
SANDIA REPORT
SAND2011-7834
Unlimited Release
September, 2011

Investigating the Effectiveness of Many-
core Network Processors for High
Performance Cyber Protection Systems
(PART I – FY2011)

Robert E. Benner, Joshua A. Johnson, John H. Naegle, Uzoma A. Onunkwo, Jay Patel,
David Pearson, Jeffrey S. Shelburg, Kyle B. Wheeler, Brian J. Wright, David J. Zage

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

 ii

Issued by Sandia National Laboratories, operated for the United States Department of Energy by

Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the

United States Government. Neither the United States Government, nor any agency thereof,

nor any of their employees, nor any of their contractors, subcontractors, or their employees,

make any warranty, express or implied, or assume any legal liability or responsibility for the

accuracy, completeness, or usefulness of any information, apparatus, product, or process

disclosed, or represent that its use would not infringe privately owned rights. Reference herein

to any specific commercial product, process, or service by trade name, trademark,

manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,

recommendation, or favoring by the United States Government, any agency thereof, or any of

their contractors or subcontractors. The views and opinions expressed herein do not

necessarily state or reflect those of the United States Government, any agency thereof, or any

of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best

available copy.

Available to DOE and DOE contractors from

 U.S. Department of Energy

 Office of Scientific and Technical Information

 P.O. Box 62

 Oak Ridge, TN 37831

 Telephone: (865) 576-8401

 Facsimile: (865) 576-5728

 E-Mail: reports@adonis.osti.gov

 Online ordering: http://www.osti.gov/bridge

Available to the public from

 U.S. Department of Commerce

 National Technical Information Service

 5285 Port Royal Rd.

 Springfield, VA 22161

 Telephone: (800) 553-6847

 Facsimile: (703) 605-6900

 E-Mail: orders@ntis.fedworld.gov

 Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

mailto:reports@adonis.osti.gov
http://www.osti.gov/bridge
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

 iii

SAND2011-7834

Unlimited Release

September 2011

Investigating the Effectiveness of Many-core
Network Processors for High Performance Cyber

Protection Systems (PART I – FY 2011)

Robert E. Benner (1422), Joshua A. Johnson (5641), John H. Naegle (9336), Uzoma A.

Onunkwo (9336), Jay Patel (5627), David B. Pearson (9336), Jeffrey S. Shelburg (5635), Kyle

B. Wheeler (1423), Brian J. Wright (9516), David J. Zage (9516)

Sandia National Laboratories

P.O. Box 5800

Albuquerque, New Mexico 87185

Abstract

This report documents our first year efforts to address the use of many-core processors for high

performance cyber protection. As the demands grow for higher bandwidth (beyond 1 Gbits/sec)

on network connections, the need to provide faster and more efficient solution to cyber security

grows. Fortunately, in recent years, the development of many-core network processors have seen

increased interest. Prior working experiences with many-core processors have led us to

investigate its effectiveness for cyber protection tools, with particular emphasis on high

performance firewalls.

Although advanced algorithms for smarter cyber protection of high-speed network traffic are

being developed, these advanced analysis techniques require significantly more computational

capabilities than static techniques. Moreover, many locations where cyber protections are

deployed have limited power, space and cooling resources. This makes the use of traditionally

large computing systems impractical for the front-end systems that process large network

streams; hence, the drive for this study which could potentially yield a highly reconfigurable and

rapidly scalable solution.

 iv

 v

ACKNOWLEDGMENTS

The authors would like to acknowledge that the work, which produced the results presented in

this paper, was funded by the U.S. Department of Energy under Sandia’s Laboratory-Directed

Research and Development (LDRD) Program.

We also acknowledge the contributions of the following individuals, who influenced the

direction, focus, and success of this research:

Tim Berg (Project Manager, 9336)

Theresa Keener (10694)

Linda Bonnefoy-Lev (10694)

Keith Vanderveen (8961)

Roger Suppona (9317)

Tan Thai (5630)

We are also grateful for the great laboratory and experimental support provided by Diana Eichert

(9338).

 vi

CONTENTS

Glossary .. vii

1. Introduction to many-core processors and cyber protection .. 1
1.1. Overview of many-core systems ... 1
1.2. Overview of cyber protection tools ... 1

2. Stateless Firewall ... 3
2.1. Design of firewall frontend ... 3
2.2. Many-core implementation of stateless firewall processing ... 5
2.3. Results ... 5

3. Stateful Firewall ... 8

3.1. Packet distributor using fast hashing and ring buffers .. 8
3.2. Extending iptables stateful firewall to many-core solution .. 10

3.3. From Juniper NetScreen to Linux iptables ... 13
3.3.1. Overview .. 13

3.3.2. The code design process ... 13

4. Conclusion and future work ... 15

5. References .. 17

Appendix A: Methods to achieve putting a Linux-based firewall in passive-wire mode 19

Distribution (Electronic Copies): .. 24

FIGURES

Figure 1. Performance of pinned versus unpinned threads for raw-socket based passive-wire

running on two cores of a TilePro (866 MHz) processor. ... 4

Figure 2. Performance of raw-socket based passive-wire; threads are all pinned to cores. 4
Figure 3. Packet processing rate as a function of number of rules and number of cores in a

TilePro (866 MHz) processor. ... 6

Figure 4. Conceptual model for multithreaded packet processing on a standard Intel architecture 9
Figure 5. A multi-pipeline framework for stateful firewall processing between networks A and B

.. 11

TABLES

No table of figures entries found.

 vii

NOMENCLATURE

CPU Central Processing Unit of a processor

DOE Department of Energy

FNV Fowler-Noll-Vo non-cryptographic hash function

FTP File Transfer Protocol

IP Internet protocol (a network layer protocol)

NIC Network Interface Card

NUMA Non-Uniform Memory Access

SNL Sandia National Laboratories

TCP Transmission Control Protocol (a transmission layer protocol)

UMA Uniform Memory Access

GLOSSARY

rule set a collection of multiple firewall policies or chains

policy a grouping of firewall rules to accomplish a specific goal within a Juniper

firewall rule set

chain a grouping of firewall rules to accomplish a specific goal within an iptables

rule set

packet 5-tuple a set of identifying items in a packet’s header, namely (i) source IP address, (ii)

destination IP address, (iii) source port, (iv) destination port, and (v) protocol

 1

1. INTRODUCTION TO MANY-CORE PROCESSORS AND CYBER
PROTECTION

1.1. Overview of many-core systems

Many-core processors have gained prominence ever since the demonstration of higher

performance rates using the early dual-core processors on super computers [1]. However, these

processors never made special provisions for standard use in network traffic analysis. Today,

several teams have started exploring the applicability of new many-core processors for cyber

protection with Tilera Corporation making a more direct solution optimized for network

environments. In our study, we considered two primary many-core processors – the Intel-based

many-core systems and the Tilera-based network-on-a-chip processors. Today, the Intel-based

solution have significantly higher clocking rate, but smaller set of available cores partly due to its

uniform memory access (UMA) architecture. On the other hand, the Tilera-based solutions have

lower clocking rates, but a much larger set (64 cores) of available CPUs with non-uniform

memory access (NUMA).

1.2. Overview of cyber protection tools

Although no practical network system is ever fully secure, cyber protection tools are meant to

provide means to drastically reduce network security failures – which could include a non-

functional network due to denial of service or an uninvited intruder access which can cause

unfair compromises. Good network systems typically employ two main cyber protection tools,

namely network intrusion detection (NID) systems and firewalls. The particular implementation

of these tools can vary vastly based on algorithmic constraints.

In our work, we have focused on the target cyber application being a firewall. In actuality, we

have addressed two forms of firewalls – stateless and stateful firewalls. Stateless firewalls are

designed to allow or deny traffic based strictly on whether network packets pass a series of

matching question on the 5-tuples of a packet. On the other hand, stateful firewalls keep track of

states, which allow the firewall to identify “expected” behavior given not just the current

condition but on its memory of previous network sessions that are active. Stateless firewalls

have a known vulnerability known as spoofing, so one may think of them as not so enticing for

strongly protected networks. However, in actuality, the use of stateless firewalls is

recommended as long as they are combined with an advanced scheme (stateful firewall) which

denies network access to bad actors. As a front-end, the stateless firewall prevents access to

already-known bad actors and reduces the amount of input to the more compute-intensive

stateful firewall.

In the sections that follow, we provide a description of the aspects of the firewall design we have

focused on and a summary of our accomplishments in those areas. The design aspects include

the design of an efficient front-end for packet I/O, the distribution of work load to many-core

systems and how this is affected by the logistics of stateless versus stateful firewall.

 2

 3

2. STATELESS FIREWALL

2.1. Design of firewall frontend

The frontend of our firewall refers to the section of code that pulls network packets and gets

them to their respective processing units for firewall filtering operation. As stateless firewalls do

not have a notion of state but simply keeps track of just the current packet, it is important to note

that packets can be processed out-of-order and by any core irrespective of whether packets

belonging to that session went through a given processing core or not. The performance of a

firewall, in terms of processing rate, will always be at most equal to the rate at which the

frontend performs its functions.

Another logical decision we made in the frontend design is to set up a mode, we termed

“passive-wire”. This mode simply means that its existence between a corporate network and the

outside network is not detectable by a regular user. In other words, its network interfaces are not

viewable over any side of the network and must be managed by logging onto the console of the

machine running the firewall.

To get a preliminary set of results on our performance, we initially performed the passive-wire

experiments using raw sockets programming. Raw sockets in Linux machines allows a user to

put network interfaces of a standard machine in promiscuous mode thereby allowing it to ingest

any packet on the network it is connected to. We developed the threads-based program on a

Tilera many-core system (TilePro processor) and showed the effects of explicitly pinning threads

to cores. A thread is a light-weighted process that can serve as a logical process holding a set of

functions. On a typical many-core system, threads can hop from one processing core to another

during its execution time; this may be done by the operating system to emphasize fair share of

CPU time on each processor. However, during this process of migration, a thread’s program

context keeps getting switched and can result in unnecessary overhead for high performance

operations.

In our design of the stateless firewall, we have chosen a thread-based model with a necessitated

pinning semantics. We illustrate the difference pinning makes by showing Figure 1, which

contains a comparison of our passive-wire performance running on just two cores of the Tilera

processor over its 1 Gbits/sec link. The tests were conducted with a packet generation tool

known as iperf. The iperf program was invoked as follows:

 Client: iperf -c [server_IP_address] -M [packet_size_in_bytes]

 Server: iperf –s

Clearly, from Figure 1, we can see close to 60% increase in performance with packet size of one

to two kilobytes when intentionally pinning threads to processing cores. In a similar setup, we

performed the passive-wire experiment but with increasing number of threads to see how using

more cores increase the throughput performance. The results are shown in Figure 2.

 4

Figure 1. Performance of pinned versus unpinned threads for raw-socket based passive-

wire running on two cores of a TilePro (866 MHz) processor.

Figure 2. Performance of raw-socket based passive-wire; threads are all pinned to cores.

0

50

100

150

200

250

300

350

400

8 16 32 64 128 256 512 1024 2048 4096 8192 16384

B
an

d
w

id
th

 (
M

b
sp

)

Packet Size (Bytes)

Pinned Threads vs. Unpinned Threads

Pinned

Unpinned

0

100

200

300

400

500

600

700

800

900

B
an

d
w

id
th

 (
M

b
sp

)

Packet Size (Bytes)

Two Threads vs. Four Threads vs. Six Threads

Two Threads

Four Threads

Six Threads

 5

2.2. Many-core implementation of stateless firewall processing

This aspect covers the design and development used to drive towards a stateless firewall with

high network processing rate. Our overall firewall system design is to have the stateless firewall

serve as a preprocessor that eliminates known bad actors, thereby reducing processing overhead

on the subsequent stateful firewall.

There were two principal design decisions that we made. One was the standard decision of how

to arrange the firewall rules so that analyzing incoming traffic is done as quickly as possible.

This entails the use of replication of rules on each processing core or the execution of a proper

subset of rules on each processing core, with the union of all subsets constituting the full firewall

rule sets. The replication method gains in simplicity but may lose in its management of

instruction cache; persistent cache misses may result in wasteful trashing operations. The use of

subsets typically leans towards a pipelined architecture, which does better for the instruction

cache but may suffer latency or unbalanced load distribution. The second decision process was in

how to design the many-core traffic handling system, while ensuring data (packet) consistency.

We chose the replication method initially, so the way firewall rules are organized will not depend

on how we handled the multi-core traffic handling design. This is because each core on the CPU

will get a packet and will have to analyze it against all the rules in a specified configuration file.

Thus, every core will need access to the same read-only data structure created as a result of the

configuration file. Our configuration file allows for five-tuples packet filtering based on source

and destination IP addresses, source and destination ports, and protocol. Anytime the

configuration file bases a rule on an individual source or destination IP, our firewall uses hashing

to create the rule. Each hash item then contains a linked list based on source/destination ports

and protocol. For rules that allow for ranges for the source and destination IPs, there is a default

linked list that contains all of those rules.

With regards to the second decision, we chose the following algorithm to ensure data packet

consistency: we adopted a front-end system involving a master thread and an arbitrary number of

worker threads. The single master thread is responsible for reading in network packets,

enqueuing them in a round-robin fashion to each worker thread’s queue, while the worker

threads process these packets through the given firewall rules. Each worker possesses a queue

implemented in a ring buffer data structure, which holds packets read in by the master thread.

Due to the nature of ring buffers and the use of round robin scheduling, thread synchronization

was not necessary. This was important because the stateless firewall needs to be as lightweight as

possible to act as a useful preprocessor to the stateful firewall. By pinning each worker thread to

a different CPU core, we know from Figures 1 and 2 that we gain in performance.

2.3. Results

In our tools, we have created two computer programs. The first is a tool that generates random

set of firewall rules based on a packet’s 5-tuple. Currently, these rules uses a uniform

distribution over the entire range of IPv4 address and the entire range of ports. It is this set of

 6

rules that we ask our stateless firewall to use in filtering ingested packet streams and decide

whether to pass or drop packets. The second is the actual stateless processing of the firewall

rules. The two sub-figures in Figure 3 represent the same data but in different formats.

Essentially, we plot the processing rate in bytes per second versus the number of cores used in a

TilePro processor.

Figure 3. Packet processing rate as a function of number of rules and number of cores in

a TilePro (866 MHz) processor.

Currently, our code has not been fully optimized, but it is worth noting the preliminary results we

obtained from our experiments. Clearly, as the number of rules increase, the performance drops

as the stateless firewalls have to do, on the average, a lot more filtering operations. However, the

scaling versus number of cores is almost linear (the horizontal axis is logarithmic) indicating that

the NUMA in TilePro did not have significant impact at these rates. The plateau in performance

seen beyond 4 cores for the 1000 rule set is due to limited rate of the incoming traffic (about 920

Mbits/sec).

Our next step is to properly profile the performance of our stateless firewall and look for any

bottlenecking function in the code, so we can apply any applicable optimization to those areas.

Afterwards, we will conduct a correctness check, compare our performance with existing

solutions, and test robustness on true networks.

 7

 8

3. STATEFUL FIREWALL

A stateful firewall needs the ability to not only inspect input packets based on current rule

snapshot, but on previous inputs particularly those that belong to the same session. A session in

this sense can refer to an FTP file transfer session, where port numbers can change as a result of

the protocol’s design. Another example of a session can be a web traffic involving a single

server, multi-client application. Thus, unlike a stateless firewall that can allow a rogue packet to

make its way into a protected network, a stateful firewall can deny such a packet because its state

dictated that such rogue packet did not belong to an existing session or is not allowed to begin a

new session.

This all sounds good in theory, but in practice, there is are a number of difficult issues that must

be solved satisfactorily to develop a high performance stateful firewall on a many-core

processor. One such challenge is that every computing system has a finite amount of memory,

so states need to be managed efficiently keeping track of when to expire existing sessions to

make room for newer sessions and prevent dropping otherwise good packet streams. Another

challenge is that all cores participating in the firewall processing need to have access to their

relevant set of network states to perform the given filtering operations. This access can be

granted in a many-core processor by employing a dedicated space of memory for maintaining

shared states across all cores or by using a hashing-based packet distributor, which will ensure

that packets belonging to the same session are routed through the same cores every time. In the

next section, we describe our development effort for the latter on an Intel-based processor.

3.1. Packet distributor using fast hashing and ring buffers

In order to effectively utilize the multi-core nature of the current Intel architecture, we have been

investigating the packet processing structure presented in Figure 4. As an incoming packet from

an outside network (Internet) is received at the incoming Network Interface Card (NIC), an

initial “distribution core” determines which row of the conceptual architecture will process the

packet.

This distribution core uses a deterministic hash function to assign each incoming packet a value

based on the hash of the numeric XOR of the source and destination IP addresses. The XOR

operation ensures the commutativity of the two addresses in the calculation, thereby ensuring

that both to- and fro- packets go through the same processing core. Currently, the hash space is

divided equally between the different processing rows. For example, on a four core machine, if

there is one distribution core and three separate processing rows/cores processing the actual

packets, the hash output range will be broken into three equal ranges. Each of these ranges

corresponds to a unique row processing queue. In future efforts, ranges may be split unevenly to

better distribute load or more than one range may map to a single queue, as incoming packets do

not necessarily follow a uniform distribution stochastic process.

Once a packet has assigned a hash value and thus a processing row, the packet is copied into

memory in a ring buffer and a pointer to this memory is held in the queues as shown in Figure 4.

As mentioned previously, each processing row has its own ring buffer-based thread-safe queue.

If there is more than one processing element (core) in a processing row, the packet is passed

 9

logically by passing the pointer to the data held in the ring buffer. Once the packet is processed,

it is forwarded on the outbound NIC to the Intranet.

Figure 4. Conceptual model for multithreaded packet processing on a standard Intel

architecture

Fast Hashing

In order to deterministically distribute packets between different processing cores, we

implemented an augmented version of the Fowler–Noll–Vo (FNV) non-cryptographic hash

function. The basic hash algorithm is the following [2]:

As the hash relies solely on XORs and multiplications, it is efficient and lightweight.

Circular Ring Buffer

In order to efficiently store the incoming packets in memory for processing by one or more

cores, we have implemented a circular ring buffer. The implementation uses memory mapping

of the buffer to two contiguous regions of virtual memory to improve performance. This allows

for direct memory access to the buffer since all references to the buffer appear as a single

memory block and any calling function does not have to deal with split buffer spaces every time

the cycling of data reaches the end of buffer and wraps around to the beginning.

Memory mapping allows the ring buffer to have sizes that are equal to some multiple of the

operating system page size (typically 4096 bytes on most Linux-based machines). In our case,

hash = FNV_offset_basis

foreach octet_of_data to be hashed

 hash = hash FNV_prime

 hash = hash XOR octet_of_data

return hash

 10

the buffer size is allocated as a multiple of the page size times the estimated size of all of the

packets in the queue to the nearest power of two as shown in the code snippet below:

This code is written in standard C-Assembly code.

Thread Safe Queue

In conjunction with ring buffer, we have implemented a thread-safe queue in order to manage the

order of the incoming packets and potentially enable the sharing of a ring buffer by more than

one packet processing thread. As seen in Figure 4, once the core responsible for distributing the

packets determines which set of cores is responsible for processing a particular packet, a pointer

to the memory location (currently in one of the circular buffers) is placed in the queue. This

allows the processing core to access the packet, perform some or all of the necessary processing

on the packet, and then either send the packet out to the outbound NIC or allow the next

processing core to work on the packet.

3.2. Extending iptables stateful firewall to many-core solution

As our team began exploring potential solutions for porting stateful firewall to many-core

systems, it became apparent that Linux iptables was the best starting point. All claims to

functional stateful firewall code available all had iptables as their underlying basis. For

efficiency and effectiveness, iptables is built into kernel-space but unfortunately, this makes it

rather difficult to explore for extension. Regardless, we explored iptables and its functionality on

a standard system builds and ported it onto a Tilera with demonstrated effectiveness.

We then started with the next milestone of specifying which processing core(s) we want an

iptables chain to run on. We successfully developed and demonstrated this feature on a TilePro

processor using modifications in its Linux kernel image. Finally, we integrated the hashing

function to allow for multiple spawning of cores to process iptables rules simultaneously. Our

setup is shown in Figure 5.

int NearestPow2(int n)

{

 int ret = -1;

 __asm__ (

 "dec %1\n\t"

 "movl $2, %0\n\t"

 "bsrl %1, %1\n\t"

 "roll %%cl, %0\n\t"

 : "=q"(ret)

 : "c"(n)

 : "eax"

);

 return ret;

}

int32_t mmapsize = u_vm_page_sz * NearestPow2(((QUEUE_ENTRIES) *

MAX_PACKET_BUFSIZE)/u_vm_page_sz);

 11

Figure 5. A multi-pipeline framework for stateful firewall processing between networks A
and B

In Figure 5, except for the green boxes labeled “gbe0” and “gbe1”, each box executes on a single

processing core resulting in twenty-three (23) cores being used in all. Essentially, a packet from

Network A enters the Tilera processor system through a network interface (gbe0, in this case).

The packet is read by the ingress packet processor (ipp) and passed along to the Linux kernel.

The kernel then executes a hash function to determine in which CPU’s packet queue the packet

under investigation should be enqueued. This hashing ensures that packets belonging to the

same session always get enqueued in the same CPU always (see description of FNV hashing

function above). Once a given packet is dequeued from the chosen CPU’s queue, the chosen

CPU runs the packet through the pre-routing functions. After passing though the pre-routing

functions, the packet is sent from the pre-routing CPU directly to the next CPU in the pipeline.

This next CPU will run the packet against a subset of the rules in the Netfilter iptable’s Forward

Table. If a packet is not dropped by any of its rules, it is forwarded in the same manner as before

to the next CPU in the pipeline to check the next subset of rules in the Netfilter’s Forward Table.

This process is done however many number of times as there are CPUs in the “Forward Table

Rule Processing” section of the pipeline. In this case, each CPU runs the packet through one

third of the rules in the Netfilter’s Forward Table because there are three CPUs in the section.

Once it is at the last CPU in the “Forward Table Rule Processing” section and has not been

dropped or stolen, the packet is forwarded to the post-routing CPU where it is run through post-

routing functions. Afterwards, the packet is sent to the egress packet processor (epp) and out

through the other network interface (gbe1, in this case) to Network B, completing a filtering

operation for an okay packet.

Currently, our modified kernel code builds (compiles) but is not fully functional as the kernel

“panics” after the hashing function has been performed and we try to spawn the first firewall

function on a different CPU core. However, we have been able to split up firewall rules

evaluation across multiple CPU cores.

 12

 13

3.3. From Juniper NetScreen to Linux iptables

3.3.1. Overview

The goal desired for this portion of the project is to perform a conversion of a firewall rule set

from one router appliance’s (Juniper firewall’s) language to another (Linux iptables). This has

been accomplished by studying both firewall rule languages and compiling all of the rules

required for a firewall policy. A mapping of simple (one-to-one) translations served as a

foundation for the effort, while a logic-based conversion was facilitated to complete the

remainder. Many portions of the rule set have been converted successfully, but there are some

documented minor issues. Logging mechanisms were the most difficult to directly convert from

NetScreen to iptables, thus causing the majority of the problems.

3.3.2. The code design process

This project section desired a successful conversion between firewall policies written with

Juniper Networks’ NetScreen [3] language to firewall chains written with the open-source tool

iptables [4]. While performing a manual conversion is certainly possible, such a method

becomes quickly impractical for large implementations or multiple configuration file

conversions. Therefore, a tool created to automate this process as much as possible was the

ultimate goal. Because of the requirements and the layout of the data, the Python programming

language was chosen.

Undertaking this task required a strong understanding of the layout of each firewall’s rule set

language, that is, Juniper NetScreen versus Linux iptables. There were many differences

between the two – their structures differed syntactically, functionally, and logically. For

instance, NetScreen firewall rules can relate groups of addresses (such as ports and Internet

Protocol addresses) together into an object which can be referenced from multiple policies, while

iptables does not have such functionality. Moreover, this object-oriented capability allows

NetScreen policies to reference lines of code which are disconnected from the actual policy to

which they are used. In contrast, iptables mandates that a specific order is followed within each

firewall chain to achieve the desired effect.

In order to combat these differences, the developed tool parses through the entire NetScreen

policies file and creates a list of all lines within the file which relate to a policy. This list is

stored as an object in an instance of a class that can be recalled at any point throughout the

program’s run time. Once the policies are ordered logically, the IP addresses and ports must be

associated to their appropriate object label.

Completion of the conversion is accomplished by iterating through each in-order policy line and

translating it to its equivalent chain line in iptables. This step requires two general methods: a

simple and a complex (logic-based) translation. The simple translation is comprised of a

dictionary of words or phrases which directly correlate between the two languages. This helps to

speed up the translation of rules, as a dictionary lookup averages in compute-time

complexity. The complex translation requires much more processing of each line, including

 14

cognizance of the structure and purpose of the line. For example, lines can be different lengths,

they can explicitly state “ANY” for a protocol/service or IP address object (which must be

handled very differently in iptables), or they can specify only an object. Handling these

disparities requires a complex decision structure in order to correctly classify each case.

There are some issues that have currently not been remedied in the converted rule set. One of

importance is caused by the incomplete translation of NetScreen logging rules to that of iptables.

For example, iptables does not have native capabilities to log a session at its initialization.

Because of this, it is difficult to correctly translate the initial session logging which is currently

being performed by NetScreen.

While the current code is expected to be functional for many of the converted policies, there are

more complicated cases which do not correctly translate. Logging (as mentioned above) is an

area for improvement, as is the ability to more directly associate objects with their names.

Additionally, a more effective strategy for handling chain rule organization is desired.

 15

4. CONCLUSION AND FUTURE WORK

This first year has focused on critical individual aspects needed for a high performance firewall.

In this process, our accomplishments are listed below:

 Deployed a stateful firewall code (iptables) on Intel system and verified basic firewall

functionalities;

 Ported iptables to a TilePro system, which involved building a Linux kernel module

(netfilter) into the default TilePro kernel and building user-space iptables code. This has

been demonstrated also to be functional. These first two items are currently

demonstrated on single cores only;

 Developed a ring-buffer-based packet distributor with fast packet hashing functions for

both the Intel and TilePro systems. This guaranteed that session states were maintained

correctly across firewall processing pipelines and is still undergoing optimizations;

 Developed a number of “passive-wire” methods that makes our firewall machines robust.

These methods exchange packets between network interfaces on our firewall-hosting

machine, where the interfaces are configured without IP addresses. This code serves two

purposes: (i) secure communication by ensuring packet exchanges between zones

(networks) always pass through our firewall as well as (ii) guaranteeing that the system

running the firewall can only be accessed via console, thereby eliminating opportunities

for it being hacked over the network. The code is passive because users between zones

are ignorant of its existence while being protected by the stateful firewall;

 Created the user-space fast inter-process communication code for Tilera many-core

processors. This code sends an arbitrary-sized buffer (typically packets) between firewall

tasks without going out to shared memory, thereby reducing contention in non-uniform

memory and providing higher performance via cache. This code has been ported to

kernel-space, but is still undergoing debugging;

 Created fast pre-processor code for stateless firewall. This setup allows us to mimic

conventional firewall setup where known stateless information can be used to minimize

unnecessary loading of states in a stateful firewall.

 Developed a translating code for porting rules in Juniper NetScreen language to Linux

iptables language. This allows us to run and compare our stateful firewall against typical

Juniper firewall for correctness and processing rates;

 Created a virtual testbed network that provides a safe and easy testing of kernel

modifications.

In the next year, we anticipate the completion of a parallel pipelined version of stateful firewall

processing which we will demonstrate on our many-core processors. In addition, we will

complete the optimization of our stateless firewall implementation to increase its processing rate.

Finally, we will conduct research into auto load-balancing of tasks within a processing pipeline

and deploy our solutions to reduce latency and processing time.

 16

 17

5. REFERENCES

1. Top 500 Supercomputer Sites (http://top500.org)

2. Fowler-Noll-Vo Hash function (http://forum.kalkulators.org/docs/fhash/specs/fnv1.pdf,

September 2011)

3. Juniper Networks NetScreen CLI Reference Guide

(http://www.juniper.net/techpubs/software/screenos/screenos5x/cli_5_0.pdf, September

2011)

4. Iptables(8) – Linux man page (http://linux.die.net/man/8/iptables, September 2011)

http://top500.org/
http://forum.kalkulators.org/docs/fhash/specs/fnv1.pdf
http://www.juniper.net/techpubs/software/screenos/screenos5x/cli_5_0.pdf
http://linux.die.net/man/8/iptables

 18

 19

APPENDIX A: METHODS TO ACHIEVE PUTTING A LINUX-BASED
FIREWALL IN PASSIVE-WIRE MODE

Description

The passive wire program utilizes two sets of threads. One set of threads is responsible for

reading network traffic from a raw socket bound to one network device and relaying the network

traffic to another raw socket bound to the another network device. The other set of threads

perform the same task except for that they relay network traffic in the opposite direction. All

threads are pinned to separate tiles to maximize efficiency. Additionally, spin mutexes are

implemented in place of sync mutexes to improve efficiency.

What Worked

- Threading the program

- Pinning threads to specific cores

- Relaying all network traffic using raw sockets

- Increased speed with spin mutexes as opposed to sync mutexes for reading/writing

What Did Not Work

Ability to filter network traffic using standard iptables/netfilter installation: Because raw sockets

were being used, copies of all incoming packets are sent to the sockets before passing through

the TCP/IP layer of the network stack. Since iptables/netfilter sits in the TCP/IP layer of the

network stack, packet filtering is not performed before the packets were sent to the raw sockets.

Network Throughput Testing

Description

In order to test the upper limits of the throughput of various firewall solutions, the program iperf

was used on two computers. Each computer running iperf was connected to one of the network

interfaces on the firewall machine. The computer running the client version of the iperf program

continuously sends packets of a specified size at a very high rate. These packets pass through

the firewall machine and to the other computer running the server version of iperf. After a set

amount of time, the average throughput of the packets is calculated and output to the screen.

Syntax

Client: iperf -c [ip_address_of_server] -M [packet_size[A]]

Server: iperf -s

[A]

 Because extra encapsulation is added to the packet when it is sent, the actual packet size is 28

bytes greater than the number put here. For example, if the option “-M 72” is used, then the

actual size of the packet sent is 100 bytes.

 20

Netfilter Hooks and Loadable Kernel Modules

Description

Netfilter hooks are used to grab packets traversing through Netfilter at various points to allow

Loadable Kernel Modules (LKMs) to analyze them and tell Netfilter what to do with them.

What Worked

- Grabbing packets from Netfilter hooks

- Analyzing packets (i.e. determine protocol, originating network interface, etc.)

- Tell Netfilter what to do with packet (i.e. accept, drop, steal, etc.)

What Did Not Work

Injecting packets obtained from raw sockets into Netfilter. Hooks can only be used to grab

packets already in Netfilter and tell Netfilter what to do with the last grabbed packet.

Comments

Testing of Netfilter hooks and LKM functionalities was done in a Virtual Machine running on a

machine with an Intel processor. None of these tests were performed on the Tilera architecture.

Bridging Network Devices

Description

A bridge is a device that connects two or more network segments by forwarding packets between

two network interfaces. Because the forwarding is done at Layer 2 (data link layer), the bridge is

protocol agnostic and transparent assuming the network interfaces are brought up without an IP

address. Traffic flowing between the network interfaces over a bridge can easily be routed

through iptables so that packet filtering can be done.

The following sections detail how to create such a bridge on the Tile64 architecture.

Cross Compile brctl Program

The brctl program is a user-space program used for creating and managing bridging devices.

$ git clone git://git.kernel.org/pub/scm/linux/kernel/git/shemminger/bridge-utils.git

$ cd bridge-utils

$ autoconf

 21

$./configure --host CC=tile-cc

$ make

The brctl binary will be located in the bridge-utils/brctl/ directory.

Modify Linux Kernel to Support Bridging

$ mkdir $SRC

$ cp -R TileraMDE-3.0.0.123096/tilepro/src/sys/linux $SRC

$ cd $SRC/linux

$ mkdir $BUILD

$ make ARCH=tile O=$BUILD defconfig

$ cd $BUILD

$ sh $SRC/tile-prepare

$ make menuconfig

Select the following:

Networking support

Networking options

Highlight the following and press ‘Y’ to enable:

802.1d Ethernet Bridging

Select the following:

<Exit>

<Exit>

<Exit>

<Yes>

$ make

Tilera Startup Script

tile-monitor –pci –vmlinux $BUILD/vmlinux –hvc [HVC_FILE] \

--upload bridge-utils/brctl/brctl /usr/bin/brctl \

--quit;

Bridging Script (run on Tilera card)

iptables Filtering Enabled
echo 1 > /proc/sys/net/bridge/bridge-nf-call-arptables

echo 1 > /proc/sys/net/bridge/bridge-nf-call-iptables

echo 1 > /proc/sys/net/bridge/bridge-nf-call-ip6tables

echo 1 > /proc/sys/net/bridge/bridge-nf-filter-pppoe-tagged

 22

echo 1 > /proc/sys/net/bridge/bridge-nf-filter-vlan-tagged

echo 1 > /proc/sys/net/ipv4/ip_forward

ifconfig -a [INTERFACE_0] up

ifconfig -a [INTERFACE_1] up

brctl addbr br0

brctl addif br0 [INTERFACE_0]

brctl addif br0 [INTERFACE_1]

ifconfig br0 0.0.0.0 up

iptables Filtering Disabled
echo 0 > /proc/sys/net/bridge/bridge-nf-call-arptables

echo 0 > /proc/sys/net/bridge/bridge-nf-call-iptables

echo 0 > /proc/sys/net/bridge/bridge-nf-call-ip6tables

echo 0 > /proc/sys/net/bridge/bridge-nf-filter-pppoe-tagged

echo 0 > /proc/sys/net/bridge/bridge-nf-filter-vlan-tagged

echo 0 > /proc/sys/net/ipv4/ip_forward

ifconfig -a [INTERFACE_0] up

ifconfig -a [INTERFACE_1] up

brctl addbr br0

brctl addif br0 [INTERFACE_0]

brctl addif br0 [INTERFACE_1]

ifconfig br0 0.0.0.0 up

[INTERFACE_0] can be replaced with gbe0 for 1GbE or xgbe0 for 10GbE

[INTERFACE_1] can be replaced with gbe1 for 1GbE or xgbe1 for 10GbE

 23

 24

DISTRIBUTION (Electronic Copies):

1 MS1319 Jim Ang 1422

1 MS1319 Bob Benner 1422

1 MS1319 Ron Brightwell 1423

1 MS1319 Kyle Wheeler 1423

1 MS0123 D. Chavez, LDRD Office 1911

1 MS0671 Mitch McCrory 5627

1 MS0671 Jay Patel 5627

1 MS1073 Curtis Johnson 5635

1 MS1027 Jeff Shelburg 5635

1 MS1073 Ben Cook 5641

1 MS1073 Joshua Johnson 5641

1 MS0806 Tim Berg 9336

1 MS0806 John Naegle 9336

1 MS0806 Uzoma Onunkwo 9336

1 MS0806 David Pearson 9336

1 MS0933 David Duggan 9516

1 MS0933 Brian Wright 9516

1 MS0933 Dave Zage 9516

1 MS0899 RIM-Reports Management 9532

 25

