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Abstract 

 

This report documents our first year efforts to address the use of many-core processors for high 

performance cyber protection.  As the demands grow for higher bandwidth (beyond 1 Gbits/sec) 

on network connections, the need to provide faster and more efficient solution to cyber security 

grows. Fortunately, in recent years, the development of many-core network processors have seen 

increased interest.  Prior working experiences with many-core processors have led us to 

investigate its effectiveness for cyber protection tools, with particular emphasis on high 

performance firewalls. 

 

Although advanced algorithms for smarter cyber protection of high-speed network traffic are 

being developed, these advanced analysis techniques require significantly more computational 

capabilities than static techniques.  Moreover, many locations where cyber protections are 

deployed have limited power, space and cooling resources.  This makes the use of traditionally 

large computing systems impractical for the front-end systems that process large network 

streams; hence, the drive for this study which could potentially yield a highly reconfigurable and 

rapidly scalable solution. 



  iv  

  



  v  

  

ACKNOWLEDGMENTS 
 

The authors would like to acknowledge that the work, which produced the results presented in 

this paper, was funded by the U.S. Department of Energy under Sandia’s Laboratory-Directed 

Research and Development (LDRD) Program. 

 

We also acknowledge the contributions of the following individuals, who influenced the 

direction, focus, and success of this research: 

 

Tim Berg (Project Manager, 9336) 

 

Theresa Keener (10694) 

 

Linda Bonnefoy-Lev (10694) 

 

Keith Vanderveen (8961) 

 

Roger Suppona (9317) 

 

Tan Thai (5630) 

 

We are also grateful for the great laboratory and experimental support provided by Diana Eichert 

(9338). 

 



  vi  

  

CONTENTS 
 

Glossary ........................................................................................................................................ vii 

1.  Introduction to many-core processors and cyber protection ...................................................... 1 
1.1. Overview of many-core systems ..................................................................................... 1 
1.2. Overview of cyber protection tools ................................................................................. 1 

2.  Stateless Firewall ....................................................................................................................... 3 
2.1. Design of firewall frontend ............................................................................................. 3 
2.2. Many-core implementation of stateless firewall processing ........................................... 5 
2.3. Results ............................................................................................................................. 5 

3.  Stateful Firewall ......................................................................................................................... 8 

3.1. Packet distributor using fast hashing and ring buffers .................................................... 8 
3.2. Extending iptables stateful firewall to many-core solution .......................................... 10 

3.3. From Juniper NetScreen to Linux iptables ................................................................... 13 
3.3.1.   Overview .......................................................................................................... 13 

3.3.2.   The code design process ................................................................................... 13 

4.  Conclusion and future work ..................................................................................................... 15 

5.  References ................................................................................................................................ 17 

Appendix A:  Methods to achieve putting a Linux-based firewall in passive-wire mode ............ 19 

Distribution (Electronic Copies): .................................................................................................. 24 

 

 

FIGURES 
 

Figure 1. Performance of pinned versus unpinned threads for raw-socket based passive-wire 

running on two cores of a TilePro (866 MHz) processor. ............................................... 4 

Figure 2.   Performance of raw-socket based passive-wire; threads are all pinned to cores. ......... 4 
Figure 3.  Packet processing rate as a function of number of rules and number of cores in a 

TilePro (866 MHz) processor. ......................................................................................... 6 

Figure 4. Conceptual model for multithreaded packet processing on a standard Intel architecture 9 
Figure 5.  A multi-pipeline framework for stateful firewall processing between networks A and B

........................................................................................................................................ 11 

 

 

TABLES 
 

No table of figures entries found. 



  vii  

  

NOMENCLATURE 
 

CPU Central Processing Unit of a processor 

DOE Department of Energy 

FNV Fowler-Noll-Vo non-cryptographic hash function 

FTP File Transfer Protocol 

IP Internet protocol (a network layer protocol) 

NIC Network Interface Card 

NUMA Non-Uniform Memory Access 

SNL Sandia National Laboratories 

TCP Transmission Control Protocol (a transmission layer protocol) 

UMA Uniform Memory Access 

 

 

 

 

 
GLOSSARY  

 

rule set a collection of multiple firewall policies or chains 

 

policy a grouping of firewall rules to accomplish a specific goal within a Juniper 

firewall rule set 

 

chain a grouping of firewall rules to accomplish a specific goal within an iptables 

rule set 

 

packet 5-tuple a set of identifying items in a packet’s header, namely (i) source IP address, (ii) 

destination IP address, (iii) source port, (iv) destination port, and (v) protocol 
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1.  INTRODUCTION TO MANY-CORE PROCESSORS AND CYBER 
PROTECTION 

 

1.1. Overview of many-core systems 
 

Many-core processors have gained prominence ever since the demonstration of higher 

performance rates using the early dual-core processors on super computers [1].  However, these 

processors never made special provisions for standard use in network traffic analysis.  Today, 

several teams have started exploring the applicability of new many-core processors for cyber 

protection with Tilera Corporation making a more direct solution optimized for network 

environments.  In our study, we considered two primary many-core processors – the Intel-based 

many-core systems and the Tilera-based network-on-a-chip processors.  Today, the Intel-based 

solution have significantly higher clocking rate, but smaller set of available cores partly due to its 

uniform memory access (UMA) architecture.  On the other hand, the Tilera-based solutions have 

lower clocking rates, but a much larger set (64 cores) of available CPUs with non-uniform 

memory access (NUMA). 

 

1.2. Overview of cyber protection tools 
 

Although no practical network system is ever fully secure, cyber protection tools are meant to 

provide means to drastically reduce network security failures – which could include a non-

functional network due to denial of service or an uninvited intruder access which can cause 

unfair compromises.  Good network systems typically employ two main cyber protection tools, 

namely network intrusion detection (NID) systems and firewalls.  The particular implementation 

of these tools can vary vastly based on algorithmic constraints. 

 

In our work, we have focused on the target cyber application being a firewall.  In actuality, we 

have addressed two forms of firewalls – stateless and stateful firewalls.  Stateless firewalls are 

designed to allow or deny traffic based strictly on whether network packets pass a series of 

matching question on the 5-tuples of a packet.  On the other hand, stateful firewalls keep track of 

states, which allow the firewall to identify “expected” behavior given not just the current 

condition but on its memory of previous network sessions that are active.  Stateless firewalls 

have a known vulnerability known as spoofing, so one may think of them as not so enticing for 

strongly protected networks.  However, in actuality, the use of stateless firewalls is 

recommended as long as they are combined with an advanced scheme (stateful firewall) which 

denies network access to bad actors.  As a front-end, the stateless firewall prevents access to 

already-known bad actors and reduces the amount of input to the more compute-intensive 

stateful firewall.  

 

In the sections that follow, we provide a description of the aspects of the firewall design we have 

focused on and a summary of our accomplishments in those areas.  The design aspects include 

the design of an efficient front-end for packet I/O, the distribution of work load to many-core 

systems and how this is affected by the logistics of stateless versus stateful firewall.  



  2  

  

 



  3  

  

2.  STATELESS FIREWALL 
 

2.1. Design of firewall frontend 
 

The frontend of our firewall refers to the section of code that pulls network packets and gets 

them to their respective processing units for firewall filtering operation.  As stateless firewalls do 

not have a notion of state but simply keeps track of just the current packet, it is important to note 

that packets can be processed out-of-order and by any core irrespective of whether packets 

belonging to that session went through a given processing core or not.  The performance of a 

firewall, in terms of processing rate, will always be at most equal to the rate at which the 

frontend performs its functions. 

 

Another logical decision we made in the frontend design is to set up a mode, we termed 

“passive-wire”.  This mode simply means that its existence between a corporate network and the 

outside network is not detectable by a regular user.  In other words, its network interfaces are not 

viewable over any side of the network and must be managed by logging onto the console of the 

machine running the firewall. 

 

To get a preliminary set of results on our performance, we initially performed the passive-wire 

experiments using raw sockets programming.  Raw sockets in Linux machines allows a user to 

put network interfaces of a standard machine in promiscuous mode thereby allowing it to ingest 

any packet on the network it is connected to.  We developed the threads-based program on a 

Tilera many-core system (TilePro processor) and showed the effects of explicitly pinning threads 

to cores.  A thread is a light-weighted process that can serve as a logical process holding a set of 

functions.  On a typical many-core system, threads can hop from one processing core to another 

during its execution time; this may be done by the operating system to emphasize fair share of 

CPU time on each processor.  However, during this process of migration, a thread’s program 

context keeps getting switched and can result in unnecessary overhead for high performance 

operations. 

 

In our design of the stateless firewall, we have chosen a thread-based model with a necessitated 

pinning semantics.  We illustrate the difference pinning makes by showing Figure 1, which 

contains a comparison of our passive-wire performance running on just two cores of the Tilera 

processor over its 1 Gbits/sec link.  The tests were conducted with a packet generation tool 

known as iperf. The iperf program was invoked as follows: 

 Client:   iperf -c [server_IP_address] -M [packet_size_in_bytes] 

 Server:  iperf –s 

 

Clearly, from Figure 1, we can see close to 60% increase in performance with packet size of one 

to two kilobytes when intentionally pinning threads to processing cores.  In a similar setup, we 

performed the passive-wire experiment but with increasing number of threads to see how using 

more cores increase the throughput performance.  The results are shown in Figure 2. 
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Figure 1.  Performance of pinned versus unpinned threads for raw-socket based passive-

wire running on two cores of a TilePro (866 MHz) processor. 
 

 

 

 

 
Figure 2.  Performance of raw-socket based passive-wire; threads are all pinned to cores. 
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2.2. Many-core implementation of stateless firewall processing 
 

This aspect covers the design and development used to drive towards a stateless firewall with 

high network processing rate. Our overall firewall system design is to have the stateless firewall 

serve as a preprocessor that eliminates known bad actors, thereby reducing processing overhead 

on the subsequent stateful firewall.  

 

There were two principal design decisions that we made. One was the standard decision of how 

to arrange the firewall rules so that analyzing incoming traffic is done as quickly as possible. 

This entails the use of replication of rules on each processing core or the execution of a proper 

subset of rules on each processing core, with the union of all subsets constituting the full firewall 

rule sets.  The replication method gains in simplicity but may lose in its management of 

instruction cache; persistent cache misses may result in wasteful trashing operations. The use of 

subsets typically leans towards a pipelined architecture, which does better for the instruction 

cache but may suffer latency or unbalanced load distribution. The second decision process was in 

how to design the many-core traffic handling system, while ensuring data (packet) consistency. 

 

We chose the replication method initially, so the way firewall rules are organized will not depend 

on how we handled the multi-core traffic handling design. This is because each core on the CPU 

will get a packet and will have to analyze it against all the rules in a specified configuration file. 

Thus, every core will need access to the same read-only data structure created as a result of the 

configuration file. Our configuration file allows for five-tuples packet filtering based on source 

and destination IP addresses, source and destination ports, and protocol. Anytime the 

configuration file bases a rule on an individual source or destination IP, our firewall uses hashing 

to create the rule. Each hash item then contains a linked list based on source/destination ports 

and protocol. For rules that allow for ranges for the source and destination IPs, there is a default 

linked list that contains all of those rules. 

 

With regards to the second decision, we chose the following algorithm to ensure data packet 

consistency: we adopted a front-end system involving a master thread and an arbitrary number of 

worker threads. The single master thread is responsible for reading in network packets, 

enqueuing them in a round-robin fashion to each worker thread’s queue, while the worker 

threads process these packets through the given firewall rules. Each worker possesses a queue 

implemented in a ring buffer data structure, which holds packets read in by the master thread.  

Due to the nature of ring buffers and the use of round robin scheduling, thread synchronization 

was not necessary. This was important because the stateless firewall needs to be as lightweight as 

possible to act as a useful preprocessor to the stateful firewall. By pinning each worker thread to 

a different CPU core, we know from Figures 1 and 2 that we gain in performance. 

 

2.3. Results 
 

In our tools, we have created two computer programs. The first is a tool that generates random 

set of firewall rules based on a packet’s 5-tuple.  Currently, these rules uses a uniform 

distribution over the entire range of IPv4 address and the entire range of ports.  It is this set of 
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rules that we ask our stateless firewall to use in filtering ingested packet streams and decide 

whether to pass or drop packets.  The second is the actual stateless processing of the firewall 

rules.  The two sub-figures in Figure 3 represent the same data but in different formats.  

Essentially, we plot the processing rate in bytes per second versus the number of cores used in a 

TilePro processor. 

 

 
Figure 3.  Packet processing rate as a function of number of rules and number of cores in 

a TilePro (866 MHz) processor. 

 

 

Currently, our code has not been fully optimized, but it is worth noting the preliminary results we 

obtained from our experiments.  Clearly, as the number of rules increase, the performance drops 

as the stateless firewalls have to do, on the average, a lot more filtering operations.  However, the 

scaling versus number of cores is almost linear (the horizontal axis is logarithmic) indicating that 

the NUMA in TilePro did not have significant impact at these rates.  The plateau in performance 

seen beyond 4 cores for the 1000 rule set is due to limited rate of the incoming traffic (about 920 

Mbits/sec). 

 

Our next step is to properly profile the performance of our stateless firewall and look for any 

bottlenecking function in the code, so we can apply any applicable optimization to those areas.  

Afterwards, we will conduct a correctness check, compare our performance with existing 

solutions, and test robustness on true networks.  
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3.  STATEFUL FIREWALL 
 

A stateful firewall needs the ability to not only inspect input packets based on current rule 

snapshot, but on previous inputs particularly those that belong to the same session.  A session in 

this sense can refer to an FTP file transfer session, where port numbers can change as a result of 

the protocol’s design.  Another example of a session can be a web traffic involving a single 

server, multi-client application.  Thus, unlike a stateless firewall that can allow a rogue packet to 

make its way into a protected network, a stateful firewall can deny such a packet because its state 

dictated that such rogue packet did not belong to an existing session or is not allowed to begin a 

new session. 

 

This all sounds good in theory, but in practice, there is are a number of difficult issues that must 

be solved satisfactorily to develop a high performance stateful firewall on a many-core 

processor.  One such challenge is that every computing system has a finite amount of memory, 

so states need to be managed efficiently keeping track of when to expire existing sessions to 

make room for newer sessions and prevent dropping otherwise good packet streams.  Another 

challenge is that all cores participating in the firewall processing need to have access to their 

relevant set of network states to perform the given filtering operations.  This access can be 

granted in a many-core processor by employing a dedicated space of memory for maintaining 

shared states across all cores or by using a hashing-based packet distributor, which will ensure 

that packets belonging to the same session are routed through the same cores every time.  In the 

next section, we describe our development effort for the latter on an Intel-based processor. 

 

3.1. Packet distributor using fast hashing and ring buffers 
 

In order to effectively utilize the multi-core nature of the current Intel architecture, we have been 

investigating the packet processing structure presented in Figure 4.  As an incoming packet from 

an outside network (Internet) is received at the incoming Network Interface Card (NIC), an 

initial “distribution core” determines which row of the conceptual architecture will process the 

packet.   

 

This distribution core uses a deterministic hash function to assign each incoming packet a value 

based on the hash of the numeric XOR of the source and destination IP addresses.  The XOR 

operation ensures the commutativity of the two addresses in the calculation, thereby ensuring 

that both to- and fro- packets go through the same processing core.  Currently, the hash space is 

divided equally between the different processing rows.   For example, on a four core machine, if 

there is one distribution core and three separate processing rows/cores processing the actual 

packets, the hash output range will be broken into three equal ranges.  Each of these ranges 

corresponds to a unique row processing queue.  In future efforts, ranges may be split unevenly to 

better distribute load or more than one range may map to a single queue, as incoming packets do 

not necessarily follow a uniform distribution stochastic process. 

 

Once a packet has assigned a hash value and thus a processing row, the packet is copied into 

memory in a ring buffer and a pointer to this memory is held in the queues as shown in Figure 4.  

As mentioned previously, each processing row has its own ring buffer-based thread-safe queue.  

If there is more than one processing element (core) in a processing row, the packet is passed 
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logically by passing the pointer to the data held in the ring buffer.   Once the packet is processed, 

it is forwarded on the outbound NIC to the Intranet. 

 
Figure 4.  Conceptual model for multithreaded packet processing on a standard Intel 

architecture 

 

Fast Hashing 

In order to deterministically distribute packets between different processing cores, we 

implemented an augmented version of the Fowler–Noll–Vo (FNV) non-cryptographic hash 

function.  The basic hash algorithm is the following [2]: 

 
As the hash relies solely on XORs and multiplications, it is efficient and lightweight. 

 

Circular Ring Buffer 

In order to efficiently store the incoming packets in memory for processing by one or more 

cores, we have implemented a circular ring buffer.  The implementation uses memory mapping 

of the buffer to two contiguous regions of virtual memory to improve performance. This allows 

for direct memory access to the buffer since all references to the buffer appear as a single 

memory block and any calling function does not have to deal with split buffer spaces every time 

the cycling of data reaches the end of buffer and wraps around to the beginning. 

Memory mapping allows the ring buffer to have sizes that are equal to some multiple of the 

operating system page size (typically 4096 bytes on most Linux-based machines).  In our case, 

hash = FNV_offset_basis 

foreach octet_of_data to be hashed 

    hash = hash  FNV_prime 

    hash = hash XOR octet_of_data 

return hash 
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the buffer size is allocated as a multiple of the page size times the estimated size of all of the 

packets in the queue to the nearest power of two as shown in the code snippet below: 

 
This code is written in standard C-Assembly code. 

 

Thread Safe Queue 

In conjunction with ring buffer, we have implemented a thread-safe queue in order to manage the 

order of the incoming packets and potentially enable the sharing of a ring buffer by more than 

one packet processing thread.  As seen in Figure 4, once the core responsible for distributing the 

packets determines which set of cores is responsible for processing a particular packet, a pointer 

to the memory location (currently in one of the circular buffers) is placed in the queue.  This 

allows the processing core to access the packet, perform some or all of the necessary processing 

on the packet, and then either send the packet out to the outbound NIC or allow the next 

processing core to work on the packet. 

 

3.2. Extending iptables stateful firewall to many-core solution 
 
As our team began exploring potential solutions for porting stateful firewall to many-core 

systems, it became apparent that Linux iptables was the best starting point.  All claims to 

functional stateful firewall code available all had iptables as their underlying basis.  For 

efficiency and effectiveness, iptables is built into kernel-space but unfortunately, this makes it 

rather difficult to explore for extension.  Regardless, we explored iptables and its functionality on 

a standard system builds and ported it onto a Tilera with demonstrated effectiveness. 

 

We then started with the next milestone of specifying which processing core(s) we want an 

iptables chain to run on.  We successfully developed and demonstrated this feature on a TilePro 

processor using modifications in its Linux kernel image.  Finally, we integrated the hashing 

function to allow for multiple spawning of cores to process iptables rules simultaneously.  Our 

setup is shown in Figure 5. 

 

 

  
 

int NearestPow2(int n) 

{ 

    int ret = -1; 

    __asm__ ( 

            "dec %1\n\t" 

            "movl $2, %0\n\t" 

            "bsrl %1, %1\n\t" 

            "roll %%cl, %0\n\t" 

            : "=q"(ret) 

            : "c"(n) 

            : "eax" 

            ); 

    return ret; 

} 

 

int32_t mmapsize = u_vm_page_sz * NearestPow2(((QUEUE_ENTRIES) * 

MAX_PACKET_BUFSIZE)/u_vm_page_sz); 
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Figure 5.  A multi-pipeline framework for stateful firewall processing between networks A 
and B 

 
In Figure 5, except for the green boxes labeled “gbe0” and “gbe1”, each box executes on a single 

processing core resulting in twenty-three (23) cores being used in all.  Essentially, a packet from 

Network A enters the Tilera processor system through a network interface (gbe0, in this case). 

The packet is read by the ingress packet processor (ipp) and passed along to the Linux kernel.  

The kernel then executes a hash function to determine in which CPU’s packet queue the packet 

under investigation should be enqueued.  This hashing ensures that packets belonging to the 

same session always get enqueued in the same CPU always (see description of FNV hashing 

function above).  Once a given packet is dequeued from the chosen CPU’s queue, the chosen 

CPU runs the packet through the pre-routing functions.  After passing though the pre-routing 

functions, the packet is sent from the pre-routing CPU directly to the next CPU in the pipeline.  

This next CPU will run the packet against a subset of the rules in the Netfilter iptable’s Forward 

Table.  If a packet is not dropped by any of its rules, it is forwarded in the same manner as before 

to the next CPU in the pipeline to check the next subset of rules in the Netfilter’s Forward Table.  

This process is done however many number of times as there are CPUs in the “Forward Table 

Rule Processing” section of the pipeline.  In this case, each CPU runs the packet through one 

third of the rules in the Netfilter’s Forward Table because there are three CPUs in the section.  

Once it is at the last CPU in the “Forward Table Rule Processing” section and has not been 

dropped or stolen, the packet is forwarded to the post-routing CPU where it is run through post-

routing functions.  Afterwards, the packet is sent to the egress packet processor (epp) and out 

through the other network interface (gbe1, in this case) to Network B, completing a filtering 

operation for an okay packet. 

 

Currently, our modified kernel code builds (compiles) but is not fully functional as the kernel 

“panics” after the hashing function has been performed and we try to spawn the first firewall 

function on a different CPU core.  However, we have been able to split up firewall rules 

evaluation across multiple CPU cores. 
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3.3. From Juniper NetScreen to Linux iptables 
 

3.3.1.   Overview 
 

The goal desired for this portion of the project is to perform a conversion of a firewall rule set 

from one router appliance’s (Juniper firewall’s) language to another (Linux iptables).  This has 

been accomplished by studying both firewall rule languages and compiling all of the rules 

required for a firewall policy.  A mapping of simple (one-to-one) translations served as a 

foundation for the effort, while a logic-based conversion was facilitated to complete the 

remainder.  Many portions of the rule set have been converted successfully, but there are some 

documented minor issues.  Logging mechanisms were the most difficult to directly convert from 

NetScreen to iptables, thus causing the majority of the problems. 

 

3.3.2.   The code design process 
 

This project section desired a successful conversion between firewall policies written with 

Juniper Networks’ NetScreen [3] language to firewall chains written with the open-source tool 

iptables [4].  While performing a manual conversion is certainly possible, such a method 

becomes quickly impractical for large implementations or multiple configuration file 

conversions.  Therefore, a tool created to automate this process as much as possible was the 

ultimate goal.  Because of the requirements and the layout of the data, the Python programming 

language was chosen. 

 

Undertaking this task required a strong understanding of the layout of each firewall’s rule set 

language, that is, Juniper NetScreen versus Linux iptables.  There were many differences 

between the two – their structures differed syntactically, functionally, and logically.  For 

instance, NetScreen firewall rules can relate groups of addresses (such as ports and Internet 

Protocol addresses) together into an object which can be referenced from multiple policies, while 

iptables does not have such functionality.  Moreover, this object-oriented capability allows 

NetScreen policies to reference lines of code which are disconnected from the actual policy to 

which they are used.  In contrast, iptables mandates that a specific order is followed within each 

firewall chain to achieve the desired effect. 

 

In order to combat these differences, the developed tool parses through the entire NetScreen 

policies file and creates a list of all lines within the file which relate to a policy.  This list is 

stored as an object in an instance of a class that can be recalled at any point throughout the 

program’s run time.  Once the policies are ordered logically, the IP addresses and ports must be 

associated to their appropriate object label. 

 

Completion of the conversion is accomplished by iterating through each in-order policy line and 

translating it to its equivalent chain line in iptables.  This step requires two general methods: a 

simple and a complex (logic-based) translation.  The simple translation is comprised of a 

dictionary of words or phrases which directly correlate between the two languages.  This helps to 

speed up the translation of rules, as a dictionary lookup averages      in compute-time 

complexity.  The complex translation requires much more processing of each line, including 
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cognizance of the structure and purpose of the line.  For example, lines can be different lengths, 

they can explicitly state “ANY” for a protocol/service or IP address object (which must be 

handled very differently in iptables), or they can specify only an object.  Handling these 

disparities requires a complex decision structure in order to correctly classify each case. 

 

There are some issues that have currently not been remedied in the converted rule set.  One of 

importance is caused by the incomplete translation of NetScreen logging rules to that of iptables.  

For example, iptables does not have native capabilities to log a session at its initialization.  

Because of this, it is difficult to correctly translate the initial session logging which is currently 

being performed by NetScreen. 

 

While the current code is expected to be functional for many of the converted policies, there are 

more complicated cases which do not correctly translate.  Logging (as mentioned above) is an 

area for improvement, as is the ability to more directly associate objects with their names.  

Additionally, a more effective strategy for handling chain rule organization is desired. 
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4.  CONCLUSION AND FUTURE WORK 
 

This first year has focused on critical individual aspects needed for a high performance firewall.  

In this process, our accomplishments are listed below: 

 Deployed a stateful firewall code (iptables) on Intel system and verified basic firewall 

functionalities; 

 Ported iptables to a TilePro system, which involved building a Linux kernel module 

(netfilter) into the default TilePro kernel and building user-space iptables code. This has 

been demonstrated also to be functional.  These first two items are currently 

demonstrated on single cores only; 

 Developed a ring-buffer-based packet distributor with fast packet hashing functions for 

both the Intel and TilePro systems.  This guaranteed that session states were maintained 

correctly across firewall processing pipelines and is still undergoing optimizations; 

 Developed a number of “passive-wire” methods that makes our firewall machines robust. 

These methods exchange packets between network interfaces on our firewall-hosting 

machine, where the interfaces are configured without IP addresses.  This code serves two 

purposes: (i) secure communication by ensuring packet exchanges between zones 

(networks) always pass through our firewall as well as (ii) guaranteeing that the system 

running the firewall can only be accessed via console, thereby eliminating opportunities 

for it being hacked over the network.  The code is passive because users between zones 

are ignorant of its existence while being protected by the stateful firewall; 

 Created the user-space fast inter-process communication code for Tilera many-core 

processors.  This code sends an arbitrary-sized buffer (typically packets) between firewall 

tasks without going out to shared memory, thereby reducing contention in non-uniform 

memory and providing higher performance via cache.  This code has been ported to 

kernel-space, but is still undergoing debugging; 

 Created fast pre-processor code for stateless firewall.  This setup allows us to mimic 

conventional firewall setup where known stateless information can be used to minimize 

unnecessary loading of states in a stateful firewall. 

 Developed a translating code for porting rules in Juniper NetScreen language to Linux 

iptables language.  This allows us to run and compare our stateful firewall against typical 

Juniper firewall for correctness and processing rates; 

 Created a virtual testbed network that provides a safe and easy testing of kernel 

modifications. 

In the next year, we anticipate the completion of a parallel pipelined version of stateful firewall 

processing which we will demonstrate on our many-core processors.  In addition, we will 

complete the optimization of our stateless firewall implementation to increase its processing rate.  

Finally, we will conduct research into auto load-balancing of tasks within a processing pipeline 

and deploy our solutions to reduce latency and processing time. 
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APPENDIX A:  METHODS TO ACHIEVE PUTTING A LINUX-BASED 
FIREWALL IN PASSIVE-WIRE MODE 

 

Description 

 

The passive wire program utilizes two sets of threads.  One set of threads is responsible for 

reading network traffic from a raw socket bound to one network device and relaying the network 

traffic to another raw socket bound to the another network device.  The other set of threads 

perform the same task except for that they relay network traffic in the opposite direction.  All 

threads are pinned to separate tiles to maximize efficiency.  Additionally, spin mutexes are 

implemented in place of sync mutexes to improve efficiency. 

 

What Worked 

- Threading the program 

- Pinning threads to specific cores 

- Relaying all network traffic using raw sockets 

- Increased speed with spin mutexes as opposed to sync mutexes for reading/writing 

 

What Did Not Work 

Ability to filter network traffic using standard iptables/netfilter installation:  Because raw sockets 

were being used, copies of all incoming packets are sent to the sockets before passing through 

the TCP/IP layer of the network stack.  Since iptables/netfilter sits in the TCP/IP layer of the 

network stack, packet filtering is not performed before the packets were sent to the raw sockets. 

 

 

Network Throughput Testing 

 

Description 

 

In order to test the upper limits of the throughput of various firewall solutions, the program iperf 

was used on two computers.  Each computer running iperf was connected to one of the network 

interfaces on the firewall machine.  The computer running the client version of the iperf program 

continuously sends packets of a specified size at a very high rate.   These packets pass through 

the firewall machine and to the other computer running the server version of iperf.  After a set 

amount of time, the average throughput of the packets is calculated and output to the screen. 

 

Syntax 

Client:  iperf -c [ip_address_of_server] -M [packet_size[A]] 

Server:  iperf -s 

 
[A]

 Because extra encapsulation is added to the packet when it is sent, the actual packet size is 28 

bytes greater than the number put here.  For example, if the option “-M 72” is used, then the 

actual size of the packet sent is 100 bytes. 
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Netfilter Hooks and Loadable Kernel Modules 

 

Description 

 

Netfilter hooks are used to grab packets traversing through Netfilter at various points to allow 

Loadable Kernel Modules (LKMs) to analyze them and tell Netfilter what to do with them.   

 

 

What Worked 

- Grabbing packets from Netfilter hooks 

- Analyzing packets (i.e. determine protocol, originating network interface, etc.) 

- Tell Netfilter what to do with packet (i.e. accept, drop, steal, etc.) 

 

 

What Did Not Work 

 

Injecting packets obtained from raw sockets into Netfilter.  Hooks can only be used to grab 

packets already in Netfilter and tell Netfilter what to do with the last grabbed packet. 

 

 

Comments 

 

Testing of Netfilter hooks and LKM functionalities was done in a Virtual Machine running on a 

machine with an Intel processor.  None of these tests were performed on the Tilera architecture. 

 

 

Bridging Network Devices 

 

Description 

 

A bridge is a device that connects two or more network segments by forwarding packets between 

two network interfaces.  Because the forwarding is done at Layer 2 (data link layer), the bridge is 

protocol agnostic and transparent assuming the network interfaces are brought up without an IP 

address.  Traffic flowing between the network interfaces over a bridge can easily be routed 

through iptables so that packet filtering can be done. 

 

The following sections detail how to create such a bridge on the Tile64 architecture. 

 

 

Cross Compile brctl Program 

 

The brctl program is a user-space program used for creating and managing bridging devices. 

 
$ git clone git://git.kernel.org/pub/scm/linux/kernel/git/shemminger/bridge-utils.git  

$ cd bridge-utils 

$ autoconf 
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$ ./configure --host CC=tile-cc 

$ make 
  

The brctl binary will be located in the bridge-utils/brctl/ directory. 

 

 

Modify Linux Kernel to Support Bridging 

 
$ mkdir $SRC 

$ cp -R TileraMDE-3.0.0.123096/tilepro/src/sys/linux $SRC 

$ cd $SRC/linux 

$ mkdir $BUILD 

$ make ARCH=tile O=$BUILD defconfig 

$ cd $BUILD 

$ sh $SRC/tile-prepare 

$ make menuconfig 

 

Select the following: 

Networking support 

Networking options 

 

Highlight the following and press ‘Y’ to enable: 

802.1d Ethernet Bridging 

 

Select the following: 

<Exit> 

<Exit> 

<Exit> 

<Yes> 

 

$ make 

 

 

Tilera Startup Script 

 
tile-monitor –pci –vmlinux $BUILD/vmlinux –hvc [HVC_FILE] \ 

--upload bridge-utils/brctl/brctl /usr/bin/brctl \ 

--quit; 

 

 

Bridging Script (run on Tilera card) 

 

iptables Filtering Enabled 
echo 1 > /proc/sys/net/bridge/bridge-nf-call-arptables 

echo 1 > /proc/sys/net/bridge/bridge-nf-call-iptables 

echo 1 > /proc/sys/net/bridge/bridge-nf-call-ip6tables 

echo 1 > /proc/sys/net/bridge/bridge-nf-filter-pppoe-tagged 
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echo 1 > /proc/sys/net/bridge/bridge-nf-filter-vlan-tagged 

echo 1 > /proc/sys/net/ipv4/ip_forward 

ifconfig -a [INTERFACE_0] up 

ifconfig -a [INTERFACE_1] up 

brctl addbr br0 

brctl addif br0 [INTERFACE_0] 

brctl addif br0 [INTERFACE_1] 

ifconfig br0 0.0.0.0 up 

 

iptables Filtering Disabled 
echo 0 > /proc/sys/net/bridge/bridge-nf-call-arptables 

echo 0 > /proc/sys/net/bridge/bridge-nf-call-iptables 

echo 0 > /proc/sys/net/bridge/bridge-nf-call-ip6tables 

echo 0 > /proc/sys/net/bridge/bridge-nf-filter-pppoe-tagged 

echo 0 > /proc/sys/net/bridge/bridge-nf-filter-vlan-tagged 

echo 0 > /proc/sys/net/ipv4/ip_forward 

ifconfig -a [INTERFACE_0] up 

ifconfig -a [INTERFACE_1] up 

brctl addbr br0 

brctl addif br0 [INTERFACE_0] 

brctl addif br0 [INTERFACE_1] 

ifconfig br0 0.0.0.0 up 

 

[INTERFACE_0] can be replaced with gbe0 for 1GbE or xgbe0 for 10GbE 

[INTERFACE_1] can be replaced with gbe1 for 1GbE or xgbe1 for 10GbE 
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