ORNL/TM-2006/578

Optimization of the CMDFT code

July 2006

Xiaoguang Zhang and Paul Kent

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via the U.S.
Department of Energy (DOE) Information Bridge:

Web Site: http://www.osti.gov/bridge

Reports produced before January 1, 1996, may be purchased by members of the
public from the following source:

National Technical Information Service

5285 Port Royal Road

Springfield, VA 22161

Telephone: 703-605-6000 (1-800-553-6847)

TDD: 703-487-4639

Fax: 703-605-6900

E-mail: info@ntis.fedworld.gov

Web site: http://www.ntis.gov/support/ordernowabout.htm

Reports are available to DOE employees, DOE contractors, Energy Technology
Data Exchange (ETDE), and International Nuclear Information System (INIS) representa-
tives from the following sources:

Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831

Telephone: 865-576-8401

Fax: 865-576-5728

E-mail: reports @adonis.osti.gov

Web site: http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither the
United States nor any agency thereof, nor any of their employ-
ees, makes any warranty, express or implied, or assumes any
legal liability or responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, product, or pro-
cess disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific com-
mercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any
agency thereof.

Optimization of the CMDFT code

Xiaoguang Zhang and Paul Kent

Date Published: July 2006

Prepared by
OAK RIDGE NATIONAL LABORATORY
P. O. Box 2008
Oak Ridge, Tennessee 37831-6285
managed by
UT-Battelle, LLC
for the
U. S. DEPARTMENT OF ENERGY
under contract DE-AC05-000R22725

ORNL-1234

Contents

List of Figures

List of Tables

Acronyms

Executive Summary

1

2

Introduction
Code efficiency before optimization
Optimization of bdvs

Optimization of the FFT routines

4.1 Setup
42 Computationof FFT
4.3 Data dependency in wave function storage
4.4 New load-balancing algorithm
4.5 Unresolvedproblem,

Summary of the speedup

1l

iv

vi

vii

[c <IN BN Be) S e N

List of Figures

Scaling of CMDFT with number of processors before optimization.
Execution times of bdvs and gtorfft as a function of the block
SIZE NWEQ. . . o o e e e e e e e e
The three-dimensional FFT calculation is done as three sets of one-
dimensional FFT’s. (a) The sphere of original reciprocal vectors;
(b) After FFT along x; (c) Global transpose from (b), this step re-
quire the most communications; (d) After FFT along y; (e) Global
transpose from (d), this step requires much less communication
than from (b) to (c); (f) After FFT along z. Source: Andrew Can-
ning, LBNL

v

List of Tables

Efficiencies of top CMDFT routines before optimization for a 24
atom cluster test case using 32 nodes on Jaguar.
Efficiencies of top CMDFT routines after optimization for a 24
atom cluster test case using 32 nodes on Jaguar.

Acronyms

BOMD: Born-Oppenheimer Molecular Dynamics
DFT: Density Functional Theory

FFT: Fast Fourier Transformation

SCF: Self-Consistent Field

vi

Executive Summary
This report outlines the optimization of the CMDFT code by Xiaoguang Zhang

during June-July 2006. The overall improvement in speed is nearly 40%. Possible
further optimizations are also discussed.

vii

1 Introduction

The Born-Oppenheimer molecular dynamics (BOMD) method is a variant of the
first-principles Car-Parrinello molecular dynamics. The BOMD method treats clas-
sically the nuclei motions and quantum mechanically the electrons using the den-
sity functional theory (DFT). The electronic structure is converged at every nuclei
conformation. The Georgia Tech CMDFT code implements the BOMD method
with a pseudopotential plane-wave basis. The detailed description of the method is
given in [1].

The CMDFT code is written in f90, and uses MPI for communications. Here
we summarize recent efforts in optimizing of the CMDFT code. All the tests are
run on Jaguar.

2 Code efficiency before optimization

The test case used in this report is a nanocluster of 24 cobalt atoms. The reciprocal
space grid is chosen as nx = ny = 128, and nz = 160. The number of wave
functions used in the calculation is nwfu = 240. The calculation is stopped after
10 SCF iterations, before convergence is reached.

As shown in Table 1, the overall efficiency of the CMDFT code is very low,
reaching 2.5 x 10° FLOPS which is only 16% of peak floating point execution
speed. This compares poorly to an average code that predominantly uses LAPACK
routines. The expected performance for such a code is typically around 50% of
peak. Therefore there seems to be a significant room for improvement.

Table 1: Efficiencies of top CMDFT routines before optimization for a 24 atom
cluster test case using 32 nodes on Jaguar.
Subroutine Time (sec) Time% %peak FLOPS

bdvs 239.28 37.0 17.5
gtorfft 152.23 23.5 11.7
rtogfft 116.62 18.0 13.1
hartree 34.15 5.3 36.7
ddendr 28.94 4.5 329

fftsetup 27.13 4.2 35.1

hwf 23.10 3.6 4.3

Total 676.38 100 16.3

The top three routines, bdvs, gtorfft,and rtogfft, are all involved in the

process of finding the eigenenergies and the corresponding wave functions. This
process requires the computation of the Hamiltonian matrix H;; = (1;|H |+;) and
the overlap matrix S;; = (1;|;), where 1; are the trial wave functions. The trial
wave functions 1); are stored in terms of its expansion in plane waves, indexed
with the reciprocal wave vectors. However, the vectors H |1;) are computed in
real space. So that a Fourier transform of v; is performed in gtorfft before
the calculation. After the calculation a back Fourier transform is performed in
rtogfft. Atthe end, the inner products (1;|H |+;) and (1;|v;) are computed in
bdvs.

bdvs
gtorfft
rtogfft
o 100 9 1
(0]
L
(0]
€
=
hartree — o ®
ddendr .‘.—\’\\i
10 .
10 100

Number of processors

Figure 1: Scaling of CMDFT with number of processors before optimization.

The scaling of the top routines with the number of processors, on the other
hand, shows very good linear scaling, as shown in Fig. 1. The flat performance of
the two routines, hartree and ddendr, are due to the initial setup of the FFT in
both routines. This will be discussed later along with the FFT optimization.

3 Optimization of bdvs

In bdvs, two matrices, H;; and S;; are computed by forming the inner products
(%i|H|v;) and (1;|1;). Because both matrices are symmetric, only half of the
matrix elements plus the diagonal ones are needed. This should save the computa-
tion time by about half. Unfortunately, to achieve this savings it prevents the usage
of high level LAPACK routines. The original code uses ddot which results in a

low efficiency of 17%.

My first optimization attempt replaced all ddot calls with dgemv calls. Al-
though this removes one explicit layer of do-loops, it made little difference in
performance. One may instead forgo the factor of two savings and compute all
elements, thus allowing the use of the highly efficient dgemm calls. The hope is
that doubling in the number of computations will be more than compensated by the
increase in efficiency.

In fact, we do not need to compute all elements to allow the use of the dgemm
calls. The loop over the number of trial wave functions outside the ddot calls
is divided into blocks of size nwfg. This was originally designed to improve the
efficiency of message passing during the FFT calculations. Typical values of nwfg
is between 10 and 100. Thus if we compute the matrix elements for each block of
nwfg wave functions together, filling all nwfg rows up to the largest size needed
within the block, then dgemm can be used with a minimal increase in the number of
elements computed. In Fig. 2 we show the results of this change. One can see that
the execution time of bdvs is dramatically reduced as a function of nwf g, reflecting
the improved efficiency due to better cache management by using dgemm. On the
other hand, the execution time of gtorfft changes little with nwfg, allowing
more flexibility with the choice of nwfg.

240
220
200
180
160
140 |
120
100
80 r

60 :
1 10 100

nwfg

gtorfft

Time (sec)

Figure 2: Execution times of bdvs and gtorfft as a function of the block size
nwfg.

The changes are demonstrated in the following code example. Before the

change,

do jg=1,mwfg
iwf=iwfl+jg-1
b(l:ng_n,iwf)=wfg(l:ng_n,iwf)
sis(iwf, iwf)=Ddot (2*ng_n,wfg(l,iwf),1,wfg(l,iwf), 1)
enddo ! jg=1,mwfg
call hwf(wfg(l,iwfl),vlioc,nrsp, hb,mwfqg)
do jg=1,mwfg
iwf=iwfl+jg-1
nhop=nhop+1
shs (iwf, iwf)=Ddot (2*ng_n,wfg(1l,iwf),1,hb(1, jg),1)
if(iwf.lt.nwf) then
do jwf=iwf+1,nwf
sis(jwf, iwf)=Ddot (2*ng_n,wfg(l, jwf),1l,wfg(l,iwf), 1)
shs (jwf, iwf)=Ddot (2*ng_n,wfg(l, jwf),1,hb(1, jg),1)
enddo
endif
if(nxl.gt.0) then
do jx1=1,nx1
Jwf=nwf+jx1
sis(jwf, iwf)=Ddot (2*ng_n,wfx1 (1, jx1),1,wfg(l,iwf),1)
shs (jwf, iwf)=Ddot (2*ng_n,wfx1 (1, jx1),1,hb(1,jg),1)
enddo
endif
if(nx2.gt.0) then
do jx2=1,nx2
Jjwf=nwf+nxl+jx2
sis(jwf, iwf)=Ddot (2*ng_n,wfx2 (1, jx2),1,wfg(l,iwf),1)
shs (jwf, iwf)=Ddot (2*ng_n,wfx2 (1, jx2),1,hb(1, jg),1)
enddo
endif
enddo ! jg=1,mwfg

Compared to the code after the change,

do jg=1,mwfg

iwf=iwfl+jg-1

b(l:ng n,iwf)=wfg(l:ng_n,iwf)
enddo ! jg=1,mwfg

call hwf(wfg(l,iwfl),vlioc,nrsp, hb,mwfqg)

4

nhop=nhop+mwfg
call dgemm(’'t’, 'n’,mwfqg, iwfl+mwfg-1,2*ng_n,1.d0,wfg(l,iwfl),

& 2*mg_nx,wfg,2*mg_nx,0.d0,sis(iwfl, 1), nmat)
call dgemm(’'t’, 'n’,mwfqg, iwfl+mwfg-1,2*ng_n,1.d0, hb, 2*mg_nx,
& wfg, 2*mg_nx,0.d0, shs(iwfl, 1), nmat)

if(nxl.gt.0) then
call dgemm(’t’, 'n’,nx1,2*ng_n,mwfg,1.d0,wfx1l, 2*ngl,

& wfg(l,iwfl),2*mg_nx,0.d0, sis(nwf+1,iwfl), nmat)
call dgemm(’'t’, 'n’,nx1,2*ng_n,mwfg,1.d0,wfx1l, 2*ngl,
& hb, 2*mg_nx, 0.d0, shs (nwf+1, iwfl), nmat)
endif

if(nx2.gt.0) then
call dgemm(’'t’, 'n’,nx2,2*ng_n,mwfqg,1.d0,wfx2, 2*ng2,

& wfg(l,iwfl),2*mg_nx,0.d0, sis(nwf+nxl+1,iwfl), nmat)
call dgemm(’'t’, 'n’,nx2,2*ng_n,mwfg,1.d0,wfx2, 2*ng2,
& hb, 2*mg_nx, 0.d0, shs (nwf+nx1+1,iwfl), nmat)
endif

Similar changes are also made in other parts of bdvs. The final optimized

version of bdvs yields a four-fold improvement in speed, reaching 71% peak per-
formance, as shown in Table 2.

Table 2: Efficiencies of top CMDFT routines after optimization for a 24 atom
cluster test case using 32 nodes on Jaguar.
Subroutine Time (sec) Time% %peak FLOPS

gtorfft 125.49 30.1 14.2
rtogfft 103.47 249 14.7
fftsetup 75.69 18.2 36.4
bdvs 65.54 15.7 71.2
hwf 23.35 5.6 4.3
hartree 0.92 0.2 12.9
ddendr 0.82 0.2 6.9
Total 416.26 100 26.3

4 Optimization of the FFT routines

4.1 Setup

In the original code, FFT setup is done in three places, £ft setup for the wave
function FFT, hartree for the Coulomb energy, and ddendr for charge density.
As evident in the flat scaling of the execution time as a function of the number
of nodes in Fig. 1, both hartree and ddendr are dominated by the setup of
the FFT. Our first step in optimization of the FFT, is to merge the setup parts of
both routines into £ £t setup. This step cleans up the code structure significantly,
while streamlines operation by removing duplicate parts. Table 2 shows the benefit
of this change. Both hartree and ddendr now takes insignificant amount of
time. The execution time of £ £t setup, although longer than before, is still much
less than the sum of execution times of all three routines before the change.

4.2 Computation of FFT

The main compute routines for FFT include the forward FFT routine gtorfft,
and the backward FFT routine rtogfft. The two FIT routines have very poor
floating point efficiencies in the low teens. Because £ ft setup spends most of its
time on trial runs of the FFT calculations, we can use its floating point efficiency,
about 36%, as the target efficiency for the two FFT routines. This would represent
a factor of three improvement in efficiency.

Inboth gtorfft and rtogf £t, most of the time is spent on message passing
between nodes and on transposing arrays to prepare for the FFT calls. Both can be
improved by optimizing the distribution of the wave functions on the nodes.

The total number of plane waves is approximately nx X ny X nz. This is of-
ten a much larger number than the number of processors. Thus each processor is
distributed several plane waves. In order to balance the load and memory require-
ment, the plane waves are not stored in sequence. Instead, wave vectors that share
the same y and z indices are grouped into a column. Columns may have difference
size (number of z indices) due to the truncation of the reciprocal vectors (z,y, z)
at a spherical surface. Thus, these columns are first sorted according to their sizes,
then distributed to the nodes according to a load-balanced algorithm.

This load-balanced distribution of the wave vectors significantly complicates
the FFT calculation. The first FFT, along the z direction, is straightforward. Then,
before the FFT along y, wave vectors need to be redistributed between the nodes,
creating significant amount of message passing, and then the arrays need to be
transposed to move the y index to the front. The same process is then repeated for
z (see Fig. 3).

The key to optimization, is to design a distribution algorithm, that minimizes
the message passing and transposing for the y and z directions, while keeping the
load balanced. Before we discuss that, we need first to discuss some relevant data
dependencies.

4.3 Data dependency in wave function storage

In the CMDFT code, assumptions on the order of the plane wave arrays are used
in many subroutines. These assumptions are used to truncate the arrays, to throw
away wave vectors not needed due to symmetry, and to map wave functions be-
tween z and —z reciprocal vectors. Such strong data dependency must be removed
before any change in load-balancing algorithm can be implemented.

Concurrent changes are made to both wfgsetup and wfgsetupl in order to
remove this data dependency. Indexing arrays i1ton, i2ton, i3ton, ntokl,
ntok2,ntok3,nl_inv,and n2_inv, are first generated using a particular order
appropriately chosen (this choice will be discussed in more detail below). Then
these arrays are used to produce the reciprocal vectors and to perform all other
tasks. In this manner, only the generation of the indexing arrays depend on the
particular algorithm, while the rest of code is completely independent.

4.4 New load-balancing algorithm

In the original algorithm implemented in wfgsetup and wfgsetupl, the wave
vectors are loaded onto each node considering two factors, the size of the column
being loaded, and the total size of the array already on the node. By loading the
columns in the decreasing order in size, and onto the node with the least amount
of data, an approximate load-balancing is achieved. The new algorithm takes into
an additional consideration, the (y, z) coordinate of the column being loaded. The
first attempt is to load the column onto a node that already has larger columns
that shares an identical z coordinate. By maximizing the number of columns that
share the same 2z coordinate on a single node, we minimize the amount of message
passing before the FFT in the y direction.

A related change is made in £ £t setup which distributes z slabs onto different
nodes. Here the order of the loop over 2 is changed to maximize the possibility that
two slabs with the same z can stay on the same node.

The improved result is shown in Table 2. We see that the speed of gtorfft
is improved by about 18%, and rtogf £t by about 12%.

4.5 Unresolved problem

Although the algorithm change discussed above is successful, some of the other al-
ternative ordering of the columns produced incorrect answers. This is likely caused
by hidden data dependency not yet discovered. Further work is needed to find and
remove this dependency.

Once the data structure is completely isolated, we are free to test more load-
balancing algorithms to find the optimal choice.

5 Summary of the speedup

After all the changes, the total speed of the CMDFT code is improved by nearly
40%. The floating point efficiency improved from 16% to 26% of the peak. At this
point, the execution time is dominated by the FFT. Despite the improvement made
on the load-balancing algorithm, both FFT routines still have poor 14% efficiency.
Eliminating the hidden data dependency will allow the implementation of a more
localized load-balancing scheme to further improve the FFT efficiency. However,
staying with three separate one-dimensional FFT’s will limit the potential for sig-
nificant further speed improvement. A change in the algorithm on a higher level
to reduce the number of FFT calculations in each SCF iteration can both boost
floating point efficiency and improve scaling.

References

[1] Robert N. Barnett and Uzi Landman, “Born-Oppenheimer molecular-
dynamics simulations of finite systems: Structure and dynamics of (H20)s,”
Phys. Rev. B 48, 2081-2097 (1993).

il

]

Figure 3: The three-dimensional FFT calculation is done as three sets of one-
dimensional FFT’s. (a) The sphere of original reciprocal vectors; (b) After FFT
along z; (c) Global transpose from (b), this step require the most communications;
(d) After FFT along y; (e) Global transpose from (d), this step requires much less
communication than from (b) to (c); (f) After FFT along z. Source: Andrew Can-
ning, LBNL

9

