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ABSTRACT 

The below overview is designed to give the reader a limited understanding of Bayesian and 

Maximum Likelihood (MLE) estimation; a basic understanding of some of the mathematical 

tools to evaluate the quality of an estimation; an introduction to energy methods and a limited 

discussion of damage potential. This discussion then goes on to presented a limited presentation 

as to how energy methods and Bayesian estimation are used together to qualify components
i
. 

Example problems with solutions have been supplied as a learning aid. Bold letters are used to 

represent random variables. Un-bolded letter represent deterministic values. A concluding 

section presents a discussion of attributes and concerns.  
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Bayesian estimation is a mature field that has been proposed for use with energy methods to 

qualify system components [ref 1]. The below work is an explanation of the Bayesian approach 

and limited aspects of estimation theory (sections 1 through 3) followed by a discussion of 

damage potential (section 4). The use of total energy as a statement of damage is addressed. The 

final portion of the paper integrates the concept of total energy as an indicator of damage 

potential and Bayesian estimation as a potential path to component certification. 

1) Bayesian Estimation 

In sections 1 through 3, common tools used in estimation theory are presented. In section 1, 

Bayesian and Likelihood estimation is presented and in section 2, a common curve fitting tool is 

presented. In section 4, the concept of credible bounds is presented as it applies to Bayesian 

estimation. 

In Bayesian estimation, it is desired to predict the joint density of parameters,       , defining a 

density function        , given experimental data,                where   .are 

experimental samples assumed to come from       . This prediction is performed using Bayes 

rule 

       
            

    
  (1) 

where   is the vector of parameters in question. For example, if            
  , then   

       . In Bayesian estimation, these parameters are assumed to be random variables  .  The 

function       is called the prior and the density        is called the posterior estimate. The 

function         is called the likelihood function. The likelihood function is constructed from 

data,   and using the prior and the likelihood function, the posterior density,       , can be 

estimated. 

Consider the situation where 

                         
  

 

 
 
 

, (2) 

a two parameter Weibull density function where         ,         . This density function 

is attractive in that it is a member of the class of densities where the exponent of the exponential 

is   to a power where the power is a parameter used to define the density. Therefore, the tails of 

the density can be estimated by fitting data near to the mean. This is particularly important in 

reliability and safety considering that such predictions are dominated by the response of the tails.  

If a set of components are subjected to an environmental test which drives them to failure, each 

will fail at different times (or levels),   . This set of failures represents a collection of data 

             . Considering that each test does not affect the results of any other test, we can 
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consider each test as being independent of the other allowing us to calculate the likelihood 

function as 

                         
      

  
  
 
 
 

 
 

 
 .  (3) 

where          is here on assumed.  

In many cases, the prior is not a very accurate representation of the density of   and is often open 

to interpretation. However, as the amount of data is increased, the significance of inaccuracy in 

the prior is diminished (see example problem below). For simplicity, it is often assumed that the 

prior can be represented by independent density functions for each parameter. That is 

                .  (4) 

Substituting equation 4 and 3 into equation 1, gives 

               
      

  
  
 
 
 

           
 
   (5) 

where  

 

 
              

      
  

  
 
 
 

              
 
   

is used to normalize the density function       . 

Following a Bayesian approach, to obtain a updated version of          we simply integrate out 

 . That is, using equation 2 and equation 5 

                          .  (6) 

Generally, this integration cannot be performed in closed form. Therefore, numerical methods 

are used. Equation 6 is the estimate of       given   – our Bayesian result. 

A deviation from the Bayesian approach is the maximum likelihood approach. In this approach, 

we simply use the values in the likelihood function (equation 5), that maximize the function as 

the estimate of the parameters. 

EXAMPLE PROBLEM 1 

To illustrate the above discussion, we first developed data which is drawn from the equation 2 

density. This is performed by using the cumulative distribution function 

              
 

  
      

  
 

 
 
 

  (7) 

and mapping from a uniform density through its inverse. That is 

        
 

   
  

 

 
  (8) 
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where         . Here, we assume that this represents data that would otherwise come from 

experimental analysis. A 1000 sample histogram of this data for        and        is given 

in Figure 1 (i.e. superscript * are exact values). 

 
Figure 1. Histogram of data from a Weibull density with       and      ; 1000 points are shown; as 

the number of points goes to infinity the normalized histogram approaches the true density function 

As shown in this figure, a normalized version of the emerging function does looks like a 

Weibull; nevertheless, the number of samples required to discover this underlying form is very 

large (100’s to 1000’s). 

One of the benefits of using a Bayesian approach is that if the form of the density is known, the 

number of samples required to determine the parameters of the density is limited (10’s to 100’s 

of samples). 

For priors              and                and only 10 samples of data (given in table 1), the 

function        can be calculated using equations 1 through 5. A figure of this function is given 

in Figure 2.  

Table 1. Random points from W(1.0,2.0) 

0.5143 1.1204 1.2134 0.9434 1.4363 

0.7779 2.0324 0.5487 1.0832 0.9530 
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Figure 2.           for               as given in table 1, M=10 

This function is similar to the likelihood function        but is scaled and clipped at the 

boundaries by the prior. As expected, its maximum value occurs at values very similar to the true 

values of         and       . Using equation 5 and 6, a prediction of the density that this 

data came from can be made by integrating out the parameters  . This prediction,        , is 

shown in Figure 3 (green curve). Notice that the prediction is not exact (blue curve) however 

given that more than an order of magnitude more data was required to produce Figure 1 than to 

produce Figure 3, it is a relatively good fit.  

If all of the data samples are truly from a Weibull density, as the amount of data used to compute 

the likelihood function increases, the posterior density approaches a Dirac delta function 

centered at    and   . Therefore, as the amount of data increases, the prior become less 

important. This reduces the need to have accurate priors since any prior with non-zero value at 

   and    will give the same answer. 
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Figure 3. Prediction (green) versus the original (blue) density using 10 data points 

The maximum likelihood approach can also be used to estimate the density function for the 10 

samples of data given in table 1. This estimate is also given in Figure 3 (red line). The answer is 

not much different from the Bayesian solution with a uniform prior. 

2) Weibull Paper 

In order to determine if the sample data fits a Weibull, we can plot the data with its estimate and 

compare the results. For this, Weibull paper is used. Letting          
 

       
   and   

     , equation 6 becomes 

            ,  (9) 

a straight line where the slope of this line is    and the intersection of the line with the ordinate is 

a function  .  

Figure 4 contains a picture of Weibull paper. On the ordinate is plotted       
 

       
   where 

the values of           have been labeled. On the abscissa is the value of       where the value 

of   have been labeled.  When    ,                 Therefore,   is the value of the abscissa 

with an ordinate value of 63.2 and the slope of line is measured to determine  .  

The use of Weibull paper to estimate the parameters of the density assumes that values of       

are known (or that they can be approximated from measured data). This may require much more 

data than was used to obtain an estimate of the parameters using the Baysian or likelihood 

approach. 
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_________________________________________________________________________ 

EXAMPLE PROBLEM 2 

Using the data in table 2, we can approximate the function       using a frequentist approach. 

That is 

               
 

   
   (11) 

where                                           

Table 2. Random points from W(1.0,2.0) 

0.0685 0.1079 0.1084 0.1280 0.1403 0.1660 0.1924 0.2492 0.2607 0.2644 

0.3170 0.3423 0.3554 0.3578 0.4058 0.4196 0.4230 0.4337 0.4694 0.4712 

0.4724 0.5009 0.5066 0.5276 0.5305 0.5465 0.5577 0.5632 0.5776 0.5982 

0.6100 0.6136 0.6207 0.6270 0.6304 0.6310 0.6783 0.7326 0.7591 0.7759 

0.7907 0.7928 0.8033 0.8204 0.8258 0.8575 0.8615 0.8686 0.8758 0.8791 

0.8797 0.8957 0.9381 0.9524 0.9554 0.9609 0.9663 0.9670 0.9675 0.9728 

0.9791 0.9956 1.0335 1.0363 1.0545 1.0637 1.0672 1.0770 1.0843 1.0873 

1.0934 1.1049 1.1417 1.1743 1.1838 1.1952 1.2028 1.2443 1.2479 1.2638 

These results are given in table 3. 

Table 3. An estimate of       using table 2 data 

                  
0.3940 0.1400 14.0 

0.7881 0.4000 40.0 

1.1821 0.7400 74.0 

1.5762 0.9100 91.0 

This data can then be plotted on Weibull paper as shown in Figure 4. Again, the slope of this line 

is   and the value of   is the ordinate value for an abscissa value of 63.2. As shown on this plot, 

             . 

 
Figure 4. Using Weibull paper to determine   and   
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_____________________________________________________________________________________ 

3) Credible bounds 

In sections 1 through 3, the parameters of the density function       were treated in a statistical 

fashion. Therefore, any result using this density function can also be viewed statistically 

resulting in a statistically representation of its statistics. This is often stated in terms of a 

confidence or credibility bound. For example, given      ,         can be calculated. 

However since       are random,         is random with cumulative distribution function 

     . This implies that there is some finite probability      that the true probability,  , is 

within the range {    ,     } where            and             . The range, 

{    ,     } is referred to as the      percent confidence bound on the statistic. In Bayesian 

estimation this bound is not based directly off of the statistics of   but is a function of the 

parameters of       which involves a prior. Therefore, this bound is not referred to as a 

confidence bound but as a credible bound.  

The problem of finding a credible bound involves producing random samplings of the random 

variables and then performing Monte Carlo analysis. A difficulty in this approach is the 

production of samplings of the random variable when the random variables are not independent. 

Equation 5 is not Weibull and cannot be represented as the product of marginals (i.e.  and   are 

not independent variables). 

To overcome this difficulty a non parametric conditional density approach is used. First, the 

marginal of one of the parameters is determined. Here, assuming a Weibull, we first find the 

marginal of   as 

             
 

 
   .  (12) 

In return, the cumulative marginal density function of   can be calculated as  

            
 

 
  .   (13) 

To determine a random sampling of   an approach similar to that used in example problem 1 is 

used where        
   and         . Once   is chosen, it is no longer a random variable but 

is treated as a given. Therefore, since the data is not independent, to find a random sample of  , 

the given value of   must be considered. This is performed by using the conditional density 

        
        

           
 .   (14) 

As in equation 13,  

                
 

 
     (15) 

and          
   where         . 
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EXAMPLE PROBLEM 3 

To illustrate how to sample a joint density that does not contain independent variables, we return 

to example problem 1. Figure 5 is a two dimensional view of the density function        shown 

in Figure 2. The parameters are not independent since it is not possible for two marginals to be 

multiplied together to produce this function. 

 
Figure 5. Figure 1 in a 2-D view 

Following the above approach, the marginal density for   is shown in Figure 6. Also shown in 

this figure is a randomly chosen point. The density for   conditioned on this   is also shown in 

Figure 6. From this density function a random variable for   can be chosen (i.e. by mapping a 

uniform density through its inverse). The conditional density function for   must be calculated 

for each randomly sampled value of  . 

 
Figure 6. Left: cumulative distribution function for  ; the point represents a random value; Right: the 
conditional cumulative distribution function for   conditioned on the point that was chosen for   
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Figure 7 shows an ensemble of sampled data for the joint density shown given in Figure 5. Using 

a Parsen’s windows
ii
, the joint density can be reconstructed (also given in Figure 7). Notice that 

Figure 5 and the right figure in Figure 7 are very similar as they should be. 

 
Figure 7. Left: ensemble of sampled data for the joint density in Figure 5; Right: reproduction of joint 
density function using Parsen’s windows 

With an ensemble of sampled data, a prediction of credible bounds can be estimated using Monte 

Carlo. Figure 8 Shows the 5% credible bounds (i.e.         for         (reliability) where 

      is W(1.0,2.0).  

 
Figure 8.  5% credible bounds for the complementary cumulative distribution function for data with a 
posterior density        where   is given in table 1 

_____________________________________________________________________________________ 
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4) Damage Potential 

In sections 1 through 3, a number of common estimation tools where presented to fit or to 

determine the quality of an assumed distribution given experimental data. In this section, the 

concept of damage potential will be presented as will the concept of total energy as an indicator 

of this potential. In the next section, the results of this section will be integrated with the above 

sections to present a proposed method of component certification. 

Components must survive environments as specified by the stockpile to target sequence (STS). 

These environments are divided into two sets of environments - normal environments and 

abnormal environments. Normal environments are those environments which the weapon system 

is expected to operate reliably within (these include hostile environments by definition). 

Abnormal environments are environments for which the weapon system is not required to 

operate reliably within, but in which, it must be safe (i.e. the required minimum possibility of a 

blinding white flash). The weapon is not expected to encounter abnormal environments during its 

life but might encounter such an environment. Abnormal environments would include plane 

crashes, fuel fires and hydrostatic crush. 

Components within the weapon system must be designed to function such that the overall 

reliability and safety of the weapon system meets probabilistic requirements as defined in the 

military characteristics (MCs). These statistical requirements are different for the normal and 

abnormal environments and for different aspects of the life of the weapon system. 

System level insults (as defined in the STS) determine component level responses via a 

transmission path from the system environment to the component. In the past, component 

environments were deduced by subjecting the weapon system to an experimental system level 

insult and then measuring the response of a prototype or a mass mockup of the component. This 

response was then used to define specifications for component design through a number of 

different methods. These specifications were presented in terms of quantities designed to signify 

the potential to damage the component. In this regard, these quantities were a statement of 

damage potential. By following this process, the testing of components could be transferred from 

the system level to the laboratory resulting in a more cost effective certification process. 

Here we focus on two quantities used to specify damage potential – a shock response spectrum 

and an energy spectrum. As shown in figure 9 (and as stated above) the response of a component 

(or mockup) is measured while the system is subjected to a system level insult. This acceleration 

response is then applied to a math model to calculate a form of damage potential. For discussion 

here, this math model is a set of second order linear oscillators with the same acceleration input 

at the base of each. Each second order oscillator is tuned to a different natural frequency      

where                  and so on.  The min-max SRS measure of damage potential is a 

plot of the maximum acceleration of each mass as a function of natural frequency. The 

hypothesis behind damage potential using the SRS approach is that a more severe insult to the 
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component can be constructed if its SRS envelops the SRS of the component response seen 

during a system level insult. 

An SRS is an attractive method for representing damage potential considering that several SRS’s 

can be enveloped to determine a component environment       that has “greater” damage 

potential than any enveloped environment. Enveloping is important considering that not every 

acceleration environment can be produced in the laboratory. However, by enveloping a set of 

measured SRS’s with an SRS that can be produced in a laboratory, we can state that if the 

component survives the laboratory test, it will survive in the system level environment.  

 
Figure 9. A min-max SRS is determine by applying an enforce acceleration at the base of a set of second 
order oscillators and determining the peak acceleration response; The SRS is a plot of these peaks as a 
function of natural frequency 

The SRS method of stating damage potential for shock inputs is a legacy method with a large 

amount of experimental data that justifies its use. Nevertheless, there are many criticisms to its 

use. 

External environmental 

stimulus 

Component response 

acceleration time history 

   

      

   

      

   

      

                  

      

      

      

    

               

Peak g calculation 

               

    

    

    

Min-Max Shock Response Spectrum 

Ordered natural frequency 
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 The SRS cannot be tied back to the military characteristics of the weapon system which 

are stated in terms of probabilities. The SRS is a hard bound where the component either 

survives the bounding environment specified by the SRS or it does not.  

 The SRS does not allow for damage accumulation. The SRS damage potential criterion is 

the same for a component that is shocked once or multiple times
iii

. 

 There is no provision for including temporal information. The SRS is not unique. The 

same SRS could have come from different waveforms
iv

. 

 The SRS statement of damage potential cannot be compared to other statements of 

damage potential. In particular, it is difficult to make a connection between an SRS and a 

power spectral density (PSD). 

 The SRS is very heuristic. This is no strong theoretical argument connecting peak 

acceleration of a set of second order systems to the failure mechanisms of a component. 

The reason for using an SRS is based primary upon a plethora of experimental evidence. 

As a result, alternatives to the SRS method have been sought. One alternative is to use energy as 

a statement of damage potential. The energy spectrum starts with the same set of oscillators 

shown in Figure 9. The difference between the energy spectrum and the SRS is that the energy 

spectrum is stated in terms of energy into an oscillator, not in terms of its peak acceleration 

response. Figure 10 shows the response of a single second order oscillator. Given the enforced 

acceleration,     , the energy distribution per unit mass of this oscillator obeys the relationship
v
 

             (16) 

where 
  

  
 

  
 

 
, is the kinetic energy;  

  

  
 

 

  
     

   , is the dissipated energy; 
  

  
 

 

  
         , is the absorbed energy;  

  

  
          

        

  
; is the input energy and 

where                and               . 

 

Figure 10. Second order oscillator and energy response; the input is a 0.002 second, 1000g Haversine; 

the system is tuned to a natural frequency of 300 rad/sec (48Hz) with modal damping at 3% 

   

      

     ,      ,     , 
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As expected, the kinetic energy and absorbed energy oscillate and fall in amplitude as the 

dissipated energy rises. Over time, the total input energy is dissipated. As stated above, 

  

  
         .  (17) 

Following the work of Ordaz et. al.
vi

 ,  

                     (18a) 

where  

        
  

           
   (18b) 

               ,                ,    
  

  
,   

  

   
 and  

                  
 

  
        

    

  
     (18c) 

Substituting equation 18b into equation 18a, and the result into equation 18c and 17, gives 

  

  
 

 
 

  
                   

    

  
       

 

  
            
 

  
        

          

 
 

  
                  
 

  
    

 

  
               
 

  
   . (19a) 

From equation 18b,       , is conjugate symmetric. Therefore,
vii

 

  

  
  

 

 
                   
 

 
  .    (19b) 

This can also be written as  

  

  
  

 

  
         
 

  
    (19c) 

where  

                 .  (19d) 

Equation 19b states that the energy input to the    second order oscillator is the negative of the 

integrated filtered acceleration signal energy. This is the input energy spectrum of the 

acceleration time history      . 

 

EXAMPLE PROBLEM 4 

To illustrate the above equations, we will calculate the energy spectra for a Haversine where 
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The input time history is shown in Figure 11a. The magnitude of the Fourier integral transform 

(calculated using DFTs) is shown in Figure 11b, and the input energy spectrum is shown in 

Figure 11c. Notice that the input energy spectrum shows a response for frequencies beyond 

where there is content in the Fourier integral transform (similar to an SRS response). Also notice 

that there is ringing in the response at DC. This is due to the fact that                     

 . 

 
Figure 11. Upper left a): time history of acceleration input; Upper right b): frequency response of 

acceleration input: Lower c): input energy spectra; the ringing at zero natural frequency is due to 

numerical error 

To further illustrate the energy spectrum, consider the input  

          
                 

 

   
 

where the parameters are given in the below table 

           

1 1000 100 500 

2 1000 150 200 

3 900 100 350 

The filter            goes 

to infinity at zero 

frequency and natural 

frequency leading to 

numerical error at low 

natural frequencies when 

integrating equation 19b. 

a) b) 

c) 
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Then the time history, frequency spectrum and energy spectrum are as given below. 

 
Figure 12. Upper left a): time history of acceleration input; Upper right b): frequency response of 
acceleration input: Lower c): input energy spectra 

 

5) Severity 

In the initial portions of this paper, it was shown how Bayesian estimation could be used to 

predict the parameters of a two parameter Weibull density. This was performed with the use of a 

likihood function (equations 3) which was constructed using experimental data (  . The 

variable,    in the Weibull density can stand for a number of different physical quantities. 

Traditionally,  , represents the time to failure of a component subjected to a continuous stimulus. 

However, using an energy approach, the variable   represents severity, a function of the energy 

spectrum. Following reference 1, severity, S, is defined to be the expected value of margin, M, 

where margin is defined to be 

   
   

   
       

 
   

   
   

       
 
   

,  (eq. 20) 

a) b) 

c) 
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N is the number of modes considered,    is the modal participation factor for the     component 

mode,   
        is the energy spectrum of the component response at the     natural frequency of 

the component, and   
        is the energy spectrum of a specification at the     natural 

frequency. The modal participation factors and the natural frequencies for this calculation must 

come from an experimental realization or from a numerical representation of the component. 

Returning to equation 7 and assuming a Weibull density, the probability of the failure of a 

component can now be represented as  

         
  

 

 
 
 

  (eq. 21) 

which can be determined experimentally by subjecting a number of components to increasing 

levels of S until failure occurs, recording these S values at failure and then using Bayesian or 

likelihood estimate to determine the parameters      . As presented above, this also allows for a 

prediction of credible bounds.  

Equation 21 can be used to determine the probability of a component failing in any environment 

of known severity. This, in return, can be used in fault tree analysis to determine if the reliability 

of the weapon system is met or in a safety analysis to determine if Walkse or normal 

environments MCs are satisfied.  

 

EXAMPLE PROBLEM 5 

Consider the situation where the acceleration response in a given component direction in a 

bounding environment is given by the time response in Figure 12a. This time history represents a 

specification that the component must not fail to within a given level of probability. 

Nevertheless, this is not a time history that can be reproduced within a laboratory environment.  

The time history in Figure 11a can be produced within a laboratory environment using a drop 

table and programming material. It is desired to relate these two insults in terms of their severity. 

To do this, the uncertainty, natural frequencies and participation factors at the point of the 

acceleration measurement must be known.  

A numerical model of the component is constructed and the natural frequencies and participation 

factors are calculated as given in the below table. Here, it is assumed that the uncertainty in the 

natural frequencies and participation factors are minimal and therefore the margin is the severity. 

Also shown in this table are the values of the input energy spectrum of the specification and 

laboratory insult. 
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laboratory spectrum 

  
        

specification spectrum 

1 520 0.3 1.1649 0.0504 

2 210 0.1 1.5727 0.1831 

3 365 0.9 1.4261 0.1060 

Using equation 20, the severity of the laboratory insult is 0.072. Relative to the energy metric, 

this is an under test. 

 

6) Discussion 

A number of different topics have been cover in this paper. Each of these has a different level of 

maturity and is acceptable to different levels.  

Bayesian and likelihood estimation 

Bayesian estimation is a very mature area of analysis that is built on a strong mathematical 

framework with historical benefits and complications.  

 The priors used in Bayesian estimation are almost never known: Nevertheless, 

for the situation where there is a large amount of data, this shouldn’t make 

much of a difference considering that as the amount on information grows, the 

solution is less and less a function of the prior. However, for limited data, this 

is not the situation. One way around this problem is to assume that nothing is 

known about the parameters other than the form of the density function and 

that the parameters of the density function are bounded. Using maximum 

entropy, this infers a uniform prior density function across the bounded range. 

The result is that the estimate is the expected value of the parameters within 

the range. Another method to determine these parameters is the likelihood 

method which simply takes the value of the parameters at the peak value of 

parameter density. The problem is that the resulting likelihood estimate does 

not have to equal the expected value of the function derived from the 

Bayesian approach and therefore, there is always a questions as to which is the 

better estimate – the Bayesian solution or the Likelihood solution.  

 For both the Bayesian and likelihood methods, the form of the density function 

must be known: In general, this is a difficult assumption to justify, but without 

large amount of data and with limited options, such an approach is often 

taken. 

Damage potential 

Experimental analysis in the laboratory is less costly and time consuming than full scale 

experimental analysis. Therefore, there is a strong desire to take any experimental analysis of a 

component out of the full scale environment and to move it into the laboratory. Nevertheless, 
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moving from the full scale environment to a laboratory environment is froth with potential 

errors. 

 There are only a limited number of insults that can be produced in a laboratory 

environment: More common types of insults are Haversine shocks (produced 

by drop tables), frequency limited random excitations (produced by shaker 

tables), and resonant plate tests (produced using a Hopkinson bars and 

resonant plates). None of these acceleration time histories exactly mimic time 

histories seen by components in real environments. Moreover, none of the 

machines that produce these time histories mimic the mechanical impedance 

seen by components in full scale environments. Therefore, there is a need to 

connect the potential for components to fail within the laboratory to the 

potential for components to fail in system environments. This is done using 

the SRS and/or energy methods (and other methods not discussed here). As a 

result, the quality of the results is highly dependent on the underlying 

assumptions used in each of these methods to quantify damage and no method 

is perfect. 

 The SRS uses the peak acceleration response of the parallel resonator system 

given in figure 9 to deduce an enveloping laboratory insult: Nevertheless, the 

form of this parallel system cannot be generalized to the physics of all 

components and peak acceleration cannot be generalized to all forms of 

damage. In this regard, the SRS is not based upon a strong theoretical 

argument that encompasses many forms of physics and failure. Nevertheless, 

SRS’s are broadly used in experimental analysis to certify components 

throughout the engineering world. This is not because it has a strong theoretical 

basis, but because they have a strong historical basis which is back up by 

extensive experimental evidence. 

The above energy method uses the same parallel resonator system as the SRS to 

gage the potential for energy flow into the component, but goes further by 

including the physics of the component to determine if the component is 

susceptible to this flow. For example, the energy spectrum of the specification 

may be band limited over a range of natural frequencies for which the 

component cannot accept energy (i.e.    
   

         ). For this type of insult the 

severity is zero and therefore so is the damage potential. The SRS assumes 

(quite conservatively) there is a mode of vibration at every frequency and 

therefore there is some potential for damage to the component even for this type 

of situation. 

 The energy method (as described above) is a proposed improvement over the SRS 

but is not a panacea: The key assumption is that insults with equal energy flow 

into the component will have equal damage potential.  
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o As a minor note, the modal damping in equation 18b is not a 

function of component dynamics. Therefore, the margin (equation 

20) does not truly represent the ratio of energies into the 

component in the presence of the specification over the energy 

into the component in the presence of a laboratory insult.  

o On a stronger note, the component natural frequencies used in the 

laboratory will not be those of the component within the weapon 

system unless the support of the component in the laboratory has 

a compliance which is similar to that in the system, a difficult 

objective to achieve.  

o On the strongest note, two inputs may have the same energy into 

the component but each may excite different modes of vibration – 

one which is susceptible to failure and one which is not. In this 

regard, they do not have the same damage potential.  

o There is also a limitation of physics. Equation 20 assumes that the 

system is linear and rational of which no real system is.  
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