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Executive Summary

To perform realistic simulations of wall load in tokamaks from energetic ions, such as fusion
alphas in ITER, one needs to have both a model of the relevant physics, including interaction
with MHD modes, and an engineering-grade model of the plasma-facing surface of the vacuum
vessel, loaded from a CAD file. Also, in the presence of a realistic, non-axisymmetric magnetic
field, the validity of the predominantly used drift-orbit approximation for energetic-ion dynamics
is currently being questioned. Given these challenges, there currently is no simulation code
capable of making a reliable, quantitative prediction of the wall load in ITER from fusion-born
alpha particles.

The DOE OFES SBIR Phase I project “Simulations of alpha wall load in ITER” (award
number DE-SC0000834) made good progress on the latter two issues by i) developing a wall
library that loads a CAD file and provides an interface for particle-wall collisions and ii) adding
full gyro-orbit dynamics to the DELTA5D [I] drift-orbit Monte-Carlo code.

Technical Results

The Phase I project had four specific technical objectives: 1) Find the optimal drift-orbit inte-
grator, 2) Get gyro-orbit integrator working, 3) Demonstrate feasible approach to model realistic
ITER wall, and 4) Determine efficiency of retrograde Monte Carlo for reducing statistical noise.
All four Phase I objectives have been met (and well exceeded for the 3rd objective) and will be
discussed in detail below.

Task 1: Find the optimal drift-orbit integrator

Before the Phase I project, DELTA5D had four different drift-orbit integrators: LSODE, Gill’s
method and 2nd and 4th order Runge-Kutta. We have now added five more: CVODE [2],
Rome-Cary symplectic [3, 4], Bulirsch-Stoer, leap frog and another version of Runge-Kutta.

The CVODE integrator [2] is part of the LLNL SUite of Nonlinear and DIfferential /ALgebraic
equation Solvers (SUNDIALS) [5]. It is an implementation of the VODE [6] algorithm, a general
purpose solver similar to LSODE, but which uses variable-coefficient methods instead of the
fixed-step-interpolate methods in LSODE. CVODE is therefore generally recommended as a
replacement for LSODE, which is part of the SUNDIALS predecessor ODEPACK [7].

The Rome-Cary symplectic integrator is a 2nd order symplectic integrator. It is often advan-
tageous to use algorithms where the discretized equations have the same quantities conserved
as the original equations. For orbit integration, the symplectic integrators have such a conser-
vation property: they conserve phase-space volume. As a consequence, constants of motion are
preserved and a periodic orbit can be followed for thousands of periods and still remain periodic,
despite temporal discretization errors.

To compare CVODE and Rome-Cary symplectic with the already used LSODE, we first
installed cvode-2.6.0 and added the necessary code to DELTA5D to call CVODE through
SUNDIALS FCVODE Fortran interface. Implementing the Rome-Cary symplectic integrator in
DELTASD was less straightforward. The integrator was implemented as a stand-alone C appli-
cation called symporbit that we converted into a library we call RoCaSymp. The refactoring and



’ i_ode meth \ orbit integrator ‘

LSODE
Gill’s method
4th order Runge-Kutta
2nd order Runge-Kutta
CVODE
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Table 1: Values of input parameter i_ode meth for the different orbit integrators. 1-4 were
available before the Phase I project, 5-9 were added during the project.
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Figure 1: Z(R) [both in meters| for orbit integration with 2nd order Runge-Kutta
(i_ode meth=4) for At = 1us (left) and At = 0.1us (right)

resulting debugging took somewhat longer than expected. We discovered that Bulirsch-Stoer,
leap frog and Runge-Kutta had all been implemented in symporbit so we modified the library
interface to allow a driver to call also these other integrators. We also wrote Fortran wrappers
to make this library callable from DELTA5D. With the library and Fortran wrappers completed
and working correctly, adding the necessary calls to the RoCaSymp library in DELTA5SD was
quick and easy. The orbit integrator invoked in DELTAS5D is determined by the value of the
input parameter i_ode_meth, as shown in Table

To compare orbit integrators, we use an axisymmetric ITER equilibrium and follow an orbit
for 100 ps with two different time steps: 0.1 us and 1.0 us. We then plot R(Z) and the energy
change in eV over time, W (t). We first use the three existing, lightweight, explicit integrators.

The drift orbits in the poloidal plane look virtually the same for all the integrators, and
so are only shown for 2nd order Runge-Kutta in Fig. [1} The three explicit integrators
(i_ode meth=2,3,4) are fast and have an acceptable error at the shorter time step. Gill’s method
(Fig.[) and 4th order Runge-Kutta (Fig.[3]) have very similar performance, but 2nd order Runge-
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Figure 2: §W(t) [energy change in eV vs. time in ps] for orbit integration with 2nd order
Runge-Kutta (i_ode_meth=4) for At = 1us (left) and At = 0.1us (right)
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Figure 4: §W (t) [energy change in eV vs. time in ps] for orbit integration with Gill’'s method
(i_ode meth=2) for At = 1us (left) and At = 0.1us (right)

Kutta (Fig.|2) is clearly inferior. The three implicit integrators, the old LSODE (i_ode meth=1)
and the new CVODE (i_ode .meth=>5) and Rome-Cary symplectic (i_ode_meth=6) are all con-
siderably slower. For LSODE (Fig. [5)) and CVODE (Fig. @ the increased computational cost
pays off by allowing much larger time steps without increased energy error. CVODE is slightly
faster than LSODE and also better at keeping the error within bounds independent of the time
step.

The Rome-Cary symplectic integrator (Fig. does work as expected. The error has no
secular term, but is purely periodic. A periodic orbit might then become slightly deformed, but
it will remain periodic even for very long integration times. However, the symplectic integrator
is much slower than CVODE and the amplitude of its error is much larger.

The optimal drift-orbit integrator is therefore clearly CVODE.

Task 2: Get gyro-orbit integrator working

To simulate a realistic wall load, the full gyro dynamics are needed. To facilitate the wall/orbit-
intersection computation, the same Cartesian coordinates were chosen for the gyro dynamics as
for the wall model. Because it was the best drift-orbit integrator, CVODE was also used for
the gyro-orbit integration. Implementation was straightforward. When a drift orbit reaches a
specified flux surface (one or a few gyro radii from the wall), one (or more) gyro orbits are created
and launched. We keep evolving the drift orbit to allow for later comparison between drift and
gyro dynamics. Sub time stepping is used to resolve gyro period. For ITER the alpha-particle
gyro period is around 30 ns compared to the typical time steps for drift-orbit integration of
100-1000 ns. 10-100 sub steps are therefore normally used for the gyro-orbit integration.

The transformation from the magnetic coordinates of a drift orbit to the Cartesian coordi-
nates of a gyro orbit requires some computation. First the Cartesian components of the magnetic
field, B,, B, and B,, are computed from B and ¢ (= 1/q) via finite differencing of the cylindrical
coordinates as functions of the magnetic coordinates, R(v, 8, ¢), Z(v¢,0, ¢) and ¢. (¢, 0, ¢). The
total and parallel speeds, v and v, respectively, are then trivially calculated from the energy W
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Figure 5: 0W(¢) [energy change in eV vs. time in us| for orbit integration with LSODE
(i_odemeth=1) for At = 1us (left) and At = 0.1us (right)
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Figure 6: dW (t) [energy change in eV vs. time in us| for orbit integration with CVODE
(i_odemeth=>5) for At = 1us (left) and At = 0.1us (right)
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Figure 7: W (t) [energy change in eV vs. time in ps] for orbit integration with the Rome-Cary
symplectic integrator (i_ode meth=6) for At = 1us (left) and At = 0.1us (right)

and magnetic moment g of the drift orbit. The Cartesian velocity components are the solution
to the nonlinear, underdetermined system

B,v, + Byvy + B.v, = BU”
vz + v v =0?

To solve for the Cartesian velocity of the gyro orbit, we use quasi-Newton iteration with Singular-
Value Decomposition to invert the Jacobian. That is, we find the root of

Fi(vg,vy,v.) = Byvg + Byvy + B.v, — By =0
Fy(vg,vy,0:) = 02 + v, + 07 — 0> =0

by iteratively solving the linear system J" - §v" = —F" where the Jacobian J = dF/dv is a
2 x 3 matrix, and updating the approximate root v"*! = v 4+ §v™. We use an approximate
analytic Jacobian where the inhomogeneity of the magnetic field is neglected. We invert the
underdetermined, 2 x 3 Jacobian with Singular-Value Decomposition (SVD). SVD finds the
increment dv that takes us toward the closest point on the gyro ring in velocity space. This
algorithm proved quite robust and converges in half dozen iterations for initial guess v, = v, =
v, = 0.

To calculate also the Cartesian spatial coordinates of the gyro orbit, we need the vector gyro
radius, which is given by
m v x B
eZ B2
The particle location on the gyro orbit is then given by r = r,. + p.

We now have all the six Cartesian phase-space coordinates of a gyro orbit. We note that
the gyro phase of this orbit is arbitrary and is determined by the initial guess for the velocity
coordinates found by quasi-Newton iteration. A fairly obvious generalization is then to split the
drift orbit into an ensemble of gyro orbits with uniformly spaced gyro phases. The idea being
that the ensemble better represents the drift orbit than a single gyro orbit would, and that the
statistical noise in the wall-load simulations is reduced.

0=
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Figure 8: Z(R) for two sample gyro orbits in DELTA5D created from two drift orbits (i.e. the
ensemble size is one)

To create an ensemble of N gyro orbits, one can find the v; that satisfy ;- 0o = cos(i 2w /N),
where g is the vector gyro radius of the first gyro orbit that was found. Adding this equation to
the two equation that define the shape of the gyro ring in velocity space, one gets the nonlinear
system for the ith gyro orbit (i =1,..., N — 1)

Fi (v, vy,v.) = Byvy + Byvy + Bov, — By =0

Fy(vg,vy,0:) = 02 + v + 07 — 0> =0

F3(Uac7 Vy, vz) - ngsz - ngsz + ngzBac - ngsz + ngmBy - ngme‘f'

0°\/(vy *x B, — v, * By)? + (v, * By — v, % B,)? + (v, * B, — v, x B,)? cos (i 21 /N) = 0

This system can also be solved with Newton iteration. As before, we use an approximate analytic
Jacobian where the inhomogeneity of the magnetic field is not taken into account. In principle,
the 3 x 3 Jacobian could be inverted using a simpler method, but we again use SVD because
of its nice robustness. For the initial guess of the Cartesian velocity coordinates of each orbit ¢
in the ensemble, we evolve gyro orbit ¢ — 1 for 1/N gyro period. Convergence is then typically
reached in only two iterations. The spatial coordinates are then calculated just like for the first
gyro orbit (i = 0).
Gyro-orbit creation and evolution is thus now working in DELTA5D. An example of DELTA5D

gyro orbits is shown in Fig.



Task 3: Demonstrate ability to model realistic ITER wall

This task was to determine a good way to load a CAD model of the ITER wall into DELTA5D
and which algorithm to use to determine if an alpha particle intersects the wall during a given
time step. However, the task was more interesting than expected so we got carried away and
also did an implementation of a wall library that does both. Our version of DELTA5D links
in this wall library, and is already able to do inefficient alpha wall-load simulations, but with
a realistic ITER wall. The inefficiency is due to the fact that the Phase I version of the wall
library check all particles against all the triangles defining the surface of the wall, several times
per gyro period. An obvious Phase II improvement of the wall library will be to implement a
rapid search algorithm that figures out which subsets of particles and triangles to cross check
for intersections, and discard the rest.

Overview of particle-wall-intersection task We did discuss the idea of calculating inter-
sections between the true gyro orbit and the wall in the Phase I proposal. Wisely enough, we
next said “We will also investigate if it is possible to approximate the nonlinear solve with a
number of linear solves by representing the orbit as a number of straight lines”. After further
thought, we did indeed decide to take the latter, more feasible approach.

To resolve the gyro motion, one needs to take at least half a dozen or so time steps per
gyro period. Connecting these points along the gyro orbit with straight line segments, one gets
an approximation that does not deviate more than a few millimeters from the true gyro orbit.
Even with the most realistic CAD model of the ITER wall, even the smallest details will be
larger than this. The linear orbit approximation will therefore be more than good enough for
the wall-load simulations.

For the wall it is clear that one only wants to deal with the surface of the wall that faces
the plasma. It would be inefficient to load parts of the wall that cannot be reached by plasma
particles. One should therefore first mesh the plasma-facing surface of the CAD model. By
using flat polygons, the solve for an intersection becomes a linear solve, a big enough advantage
to justify possible having to use more and smaller flat polygons than what might have been
necessary with curved polygons to get a good wall-surface description.

A secondary goal for this task is to make the code and methods we develop for realistic wall
modeling available to the wider fusion community. We therefore only want to use widely and
freely available software tools. We found a suitable meshing tools, GMSH [8]. It is conceivable
that we in the future might incorporate a surface mesher into the wall library, but at least for
now we are running the mesher as a stand-alone application in a pre-processing step. GMSH
loads the more open CAD formats (for example STEP, IGES, STL), but unfortunately no open-
source software can load the highly proprietary CATTA files that ITER has chosen as their
standard.

GMSH produces an output file in the MSH format, which is basically a set of triangles.
The wall library can load MSH files, as well as ASCOT wall files. The ASCOT wall files are
handcrafted sets of triangles and quadrangles and are more coarse grained than the CAD files
used at ITER.

The wall library was implemented in C for maximal callability from all the languages used
for fusion-simulation codes (Fortran, C, C++, Python). It provides a very simple interface to
the calling code. Given the Cartesian coordinates for two points, it will determine if the line



segment between them intersects any of the triangles representing the wall surface, and if so,
where. As used from DELTASD, the two points will be the end points of a gyro-orbit segment.
However, we can see many other uses of the wall library for fusion applications. We will propose
a Phase II task for an edge ray-tracing code built on the wall library and used within FACETS
to study plasma heating by wall modes during EC and LH heating.

Wall model We only managed to get an incomplete CAD model of the ITER wall, consisting
of only a small portion of the wall, see Fig. [0l The partial wall was from a CAD file in the
CATIA format, which is exclusively used at ITER. The CATIA format is highly proprietary
and cannot even be read without a commercial software license. Eventhough incomplete, this
wall model still proved useful. Since we cannot directly read CATIA files, we were given the same
(partial) wall model converted into three different CAD formats (STEP, IGES and STL). The
mesher GMSH was able to open all the converted wall files, but only the STL file format (which
is basically a list of triangles and is commonly used in stereolitography) was loaded flawlessly.
The files in the other two formats (STEP and IGES) would require further processing or “CAD
cleaning” before being used in wall-load simulations.

Since we could not get access to a complete ITER CAD file, we asked the ASCOT team for
one of their ITER wall files, and kindly and promptly received it (see Fig. . The ASCOT
file has lower resolution than a real CAD file. To compensate for this in our tests, we used
GMSH to refine the mesh in the MSH file converted from the ASCOT file format by our wall
library. Fig.|[l11|shows a wire-frame figure of this high-resolution wall model. The remeshing can
of course not recreate the details of a real CAD file, but is merely intended to produce a data
set (the set of triangles defining the wall) of realistic size.

Intersection algorithms FEven with the wall surface approximated by a set of triangles and
with straight-line orbit segments, finding the intersection is still a non-trivial numerical problem.
Two large data sets (particles and triangles, respectively) must be cross-checked every time step.
Grazing incidence is typical for gyro orbits and we thus need to find the intersection between
an almost parallel line and plane.

There are several approaches for finding the intersection between a line segment and a tri-
angle. The fastest method to determine if an intersection occurs is to solve a linear system for
three parameters (r, s, t), where ¢ is normalized distance along the line segment and r and s are
normalized positions along two sides of the triangle, known as barycentric coordinates.

We call the three vertices of a triangle x; = (21, y1, 21), Xo = (22, Y2, 22) and x3 = (3, Y3, 23),
respectively. The ends of the line segment, approximating the particle orbit from time ¢ to
t + At, are called x4 = (24,Ys, z4) and x5 = (25, Y5, 25), respectively. To determine intersection,
one can solve the linear system

To — X1 X3 — X1 T4 — Ty T Tg4 — X1
Yo=Y Ys—Y1 Ya—Ys s | =1 va—n (1)
zZ9 — 21 23 — %1 24 — R5 t Z4 — 21

Then, one checks if 0 < r,s,t <1 and 0 <r+ s < 1. If these inequalities are satisfied, the line
segment has an intersection with the triangle.

The 3 x 3 intersection matrix can be very ill-conditioned, and we tried several methods for
solving it, analyzing both their robustness and speed.
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Figure 9: Partial CAD model of ITER wall
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Figure 10: ASCOT wall model, converted to MSH format by our wall library

Figure 11: Wire-frame plot of ASCOT wall model with refined mesh
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’ Algorithm \ Pairs per second ‘

LU 7.69 x 10°
DGELSS 0.14 x 10°
DGELSD 0.11 x 10°

SVDSOLVE 0.14 x 10°
Moller-Trumbore 14.3 x 10°

Table 2: Performance of the different intersection algorithms

Standard LU decomposition is fast, but unreliable for large condition numbers. We tried
several versions of Singular-Value Decomposition (SVD). The DGELSS LAPACK routine uses
SVD to find the minimal-norm solution to a linear system. DGELSD is similar to DGELSS,
but applies a Divide and Conquer algorithm. The Divide and Conquer was found to be inef-
ficient for the rank-3 intersection systems. Our own implementation SVDSOLVE, which uses
LAPACK DGESVD to compute the Singular Value Decomposition of the linear system matrix,
and BLAS routines to compute the minimum-norm solution to the system. We also looked
into using deflated decomposition, which could be a faster alternative to SVD large condi-
tion numbers, but which cannot handle infinite condition numbers (singular systems). Finally,
Méller-Trumbore [9], a clever way to solve the 3 x 3 intersection system using Cramer’s rule.

In Table|2|is listed how many line-segment /triangle pairs each solver can check for intersection
in one second. Moller-Trumbore is clearly the fastest, two orders of magnitude faster than SVD.
However, only SVD is robust enough to avoid false negatives, which result in particles escaping
through the wall.

To speed up the SVD intersection detection, we tried first rejecting line segments not even
intersecting the infinite plane on which the triangle lies, inside or outside the triangle. Such
line segments can be found without the numerically costly singular-value decomposition. Two
algorithms were implemented to quickly identify and discard such line segments. The first of
the two algorithms computes the plane equation coefficients, in the form Ax+ By+Cz+ D = 0.
Given the three triangle corners x; = (z1,y1,21), Xo = (Z2,%2,22) and x3 = (23,y3, 23), the
coefficients are given by

Iy = 1 2z 1 oy 1 T Y1 &
A=11 yo 2|, B=|12 1 2|, C=|13 y2 1|, D=—|12 32 2o
I ys =23 r3 1 z3 T3 ys 1 T3 Y3 23
The plane equation is then evaluated for the line-segment ends x4 = (z4,y4,24) and x5 =

(x5, s, 25). If the signs of the results differ for the two line-segment end points, then the line
segment does intersect the triangle plane. In such a case, one still then needs to use SVD to
solve for the two barycentric coordinates to determine if the intersection with the triangle plane
was actually inside the triangle.

The second algorithm computes the following two scalars:

a=((x2—x1) X (x3—x1)) - (x4 —x1)
b= ((x2—x1) x (x3 —x1)) - (x5 — x1)

If ab < 0 then the line segment crosses the triangle plane.

13



’ Algorithm \ Checks per second ‘

Plane crossing, determinants 14.3 x 10°
Plane crossing, cross and dot products 20.0 x 10°

Table 3: Performance of the different intersection algorithms

In Table 3| the performance of the algorithms is compared by testing how many plane-
crossing checks each can make in one second. The second algorithm thus proved to be faster
than the first. Both algorithms could be subject to errors due to finite floating-point-precision
arithmetic. However, during our tests with the refined ASCOT model, neither any false positives
nor negatives occurred.

We have thus found a workable two-step approach. First do a quick check to reject line
segments that do not intersect the triangle plane anywhere.

For the few line segments that pass this first-step filter, use SVD to solve for the two barycen-
tric coordinates r and s, and possibly also for t. We already know that 0 < ¢ < 1 because the
line segment intersected the triangle plane, but to find its exact value, which gives the exact
intersection time, we still need to do the linear solve, or equivalent computation. With the
values of the barycentric coordinates known, we can check the inequalities 0 < r,s < 1 and
0 <r+s <1 and if they are satisfied the intersection with the triangle plane did indeed occur
inside the triangle and qualify as a true intersection.

When the line segment approximating an orbit between times ¢ and t + At is exactly parallel
to the plane of a triangle, the 3 x 3 intersection system is exactly singular and the third singular
value from the SVD is exactly zero. This extreme case is illustrated in Fig.[I2] To avoid getting
false positives in such cases we demand that the smallest singular value is at least DBL_MIN
times the largest singular value for an intersection to count, where DBL MIN is the smallest
representable floating-point value larger than zero. Fig. [13|shows that the intersection detection
modified to include this additional check does work as expected. The cost of avoiding false
positives is that false negatives can occur when the angle between the line segment and the
plane is less than 1073%7 and 1073** radians, depending on the resolution of the wall model. In
practice, the number of orbits impinging on the wall at angles less than this threshold value
should be exceedingly small. The default LAPACK SVD solvers give false positives for angles
larger than our threshold value by a factor of DBL_EPSILON over DBL_MIN, where DBL_EPSILON is
the smallest value x for which 1.0+ z # 1.0. Our tuning of the algorithm has thus resulted in a
reduction of the smallest detectable angle by roughly 292 orders of magnitude (10716/107308).

SVD excels in getting correct answers from even nearly singular systems. Unfortunately
SVD cannot get correct answers from incorrect systems. Because both the left-hand side matrix
and the right-hand side vector of the intersection linear system are computed by subtracting
vector components, severe loss of accuracy can occur when two almost identical numbers are
subtracted. The limited precision of double-precision (64-bit) floating-point numbers then does
limit the accuracy of the end result. We believe we have found a feasible solution to this problem
and are proposing a Phase II task to prove it.

If one can determine if the line between two points intersects the wall of an object, then
one can estimate the volume of that object. This is the principle behind Monte-Carlo volume
quadrature. Simply as a way to start testing the wall library before the gyro-orbit integration

14
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side of cube) when line segment is exactly parallel to a triangle.
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Figure 13: Line segment (yellow line) no longer giving false positives for parallel triangles with
modified algorithm that excludes intersections when smallest singular value is virtually zero
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Figure 14: Statistical error vs. number of samples for Monte Carlo quadrature using quasi-
random numbers

was working, we implemented such Monte-Carlo quadrature to compute the volume of the ITER
vacuum vessel as modeled by the ASCOT wall file. The algorithm works as follows. First define
a box with known volume that encloses the object. Then pick a point anywhere on the surface
of the enclosing box and a second point anywhere inside it. If the line between these two
points intersects the wall of the object an odd number of times, then the second point was
inside the object. By sampling a large number of points inside the enclosing box, the ratio of
volumes of the object and the enclosing box can be estimated by the fraction of points inside the
object. Instead of using real or pseudo random numbers to sample points, we used quasi-random
numbers (QRNs). A QRN sequence is designed to sample a volume in an optimal way. With a
scrambled Halton sequence, which generates a low-discrepancy distribution, the sampling error
for N samples is reduced from the the usual O(N~/2) to more like O(N~1), as shown in Fig. |14
For the ASCOT wall file, the volume of the ITER vacuum vessel was found to be 1050.5 m3.
We also looked into a possible GPU implementation of Méller-Trumbore, that is an imple-
mentation that can execute most of the computations on the graphics processor on a video card
instead of on the CPU. Fortunately GPUs have recently gotten much better ability to handle if
statements. In fact the relatively small amount of computation in Méller-Trumbore to compute
the values of r, s and t makes the algorithm well-suited for predication, the most efficient way to
handle conditional code on modern CPUs [10]. Further literature search did indeed find several
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Figure 15: First simulation result for particle wall load with updated version of DELTA5D

examples of efficient GPU implementations of Moller-Trumbore.

First alpha wall-load simulation Finally, we did manage to do a first alpha wall-load
simulation with the updated version of DELTA5D. The ASCOT wall model was loaded via the
wall library, drift orbits were split as they got close to the wall and the intersections between
the evolving gyro orbits and the wall were computed each sub time step by calls to the wall
library. Only a handful of gyro orbits were followed and the particle, not thermal, wall load was
computed. The results is shown in Fig. [15]

Task 4: Determine efficiency of noise-reduction techniques

The problem with conventional Monte Carlo is that the use of random numbers make it impos-
sible to aim the test particles at the points one wants to know the solution. Therefore binning
has to be used, which has an intrinsic conflict between resolution and statistical noise.

Retrograde Monte Carlo does not need binning. It launches the test particles from the
point(s) where the solution is wanted, and walks them backward in time. When the initial time
is reached, the initial condition is sampled and the solution at the final time can be computed by
averaging the sampled initial conditions. This technique works well when the initial condition
is spread out in phase space. Unfortunately it is not for fusion-born alpha particles which have
an initial distribution function that is a delta function in the energy coordinate.

Fortunately the ensemble averaging over gyro orbits uniformly distributed over gyro phase
does work. We have tentatively seen a reduced level of statistical noise both for a fixed number
of drift orbits and for fixed run time.
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