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1.  Introduction
The HERMES (High Explosive Response to MEchanical Stimulus) model has 

been developed [1-3] to describe the response of energetic materials to low-velocity 
mechanical stimulus, referred to as HEVR (High Explosive Violent Response) or BVR 
(Burn to Violent Reaction). For tests performed with an HMX-based UK explosive, at 
sample sizes less than 200 g, the response was sometimes an explosion, but was not 
observed to be a detonation. The distinction between explosion and detonation can be 
important in assessing the effects of the HE response on nearby structures. A detonation 
proceeds as a supersonic shock wave supported by the release of energy that accompanies 
the transition from solid to high-pressure gas. For military high explosives, the shock 
wave velocity generally exceeds 7 km/s, and the pressure behind the shock wave 
generally exceeds 30 GPa. A kilogram of explosive would be converted to gas in 10 to 15 
microseconds. An HEVR explosion proceeds much more slowly. Much of the explosive 
remains unreacted after the event. Peak pressures have been measured and calculated at 
less than 1 GPa, and the time for the portion of the solid that does react to form gas is 
about a millisecond. The explosion will, however, launch the confinement to a velocity 
that depends on the confinement mass, the mass of explosive converted, and the time 
required to form gas products. In many tests, the air blast signal and confinement velocity 
are comparable to those measured when an amount of explosive equal to that which is 
converted in an HEVR is deliberately detonated in the comparable confinement. The 
number of confinement fragments from an HEVR is much less than from the comparable 
detonation.

The HERMES model comprises several submodels including a constitutive model 
for strength, a model for damage that includes the creation of porosity and surface area 
through fragmentation, an ignition model, an ignition front propagation model, and a 
model for burning after ignition. We have used HERMES in computer simulations of US 
and UK variants of the Steven Test [4]. We have recently improved some of the 
submodels, and report those developments here, as well as the results of some additional 
applications. 

2.  Pressure and strain dependence of the flow stress at constant 
strain rate

The new calculation of the pressure- and strain- dependent strength (version 67e) 
proceeds as follows. We first calculate the parameter Ω, which is a measure of damage.
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where φold is the previous value of the porosity, D and cr are parameters. The strain 
hardening parameter  is calculated
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where h, is a parameter and p is the plastic strain. For a given strain-rate, the strain-rate 
parameter R is calculated by

ep
pR 









0

1





(3)

where ep and 0 are parameters.
The strength of fully damaged material (residual strength) is given by
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where Ar, Br, and Y0 are parameters. The residual strength is constrained not to exceed the 
intact strength. For geologic materials, the parameter Ar is taken to be zero to represent 
cohesionless soils and broken rock [5]. Here we let the parameter Ar be larger than zero to 
represent the observed rate-dependent residual strength of explosive at (nearly) zero 
pressure. The strength of the intact material is given by
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for p ≥ 0. Here s and m are parameters and s generally takes the value one. For p < 0, a 
straight line interpolation between the uniaxial tensile strength to Yi (0) is made and 
extended to the pressure intercept at zero strength.
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where Yt is the characteristic uniaxial tensile strength and is specified to be equal to btenY0
where bten is an input parameter between zero and one. The floor value of Yi is zero. The 
intact strength is modified by multiplying by the strain hardening term fe.

)1(   Cfe (7)
where C is a parameter between zero and one. The flow stress is then given by

 rei YfYY )1( . (8)
This is the flow stress when two of the three principal stresses are equal and are less 
compressive than the third. If the Mohr-Coulomb modification is desired, the flow stress 
is further modified by the appropriate factor given in section 3. If not, the calculated flow 
stress is not further modified.

The new calculation of the pressure dependence of strength is explicit in pressure, 
and so does not require iteration as did the previous version. As a result, simulations of 
the Steven test using the new calculation were observed to require only 60% of the 
computer time needed by the previous pressure dependent calculation. In addition, the 
use of residual strength improves the fit to the experimental data. Figures 1 and 2 show 
the old fit and the new fit to experimental data.
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Figure 1. New model (solid) and old model (dash) fit to quasistatic triax test data (symbols) for various 
confining stresses.

Figure 2. New model (solid) and old model (dash) fit to dynamic split Hopkinson bar and quasistatic 
uniaxial compression data (symbols) at various strain rates.
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3.  The Mohr-Coulomb model
For metals and clays, the von Mises criterion for strength is widely used. In 

principal stress space, with axes (1, 2, 3), the von Mises criterion is a right circular 
cylinder whose axis is the principal diagonal. A cross-section normal to that cylinder is a 
circle, whose radius is the equivalent stress. See Figure 3. Although experiments to probe 
the yield surface are difficult, they have been done in a few instances, and for metals and 
clays, the yield surface can be nearly circular. Some tests with an aluminium alloy [6] , 
however, have shown that even for metals the equivalent strength in shear may not lie on 
the circle scaled to compression or tension. We are ignoring here such effects as 
kinematic hardening, whereby the circle does not expand with increasing plastic strain, 
but rather translates in the direction of straining.

In contrast, for geologic and granular materials, the Mohr-Coulomb criterion is 
widely used [3]. The condition for that criterion is
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where c is the most compressive principal stress and t is the most tensile principal 
stress. In this formulation, compressive stresses are positive. Most hydrodynamics codes 
follow the convention described by Wilkins [7] so that the principal stresses and stress 
deviators are positive in tension, and pressure is positive in compression. In terms of the 
principal stress deviators ordered algebraically, we have

0, 321321  ssssss . (10)
The Mohr-Coulomb criterion is rewritten for the hydrocode convention as
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where we have made the general functional dependence a (locally) linear one.
For our explosive, the data for pressure, strain-, and strain-rate dependent flow 

strength were taken in either uniaxial or triaxial compression. In uniaxial compression, 
the lateral stress is zero, whereas in triaxial compression, the lateral stress is compressive.  
In either case, two of the three principal stresses are equal and less compressive than the 
third (axial) component. It is therefore convenient to make the basis for the model the 
equivalent stress in compression, so that

)(2 pfYc  . (13)
It is convenient to express other states of stress by the parameter  where

12 ss  . (14) 
Since we use the radial return method [7] for reducing the stress tensor from the elastic 
trial state to the yield surface, the parameter, ξ can be evaluated from the elastic trial state 
before the flow stress is calculated. For uniaxial compression, ξ = 1. For uniaxial tension, 
ξ = -1/2. In shear, ξ = 0. In uniaxial compression, Eq. 11 can be written

3s1

2
 A  B p s1 /2 . (15)

We then evaluate the yield stress in compression as
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So that Eq. 11 becomes
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We evaluate B from Eq. 17 by calculating the derivative of the yield surface (Eq. 13) .
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where '
2f is the pressure derivative of f2. At present (version 67e) we are using an 

expedient function  Ar exp(-p/Y0) for the pressure derivative (see Eq. 4). We found that 
the discontinuous change in the pressure derivative where the residual strength is limited 
by the intact strength led to a discontinuous change in the slope , B, and a discontinuous 
change to the calculated strength. This prevented convergence when calculating the triax 
test in extension, where the lateral stresses are more compressive than the axial stress, 
using Newton iteration. A more satisfactory solution would be to force the residual 
strength to approach the intact strength gradually as a function of pressure. This has not 
been implemented. 

We evaluate Eq. 3 for the general value of ξ to obtain
1  /2 s1  A  Bp B s1 /2 , (19)

We use Eq. 17 to evaluate (A+Bp) in terms of Yc, and note that
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In terms of the compressive yield stress,
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The intersection of the yield surface with the plane perpendicular to the main diagonal or 
pressure axis, 1 = 2 = 3, is shown in Figure 3 for three values of '

2f . The extreme value
of three is the largest possible value, and corresponds to a friction angle of 90o where B
takes the value one. The slope of one (B = 0.43) is typical of rocks and soils. The value 
zero corresponds to no pressure dependence, and for that case the yield surface is 
equivalent to the Tresca condition [6]. The importance for our work is that the equivalent 
strength in pure shear is reduced relative to that in compression from 0.866 for no 
pressure dependence to 0.577 for the pressure derivative equal to three.

We have implemented this model as a user option (version 67e) and applied it to 
the calculation of the residual dent in the UK modification of the Steven test [4]. At 70 
m/s, the (extrapolated) dent obtained in the test is about 12 mm. The standard model uses 
the von Mises “circle.” The calculation with the new fit, and a reduced value of the 
Teflon strength of 30 MPa, results in calculated dent of 11.7 mm. This is larger than the 
previously reported value of 10.2 mm [4]. The measured strength of Teflon at relatively 
high strain rates is 30 MPa [11]. When we used 100 MPa Teflon strength as described in 
[4], but with the new fit, the calculated dent was 10.6 mm. Most of the difference is due 
to reduced strength of the Teflon, which permits a larger expansion of the explosive in 
the steel confinement. The remainder of the difference is due to the decreased residual 
strength of the explosive with the new fit. When the Mohr-Coulomb option is used with 
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the 30 MPa strength of Teflon, the calculated dent is 12.2 mm. The same value was 
obtained whether or not the possibility of discontinuous change in strength was present. 
Apparently most of the sample is in shear or triaxial compression. The calculated dents 
with and without the Mohr-Coulomb option are shown in Figure 4.

Figure 3. Intersection of the yield surface with a plane normal to the pressure axis. All surfaces are 
normalized to have the same value in triaxial compression. The three axes (thin black lines) are the three 
principal stresses. In this figure, the principal stresses are not ordered.
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Figure 4. Calculated dents in the UK Steven test with (bottom) and without (top) the Mohr-Coulomb 
option.

4.  Calculation of volume
The volume strain increment is taken to be the sum of the strain increments on the 

principal diagonal of the strain matrix:
dV
V

 dxx  dyy  dzz (22)

We assume that the strain rate is constant over the time step, dt. Then the volume can be 
calculated by simple integration.
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The previous method,
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is accurate enough for small strain increment, but quite poor for large increments. Most 
hydrocodes have an additional limit on the time step so that the volume change is small 
enough that the two-step energy iteration is accurate. This is roughly similar to the time 
step limitation imposed by the artificial viscosity calculation, although imposed both in 
compression and expansion. It is a limit to the volume change of 4 % in any 
computational step. LS DYNA apparently does not impose this limit on the time step.

von Mises
11.7 mm dent

Mohr-Coulomb
12.2 mm dent
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5.  Partition of artificial viscosity
We calculate the effect of artificial viscosity on the energy equation in the 

following way. The energy increment for the element is given by
dvqpde )(  (25)

where de is the specific energy increment, p is pressure, q is artificial viscosity, and dv is 
the specific volume increment. We express the pressure p as the volume fraction 
weighted sum of the gas and solid pressures [2], and assume that the artificial viscosity q
is apportioned into a gas part and a matrix part.

de  g pg  s ps  qg  qm dv (26)
where φ is the volume fraction of gas or solid, and the sum of the volume fractions is one.

de  g pg  qg dv  s pg  pmm /s  qm dv (27)
where we have used the condition for pressure equilibrium [2]

smmgmgs ppppp / (28)
where pm is the matrix pressure and pmm is the macroscopic matrix pressure. We express 
dv by its constituent parts

sg dvdvdv )1(   (29)
where  is the mass fraction of gas. Collecting terms,

sggmmmmggg dvqpdvqpdvqpde ))(1())(1()(   , (30)
where we have used the definition of the matrix volume

)1/(  vvm . (31)
Using the equation of pressure equilibrium again, we recognize

smg dededede )1()1(   (32)
provided that we define

sgsmmss dvqppde )/(   . (33)
This method will conserve energy for any partition of artificial viscosity, as long as 

mg qqq  . (34)
We have chosen 

qppqfq ggg )/( (35)
as long as p > 0 and fg = 0 otherwise. We note that our method does not result in each of 
the constituents on their respective Hugoniots as the result of a single shock. This is 
consistent with the mesoscale view where pressure equilibrium for dissimilar constituents 
is achieved by multiple shocks and rarefactions.

6. Interface friction, boundary layers, and ignition criteria
The limited number of parametric studies that has been performed for the UK 

Steven test geometry [3, 4] has demonstrated that the friction coefficient plays a major 
role in strain localization. Our ignition criterion, which weights both shear strain and the 
normal stress on the plane of maximum shear, is sensitive to the localization that friction 
introduces. As a result, the friction coefficient plays a major role in our model’s 
assessment of ignition. We sought to study this interaction computationally in isolation 
from other complicating factors, such as the strength and compliance of the explosive 
confinement. To this end, we used the conceptually simple geometry of crushing a disk of 
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explosive between a falling mass (drop hammer) and a stationary anvil. We took as 
nominal values a drop height of 0.4 m with drop hammer mass 5 kg and anvil mass 12 
kg. The steel drop hammer cylinder has diameter 120 mm and height 60 mm. The anvil is 
160mm by 80 mm height. The anvil rests on an unyielding surface. Generally speaking 
this is the geometry analyzed in [9]. We used a sample volume of 0.2 cm3 (10 mm 
diameter and 2.5 mm height) and compressive strength 200 MPa. In absorbing the kinetic 
energy of the drop hammer, the sample disk is crushed to nearly half its original thickness 
in the absence of friction. As a result, the mesh is not greatly distorted overall, so the 
calculation completes easily and accurately. This is a higher strength than is typical for 
plastic bonded explosives. This is also a much larger volume than is typically used in 
small scale safety testing. There the sample volume is about a tenth of ours, so that severe 
deformation is expected, and ignition occurs. In our geometry (by design) we do not 
expect severe distortion, nor do we expect that the ignition criterion would be met.

Our first set of computer simulations used a constant yield stress of 200 MPa, and 
a friction coefficient of 0.4, which is the value measured by Hofmann [12] for the friction 
coefficient between steel and LX-04, an LLNL explosive that is 85% by weight HMX 
and 15% Viton binder. For these simulations, no limit was placed on the retarding stress, 
as per the analyses of [9]. This is in contrast to the analyses of Ball [8] where the limit 
stress would have been set to 115 MPa, the shear stress at yield in pure shear. In our 
simulations, then, the disk sticks over the inner two-thirds of its surface. At the outer 
periphery, a portion of the outer (curved) surface of the disk folds over to contact both the 
falling mass and the stationary anvil during the deformation. 

When we varied the mesh size, we observed that the strain profile near the 
interface is inversely dependent on the distance from the surface. By analogy with gas 
dynamics, we refer to this region of strain localization as a boundary layer. In gas 
dynamics, the gas is assumed to stick to the surface over which the bulk material is 
flowing. The strain-rate dependent shear strength (viscosity) results in a boundary layer 
characteristic thickness that depends on the free stream velocity and the viscosity. For our 
rate independent calculation, the power varies between 0.6 and 0.9, depending on the 
radial location. This inverse dependence is observed both by fitting the profile of each 
calculation after the plastic strain field has reached its final state and by fitting the peak 
value achieved in each calculation as a function of the original (square) mesh size in the 
range 20 to 100 microns. We note that inverse (first-power) distance dependence was 
observed by Liu [13] in Eulerian simulations of spigot and Steven tests using a constant 
yield stress. In the Eulerian framework, no interface slip is permitted.  In our simulations 
the power law is about the same, whether using a friction coefficient of 0.4, or a higher 
value that prevents slip (> 0.577). We show the vertical plastic strain profile in Figure 5 
at a time when the plastic strain field has reached its final state, at a radial coordinate that 
is 2/3 the original radius, where the mesh was observed to stick. In summary, friction at 
the interfaces leads to a strong localization of shear strain at an intermediate radius, and 
also near the outer periphery of the disk on conical surfaces that intersect the corners of 
the disk. Figure 6 illustrates the plastic strain distribution for a friction coefficient of 0.4.

Some researchers [8] have advocated limiting the frictional resistance on the 
surface to be the shear strength of the weaker material, in contrast to the assumptions of 
gas dynamics. Instead of severe localization of strain near the interface, this technique 
essentially replaces a boundary layer of extreme distortion with additional energy being 
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dissipated at the interface. As others have done, we limited the frictional shear stress to 
be that of the shear stress at yield, 115 MPa. The results are given in Table 1. In the LS-
DYNA simulations that limit the frictional stress, to a good approximation the additional 
surface energy is accompanied by an equal reduction in the plastic shear strain energy in 
the boundary layer. Although energy conservation is good, the unaccounted energy was 
systematically greater for those calculations that limited the shear resistance. We note 
that in LS-DYNA the energy absorbed in hourglass resistance is normally not counted, 
and that there was more significant hourglass distortion for the calculations that limited 
shear.

Figure 5. Plastic strain as a function of vertical distance from the interface at a fixed radius of 0.33 cm for 
initial mesh sizes 20 (green triangle) 31 (blue circle) and 62 (red square) microns. The fitted line has an 
inverse 0.65 power. Calculations used constant yield strength and no limit to the frictional forces, and are 
shown at 0.45 milliseconds.
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Figure 6. The plastic strain distribution is from a calculation with constant yield stress and no limit to the 
frictional forces. Plastic strains greater than 0.5 are shown as magenta and plastic strains less than 0.2 are 
uncolored. The values increase from blue through green and yellow to red (rainbow fringe plot). The 
vertical line is the axis of symmetry of the disk. The time is 0.45 milliseconds, just as the drop hammer 
begins to rebound. Original mesh size was 31 microns. The strain localization in the center of the disk has 
peak value 0.6. The strain localizations near the surface at radius between 2.2 and 4.5 mm, and near the 
corners have peak values over 2.

An earlier phenomenological ignition criterion for the Steven Test [14] was based 
on frictional work at the interface. Our criterion is based on the localization of shear 
strain, weighted by the normal stress. Both criteria are strongly affected by friction. Both 
ignition criteria also bypass the calculation of the temperature field, so do not directly 
represent a time-at-temperature criterion that would be consistent with temperature-
driven decomposition kinetics. The analyses of Ball [14] do incorporate the calculation of 
the temperature field to change the shear strength of the adjacent materials. 

Table 1. Effect of limiting the maximum frictional shear stress. Initial drop hammer 
kinetic energy is 20.908 J.
Mesh size, 
microns

Limiting 
shear stress, 
MPa

Internal 
energy, J

Surface 
energy, J

Rebound 
kinetic 
energy of 
striker, J

Unaccounted 
energy, J

62.5 unlimited 15.435 3.085 2.364 0.024
62.5 110 13.798 4.897 2.134 0.078
62.5 115 13.986 4.718 2.125 0.078
62.5 120 14.234 4.585 2.009 0.080
31.3 unlimited 15.803 2.721 2.375 0.009
31.3 115 13.930 4.685 2.252 0.041

Since the HERMES model already includes parameters to quantify how 
increasing the ambient temperature reduces the effective strain rate, it would seem a 
natural extension to incorporate dynamic temperature effects. To calculate the reduction 
of strength near the interface requires a dynamic calculation of the temperature profile, 
including the heat gained from frictional work on the surface, and the heat lost to the 
adjacent steel. In contrast to metals, explosive crystals and the binders used in explosive 
formulations are very poor thermal conductors, with thermal diffusivity two to three 
orders of magnitude less than that of typical metals. If we use a nominal value of 0.001 
cm2/s for the thermal diffusivity, and use as a characteristic time 0.2 millisecond, which 
is appropriate for both US and UK variants of the Steven test (and by coincidence our 
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drop hammer geometry) the characteristic distance affected by thermal diffusion is 5 
microns. At this length scale plastic-bonded explosives are not continua. The explosive 
crystal bimodal size distribution in terms of mass fraction per logarithmic diameter bin in 
many explosive formulations includes the characteristic thermal distance. The coarse 
fraction of the crystallites is centered near 100 microns and the fine fraction centered at 5 
to 10 microns. The distributions are broad, with a full-width at half maximum spanning 
0.4 to 2.5 times the diameter at the peak. In the bulk of the material, the binder thickness 
is typically in the range 0.1 to 0.5 microns, depending on the volume fraction of binder 
and the specific surface area of the explosive crystals. Near the surface of the explosive 
part, the composition can be binder rich if it is molded or pressed into shape. If the part is 
machined to shape, if may have the nominal composition if the explosive crystals and 
binder are cut cleanly, or be binder rich if the machining process spreads the soft binder 
over the cut crystal faces, or have extra defects if crystallites are pulled out of the binder 
matrix. Finally, the surface roughness of the machined steel confinement is also in this 
range.  As a result, further investigation in this aspect of ignition is probably best 
accomplished using mesoscale simulations to examine both the structural reorganization 
of the crystallites after substantial shear deformation, the conduction of heat thorough the 
steel interface and explosive boundary layer, and the effective reduction of the shear 
strength of the composite explosive with temperature. We expect that the binder strength 
and the strength of the assembly of explosive crystals will show different response to 
increasing temperature.

When the shear stress is limited, the plastic strain distribution in the boundary 
layer is exponential, rather than hyperbolic. (See Fig.7) Limiting the frictional stress to 
the shear strength has a beneficial effect in that the calculated strain field is much less 
localized, and the mesh is consequently much more regular. Reduced localization is also 
observed when we incorporate strain hardening. (See Figure 8.)  For those calculations, 
the strain hardening is linear, and increases the strength to 220 MPa at a logarithmic 
strain of one. The results of a sequence of calculations with different coefficients of 
friction are given in Table 2. Note that neither the internal energy absorbed by the disk, 
nor the surface energy dissipated is monotonic in the friction coefficient. This latter effect 
can be understood as the competition between increased slip distance and reduced force 
that results when the friction coefficient is reduced. As a result, we have used the nominal 
logarithmic thickness strain, which is uniform as a function of radius, to estimate 
effective friction coefficients when the frictional retarding stress is limited. We note that 
for both zero friction, and the condition for sticking (friction coefficient > 0.577), we 
would expect the surface energy to be zero. In the calculations, the surface energy given 
by LS-DYNA is slightly greater than zero. For the case of a large friction coefficient, we 
noted that the surface energy increases only during unloading when the drop hammer is 
rebounding. For the case of zero friction, we speculate that the surface energy is not zero 
because the local surface is not perfectly flat, so there is a contribution from the normal 
stress.
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Figure 7. Plastic strain distribution at 0.45 milliseconds for calculations with constant yield stress and the 
frictional stress limited to 115 MPa. Mesh sizes are 62 microns (red squares) and 31 microns (blue circles). 
They are shown with a fitted exponential curve with characteristic length 73 microns.

Figure 8. Strain localization near the interface for a calculation with friction coefficient 0.4, and 
incorporating strain hardening. Mesh sizes are 62 microns (red squares) and 31 microns (blue circles). The 
fitted exponential curve has a characteristic length of 100 microns.
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Table 2. Summary of results for various coefficients of friction with no limit set on 
the frictional stress. Initial striker kinetic energy is 20.91 J. Strength includes strain 
hardening.
Friction 
coefficient

Sample 
internal 
energy, J

Striker rebound 
kinetic energy, 
J

Surface energy 
dissipated, J

Thickness 
strain

0 19.62 1.14 0.13 0.492
0.1 16.00 1.40 3.48 0.393
0.18 14.21 1.82 4.86 0.332
0.25 13.66 2.10 5.12 0.294
0.28 13.73 2.20 4.96 0.282
0.33 14.15 2.34 4.38 0.267
0.4 15.14 2.53 3.21 0.254
0.9 17.64 2.89 0.35 0.246

The axial stress at the upper and lower interfaces depends on the radius, and has 
its maximum at the axis of symmetry. The axial stress profile on the lower interface is 
shown in Figure 9 at various times in the simulation. To a good approximation, the axial 
stresses on the lower and upper surfaces are the same. The moving platen begins to 
reverse its velocity at about 0.5 msec. The peak value of the axial stress on axis depends 
on the friction coefficient. When the friction coefficient is zero, the axial stress is uniform 
and takes the value of the yield stress. This extra stress is not a dynamic effect. We 
performed one calculation with the mass of the platens increased 100 fold, and the 
velocity reduced 10 fold. For the case with friction coefficient equal 0.4, the peak axial 
stress was 785.2 MPa, compared with the value obtained at the nominal velocity of 784.9 
MPa. We then performed three additional calculations with the friction coefficient 0.4, 
but with the resisting stress limited to 50, 90, and 120 MPa. Results of these calculations 
are given in Table 3. 
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Figure 9. Axial stress is shown as a function of radius at various times during the calculation. The friction 
coefficient was 0.4 with no limit to the frictional stress. The mesh size was 31 microns. The drop hammer 
reverses its velocity between 0.4 and 0.5 ms, and the sample begins to unload.

Table 3. Summary of results for various values of the limiting stress. The equivalent 
coefficient of friction is based on the thickness strain.
Limit stress, 
MPa

Sample 
internal 
energy, J

Striker 
rebound 
kinetic 
energy, J

Surface 
energy 
dissipated, J

Thickness 
strain

Equivalent 
friction 
coefficient

50 14.08 1.73 5.02 0.341 0.16
90 13.38 2.10 5.34 0.285 0.29
120 13.88 2.25 4.70 0.272 0.33

The combination of high friction coefficient (or perfect sticking in Eulerian 
simulations) and constant yield stress results in plastic strain or heating from plastic work 
that varies inversely with distance from the interface. As a result, an ignition criterion 
based on plastic strain such as ours will exhibit severe mesh-size dependence. This can be 
finessed to an extent by incorporating the mesh size in the criterion. Experience with 
similar extrapolations when calculating the initiation of fracture suggests that 
unanticipated and unphysical ignitions should be anticipated. We suggest treating all such 
extrapolated ignitions as numerical artifacts until proven otherwise.

An ignition criterion based on frictional work at the interface is only possible with 
a Lagrange formulation of the sliding interface. Even so, the partition between the surface 
energy and the plastic work that develops in the adjacent elements depends on the friction 
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coefficient and the decision to limit or not to limit frictional resistance by the shear stress 
of the weaker material. We note that a strain-rate dependence of the shear strength adds 
much complication to the simple idea of limiting the frictional resistance. Since we wish 
to apply our ignition criterion to Eulerian as well as Lagrange simulations, we reject 
ignition criteria based on frictional work.

The use of either rate-dependent strength or strain hardening (or both) has been 
seen to reduce the mesh-size dependence of the strain distribution. In our simulations 
described above, the characteristic distance for the strain distribution was on the order 
100 µm. This dimension results in a feasible resolution requirement for simulations of 
research test vehicles, and may be feasible in other geometries as well.

We emphasize that our ignition criterion is a phenomenological one. We wish to 
let the localization of shear strain indicate likely locations for ignition, and obtain the 
value of the ignition parameter by simulating a research test vehicle geometry at the 
observed ignition threshold. As a result, our criterion lacks a time-at-temperature 
dependence. It is possible that ignition tests performed at either much smaller or much 
larger scale would illustrate the need for a more complete criterion. Until such 
experimental results are available, we have deferred complicating our criterion. We do 
suggest caution when applying the model at much larger scale, where the consequences 
of ignition are more hazardous.

7. Calculation of pressure and energy density using the entropy
Calculations that incorporate the pressure equilibrium method described in [2] 

were observed to give poor estimates of the gas pressure and temperature when there is a 
small mass fraction of gas present. Eulerian and ALE simulations are also known to 
exhibit this effect in mixed cells with small amounts of gas. Even though the volume 
change of an element may be small, most of that change is taken up by the small mass of 
gas present. As a result, the gas volume change is very large. The standard method to 
calculate the gas adiabat is only accurate when the magnitude of the volume change is 
less than about 5% [15]. In expansion, the energy change is overestimated so the gas 
cools to an unphysical low temperature.

We sought a method that would substantially improve the accuracy without 
resorting to expensive subcycling. Our strategy is to use the entropy directly as a way to 
solve for the specific energy density and pressure at the end of a hydrodynamic 
calculational step. In order to examine alternative numerical strategies it is convenient to 
start with material descriptions for which the entropy and other thermodynamic potentials 
are analytic functions. In the simplest case, consider the orthotropic gas. For that case the 
pressure, p, is given as a function of specific volume, v, and temperature, T by

v
TCp v

 , (36)

Where  is the adiabatic exponent (-1) and Cv is the (constant) specific heat at constant 
volume. The change in internal energy density is given by

dT
T
edv

v
ede

vT














 . (37)

Substituting the standard thermodynamic derivatives,
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The result of integration is,
)( 00 TTCee v  , (39)

where the 0 subscripts refer to the initial condition. Similarly, for the change of entropy, 
s,
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and with thermodynamic substitutions,

dT
T
Cdv

T
pds v

v








 , (41)

so that

00
0 lnln

T
TC

v
vCss vv   . (42)

The linear solid is only slightly more complicated. Here

)(1 0
0

0 TT
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
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
, (43)

where K is the bulk modulus. By similar manipulation,

0
000000 ln)())(()(

v
vTCKvvvpKTTCee vv  (44)

and

00
0 lnln

T
TC

v
vCss vv   (45)

We assume a mixture of solid and gas, with the mass fraction of gas, , fixed. For 
a given change in volume of the mixture, we solve for pressure equilibrium by Newton 
iteration. With a starting assumption that all the volume change is taken up by the gas, 
with the physical constraint that there is some volume remaining for the solid when the 
mixture is in compression, we solve for the new energy density and pressure during each 
iteration step.

For a given new value of volume, we calculate the temperature at the old value of 
entropy by inverting equation (42) for the gas or (45) for the solid. We calculate the new 
pressure and energy density using equations (36) and (39) for the gas, or equations (43) 
and (44) for the solid. The iteration for gas-solid pressure equilibrium and gas-solid 
insolubility

solidgas vvv )1(              (46)
is continued until satisfactory agreement in pressure obtained. For the case where there is 
no artificial viscosity, the entropy does not change.

We find the correct solution by using the standard 2-step pressure-energy iteration 
[2], which is used in many hydrocodes, but taken to the limit of small volume change by 
subcycling. We tested our result for the case where the logarithmic change in volume in 
one step is 1.0 (new specific volume of the element is 2.718 times the old. The new 
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method is exact. We compare the results for a specific case where the gas fraction is 0.2 
in Table 4.

Table 4. Comparison of new method and standard method for the case of no 
artificial viscosity

P, MPa V, cc/g Vs Es, J/g Ts, K Vg Eg Tg
Starting 
values

200 0.92937 0.49505 -23.38 300 2.6667 -4093 2000

Correct 25.103 2.5263 0.49854 -23.78 297.9 10.637 -4626 1001.4
New 
method

25.103 2.5263 0.49854 -23.78 297.9 10.637 -4626 1001.4

Two-
step

17.315 2.5263 0.49869 -23.71 297.8 10.637 -4792 690.66

For the case of artificial viscosity, the increase in entropy must be calculated 
accurately, or the newly proposed method is no better than the original two-step iteration. 
We found that if we added the energy density increment due to artificial viscosity to the 
energy density at the old time, then calculated the new entropy, and updated the 
temperature, energy density, and pressure we got an answer that was too high in pressure. 
If on the other hand, we calculated the energy density at the new volume using the old 
value of entropy, then add the heating from artificial viscosity, and calculate the new 
temperature, entropy, and pressure, the result was too small in pressure. We chose the 
expedient of using the average of the entropy calculated in these two ways. The result for 
the same volume increment and an artificial viscosity of 10 MPa is shown in Table 5.

Table 5. Comparison of new method and standard method for the case of +10 MPa 
artificial viscosity

P, MPa V, cc/g Vs Es, J/g Ts, K Vg Eg Tg
Starting 
values

200 0.92937 0.49505 -23.38 300 2.6667 -4093 2000

Correct 22.189 2.5263 0.49859 -23.82 297.9 10.637 -4688 885.11
New 
method

22.273 2.5263 0.49859 -23.82 297.9 10.637 -4686 888.47

Two-
step

14.271 2.5263 0.49875 -23.74 297.8 10.636 -4856 569.24

We examined the effect of a larger value of the artificial viscosity. For purposes 
of illustration we have assumed a compressive artificial viscosity for volume expansion, 
which occurs in numerical simulations when quadratic artificial viscosity is used in both 
expansion and compression. For this larger viscosity, there is substantial cooling during 
expansion. For the larger entropy change, the new method has larger error, but remains 
much smaller than the two-step iteration. See Table 6.
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Table 6. Comparison of new method and standard method for the case of +50 MPa 
artificial viscosity

P, MPa V, cc/g Vs Es, J/g Ts, K Vg Eg Tg
Starting 
values

200 0.92937 0.49505 -23.38 300 2.6667 -4093 2000

Correct 10.533 2.5263 0.49883 -23.97 297.7 10.636 -4936 420.12
New 
method

10.014 2.5263 0.49859 -23.82 297.7 10.636 -4947 399.41

Two-
step

2.0968 2.5263 0.49899 -23.93 297.6 10.636 -5115 83.627

Since the new method is also a two-step iteration, there is a considerable gain in accuracy 
for the small extra expense of evaluating the entropy.

8.  Calculation of entropy for other equations of state
At present our use of HERMES has been in circumstances where the rates of 

reaction and pressure increase is modest. As result, the peak pressures have only been 
small multiples of the confinement strength. The temperature rise in the unreacted 
explosive has been small, since the relatively low pressures are achieved by a loading 
path that is more nearly adiabatic than a shock Hugoniot. As a result, the equation of state 
for the reactant needed accuracy for off-Hugoniot states, but not necessarily for high 
pressures or temperatures. In our test of the entropy method (Section 7) we considered 
only simple equation of state forms, and constants for the thermomechanical properties. 
Our proposed method to change the way in which energy density and pressure are 
calculated, must have general applicability. Indeed, our intent to extend the HERMES 
model to include the possibility of DDT (Deflagration to detonation transition) and XDT 
(now understood to involve the recompression of explosive fragments) will require more 
general forms where constant properties are not appropriate.

Examples for unreacted explosive include the form proposed by Lambourn [16] 
for explosive formulations, or that proposed by Sewell and Menikoff [17] for the 
explosive itself. In those cases, which include variable specific heat that approaches a 
limit at high temperature, the entropy can be expressed as functions of specific volume 
and temperature, but neither form is analytically invertible in terms of either temperature 
or energy density. One possibility is to select forms for the specific heat that permit 
analytic inversion. The other options for minimal extra computational expense are fitting 
the inverse function by an analytic function and preparing a tabular function as an adjunct 
to an analytical equation of state. An extra cost option is numerical inversion, which 
would require iteration. In principle, having the analytic derivatives available could speed 
convergence of such iteration.

In HERMES, we are using a tabular equation of state to represent the gas 
products. We attempted to construct the entropy function on that table by using the 
interpolation functions to evaluate the derivatives in Equation 41, and construct the 
entropy over each square represented by density (or specific volume) and temperature 
increments. We found that with close spacing in the table, we could construct an entropy 
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density surface that was nearly path independent. With a table spacing that was otherwise 
adequate to represent the p(v,T) and e(v,T) surfaces, the calculations were substantially 
path dependent. Since tables are generally constructed by a method that is based on the 
free energy, and uses derivatives of that free energy to evaluate the thermodynamic 
properties, it is easier and more accurate to simply add an entropy surface to the pressure 
and energy density surfaces. We note that when the equation of state surface represents a 
changing (equilibrium) composition, the entropy density has a component due to the 
composition. When we constructed a table at fixed composition, in the limit of small 
tabular intervals our construction method was reasonably accurate. With changing 
composition, our pseudentropy did not have the same value as the entropy, but adiabats 
calculated with either entropy or pseudo entropy were nearly the same. In any case, our 
calculation of pseudoentropy is made more difficult by the limited number of significant 
digits that are routinely available in the table. With very close spacing, the derivatives are 
inaccurate because they are based on taking the difference of two large numbers.
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