improve the flexibility of rotating plasmas by allow-
ing control of the ion temperature independently from
the rotation speed.
The power dissipated due to the wave must be pro-

vided by the radial electric field if the wave is stationary.

However, the power can be calculated as wave damping
in the rotating frame in the same way as ICRF heating.28

The absorbed power is therefore,

P⊥ =
πZ2

s e
2

ms

∣

∣k‖
∣

∣

∣

∣E+
∣

∣

2
nres

(

r, v‖
)

. (26)

The number of resonant particles is, after integrating over
the perpendicular directions,

nres ≈ n

∫

dv‖
e−v2

‖/2v
2

th

√
2πvth

δ

(

v‖ +
Ωs +mΩ0

k‖

)

. (27)

Assuming k‖vth ( Ωs + mΩ0, the exponential term is
approximately δ

(

v‖
)

. Doing the v‖ integral, we integrate
over space, adopting a peaked profile for Ω and using
Ωs = Ωs0(1 + z2/L2

z) for the local cyclotron frequency of
the resonant species. The location of the resonance for
this case is shown in Fig. 3. We assume that the density
is constant over this region, so the number of resonant

∫

dV nres ≈ n
∣

∣k‖
∣

∣

∫

dV δ

[

Ωi0 + Ωs0
z2

L2
z

+mΩ0 −mΩ0
(r − rΩ0 (z))

2

d2

]

. (28)

We integrate this result over z neglecting the z dependence of rΩ0,

∫

dV nres ≈ n

∫

2πrdr

∣

∣k‖
∣

∣Lz
√

[

mΩ0
(r−rΩ0)

2

d2 − Ωs0 −mΩ0

]

Ωs0

. (29)

Doing the r integration, assuming d ( rΩ0,

∫

dV nres ≈ n2π2rΩ0d

∣

∣k‖
∣

∣Lz√
−mΩ0Ωs0

. (30)

The resulting absorbed power is, if we assume the electric
field is uniform over the resonance region,

P⊥ =
ω2
ps

4

∣

∣E+
∣

∣

2 2π2rΩ0Lzd√
−mΩ0Ωs0

. (31)

For cyclotron heating of the primary species, it is
necessary to use a high harmonic of the cyclotron fre-
quency because the polarization of the wave becomes
right-handed at the fundamental.29 For stationary waves,
this requires azimuthal mode number m = nχ−1 ≥ 40.
Exciting such a high mode number may not be feasi-
ble. Instead, we suggest using minority heating at the
fundamental. Using a heavier minority species, such as
deuterium (for a hydrogen plasma), will further reduce
the necessary mode number because χ is increased.

The polarization of the wave resonant with minority
species s in majority species i may be determined by,29

E+

Eθ
= −i

4 (X − 1) + 2Y
(

X2 − 1
)

− 4V

4− Y (X2 − 1) (1 + 2iη) + 4V
, (32)

where X = Ωs/Ωi, Y = nsms/nimi, and

V =
k2‖c

2

ω2
pi

·
X2 − 1

X2
; η =

Ωs
∣

∣k‖
∣

∣ vts

√

π

2
. (33)

We can then determine Eθ in the rotating frame from
Faraday’s law assuming Ez = 0, Eθ = −(ω̃/ck‖)Br.

As a numerical example, we consider minority heating
of deuterium in the Maryland Centrifugal Experiment
(MCX).27 It was found that this device can reach MA ≈
1, so we expect the contained modes to be resonant with a
stationary ripple.30 MCX can operate at B = 0.2T, n =
5×1014 cm−3, Ti = 40 eV, and Ω0 = 106 s−1. The device
radius is 25 cm, the plasma width at the midplane is 20
cm, and the scale length in the parallel direction near
the midplane is about 50 cm. If the plasma is mixed at
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95% hydrogen and 5% deuterium, a 20Gauss ripple with
m = −10 and k‖ = 0.1 cm will produce 9 MW of power
dissipation. In the rest frame, the power dissipation can
be seen as an effective decrease in the plasma resistance
(the power dissipated for fixed voltage is V 2/R).
The way the plasma responds to this heating will de-

pend on the overall circuit the plasma is a part of. In
MCX, the plasma is in series with a ballast resistor that
has several times the plasma resistance, and the total
voltage is kept constant.31 Because of this, as the plasma
resistance decreases most of the power dissipation will
be in the ballast resistor, and the efficiency of heating is
reduced.
There are several methods one might use to determine

the effectiveness of plasma heating. First, one can mea-
sure the total power dissipated in the circuit by knowing
the voltage-current characteristic of the discharge. This
can be compared with the above estimate for the dis-
sipated power. Second, the reduced plasma resistance
can be measured by comparing the plasma voltage with
the total applied voltage. This value can be confirmed
by measuring the Doppler shift of He II emission lines,
which can be used to determine the E×B drift velocity.31

Finally, the heating will lead to an elevated Helium tem-
perature, which can be measured by the Doppler broad-
ening of He II emission lines.
A direct measurement of heating by this method would

produce two important results for the theory described
here. First, it would provide a validation of the theory of
using stationary waves to drive rotation in rotating plas-
mas. Second, finding the magnitude of the diffusion co-
efficient could confirm the existance of contained modes
in plasmas with sheared rotation. This could improve
the efficiency of alpha channeling and plasma heating by
reducing the magnitude of the required magnetic ripple.
There would also be expanded opportunities for rotat-
ing plasma experiments, with the ability to control the
plasma temperature and rotation profile.

VI. DISCUSSION/CONCLUSION

For alpha channeling as well as for cyclotron heating,
it is important to exceed a threshold wave amplitude
throughout the plasma region. For alpha channeling,
there must be a large enough wave amplitude to remove
the alpha particles within a slowing down time. For cy-
clotron heating, the power absorbed is also proportional
to the wave amplitude. Achieving sufficient amplitude
throught the plasma is difficult because of the high mode
numbers required. A wave with mode number m decays
like r|m| in a vacuum, although the decay is reduced in
the presence of a plasma.
The contained modes described here can play an im-

portant role in maintaining the wave amplitude across
the plasma width. The modes are localized near the peak
rotation speed, which is optimal for interacting with al-
pha particles and plasma heating. Increasing the wave

amplitude at and near the core could improve the effi-
ciency of alpha channeling. For example, in simulations
of alpha channeling around 30% of the alpha particles
were removed by waves, while almost 40% remained in
the device after the simulation.10 If the remaining parti-
cles could interact with the waves and exit, we expect an
additional 2 MeV per particle could be converted to po-
tential energy. This could result in a significant increase
in recovered power, allowing the plasma to sustain itself
at a lower fusion reaction rate or with a higher energy
loss rate.

An advantage to these stationary waves is that they re-
quire very little power input to be maintained. In the rest
frame, the wave is simply a magnetic ripple, and could
be produced by permament magnets or by superconduct-
ing magnets to minimize power consumption. For ion
cyclotron heating, this means the coupling efficiency be-
tween the antenna and plasma does not reduce the heat-
ing efficiency. The energy for ion cyclotron heating is
just ohmic heating produced by the increase in plasma
current, due to the decrease in plasma resistance.

A number of further calculations are necessary to pro-
duce these contained modes in experimental plasmas.
The axial profile due to the mirror field has not been
determined here, nor has the mode amplitude been given
as a function of the ripple magnitude. In practice it may
be difficult to diagnose these modes, because they do not
produce an external magnetic field. Still, the results here
suggest that these contained modes exist over a broad
range of parameters, and suitable plasmas for exciting
the modes have been produced experimentally.27,30

The concept of producing plasma rotation using waves
is promising, and the contained eigenmodes described
here could improve the effectiveness of this interaction.
Using waves to drive rotation in plasmas may make cen-
trifugal mirrors a viable fusion concept by eliminating
the electrodes and endplates which cause the Alfven CIV
limitation. In addition, the power for the rotation does
not need to be supplied externally, but is transferred di-
rectly from the charged fusion product. The result is a
fusion reactor that is efficient and simple, requiring only
circular mirror coils and small magnetic ripple fields for
continuous operation.
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Appendix A: Derivation of effective potential

When we solve Eq. (6) for B1r and B1θ, we find,

B1r = ik‖Λ

[

c1
m

r
B1z − c2

∂B1z

∂r

]

(A1)

B1θ = k‖Λ

[

(c2 − c3)
m

r
B1z − (c1 + c4)

∂B1z

∂r

]

(A2)

where,

Λ−1 =

(

ω̃2

v2A
− k2‖

)2

− k4‖

(

ω̃2

Ω2
i

−
Ω′r

Ωi

)

− k2‖
v′0θ
Ωi

ω̃2

v2A

c1 =
ω̃2

v2A

ω̃

Ωi
,

c2 = k2‖ + k2‖
Ω′r

Ωi
−

ω̃2

v2A
− k2‖

ω̃2

Ω2
i

,

and,

c3 =
ω̃2

v2A

v′0θ
Ωi

; c4 =
Ωω̃

v2A
.

We can then determine the equation for B1z by using
Eq. (A1) and (A2) together with ∇ ·B = 0, leading to,

0 =
∂2B1z

∂r2
+

(

1

r
+

c′2
c2

+
Λ′

Λ
+

c4
c2

m

r

)

∂B1z

∂r

−
(

m2

r2
−

c3
c2

m2

r2
+

m

r

Λ−1

c2

∂ (c1Λ)

∂r
+

Λ−1

c2

)

B1z

(A3)

We can now define,

f (r) =
1

2

(

1

r
+

c′2
c2

+
Λ′

Λ
+

c4
c2

m

r

)

(A4)

and transform to b = B1ze
∫

r

r0
fdr, to find,

d2b

dr2
− Veff (r, ω) b = 0, (A5)

with,

Veff =

(

1−
c3
c2

)

m2

r2
+

m

r

Λ−1

c2

∂ (c1Λ)

∂r
+

Λ−1

c2
+ f2 + f ′.

(A6)
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