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Abstract

A theory of Reversed Shear Alfvén Eigenmodes (RSAEs) is developed for reversed magnetic

field shear plasmas when the safety factor minimum, qmin, is at or above a rational value. The

modes we study are known sometimes as either the bottom of the frequency sweep or the down

sweeping RSAEs. We show that the ideal MHD theory is not compatible with the eigenmode

solution in the reversed shear plasma with qmin above integer values. Corrected by special analytic

FLR condition MHD dispersion of these modes nevertheless can be developed. Large radial scale

part of the analytic RSAE solution can be obtained from ideal MHD and expressed in terms of the

Legendre functions. The kinetic equation with FLR effects for the eigenmode is solved numerically

and agrees with the analytic solutions. Properties of RSAEs and their potential implications for

plasma diagnostics are discussed.

∗This work supported by DoE contract No. DE-AC02-09CH11466.
†Electronic address: ngorelen@pppl.gov
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I. INTRODUCTION

Theoretical and experimental studies of Alfvén plasma oscillations, known as Reversed

Shear Alfvén Eigenmodes [RSAEs, dubbed as Alfvén Cascade (AC) modes] have attracted a

lot of interest from the fusion community. Unstable RSAEs have been observed and identified

on many tokamak devices [1–3]. Enhanced losses of fast ions were reported in plasmas with

RSAEs present [4]. RSAE theory has been able to explain several puzzling features of TAE

like instabilities in earlier TFTR observations [5]. Understanding RSAEs helps to study new

physics of interactions between Alfvén and acoustic branches [6, 7]. Observations of RSAEs

often serve as a useful diagnostic indicator of such things as (i) reversed safety factor profile

in the plasma, q (r), (ii) rational values of its minimum, qmin, and (iii) the formation of ITBs

[8]. In many instances the accuracy of qmin from RSAE frequency measurements alone is

expected to be greater than what follows from the direct measurements of the q profile with

diagnostics like MSE (motion Stark effect). In general, both techniques are complementary.

Most often in the plasma discharge evolution RSAE frequencies increase from a minimum

stationary value up to the TAE frequency [1]. In this paper we use the term “frequency

sweep” for the phenomena of the identifiable RSAE frequency evolution which occurs on

an equilibrium time scale. This should be considered distinct from the fast changing or

“chirping” frequency magnetic activity which is understood to result from nonlinear wave

particle dynamics. Theoretically and numerically, it was found that RSAEs exist in ideal

MHD [9, 10] even when fast ion effects are ignored. The latter was argued originally to be

the reason of RSAE existence [11, 12].

However, seemingly the same kind of RSAE instabilities, but with the frequency sweeping

down (termed here down sweep) are also observed (see for example [10]). Such relatively

rare events may be indicative of stronger damping, i.e. the instability is excited only when

the drive is strong. Alternatively the rare existence of down sweep RSAEs may indicate that

the criteria for such mode existence are more stringent than for the upsweeping modes. The

second explanation seems to be consistent with our results reported here.

Two alternative theories were proposed recently to explain this phenomena. One is the

unconventional theory of propagating “quasi”-modes resonantly excited by the fast trapped

ions can explain the existence of the modes in the required frequency range [12, 13]. An-

other work is based on more conventional theory of Alfvénic eigenmodes in tokamaks [14].
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This theory can explain both down sweep and sweep bottom modes (the latter are at the

stagnating point of their frequency evolution). Still the existence condition and damping of

such modes on the continuum are poorly desribed. In this paper we continue RSAE studies,

which are consistent with the second argument.

Numerically, down sweep RSAEs were modeled with the code NOVA [15], where ideal

MHD RSAEs structures were found for the down sweep and sweep bottom cases. In those

simulations down sweep RSAE solutions were confirmed but required more deeper analysis

in particular to understand the creteria of mode existence, which we offer in this paper. One

explanation is that the NOVA results of Ref. [15] are not converged owing to the incorrect

ideal MHD treatment of the singularities of the solutions at the interaction points with the

Alfvén continuum.

Another work, Ref.[16], analytically finds strongly localized kinetic RSAEs (KRSAE)

with the radial scale on the order of ρi, which are potentially stronger damped then the

solutions found in our work. Found solutions are similar in localization as ones reported

numerically [17] recently. The later reference shows solutions, which are similar to ours

when the mode structure becomes narrow.

In this paper we have found analytically the existence conditions for down sweep and

sweep bottom RSAEs. Our results, exact in certain cases, indicate that ideal MHD added

by the kinetic theory can be used to find eigenmodes with the logarithmic assymptotic

features. These results are consistent with the ideal MHD results of Ref. [15]. We call these

solutions eigenmodes (hence, RSAEs) because their dispersion relations can be understood

(and derived) in terms of the quantization condition between two points of a resonance with

the continuum. We then compare the analytic results with direct numerical solutions of

the eigenmode equation and with NOVA code solutions under such conditions when the

proposed methods to solve the eigenmode equation are applicable, such as low beta, high

aspect ratio plasma. The conditions for NOVA code applicability are discussed for more

general plasma parameters. We explore the applicability of the ideal MHD theory to down

sweep RSAEs. We have found a way to make a direct confirming comparison of RSAE long

scale part of the solution with the kinetic one. Such analysis is also useful to understand

whether down sweep RSAEs can be reproduced using the ideal MHD numerical codes. These

ideal MHD results serve as limiting cases of the kinetic solutions.

In contrast to previous studies of KTAEs [18] and KRSAEs [16], down sweep and sweep
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bottom RSAE solutions [14] considered here in details, maintain global structure even in the

limit of vanishing FLR, which may have a profound effect on the fast ion and and even the

thermal plasma transport. It also follows that the global, large scale part of RSAE solution

satisfies the ideal MHD dispersion equations. KTAEs and (K)RSAEs can be weakly damped,

but are strongly localized in this limit.

The existence of singular eigenmodes in ideal MHD approximation are close to the results

of Ref. [15]. We call these singular solutions eigenmodes (hence, RSAEs) because their

dispersion relations can be understood in terms of the quantization condition between two

points of a resonance with the continuum.

The paper is organized as follows. First we offer the derivation of RSAE eigenmode equa-

tion in section II. It is then analyzed in section III by employing different methods, including

WKB, direct analytical solution, quadratic form minimization and numerical shooting tech-

nique. In the same section we obtain the expression for the damping rate of the RSAE

solution. We compare solutions obtained with the NOVA code in section IV. We summarize

and discuss results in the summary section V.

II. FORMULATION OF THE EIGENMODE EQUATION

We start with the eigenmode equation for the Alfvén oscillations [7, 19], which includes

finite plasma pressure effects and is augmented by the FLR terms capable to mediate the

ideal mode singularity,

L̂4φ0 + L̂φ0 +
αm2

q2
min

[

2q2
min

2ω̄2∆′ − αk2
00

1 − 4k2
00q

2
min

+ ε

(

1 − 1

q2
min

)]

φ0 +

+2m2

[

ω̄2ε (ε + 2∆′) − δm∂ (−4∆′ + ε + α) (3ε − α)

1 − 4k2
00q

2
min

+ Q̂k

]

φ0 = 0, (1)

where α ≡ −R0q
2
minβ

′, prime here and below denotes radial derivative, and δm∂ ≡
∂2

rφ0/ (∂2
r − m2)φ0, which is to be approximated as 1 if ∂2

r ≫ m2 and 0 if ∂2
r ≪ m2, i.e.

two analytically treatable cases. Also here L̂ = ∂r

[

(ω̄ + iη)2 − k2
0

]

∂r −m2
[

(ω̄ + iη)2 − k2
0

]

,

∂r = rd/dr operates on perturbed quantities. The frequency in Eq.(1) is generalized to

include the upshift due to Geodesic Acoustic Mode (GAM) effect ω̄ ≡ R0

√

ω2 − ω2
G/vA

[20, 21], ωG is the GAM frequency (applied to RSAE theory in Ref.[6]), vA is local Alfvén

velocity, k0 = m/q − n = mι- − n, k00 = k0 (r0), ι- = 1/q is introduced for convenience,

ε = r/R0, ∆′ is the radial derivative of the Shafranov shift, and the following anzats for the
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perturbed quantities is assumed

φ = e−iωt−inζ
∑

j

φj−m (r) eijθ,

where the dominant harmonic is at j = m. Eq.(1) is derived in the vicinity of r0 (see

Refs. [7, 19] for details) where q (r0) = qmin, so that the radial dependencies of different

terms in this equation including ωG (r) dependence are neglected, except for the k0 (r),

which is critical for the solution and is due to q (r). This approach is valid for the localized

modes, such as high-n modes. We will focus on the solutions at ω ≥ ωG. For the MHD

eigenmodes below GAM frequency due to Alfvén acoustic coupling see Ref. [22]. Here

we introduced intrinsic net drive term η < 0 (neglecting its radial variation), which may

includes both excitation and damping (following works [23, 24]). Exact form of η is not

important for this paper, but its sign is important in evaluating the coupling of ideal to

kinetic scales. The linear theory deals with the unstable modes near instability threshold,

0 < γ ≡ ℑω̄ ≪ |η|. This condition implies that the system has damping coming from

either Q̂k term or from the radiative damping addressed here. Our theory will rely on the

assumption that net intrinsic mode drive is smaller than the shift of the mode frequency from

the continuum, |η| ≪ |ℜω̄ + k00|, as well as the frequency itself, |η| ≪ ℜω̄. The opposite

case |η| > |ℜω̄ + k00| corresponds to strongly driven modes such as resonant modes.

FLR term L̂4 accounts for coupling to small scale KAW at the resonance with the con-

tinuum and is taken following Ref. [24, 25] L̂4 = ∂rλ̂
−2∂3

r , where

λ̂−2 =
[

3 (1 − iδi) ω̄2/4 + k2
0 (1 − iδe)Te/Ti

]

ρ2
i /r

2
0 ≪ 1, (2)

and δi,e > 0 are the dissipation terms from ions and electrons respectively. Another form

of the FLR term is derived recently [26] can be used as well, but gives essentially the same

results for high-n modes considered here. The derivation of Eq.(1) relied on one dominant

mth and two sidebands, m ± 1, harmonics, which accounted for up to ε2 order corrections

in the eigenmode equation.

The quantity Q̂k in Eq.(1) accounts for another kinetic effects, which may be responsible

for the drive and damping of the RSAE instability. One of such effects could be due to fast

ion gyro averaging as was suggested in Ref. [11].

In the vicinity of qmin we expand the resonant factor in front of the second derivative

making use of q′ (r0) = 0. In addition we assume that the frequency is complex, denoting
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ω̄r ≡ ℜω̄ and ω̄i ≡ ℑω̄, and demand that |ω̄i| ≪ ω̄r. Then we can write

(ω̄ + iη)2 − k2

0 =
[

ω̄2

r − k2

00

] [

iγ̂ + 1 − Ax2 − Bx4
]

, (3)

where x = (r − r0) m/r0, γ̂ = (η + ω̄i) / (ω̄r + k00),

A =
k00ι-

′′r2
0

m [ω̄2
r − k2

00]
,

B =
ι-′′2r4

0 + k00ι-
′′′′r4

0/3m

4m2 [ω̄2
r − k2

00]
, (4)

and derivatives are taken over r at r = r0.

In evaluating the eigenmode dispersion we will use a convenient form of the safety factor

profile [19], which is sufficiently general for high-n analysis of the localized eigenmodes

q(r) = ι- (r)
−1 =

qmin

1 − (r − r0)
2 /w2

. (5)

Here we express the q-profile width parameter w as w2 = 2qmin/ q′′|r=r0
. Coefficients A and

B can be rewritten as:

A =
−k002r

2
0

mqminw2

1

ω̄2
r − k2

00

= −2k00

√

B

ω̄2
r − k2

00

B =
r4
0

m2q2
minw

4

1

ω̄2
r − k2

00

> 0 (6)

In a special case of down (up) sweep activity we have qmin > m/n (qmin < m/n), k00 < 0

(k00 > 0), and A > 0 (A < 0), whereas at the sweep bottom k00 = A = 0. In all cases we

assume ω̄2
r > k2

00, as it was argued that ω̄2
r < k2

00 is not suitable for the eigenmodes to exist

[27].

Even though in experiments the down sweep instability continuosly transforms to the

sweep bottom and to the up sweeping one (see for example Ref.[19] for the structure in the

latter case) their radial structures are different. The former two cases are the subject of this

paper. It is convenient to write the resonant factor in the form

(ω̄ + iη)2 − k2

0 =
[

ω̄2

r − k2

00

]

D =
[

ω̄2

r − k2

00

] [(

1 − z2
) (

1 + µz2
)

+ iγ̂
]

, (7)

where

z2 = x2/S ≡ x2

(

√

1 + 4B/A2 + 1
)

A/2, (8)
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µ =
(

√

1 + 4B/A2 − 1
)

/
(

√

1 + 4B/A2 + 1
)

, and for the special q-profile, Eq.(5), ι-′′′ =

ι-′′′′ = 0 and µ = (ω̄r + k00) / (ω̄r − k00). Eq.(7) includes information about the safety factor

profile via k00 dependence only.

In contrast to the previous work [14] coefficients A, B, µ, S and radial variable z are

defined real. This is more appropriate for the numerical analysis of the eigenmode equation

presented here, but still can be used in the analytic analysis with the methods of Refs.

[14, 28, 29].

The expression for S can be rewritten as follows:

S =
√

µ/B =
mqminw2

r2
0

(ω̄r + k00) . (9)

Using variable z we rewrite Eq.(1) in the form

L4φ0 + Lφ0 ≡
{

∂

∂z
λ−2 ∂3

∂z3
+

∂

∂z
D

∂

∂z
− SD + Q

}

φ0 = 0, (10)

where

λ−2 = Λ−2 ω̄2

(ω̄r + k00)
2 (ω̄r − k00)

, (11)

Λ−2 = n (ρ2
i /w

2) [3 (1 − iδi) /4 + (k2
0/ω̄

2) (Te/Ti) (1 − iδe)],

Q =
2SQ̂

ω̄2
r − k2

00

=
2mqw2Q̂

r2
0 (ω̄r − k00)

, (12)

Q̂ = α

[

2ω̄2∆′ − αk2
00

1 − 4k2
00q

2
+

ε

2

q2 − 1

q4
+

ω̄2

α

ε (ε + 2∆′) − δm∂ (−4∆′ + ε + α) (3ε − α)

1 − 4k2
00q

2

]

+ Q̂k.

(13)

Here all radial dependencies are included via D term, and all other terms has to be evaluated

at r0, so that here and below we use q instead of qmin. For the imaginary part of Q we can

write

ℑQ ≃ ℑQk +
4ω̄iω̄rS

ω̄2
r − k2

00

[

2∆′α + ε (ε + 2∆′) − δm∂ (−4∆′ + ε + α) (3ε − α)

1 − 4k2
00q

2

]

. (14)

In a special sweep bottom case, ω̄2
r ≫ k2

00, we find S = 1/
√

B = ω̄rmqw2/r2
0, µ = 1, and

Qbott ≃
nw2

ω̄rr2
0

αε
q2 − 1

q2
+ Qk. (15)

By making a special coordinate transformation we have found such a form of the ideal part

of the eigenmode equation (last three terms in the brackets of Eq. (10)) which at sufficiently
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small kinetic effects has parametric dependence only through two functions: S, Q. This is

remarkable because the dispersion relation of RSAE solutions for any general case can be

found as a parametric function of S and Q.

In the sweep bottom case the term responsible for the existence of RSAEs is coming from

the averaged curvature (second term in square brackets of Eq.(13)) [7, 19]. It is clear that

by choosing ω̄ small enough in sweep bottom case one can make Q value sufficiently large to

create the effective potential well. It means that this case is compatible with the existence

of the eigenmode and the instability is expected more reliably than in the case of the down

sweep modes. Positive contribution from Qk can also be considered favorable for the mode

existence. At this point we finish the derivation of RSAE equation with thermal ion FLR

term valid for the down sweep and sweep bottom cases.

III. SOLUTION TO THE RSAE EQUATION

In this section we solve the RSAE eigenmode equation, Eq.(10), and make their compar-

isons using several methods.

A. WKB RSAE analysis

It is important to perform a simple WKB analysis in order to develop an insight into the

problem. We start with the formal WKB analysis of Eq.(10) by assuming ω̄i = 0, Qk = 0,

and allowing the following ansatz dependence of the solutioin

φ0 (z) = c0 exp

(

i

∫ z

kdz

)

, (16)

where c0 is a proper dimensional constant, so that the eigenmode equation is transformed

into
k4

λ2
− Dk2 − SD + Q = 0,

with the solution

k2 (z) =
λ2

2
D ± λ

√

λ2D2/4 + SD − Q. (17)

The WKB dispersion of RSAEs can be obtained from here by requiring
∫ 1

−1
k (z = 0) dz = πl,

where l is a positive integer, which should be large for WKB to be valid.
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Figure 1: WKB wave vector solutions for the following set of parameters, S = 2, Q = 4, λ = 10,

µ = 1.

An example of two branches of these solutions is shown in Fig. 1. Both have an avanecsent

region outside and have wave-like regions inside |z| = 1.

Inside |z| = 1 the short wave component of the solution corresponds to the kinetic Alfvén

wave (KAW) branch and is approximately

kKAW = λ
√

D.

It is this branch, which is studied in Ref.[16]. It has the following dispersion relation

λ ≃ lπ/2. (18)

The second branch is characterized by the long wave scale and was considered in Ref.[14].

If λ ≫ 1 this branch wavevector is given by

k (z) =

√

Q

(1 − z2) (1 + µz2)
− S.

For the solution localized near z = 0, the condition Q ≫ S has to be satisfied, which is

achievable for ω̄ sufficiently close to k00:

√

Q − S ≃ lπ/2. (19)

The condition Q ≫ S, as we will see, is also a threshold condition for RSAE existence as it

emerges from the continuum, i.e. when ω̄ ∼ −k00 (see Eq.(9)).

Surprisingly, despite the WKB validity condition, l ≫ 1, the dispersion relation, Eq.(19),

is very close to the exact solution even for l = 1. As one may expect at l = 1 the down
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sweep frequency is close to the continuum (ω̄r + k00) /ω̄r ≪ 1. Both regions, near |z| = 1

and outside, |z| > 1, serve as avanescent regions for the solutions and do not effect the mode

dispersion.

One particular case of practical importance, which is often verifiable in experiments is

the sweep bottom solution. For this case using Eqs.(9,15,19) and retaining only real parts

one can obtain the frequency upshift from the continuum

ω̄WKB = −π2

23

r2
0

mqw2
+

√

π4

26

r4
0

m2q2w4
+

αε

q2

(

1 − 1

q2

)

. (20)

At this point we immediately conclude one important consequence of this dispersion, that it

predicts the disappearance of pressure gradient driven frequency upshift from the continuum

if q ≃ 1. This important property agrees with observations reported recently on NSTX [30]

(see Fig.3(a) of that paper, which indicates the convergence of RSAE frequencies at different

n’s at t = 0.35, i.e. when qmin = 1).

Even though the RSAE solutions have singularities at z = ±1, their WKB dispersion is

important for the insight. As we will show, the WKB dispersion gives an accurate value for

the eigenfrequency in the case of the sweep bottom RSAEs.

The dispersion given by Eq.(20) is different from the one which follows from Eq.(1) if the

radial derivative terms are neglected, which follows from the results of Refs.[7, 19]. Such

approach can not provide the eigenmode structure, but can give an eigenfrequency limit

value for the modes propagating primarily in the poloidal direction, that is when

kθ = m/r ≫ kθcrit =
π2

23

r0

w2

q
√

αǫ (q2 − 1)
. (21)

In this case we find from Eq.(20):

ω̄2 =
αε

q2

(

1 − 1

q2

)

. (22)

Such approach was employed in Ref.[12]. The difference with the more complete dispersion,

Eq.(20), is due to the appropriate treatment of the radial scale length in the later, which is

critical for the quantization condition of RSAEs.

We would like to point out another important and experimentally verifiable property of

RSAE dispersion, which is the dependence of the mode frequency on the mode number. It

is predicted by our dispersion, Eq.(20), and is absent in Eq.(22) and in Refs.[12, 13]. If the
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fast ion shift is included, results of Refs.[12, 13] would give opposite m dependence, that is

their results would give lower frequency for high m (and n) modes, which is at odds with

our results and with the observations on NSTX [30] (Fig.3 of that reference).

We also find that in this case the characteristic mode width resulting from Eq.(8) with z

ranging from −1 to 1 is

∆r = 2w

√

√

αε (q2 − 1)

mq
. (23)

In the opposite case of strongly localized solutions, kθcrit ≫ kθ, we find

ω̄ =
4

π2

nw2αε

r2
0

(

1 − 1

q2

)

, (24)

and

∆r =
4

π

w2

r0

√

αε (q2 − 1)

q2
=

π

2kθcrit
. (25)

B. Ideal MHD limit of RSAE equation

It is well acknowledged Timofeev [31] that in general the ideal MHD is inadequate frame-

work for an eigenmode solution due to the resonance with the Alfvén continuum. This was

redently confirmed in a special case of down sweep and sweep bottom RSAEs [14]. Never-

theless a certain ideal solution with special boundary conditions exist and corresponds to

the long radial scale part of the down sweep and sweep bottom RSAEs. Such solution results

in RSAE existence condition and their dispersion relation. Introduction of the FLR effects

helps to resolve the interaction with the continuum and are required to properly match both

kinetic and ideal scales. Thus it is important to study MHD part of RSAEs in details. In

addition it is especially important to understand the relevance of the considred RSAEs to

the solutions obtained by the ideal MHD real frequency codes such as NOVA [32].

The ideal MHD limit of Eq.(10), i.e., Lφ0 = 0, can be analyzed analytically for the down

sweep case, µ ≪ 1, at near threshold existence condition, that is when the ideal mode

emerges from the continuum and ω̄ ≃ −k00, Q ≫ S. We rewrite the eigenmode equation

near the point of expected mode localization, z = 0:

∂

∂z

(

1 − z2 + iγ̂
) ∂

∂z
φ0 + (Q − S)φ0 = 0. (26)

Real solutions of this equation satisfying zero boundary conditions at z → ±∞ are Legendre
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functions [33]

φ0 = c0Ql−1 (z) , (27)

where l =
[

√

1 + 4 (Q − S) + 1
]

/2, which implies that the dispersion in the down sweeping

case is close to

Q − S = l (l − 1) , (28)

where l is a positive integer. Note, that the latter dispersion is close to WKB result of

Eq.(19) in the limit of Q ≫ S, 1, which implies high radial mode numbers should be l ≫ 1.

Although the solution, Eq.(27), is symmetric and continuous everywhere except near

|z| = 1, it is not physical for the reason that it can not satisfy the causality condition.

Indeed let’s construct an analytic continuation of the above solution into the complex plane.

We apply the standard procedure with η = 0, ω̄r + k00 ≫ ω̄i > 0, to integrate Lφ0 = 0

through the singular points from ± (1 + ε) to ± (1 − ε) (0 < ε ≪ 1). The rule can be

obtained by employing the assymptotic of the Legendre function at the singularity

2Ql (z) ≃ Pl (z) ln (−1 ± z) → Pl (z) [ln (1 ∓ z) − iπ] . (29)

Owing to the opposite parities of Ql and Pl, complex ideal solutions obtained this way

approach the origin with discontinuities:

φ0 = c0φ0M ≡ c0

[

ℜQl−1 (z) +
iπH (1 − |z|) sign (z)

2
ℜPl−1 (z)

]

, (30)

where H is the Heaviside step function. Only imaginary part of this function has disconti-

nuity near the origin, which is in φ0 for odd l or in φ′
0 for even l. Note that if l is not integer

the discontinuity is in both φ0 and φ′
0. This can be seen from the figure 1 of Ref.[14]. Our

argument is along the lines of the well known problem of the nonexistence of stable ideal

MHD eigenmodes in a plasma with the nonuniform density [31]. FLR term is required in

order to match φ′
0 at z = 0 (even l), but does not allow to match for odd l due to the jump

in the real part of the solution.

Because of the importance of the MHD solution we refine its dispersion, Eq.(28), by

employing the quadratic form minimization given the ansatz, Eq.(30). This procedure allows

to write it in the form

Q − il′S = 2l′(2l′ − 1), (31)
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where for the lowest radial mode numbers il′ = 0.401, 0.489, 0.496, ...(l′ = 1, 2, 3...), and

il′ =

∫ +∞

−∞

(

1 − z2
)

φ2

0dz/

∫ +∞

−∞
φ2

0dz (32)

is evaluated numerically. In the sweep bottom case, µ = 1, simple WKB dispersion, Eq.(19)

(again similar to the down sweep case only even radial solutions should be used, l = 2l′),

provides good approximation for the RSAE frequency. Direct application of the numerical

shooting technique to equation Lφ0 = 0 presented hereafter, shows good agreement with the

dispersions Eq.(31,19) over the range of plasma parameters (see section IV).

C. Hybrid MHD/kinetic RSAE analytic solution

One class of solutions of Eq.(10) is found by matching the MHD part, Eq.(30), with the

kinetic counterpart to regularize the abovementioned discontinuity in the derivative φ′
0 near

the origin. In this section we provide further details of the derivation of the solution in

addition to those published before [14].

Coupling of the ideal part of the solution (long radial scale) and the KAW (short scale, see

Fig.1) occurs in the nonideal region (see for example Refs.[28, 31]). The coupling strength

computation of the present paper is relied upon the Orr-Sommerfeld equation analysis [28].

The dispersion relation of the final solution arises from the matching condition of the two

solution asymptotics at large λ. The approximate solution structure also can be obtained.

Basing on the results of Refs.[28, 31] and on our WKB analysis we define three regions

of z. First is the outer region (I) |z| > 1 + ε, where the solution is dominantly MHD one.

Second region (II) is the nonideal region where the scales of the kinetic and MHD solutions

aproach each other |z − 1| < ε (see Fig.1). The third region (III) is inner region |z| < 1− ε,

which is wave - like for both MHD and KAW solutions, where the characteristic value of the

nonideal region width is ε = O
(

λ−2/3
)

.

In region II with the help of the substitution y = 1 + iγ̂/p∓ z we rewrite the eigenmode

equation near continuum resonance points y = 0 (z = ±1)

{

∂4

∂y4
+ pλ2

[

y
∂

∂y2
+

∂

∂y
+

Q

p

]}

φ0 = 0, (33)

where p = 2 for down sweep mode or p = 4 for sweep bottom cases. From Eqs.(8,9) and

0 < ω̄i ≪ −η ≪ ω̄ + k00 it follows that ℑy < 0 in the vicinity of z = ±1. Also from Eq.(11)

13
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Figure 2: Diagram of various regions in complex y plane for the choices of various linear independent

solutions as per Ref.[28]. Dashed line corresponds to the integration path.

it follows that ℜλ ≫ ℑλ > 0 for both down sweep and sweep bottom cases. This is different

from Ref.[14] due to allowed damping from the finite collisional terms δi,e ≫ ω̄i > 0 and

different coordinate transformation, Eq.(3).

Based on the signs of λ and y we show the diagram for the choice of the linear independent

solutions according to Ref.[28] in Fig. 2. Argument of the ray C2 equals to −2 arg λ/3, which

and the rays C1,3 are shifted by 120 degrees from each other. Sector S2 outside the circle

corresponds to the region I, outer sector S3 corresponds to region III, and the inner circle S

to region II in our definition.

At λ ≫ 1 we choose following two solutions, which we require to be limited along the

line of the integration on both sides outside of the circle S:

b0/2πi = J0

(

2
√

Qy/p
)

(34)

and B3, which in a sector S2 takes the form

B3 = πiH1

0

(

2
√

Qy/p
)

, (35)

and in a sector S3

B3 =
−√

πe−3iπ/4

p1/4λ1/2y3/4
e−2λ

√
py3/2i/3 + πiH1

0

(

2
√

Qy/p
)

. (36)

We can thus find the following connecting formulas for the solutions near y = 0 for b0/2πi

14



and B3:

1 ↔ 1

πi −
[

ln

(

−yQ

p

)

+ 2γ

]

↔ −
[

ln

(

yQ

p

)

+ 2γ +

√
πe−3iπ/4e−2λ

√
py3/2i/3

p1/4λ1/2y3/4

]

, (37)

where γ is the Euler’s constant. The linear combination of two independent solutions,

−B3 +
b0

2π

[

π + i2γ + i ln

(

Q

p

)]

,

has MHD scale at ℜy < 0 and mixed MHD/KAW scale at ℜy > 0 (cf. Ref.[14])

ln (−y) ↔ ln (y) + πi +

√
πe−3iπ/4e−2λ

√
py3/2i/3

p1/4λ1/2y3/4
. (38)

In region III the standard WKB analysis produces solutions for the short scale wavevector

k (z) = ±λ
√

D + 3i∂z [ln (λ2D)] /4 and the corresponding solutions are

φ0f =
C

λ3/2D3/4
e−3iπ/4±i

R

λ
√

Ddz. (39)

The choice of the signs in the exponent and the constant C are determined by matching

conditions with the assymptotics Eq.(38) at z = ±1:

φ0f =

√
pπλ±1

2λ3/2D3/4
e−3iπ/4∓i

R

±1

z λ
√

Ddz. (40)

where subscript ±1 (signs ± will be dropped hereafer) means that the value is taken at

the nonideal region, i.e. at the point of the mode frequency resonance with the continuum.

Final solutions is

φ0 = c0 [φ∗
0M − φ0f ] . (41)

From matching the first derivatives of the left and right solutions near origing z = 0 the

following condition emerge

[

−iπcM/2 + φ′
0f (0 − ε)

]

|ε→0 =
[

iπcM/2 + φ′
0f (0 + ε)

]

|ε→0, (42)

where

cM = P ′
2l′−1 = (−1)l′+1 (l′ − 1/2)!/ (l′ − 1)! (1/2)!. (43)

The real part of it is

ℜ
∫ 1

0

λ
√

Ddz = 2π

(

j +
1

8

)

. (44)
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where j ≫ 1 is an integer, and its imaginary part describes the effect of the dissipation

ℑ
∫ 1

0

λ
√

Ddz = ln
cM

√
λ0π

λ1

√
p

. (45)

As we have shown Eq.(38) is valid for both down sweep and sweep bottom cases. The

matching condition is essentially the same for the sweep bottom case as we verified numeri-

cally for low l′ values.

The real part of the kinetic dispersion relation alludes to the splitting of the eigenmode

frequency due to small scales. To find it we make use of the approximation in the integrand

of Eqs.(44,45):
√

D ≃
√

1 − zp +
iγ̂

2
√

1 − zp
. (46)

From Eq.(44) we find the fine kinetic frequency splitting

∆ω̄K = 4p
√

pω̄rℜΛ−1

0

[

4 − p + (p − 2)
2

3
√

π

Γ
(

1

4

)

Γ
(

3

4

)

]−1

,

where ℜΛ−1

0 = ρi
√

n
w

√

3

2
+ Te

Ti

4−p
2

, and Γ is the gamma function. From this splitting the

number of linear submodes near the MHD frequency was found[14]:

NkRSAE =
(ω̄ + k00)ℜΛ0

(

0.4S + Q ω̄+k00

ω̄−k00

)
∣

∣

∣
ln

(

η
ω̄+k00

)
∣

∣

∣
4p
√

pω̄

[

4 − p +
2

3
√

π

Γ
(

1

4

)

Γ
(

3

4

) (p − 2)

]

. (47)

We note that this expression is valid if NkRSAE ≫ 1 and otherwise the numerical solution

should be considered.

One important feature of this solution is that instead of using standard causality condition

with ω̄r ≫ ω̄i > 0 we need to allow for the weakly unstable modes, that is with finite

0 < ω̄i ≪ −η ≪ ω̄r + k00. This is very important difference from the perturbation theory

assumption and relies on the underlying threshold condition for the instability when the

drive is sufficiently strong to overcome the intrinsic “radiative” damping.

From the equation (45) it follows the expressions for various components of the mode

growth rate, which can be cast into a form:

ω̄i = −η + γrad + γdiss,

where the radiative collisionless damping rate is

γrad =
4
√

2

πℜΛ0

√
ω̄r ln

(

cM

√
λ0π/λ1

√
p
)

4 − p +
Γ( 1

4
)

2
√

2πΓ( 3

4
)

(p − 2)
, (48)
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and the dissipative damping on electrons and ions, such as due to collisions or Landau

damping mechanism is

γdiss

ω̄r + k00

= −
δi

3

4
+ Te

Ti

4−p
2

δe

3

4
+ Te

Ti

4−p
2

[

4 − p

2
+ (p − 2)

2

3

]

. (49)

We should note that the damping rate, Eq.(48), contains more accurate numerical fac-

tor than was obtained previously in Ref.[14], where the following approximation
√

D =
√

p (1 − iγ̂ + z) was used instead of Eq.(46). Both give the same real part, whereas the

imaginary part from Eq.(46) obyained here is more accurate.

The radiative damping rate to the lowest order depends on the ideal parameters Q and

S via the mode eigenfrequency.

D. Numerical verification of RSAEs dispersion

Here we employ another, more direct method of solving for bottom RSAEs via numerical

shooting of Eq.(10). For the sake of simplicity in the verification exercise we assume that

Λ−2 = λ−2 (1 − iδ) ,

where we ignore the radial dependence of Λ. It is important that the eigenmodes remain

near threshold, which is enforced in the numerical search for the solution by adjusting the

free parameters of the equations. And, thus, δ should not be too small, but should have η

drive term, which is adjusted in order to maintain 0 < ω̄i ≪ −η.

In the parameter range of the plasma under consideration radiative damping is typically

small. In the simulations we can find it by varying λ and seeking the assymptotic behaviour

of both terms predicted by theory. From Eqs.(48,49) it is possible to separate the radiative

damping from the total damping of the eigenmode solution. We demonstrate this for the

sweep down case, for which one can find γrad ∼ λ−1 ln λ, whereis γdiss does not depend on

λ if ω̄r + k00 is kept constant. More explicitly we find the following dependencies of the

damping rates on λ from Eqs.(43,48,49)

γrad

ω̄r

+
γdiss

ω̄r

=

√
2

πλ
√

ω̄r

ln
( π

λ2

)

− ω̄r + k00

ω̄r

δ, (50)

In the case we analyze the RSAE modes have finite number of nodes, i.e. finite radial

mode number. As the radial mode number increases, Q becomes sufficiently large and the
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z

z

Figure 3: Lowest mode number sweep down RSAE structures obtained using the shooting technique.

Shown are the first (dashed), third (points) and fifth (solid line) RSAEs.

mode existence condition is violated according to Eq.(31). This is confirmed numerically

and limits the applicability of the dispersion equation (31). Numerically it is difficult to

maintain the dispersion relation Eq.(31) especially in the sweep down case, so that there is

always a finite number of radial nodes present even for the relatively high m number of 21.

We rely in this case on the above WKB dispersion.

We choose basic plasma parameters corresponding to tokamak ordering [19] R0 = 10m,

R/a = 10, qmin = 2.02 at r/a = 0.5, w = 0.9, β0 = 0.1%, parabolic pressure profile,

constant density profile, and n = 10. With these parameters we find k00 = −0.024939 and

the eigenmode existence conditions.

At such parameters we find down sweep RSAEs satisfying existence condition which

follows from the MHD scale structure, Eq.(31). Numerically we have found that only the

most localized solutions satisfy it with the mode frequencies close to the MHD theoretical

value.

For chosen parameters we have found the following examples of the down sweep RSAEs

shown on Fig. 3. Their frequencies start from a value equal approximately to the continuum

and increase as the mode becomes more global. The modes are plotted vs. the radial - like

variable z. According to Eq.(8) it is connected to the radial space variable in such a way

that the first lowest radial mode number RSAE is the most localized.

We also check the kinetic damping rate dependence on the radial mode number. For

the kinetic damping rate we use expression derived above, which includes such effects as
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Figure 4: Down sweep RSAE damping rate as a function of the collisonality parameter δ (in our

case).

collisional dissipation, Eq.(50). It is shown on the next figure 4.

Even though the kinetic expressions are more difficult to analyze they are expected to

give more exact results then MHD theoretical values. Nevertheless making use of the MHD

results is often helpful. Without the detailed kinetic analysis of the stability problem one can

draw preliminary conclusions about the stability properties based on the MHD solutions.

This may not be always accurate, but often is sufficient.

IV. RSAES IN IDEAL MHD CALCULATIONS

As we have mentioned ideal MHD RSAE analysis is important and often is a key to assess

and understand the stability problems. Here we study properties of RSAEs from the MHD

point of view. MHD limit provides the real part of the solution (large scale part) and the

corresponding dispersion 31.

In order to formulate the MHD problem we impose special boundary conditions, which

have zero function derivative in the origin and goes to zero in the infinity. We should note

that this condition is not physical by itself due to the jumps of the function in the origin.

However as we saw its dispersion can provide a good guess for the mode frequency. We argue
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RSAEs do not exist

(a) (b)

Figure 5: RSAE eigenfrequency obtained from the analytical dispersion (dashed line), Eq.(31), and

from numerical shooting technique simulations (solid lines). The differences between the eigen-

frequencies and the continuum frequencies are shown on the left figure and the absolute value of

RSAE eigenfrequencies are shown on the right figure. For the comparison the TAE frequency in

the normalized units is ω̄rTAE = 1/2qmin ≃ 1/4.

that this dispersion can help to find a relatively quick way for RSAE stability analysis.

We again choose the same basic plasma parameters corresponding to the tokamak ordering

R0 = 10m, R/a = 10, r/a = 0.5, w = 2, β0 = 0.1%, parabolic pressure profile, constant

density profile, and n = 10. Direct application of the shooting technique to RSAE equation

(26) is important to understand the solubility condition for RSAE eigenproblem. Its solution

is illustrated on Fig.5.

The figure 5 demonstrates the ideal MHD RSAE dispersion. One surprizing following

concluion is that the ideal RSAEs do not always exist. In plasma paramters which we employ

there is a range of plasma safety factor profile values qmin which does not allow the MHD

part to exist. Nevertheless the mode frequency is still close to the continuum as can be seen

from fig.5(b).

We are showing for the first time that RSAEs do not exist at certain qmin values due to

the choice of plasma parameters. The reason is very simple. The slow growing part of the

mode structure can not be formed at such parameters.

Finally, we simulate the RSAEs using the ideal MHD code NOVA [34]. NOVA employs a

set of cubic polynomial finite elements to represent its solution and to solve a more complete

system of ideal MHD equations. Since exact solutions have strong logarithmic singularities

one should not expect that an ideal code such as NOVA will have converged solution for the
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(a) (b)

Figure 6: Down sweep RSAE eigenfrequency (Eq.(31, qmin = 2.02), figure (a)) and sweep bottom

mode eigenfrequency (qmin = 2, figure (b)) are compared with numerical simulations of the growth

rates. Only the difference between the eigenfrequency and the continuum frequency at qmin is

shown. RSAE eigenfrequencies as computed with NOVA are shown as circles. A number of similar

solutions were found with NOVA near the frequency range indicated with the vertical bars around

the circles. The safety factor is qmin = 2.02.

down sweep and sweep bottom RSAEs. However, the regions where the solution is not well

approximated is very narrow in radial direction. Therefore, one can ask: how good does

NOVA approximate the solution we found analytically. We address this problem hereafter.

We compare the RSAE mode eigenfrequencies computed using NOVA code with the

predicted mode frequencies computed numerically using the shooting algorithm in Figs. 6.

NOVA finds RSAE modes within a certain range of w values. At lower limit of this range the

eigenmode becomes too narrow to resolve. At higher limit of w range a problem of resolving

the RSAE structure near the singular layer appears.

It can be seen from these figures that NOVA can find good approximations for the RSAE

eigenfrequencies because as we saw the mode dispersion is determined by the “effective”

potential well between two points of the resonance with the continuum. Numerically in

NOVA simulations we found that for each w value there is a narrow range of frequencies

where NOVA has several solutions (2 − 5 solutions at chosen parameters) with almost the

same radial structure. These frequency ranges are shown in Figs. 6 as vertical lines with

the median point shown as a circle. In these simulations, within the localization region of

each mode we had approximately 150 radial grid points. A comparison of corresponding

radial structures in the case of the sweep bottom RSAE is shown in Fig. 7, where RSAE
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Figure 7: Sweep bottom RSAE mode dominant harmonic radial structures computed using the

shooting numerical scheme and using NOVA ideal MHD code, as indicated. Figs. (a,b,c) correspond

to three values w = 0.5, 0.9, 1, 7, respectively, and qmin = 2. The shooting scheme RSAE structures

have both real and imaginary parts as indicated.

structures with the frequency at the median point were taken. It can be seen that NOVA

solutions have the same singular-like structures as the shooting solutions. The difference

of the location of the singularities is due to the difference in the mode frequencies. This

difference in part is due to the finite radial resolution on both ends of shown w range. The

differences in models and equilibria may also play a role. We also note that because of our

normalization of the radial scale the solutions radial localization looks alike in z, whereas it

is different in r.

A. Sweep bottom RSAE existence criterion

One important condition follows from our study is the existence creterion of the down

sweep RSAEs which determines the plasma parameter space when the eigenfrequency is

above the continuum, that is ω̄ > k00 and according to which the effective potential well

of the eigenmode equation can be formed. The threshold condition can be approximated

as ω̄ ≃ −k00, which implies S ≃ 0 for the down sweep RSAEs. One consequence of this

is that the MHD dispersion near the threshold of down sweep RSAEs is exact. On the

other hand, one can see from Eqs.(9,15) that for the sweep bottom RSAE, k00 = 0, there is

no such threshold. That is formally at any w one can find a sufficiently small value of ω̄r

that Q is sufficiently large and S is sufficiently small that the sweep bottom RSAE always

exists. Hence, one can conclude that the sweep bottom RSAE instability is determined by

the balance of the drive and damping.

22



Quantitatively the threshold condition for the down sweep RSAE follows from Eq.(31),

which can be rewritten in the form ℜ (Qcr + 〈Qk〉) > 2. This threshold can be sensitive

to kinetic modifications of the eigenmode equation coming from fast ions (last term in the

RHS). So testing the threshold by modifying the fast ion response in experiments can shed

light on the physics of fast ion effects on RSAE formation. If k00 value at the threshold is

close to the bottom, but finite, we can find the threshold frequency:

ω̄rth = −k00 =
nw2

r2
0

ǫα

2

q2 − 1

q2
(2 − ℜ 〈Qk〉)−1 .

It can be seen that this value is directly connected to the characteristic flatness of the

safety factor profile, w. The observations of ω̄rth can also serve as a useful diagnostic tool.

Note, that in this paper the characteristic width of the q profile is expressed via the second

derivative of q (r): w2 = 2q/ q′′|r=r0
or w2 = −2/q ι-′′|r=r0

.

V. SUMMARY

In this paper we presented a theory of down sweep and sweep bottom RSAE solutions

using the kinetic and MHD frameworks. The theory allows to find RSAE radial structures,

frequency dispersions, and the dissipative damping rates due to the interaction with the

continuum in low beta and high aspect ratio plasma. It turns out that the radiative damping

rate can be small for the modes in the limit of small FLR. A comparison with the numerical

solutions of the reduced eigenmode equation using the shooting technique helps to validate

the theoretical results.

We argue that the developed theory is supported by the experimental data of the observed

modes in reversed plasmas. Indeed NSTX observations show that the frequency of RSAEs

correlates strongly with the q-profile evolution as disscussed in Sec.IIIA. It follows from

the measurements that as qmin approaches 1 the frequency of the instability identifieid as

RSAE, approaches the computed frequency of the continuum. At qmin ∼ 1 the frequency of

different n RSAEs becomes very close to each other after the correction due to the rotation

is included. Our theory seems to be a rare one, which can explain this at the moment.

Developed theory helps to understand the range of ideal MHD codes applicability. Find-

ing the RSAE solution in the cases considered in this paper appears to be a challenging

problem for ideal MHD finite element codes such as NOVA. Because of the present singu-
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larities NOVA can give good approximation to the long scale RSAE solution in the cases of

bottom sweep and sweep down. Both the mode structure and eigenfrequency seems to be

in an approximate agreement with the analytical solution we found.

With this understanding and depending on the application, NOVA can be applied to

the analysis of down sweep and sweep bottom RSAEs observed in experiments. Obtained

accurate dispersion relation for the sweep bottom RSAEs, Eq.(20), seems to be important

for the comparisons with the experiment in which the finite pressure and pressure gradient

effects should be separated. RSAE dispersion is also important for the applications to MHD

spectroscopy, which seems to be possible by measuring the minimal point of RSAE frequency

sweep. However experimental validation of the theory we presented is required.

Enlightening and motivating discussions with Dr. L.E. Zakharov are appreciated.
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