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Executive Summary

Over the past sixty years, a wide variety of nuclear power technologies have been theorized, investi-

gated and tested to various degrees. These technologies, if properly applied, could provide a stable,

long-term, economical source of CO2-free electric power. However, the recycling of nuclear fuel

introduces a degree of coupling between reactor systems which must be accounted for when making

long term strategic plans. This work investigates the use of a simulated annealing optimization

algorithm coupled together with the VISION fuel cycle simulation model in order to identify at-

tractive strategies from economic, evironmental, non-proliferation and waste-disposal perspectives,

which each have associated an objective function.

The simulated annealing optimization algorithm works by perturbing the fraction of new reactor

capacity allocated to each available reactor type (using a set of heuristic rules) then evaluating

the resulting deployment scenario outcomes using the VISION model and the chosen objective

functions. These new scenarios, which are either accepted or rejected according the the Metropolis

Criterion, are then used as the basis for further perturbations. By repeating this process several

thousand times, a family of near-optimal solutions are obtained.

Preliminary results from this work using a two-step, Once-through LWR to Full-recycle/FR-

burner deployment scenario with exponentially increasing electric demand indicate that the al-

gorithm is capable of finding reactor deployment profiles that reduce the long-term-heat waste

disposal burden relative to an initial reference scenario. Further work is under way to refine the

current results and to extend them to include the other objective functions and to examine the

optimization trade-offs that exist between these different objectives.
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Chapter 1

Introduction

The purpose of this work is to examine the use and application of mathematical optimization by

simulated annealing to the future nuclear power enterprise in which a closed nuclear fuel cycle is

used to more fully recover the energy content of uranium while reducing the nuclear waste disposal

burden. Presented below is an overview of the nuclear fuel cycle and a selection of existing models

and simulations thereof, the definitions, objectives and decision-variable space of the optimization,

and the optimization algorithm itself. The discussion is capped off by the presentation of results

obtained to date and of the future work planned.

1.1 The Nuclear Fuel Cycle

In the United States as of 2011, the commercial nuclear power industry consists of 69 Pressurized

Water Reactors (PWRs) and 35 Boiling Water Reactors (BWRs). These reactors are fueled with

uranium oxide pellets enriched to 3-5% by weight in the fissile 235U isotope. After 18-24 months

of operation, the fissile content of the fuel becomes too depleted to support the chain reaction, so

some of the fuel in the reactor is discharged to the spent fuel pool and replaced with fresh fuel.

This spent fuel is cooled under water until the spent fuel pool reaches capacity, at which point the

oldest, most cooled fuel is removed and placed into dry steel and concrete casks. Under current

law, the federal government is obligated to take possession of the spent fuel and safely dispose of it

in a central repository. However, the siting and design of this repository has proven to be difficult

for technical and political reasons; it remains unclear if, when and where the repository will ever

open. Through chemical separation, it is possible to recover and reuse the vast majority of the

spent fuel mass. The various actinide and fission product isotopes may then be dealt with in ways

more suited to their particular chemical and radiological natures. This process is quite expensive,

and given current uranium and spent fuel disposal costs, there is no financial incentive for this

undertaking.

Despite this expense, some countries deem the benefits worth the extra cost. The nation of

France, for example, has sparse domestic fossil fuel reserves, so recycling affords the ability to

extend nuclear fuel resources, ensuring the security of the energy supply. Of 58 operational PWRs,
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20 currently use recovered plutonium in fuel1 and one uses recovered uranium. In total, recovered

spent fuel provides between 17% and 20% of the nuclear power output, reduces uranium usage by

30% and high-level waste material by 97% [2]. Depleted uranium tails and spent recycled fuel is

currently stored for later use in Generation-IV reactors.

Nearly 70 years have elapsed since the first man-made nuclear reactor achieved criticality2;

in that time, many alternative, advanced nuclear fuel cycling schemes have been imagined or

investigated. A key feature of many of the so-called Generation-IV reactors is the ability to use

a wide range of transuranics as the fuel source in a burn or breed manner. Complementing these

advanced reactors are numerous advanced fuel recycling technologies, including aqueous and pyro-

processing methods which minimize waste volumes and limit the separation of any material that

would be attractive for fabricating nuclear weapons. Several of these schemes have been analyzed

as integrated systems by the U.S. Department of Energy as part of the Global Nuclear Energy

Partnership (GNEP) program and its predecessors. 3 Of particular interest are the one- and two-

tier system deployment evolutions studied in the Dynamic Systems Analysis Report for Nuclear Fuel

Recycle [7]. This report examined numerous costs and benefits arising out of a phased transition

from the current once-through fuel cycle to a closed fuel cycle, where fast-spectrum reactors are

used to recycle spent nuclear fuel. In the one-tier simulations, the transition is made directly to

fast reactor recycling, whereas in the two-tier cases, an intermediate, LWR plutonium recycle step

is included. Importantly, this study included estimates of the effects on atmospheric carbon dioxide

levels and energy cost of various conversion ratios, carbon taxes, and spent fuel cooling times. This

study relied heavily on the VISION model for its calculations.

Since a closed fuel cycle involves the continuous recycle of material with shortfalls of fuel material

in fast reactors made up using reprocessed thermal reactors’ fuel, a complex system dynamics occurs

to assure proper material balances throughout the fuel cycle. Current fuel cycle codes are dependent

upon the code user to achieve the proper material balances. The work reported here automates

this by the employment of mathematical optimization utilizing a fuel cycle code as the predictive

engine. Of specific interest is determining the deployment schedule for nuclear fuel cycle facilities,

e.g. thermal reactors, fast reactors, thermal reactor fuel fabrication and separation facilities, and

fast reactor fuel fabrication and separation facilities, in such a manner to meet a specific objective

with decisions made so as to avoid constraint violations. Chapter 2 of this report provides a detailed

discussion of the optimization problem being addressed.

1.2 System Modeling Efforts

Over the years, numerous simulation codes and packages have been developed to investigate various

aspects of the nuclear fuel cycle.

1Four additional units are undergoing licensing for MOX fuel.
2Chicago Pile-1 first achieved a chain reaction on Dec. 2, 1942
3In 2005, GNEP replaced the Advanced Fuel Cycle Initiative, which in 2003 subsumed both the Generation-IV

road-mapping activity and the Advanced Accelerator Applications program.
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The NFCSIM simulation program, developed at Los Alamos National Laboratory [11], utilizes

an object-oriented programming methodology to combine external criticality (LACE) and burn-up

(ORIGEN) calculations with an internal time-stepping and facility control system to model fuel

movements and facility operations through a variety of deployment scenarios. While the inclusion of

these proven code packages into the NFCSIM system provides for a great deal of flexibility, power,

and reliability, its use in this optimization project necessitate a good deal more computational

power than currently available for this project.

The Argonne National Laboratory has developed two system dynamics based fuel cycle simula-

tion codes – DYMOND and DANESS [14,15]. DYMOND was developed to support the previously

mentioned Generation-IV Road-mapping activities. It is specifically targeted to modeling fuel

movements associated with the AFCI options within the U.S. DANESS expands upon DYMOND

to include economic, environmental and socio-political aspects of multi-region fuel cycle systems

utilizing many different reactor types and supporting technologies.

1.3 The VISION Model

The Verfiable Fuel Cycle Simulaton model was developed through a collaboration between Idaho

National Laboratory and numerous academic and laboratory contributors [9]. It is based upon a

System Dynamics methodology implemented in the commercial Powersim modeling environment.

The Powersim software has several features which make it ideally suited for this work, most no-

tably the ability to read input data from separate Excel spreadsheets and the ability to be operated

programatically through an available Application Programming Interface (API). This API facili-

tates the usage of an optimization wrapper to run the thousands of necessary simulations in an

automated manner without user input.

The VISION model tracks the construction, operation and decommissioning of the various

nuclear fuel cycle facilities and the movement of fuel therein in response to a user specified energy

demand profile and constraints on predicted technological availability. Thus, for each time-step

in the simulation, one may ascertain the location, mass and isotopic composition of all nuclear

fuel, along with the number, types, and ages of the reactors, fuel fabrication facilities, separations

plants, etc. The specific settings used to determine the energy growth rate and the combinations

of technologies available at different times are stored in individual Base Cases in the attached

spreadsheets. There are 64 pre-configured base cases, with 5 additional user-configurable options.

In the VISION simulation, each reactor type is assumed to run identical fuel cycling schemes

with fixed fresh and spent fuel recipes. For each reactor, only the total fuel mass and fuel type

are tracked, not the individual isotopes. Furthermore, the recipes for the fuel to be recycled into

the reactors will not match up precisely with the previously discharged spent fuel recipes. Because

of this, recycling causes a buildup of certain isotopes, while creating shortages in others. If the

fuel recipes were completely fixed and inflexible, these shortages would become a limiting factor,

pacing the maximum growth rate of the nuclear enterprise. However, these isotopes are generally
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minor constituents of the fissile fuel, and growth will be paced by the major fissile isotopes (i.e.

plutonium isotopes and the transuranic elements). The inclusion of variable fuel recipes into the

VISION model would require at the least a way to model and compensate for the relative reactivity

contributions of each isotope. Work to test this concept has been performed at INL [18], however

this feature is not available in the VISION version used for this optimization work. Instead, the

mass of recycled fuel that can be produced from a given batch of spent fuel is determined by the

so-called Pu Control Switch, whereby the total mass of a specified set of fissile isotopes (minus

minor recycling process loss) is conserved in the transition from spent fuel into fresh fuel. If there

is a mismatch in isotopes between recipes, it either accumulates in the system, or is introduced as

needed (without a physical source).

As the overall fuel mass available for recycling in the VISION model is determined by the active

isotope specified in the Pu Control Switch, it alone will be used in the optimization calculations

for determining the combination of Fast-burner and Thermal reactors.

1.3.1 Fuel Recipes and Limiting Isotopes

The process of designing and qualifying a fuel for use in a nuclear reactor is one of the most

time consuming and difficult aspects of creating a nuclear power system. The fuel is subject to

higher temperatures, greater heat flows and more intense radiation fields than any other part of

the plant. Additionally, it provides the first line of containment for radioactive isotopes, helping

to keep them in place both in normal and accident scenarios. The tight constraints placed on

fuel performance lead to similarly tight tolerances on fuel chemistry; these, in turn, leads to very

demanding requirements for the reprocessing of spent fuel. The ability to control the fuel going

into the reactor is thereby limited by the ability to control the chemistry in the fabrication and

separations processes.

Knowing the fuel composition going into a reactor is only half of the simulation challenge. When

nuclear fuel is burned in a reactor, an enormous array of nuclear reactions occur – some isotopes will

fission into a set of lighter isotopes, while other isotopes will successively absorb neutrons to create

heavier and heavier isotopes. All the while, these isotopes may undergo alpha, beta or other decay

mechanisms, creating yet more isotopes. While the individual nuclear reactions may be modeled

and understood at high levels of accuracy, it would be exceptionally difficult to attain such fidelity

in a reactor-wide model. Furthermore, it would be computationally prohibitive to repeat these

calculations again and again for each scenario in a fuel cycle optimization calculation. In order to

remain usable, the VISION model simplifies the calculations of fuel composition down to a set of

table interpolations. For light-water reactor fuel, detailed calculations were performed for fresh and

spent fuel designs supporting 33 and 100 GWD/MT-IHM4 discharge burnups [9]. For fast burner

reactors, similar calculations were performed for fuel with conversion ratios of 0.0 and 1.0, where

conversion ratio is defined here as the ratio of production of transuranic material to total destruction

of same. Fresh and spent fuel compositions are thus interpolated from the externally calculated

4Gigawatt-days of thermal power per metric ton initial heavy metal content
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recipes to produce the specified discharge burnups, which in turn are determined considering core

average cycle burnup and core fresh fuel loading fraction.

When spent fuel is reprocessed, some chemical isotopes are retained, while some must be dis-

carded. Because isotopic separation is extremely expensive even when dealing with nonradioactive

fresh uranium fuel, it is considered unfeasible to attempt to isotopically separate any of the com-

ponents of spent fuel. Instead, a variety of chemical separation techniques are utilized, none of

which can affect the ratio of isotopes of a given element. This raises the possibility of encountering

a mismatch between the relative amounts of each isotope in a spent fuel recipe and those in the

feed fuel recipe that is to be fabricated. Because VISION lacks the capability to recompute fuel

recipes on the fly, certain assumptions must be made to allow the fuel cycle to continue functioning.

In order to understand these assumptions, one must first examine the way in which the VISION

simulation tracks and monitors fuel usage and isotopics.

One major design criteria for the VISION model was that it be simple enough to run on a

standard desktop PC in less than five minutes [9]; this ruled out isotope-level fuel tracking for

most parts of the model. Instead, aggregate fuel masses of defined composition are tracked. This

method works well for situations where fuel residence time is significantly shorter than decay half-

lives and where fuel recipes are fixed. In areas where decay is a concern, such as wet and dry

storage, isotopic decay is accommodated through the use of coupled chains of recipes. For example,

prior to irradiation, fresh fuel is measured by total mass per reactor type and recycling pass. After

irradiation, when it is moved into wet storage, it is further divided into an Age Wet Storage and

Isotope dimension. Each age recipe corresponds to the fuel composition after a given time; after

the required storage time has elapsed, the fuel is moved into the next step in the fuel cycle. The

reprocessing chain draws its fuel supply from dry storage, which has dimensions of Reactors, Pass,

Isotopes and Age Dry Storage, and feeds it back into Fuel Fabrication, which only has dimensions

Reactors and Pass. There will be at least one isotope that limits the total mass of fuel that may

be extracted for reprocessing without altering the fixed fuel composition. However, as mentioned

above, isotopic separation of individual chemical elements is impractical. Furthermore, in some

cases the separation of certain chemical elements (e.g. plutonium), although feasible, is considered

undesirable from a proliferation standpoint. For these reasons, when VISION calculates the mass

of a given fuel-type that it can fabricate by reprocessing a given amount of spent fuel, it uses not

a single limiting isotope, but a summation over a family of controlling isotopes. As an example

consider a simple fuel recipe requiring 1-kg of Pu-239, 0.6-kg of Pu-240, and 0.5-kg of Cm-242.

Further, assume that the spent fuel stockpile consists of 3-kg of each isotope. Strictly speaking,

using this stockpile and fuel recipe, one may fabricate 6.3-kg of fuel, and will have 1.2-kg of Pu-240

and 1.5-kg of Cm-242 leftover. If, however, total Pu mass is said to be controlling, then 7.875-kg

of fuel may be fabricated, leaving 1.125-kg Cm-242 and 0.75-kg Pu-240 leftover, while incurring

an artificial deficit of 0.75-kg Pu-239. Thus, total mass is conserved, but the individual isotope

balances are not.

The Socially Conscious Algorithm (described below) requires an estimation of both the mass of
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spent fuel both consumed and produced by each reactor type. In order to best match the VISION

model, only the controlling isotopes are considered in these calculations. The fuel mass definitions

above and the derivations below both reflect only the total mass of these controlling (or active-)

isotopes.

1.3.2 System Dynamics Modeling

There are many approaches to modeling complex, interacting systems, be they chemical, mechani-

cal, economic, political or social. System Dynamics, initially developed in 1956 by Jay Forrester at

the MIT Sloan School of Management is a general approach to modeling large interacting systems;

it was conceived as a method of applying engineering principles to the types of management prob-

lems where the complexity of feedback systems cause intuition and experience to fail to generate

acceptable results [8].

An underlying premise of System Dynamics modeling is that though the individual actors in the

simulation may exert relatively little influence on the overall behavior of the system, it is through

their interactions that the observed, unexpected behaviors arise. The individual interactions tend

to occur rather predictably and according to simple rules, while the outcomes can vary wildly

and counterintuitively. Thus, the first step in the development of a system dynamics model is to

examine the organizational structure of the system under consideration, determine who or what

all of the action points in the simulation are, then examine them to determine how they go about

their decision-making process. Rather than rely on compiled data, historical trends or theories

about what ought to be, the model maker focuses on what factors control decision making in the

moment. The reasoning is that it better reflects the true nature of the decision making process,

thereby recreating the actual behavior more closely.

The models of the individual actors in a system are interconnected through influence diagrams,

which provide visual indication of the mathematical dependencies of each variable on each other.

The system of equations is integrated forward in time using explicit numerical methods to generate

an estimate of the overall system behavior. By design, these models tend to be simple, so that they

run quickly, allowing the policies to be changed and adjusted in order to and explore management

alternatives.
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Chapter 2

Optimization Methodology

The simulated annealing optimization methodology can be divided into several sections. First is

the definition of the decision variables (these establish the available parameter search space); this

then ties into the selection of the objective functions, which the optimization algorithm will seek to

minimize. To get an accurate accounting of the costs and benefits associated with a discrete segment

of the larger energy-marketplace, a method must be established for cleanly separating the costs

and benefits of decisions made within the planning horizon from those assumed to be made after

the planning horizon–this forms the basis for our Socially-Conscious decision making methodology.

Finally, the optimization problem having been fully specified, the optimization algorithm itself may

be discussed.

2.1 Objective Functions

The set of objective functions used in the optimization algorithm are a mathematical representation

of what the system designers deem to be some of the important qualities of the fuel cycle strategy.

The three simple metrics chosen for this work were selected because they relate to three key factors

that will ultimately determine the acceptability of any proposed nuclear fuel cycle, e.g. waste

disposal, proliferation resistance and, of course, cost.

2.1.1 Long-term Heat

Spent nuclear fuel and high-level reprocessing wastes present a significant, long-lasting disposal

challenge. Unlike chemical hazards, radioactive waste cannot be mitigated through incineration

or dilution. The only methods devised so far involve either deep burial in solid, stable geologic

formations, or further nuclear transmutation into short-lived isotopes. As transmutation would be

exceptionally expensive, burial is currently the preferred option (it can always be disinterred and

transmuted at a later time, should the need arise). It is hoped that once buried, the surrounding

mass of rock will keep the radioisotopes safely shielded and contained for millenia. As in a reactor, a

high-level waste repository relies on many protective layers, each of which has it’s own set of design
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Table 2.1: VISION Variables in the Long-term Heat Objective Function

Term VISION Variable Sample Time

H1 LTH non-repository waste - total[100to1500] 2200

H2 total LTH in repository[100to1500] 2200

H3 LTH SF interim storage - total[100to1500] 2200

H4 LTH SF mid aged storage - total[100to1500] 2200

H5 LTH SF aged storage - total[100to1500] 2200

H6 LTH legacy SF - total[100to1500] 2200

CidleFBR Net Idle Reactor Capacity[FBR] 2200

CidleLWR Net Idle Reactor Capacity[LWR] 2200

CidleLWRmf Net Idle Reactor Capacity[LWRmf] 2200

Ct,FBR deployed reactor capacity[FBR] All

Ct,LWR deployed reactor capacity[LWR] All

Ct,LWRmf deployed reactor capacity[LWRmf] All

limitations. Until recently, Yucca Mountain was the designated repository site for the United

States. The design called for waste to be emplaced in a series of parallel tunnels, called drifts. A

key limiting factor on the amount of waste that could be contained within the repository site was

that the maximum temperature of the rock walls at the center point between the drifts could not

exceed the boiling point of water [17]. This, in turn, limits the total amount of decay heat that the

emplaced wastes may emit. Thus, the amount of heat released by the wastes present at the end of

the simulation lifetime are used as a proxy for the overall waste disposal burden of the cycle.

The Long-term Heat Objective Function value is given by the equation:

FLTH =
H

E
(2.1)

where H is the total heat load going into the geologic repository, which itself is given by the equation

H =
∑

i∈Sources
Hi (2.2)

The energy production term, E, is the deployed reactor capacity, less any reactors that are not

operating due to fuel shortages.

E =
∑
i∈rx

[(
∆t

tend∑
t=tstart

Ct,i

)
− Cidlei

]
(2.3)

The VISION variables corresponding to the terms above are given in table 2.1.

The objective function value itself is calculated by combining the long-term heat terms for all

waste streams at the end of the simulation (in Joules) and normalizing this value by the net electric
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Table 2.2: VISION Variables in the Weapons Usable Objective Function

Term VISION Variable Sample Time

Wt WU total All

E See equation 2.3

energy produced during the simulation (also in Joules) and multiplying by a factor of 1,000,000 (to

give an aesthetically pleasing mantissa). Typical values are in the range of 150 to 3000 part-per-

million.

2.1.2 Nonproliferation

From the beginning, the peaceful use of nuclear power has had a shadow cast on it by the military

and destructive potential that it embodies. Indeed, most of the early research into nuclear power

was for military purposes, with only incidental peacetime benefits. One concern that must be

addressed in the nuclear fuel cycle is the potential ability of bad actors to divert fissile material

from a facility for illicit purposes. Although a full analysis of the system would require detailed

facility-level protection and monitoring plans, it is a rather simple matter to assume that, all else

being equal, the more fissile material there is on hand in the system, the greater the potential

diversion threat may be. Not all fissile material is created equal from a weapons standpoint; a

common way to compare different isotopes is through the use of Pu-239 equivalence factors [5].

The VISION model uses the factors listed in table 2.3 to compute a ’Weapons Usable’ value for

fuel in all areas of the fuel cycle. These factors are inversely proportional to the bare-sphere critical

mass of the isotope, and do not account for other usability factors such as gamma dose or heat

production, or fuel form and diversion difficulty, e.g. where in the fuel cycle facilities material

resides. This value, measured in equivalent tons of Pu-239, is integrated over the simulation time

and normalized by the total electric energy production to determine the nonproliferation objective

function value.

FW =
∆t
∑tstop

t=tstart Wt

E
(2.4)

Future improvements are planned for this objective function to account for the differences in

vulnerability of the material at each stage in the fuel cycle.

2.1.3 Uranium Utilization

Though the energy density of nuclear fuel is exceptionally high, the concentrations of uranium in

ore are quite low (less than 0.3%) and the extraction methods can be quite disruptive [4]. Thus,

where the minimization of waste heat serves as a metric for the environmental impact of the back

end of the nuclear fuel cycle, the Uranium Utilization objective function serves as a metric for

the environmental impact of the front-end. The goal, of course, is to use the least mass of ore to
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Table 2.3: Weapons Usable 239Pu Equivalence Factors from VISION

Isotope Factor Isotope Factor

231Pa 0.06 241Pu 0.79
233U 0.62 241Am 0.18
235U 0.21 242mAm 0.34

237Np 0.17 243Am 0.07
238Pu 1.02 244Cm 0.36
239Pu 1.00 245Cm 0.78
240Pu 0.28 246Cm 0.12

Table 2.4: VISION Variables in the Uranium Utilization Objective Function

Term VISION Variable Sample Time

Uinitial initial u resources 2200

Ufinal U Ore 2200

E See equation 2.3

produce the greatest amount of electrical energy. Mathematically, it is expressed simply by the

equation below.

FU =
Uinitial − Ufinal

E
(2.5)

where E is the same net electrical energy production term employed previously. The variables

Uinitial and Ufinal are the initial and final masses of unmined uranium ore as tracked within the

VISION model (the variable names are listed in table 2.4). This measure makes sense when deploy-

ing fast reactors since all isotopes of uranium are capable of directly fissioning or through neutron

capture creating fissile isotopes.

2.1.4 Economics

Ultimately, the key factor that will make or break any nuclear fuel cycle deployment scenario is

cost. Traditionally, a large reason nuclear power has occupied the position it has in the national

power grid is that is has a much lower marginal fuel cost than any other technology (that is also

scalable and dispatch-able). The fuel savings are significantly offset, however, by the enormous

capital and associated financing costs associated with the reactor system. Proposed methods of

closing the fuel cycle, thereby recovering greater energy value from the fuel and minimizing waste,

all require the construction of several new types of facilities, which will further drive up system

costs. If costs become too high, the market will naturally move to any cheaper, available options

unless government policies promote a different behavior. Because the VISION model considers only

the nuclear portion of energy production, the objective function we wish to minimize is the total

cost of the nuclear enterprise under the constraint that the energy demands are met.
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In analyzing the economics of a proposed fuel cycle strategy, two key issues must be addressed:

1) How to establish reasonable cost factors and their uncertainty bounds for all facilities and

services, and 2) How to account for the time value of money, both in terms of general inflationary

pressures and the need to ensure a reasonable return on investments. The economic objective

function will be the most complex of all of the objective functions; it will track all major facilities,

both through construction, operation and shutdown. Those facilities that run past the end of

the planning horizon will have their costs and output adjusted to reflect their value within the

planning horizon. Costs will be normalized by the net electric production to yield a net-present

cost of electric power production that can be compared against other predictions of future energy

prices. Finally, the economic objective function will be used in multi-objective optimizations to

provide an estimate of the economic trade-off costs associated with minimizing the other objective

functions.

2.2 Penalty Constraints and Other Functions

In addition to the primary optimization objectives there are a number of other constraining factors

that either reflect the acceptability of a given candidate scenario or are useful for monitoring the

progress of the optimization. The penalty constraints are delineated into two types: hard and soft.

Hard constraints represent factors that are unacceptable in both final and intermediate scenarios.

Any candidate scenario violating these hard constraints is automatically rejected. Currently, these

constraints are used to detect and remove scenarios for which the VISION model does not produce

valid results. Soft constraints represent those factors that are deemed undesirable in the final

solution, but which are not ultimately fatal to its viability. Examples of this would include not

meeting the prescribed electric power demand or deploying reactors for which sufficient fuel is

not available. Soft constraint violations do not result in automatic disqualification of a candidate

scenario; instead, the objective function value is penalized by an amount proportional to the extent

of the violation and a corrective penalty multiplier. The violation value is dependent upon the

formulation of the penalty constraint, which remains fixed throughout the optimization. The

penalty multipliers, however, change adaptively throughout the optimization, gradually increasing

in response to continued violations. Thus they steer the optimization toward acceptable solutions.

There follows a description of the available soft penalty constraints and their formulations.

2.2.1 Unused Capacity

The VISION optimization strategy, though careful selection of input perturbation and use of built

in heuristic rules attempts to constrain the simulation settings to those situations where fuel will

be available for all of the reactors built. If, however, a pathological case manages to get past these

checks, it will still be accounted for by explicitly tracking the amount and time for which each
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Table 2.5: Variables in the VISION Heuristic Penalty Function

Term VISION Variable Sample Time

Bi Future Predictions Model.additional LWRmf reactors to be built[i] All

Oi,rx Future Predictions Model.reactor order rate for future years[rx,i] All

Prx reactor power per CY[rx] 2200

Trx adjusted reactor and fuel fab lifetime[rx] 2200

reactor type runs short of fuel. The constraint violation value is given by:

ΘU.C. =
∑
i∈rx

Cidlei (2.6)

where the terms and corresponding VISION variables are defined as above in table 2.1.

2.2.2 VISION Heuristic Invocation

As previously mentioned, some of the heuristic rules built into the VISION simulation act to

constrain reactor build rates to levels that the available fuel supply can support. While this provides

a check against allowing many grossly infeasible scenarios from going forward, it decouples the

changes in input settings from any meaningful change in the output values. Thus, by penalizing

the objective function for causing the invocation of these built-in heuristic rules, we constrain the

optimization search to those areas where the output is sensitive to the input, and meaningful results

may be obtained.

The VISION Heuristic penalty function is computed using equation 2.7 and the variables listed

in table 2.5. The VISION heuristic rules act by requesting supplementary LWR reactors to meet

energy demand when the forecast LWR SF inventories will not support the requested FBR build

rate. The numeric value of this penalty function is the total fraction of energy produced by these

so-called Bonus LWR reactors.

ΘH =

tstop∑
t=tstart

BtPLWRmf TLWRmf

∑
i∈rx

PiTi
tstop∑

t=tstart

Ot,i

(2.7)

2.2.3 Solution Dissimilarity

The solution dissimilarity metric can be used as a simple representation of the difference between

two specified configurations. This is computed by taking the root-mean-square difference between
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the fast reactor fraction of the deployed capacity between two evaluated configurations:

Γdis =
1

N

√√√√ N∑
j=1

(
f̃(tj)− f(tj)

)2
(2.8)

Where:

f(tj) = CFBR (tj)/C
total(tj)

This metric is not used by the optimization algorithm itself, but rather provides some indication to

the user as to the overall difference between the optimization starting configuration and the current

candidate configuration.

2.2.4 Build Discrepancy

The build discrepancy metric gives an indication of how closely fast reactor fraction of new capacity

built in a given year by the VISION model matches the fraction requested in the input configuration

value. The two primary reasons the values may not match for a given year are that 1) while the

requested fraction can vary continuously, the fraction built is constrained to an integral number of

reactors and must meet the power demand, and 2) the built-in heuristics in the VISION code may

override the requested distribution (if heuristics are enabled). Mathematically this metric is given

by the root-mean-square difference between the requested fast reactor fraction for year i, χ̃i and

the as-built fast reactor fraction for year i, χi.

Γdes =
1

N

√√√√ N∑
i=1

(χ̃i − χi)2 (2.9)

Where:

χ̃i = B̃FBR
i /B̃total

i

As with Γdis, this metric is not used by the optimization algorithm, but merely provides extra

information to the user.

2.3 Closing the Planning Horizon: The Socially Conscious Ap-

proach

The socially conscious approach to achieving closure of the Planning Horizon requires that the type-

distribution of the fleet of reactors existing at the end of the active planning horizon will consume,

to the fullest extent possible, all of the spent fuel available for recycling and have sufficient fuel to

operate the reactors over their planned lifetimes. In other words, it aims to minimize the spent fuel

burden carried forward beyond the planning horizon. The state of the system at the end of the

planning horizon depends upon the decisions made at each previous time-step and upon the initial

17



conditions. Therefore, this approach to closing the planning horizon takes the form of an integral,

heuristic constraint on the simulation input parameters (specifically, the percentage of each reactor

type requested).

First, some terms and definitions are presented, followed by the derivation of the controlling

equations and their implementation. Finally, there is a brief discussion of assumptions and potential

limitations of this method.

2.3.1 Definitions

The derivation of the Socially Conscious Approach to closing the planning horizon involves a rather

sizable list of terms and variables. For convenience, they are listed below in table 2.6. In all of these

definitions, x can be any one of the reactor types used within the VISION model (LWR, LWRmf,

FBR). In certain instances where the values for LWR and LWRmf reactors are identical they are

further abbreviated to L.

Table 2.6: Definitions used in the Socially Conscious Ap-

proach

Term Description

mf
b,Pi

The mass of the limiting active isotope present in the f eed in a single batch of Pass

i fuel. (For simplicity of notation, the reactor type is not explicitly denoted in this

variable. It may be determined from the context of the equations in which it is used.)

mS
b,Pi

Likewise, the mass of the limiting active isotope present in a single batch of Pass i

Spent discharged fuel.

Nbatch The number of fuel batches in a reactor at a given time.

P , PH,

BPH,

BoPH,

EoPH

Simulation time can be divided into two time periods (generically denoted P ). Variables

that pertain to the years within the Planning Horizon are denoted with a superscript

PH. Those pertaining to the years Beyond the Planning Horizon are denoted with a

superscript BPH. The beginning of the planning horizon (BoPH) is set at the year

2000, while the end of the planning horizon (EoPH) occurs at 2100.

Continued on Next Page
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Table 2.6: (continued)

Term Description

X, LWR,

FBR

The VISION simulation models used in this work contain two primary types of reac-

tors: metal-oxide fueled reactors with a thermal neutron spectrum, and metallic-fueled

reactors with a fast neutron spectrum. The thermal reactors may use either Uranium

Oxide (UOX) or Mixed plutonium oxide (MOX) fuel. In equations, these reactor types

are denoted with the LWR subscript. The fast reactors may operate with a variety of

fuel recipes in either a breeding or a burning regime. In equations, they are denoted

with the FBR subscript. In equations that apply to both reactor types, a generic x

may be substituted for clarity and brevity.

∆Qx The lifetime energy production of a reactor of type x

M̃SF
k The active isotope (TRU) mass of spent fuel existing at year k due to reactors built

within the planning horizon.

ṀLSF
k The active isotope (TRU) mass of spent fuel generated at year k due to legacy reactors

∆M̂x The mass of spent fuel discharged by a single reactor of type x over its entire lifetime.

δM̂FBR The mass of spent fuel discharged from the last operating FBR at shutdown.

ṁx The mass of spent fuel discharged from a reactor of type x during a single year of

operation.

Nx,k The number of reactor type x to be built in year k.

dk The total power demand at year k

dnetk The net power demand (total less legacy contributions) at year k

gk The gap between the electric power produced by reactors operating at year k − 1 and

the electric demand at year k.

2.3.2 Defining the Planning Horizon

Before deriving any equations or drawing any results, we must first fully define what is meant

by the Planning Horizon. Simply put, the Planning Horizon is that period of time over which

control is exerted over the fuel cycle, its facilities and its operations. For the present purposes, the

Planning Horizon encompasses the years 2000 through 2100 in the VISION model. The goal of the

Socially Conscious approach is to give a clean separation between those effects that occur after end

of the planning horizon (EoPH) that are due to actions occurring during the planning horizon from
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those due to actions occurring after the EoPH. Thus, when considering the planning horizon, we

include any and all reactors constructed between the years 2000 and 2100, but also their fuel usage

and energy production from 2100 through their end of life. In the calculations that follow, fresh,

unirradiated nuclear fuel is NOT included, as it poses no long-term storage or disposal burden.

2.3.3 Forecasting Spent Fuel Inventories

The current implementation of VISION uses an LWR spent-fuel mortgaging scheme to predict the

amount of recyclable fuel available to supply future fast reactor needs [12, 13]. This mortgaging

scheme forms the basis for the built-in heuristic rule set. In order to generate feasible input

configurations for the optimization work, it is desired to implement a similar capability within

the optimization framework. The two key differences between the built-in heuristic mortgaging

scheme and the external forecasting scheme are that 1) the external forecast accounts for LWR SF

production and consumption on a year-by-year basis for each reactor, where the mortgaging scheme

allocates the entire reactor-lifetime fuel production/consumption in a single step, and 2) where the

mortgaging scheme is used to limit the number of fast reactors such that no fuel shortages occur,

the forecasting scheme has no such feedback and will happily compute infeasible scenarios.

The primary output of the forecasting method is, of course, the year-by-year estimate of the

LWR spent-fuel inventory. In order to produce this a number of ancillary values must first be

calculated. For computational reasons, these values are split between those that depend upon

fixed base-case parameters and those that depend upon input variable parameters. The first fixed

variable to be calculated is the electric demand profile for the planning horizon, di. The VISION

model assumes that electric demand grows with a specified rate, rj , for each year j in the planning

horizon. Thus dj = (1+rj)dj−1 where 2001 < j < 2100 and d2000 is the initial demand at year 2000.

Next, the number, capacity, and remaining lifetime of the pre-existing legacy reactors are pulled

from the VISION model; these are combined with the electric demand to calculate the net demand,

dnetj , for which new reactors must be built. Next, the per-operating-year spent fuel consumption or

production profiles for each reactor type are computed and cached for later use. Finally, the spent

fuel availability profile due to previously existing fuel and operating legacy reactors is computed

and stored.

With the required scenario constants pre-calculated, it is possible to generate the forecast for

a given reactor distribution profile. Given a reactor request profile, χrx,i, which specifies what

percentage of newly constructed capacity in year i will be of type rx, the actual number of reactors
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to build and spent fuel inventory can be calculated iteratively using the following equations:

gi = dneti −
∑

rx′∈{rx}

T life

rx′∑
j=1

Nrx′,i−jPrx′ (2.10)

NLWRmf,i =

 ÑLWRmf,i − 1 if ÑLWRmf,iPLWRmf + ÑFBR,iPFBR − gi > PLWRmf

ÑLWRmf,i otherwise
(2.11)

NFBR,i =

 ÑFBR,i − 1 if PLWRmf ≥ ÑLWRmf,iPLWRmf + ÑFBR,iPFBR − gi > PFBR

ÑFBR,i otherwise
(2.12)

Ñrx,i =

⌈
χrx,i

gi
qrx

⌉
(2.13)

M̃SF
k = M̃SF

k−1 +
∑

rx′∈{rx}

T̄ life

rx′∑
j=0

Nrx′,k−j−T prep

rx′
ṁrx′,j + ṀLSF

k (2.14)

where:

rx ∈ {LWRmf,FBR}

i ∈ [2000, 2100]

k ∈
[
2000, 2100 + T liferx′

]
ṁrx′,j ≡ Net SF production during year j of operation

T preprx′ ≡ Fuel Preparation Time

T̄ liferx′ = min
(
T liferx′ , k − T

prep
rx′

)
Prx = Reactor Annual Energy Production

M̃SF
2000 = Initial Legacy Fuel Inventory

ṀLSF
k = legacy reactor fuel production at year k

In these equations, the “Fuel Preparation Time” is the summation of the LWR spent fuel cooling

time (5 years), the separation time (1 year), and the FR fuel fabrication time (1/2 year) rounded

up to the nearest integer (7 years). The spent fuel forecast adds spent fuel to the inventory at

the moment it is discharged from the thermal reactor, and removes it from the inventory 7 years

before it is to be loaded into fast reactor. Although this does not reflect the actual fuel storage

locations in the VISION model, it is functionally equivalent and allows for a degree of computational

simplification. Also note that while the forecast for electric power gap and reactor order rate applies

only for the years 2000 through 2100, the LWR SF forecast is applicable through the lifetime of

the last reactors ordered in the year 2100.

Because the goal of the socially conscious approach is to minimize the amount of usable spent

fuel remaining at the end of planning horizon, the ability to quickly forecast this value allows the

optimization wrapper to both quickly verify the validity of a proposed configuration and iteratively
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approach certain defined configurations without invoking the heuristic rules embedded in VISION

. One such defined configuration is the so-called rear-loaded initial configuration, which is used

for many of the optimization tests. In this configuration, the optimization wrapper starts with

an initial reactor request distribution of 100% LWR reactors. Then, working backward from the

year 2100 in one year increments, it substitutes FBRs for LWRs until the forecast LWR spent fuel

inventory at the end of the planning horizon reaches the smallest non-negative value possible. (In

practice, it iterates until a negative value is obtained, then steps back). By defining the initial

configuration algorithmically, it is not necessary to recalculate the required distribution manually

every time a parameter value changes.

2.3.4 Per-Reactor SF Production and Consumption

In order to forecast the LWR SF levels through the simulations, we must first calculate the pro-

duction or consumption profiles for each reactor type. This, in turn, requires specifying certain

aspects of the fuel cycling scheme. It is standard practice in most power reactors to shut down for

refueling every 12-24 months (denoted Tcycle herein). At each outage, only a certain fraction of the

fuel is replaced; by having each batch of fuel in the core for multiple cycles, a greater amount of

energy may be extracted, and the uranium economy improves. (These improvements are of course

balanced against the down time required for each outage). Thus, at any one time, the reactor con-

tains Nbatch batches of fuel, each with an initial feed mass of mf
b,Pi

, where Pi indicates how many

times (passes) the fuel has been recycled (P0 is made from virgin ore, P1 is made from recycled P0,

and so on until pass 5, where it is considered to have reached equilibrium). On discharge, the total

mass and composition will have changed slightly, so it is designated separately by mS
b,Pi

. (Values

are listed in the appendix, table A.3).

In the VISION base case used for this work, two types of reactors are used, each with their

own fuel cycling strategy. The Light Water Reactor (LWR) and Light Water Reactor mixed-fuel

(LWRmf) varieties are typical of the current US fleet of Pressurized Water Reactors. At startup,

they are loaded with Nbatch batches of fuel made from virgin ore, and they cycle through an

additional batch every Tcycle years. At each cycle until the end of life, they discharge one batch

of spent fuel. When they are shut down, the remaining Nbatch batches are discharged. LWR and

LWRmf operating parameters are listed in table A.2.

The Fast Burner Reactor (FBR) type is typical of a liquid-metal cooled, fast-spectrum reactor.

Though the thermal power levels are assumed in VISION to be much lower than the LWR reactors,

the temperature and power density are considerably higher. Furthermore, whereas the LWR fleet

is fueled by virgin, Pass 0 fuel, each FBR recycles its spent fuel, using LWR spent fuel to make

up the difference between the spent and feed fuel compositions. Indeed during the early cycles of

a new fast reactor the fuel material is coming completely from spent LWR fuel since it takes a

number of years to recycle its own discharged fuel back into the reactor. Newly discharged spent

fuel must cool in wet storage for a given time, Twet, before it can be sent through separations and

fuel fabrication (which require time Tsep and Tfab, respectively). The sum of these three times is
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Table 2.7: Spent Fuel Production Profile for Light Water Reactors

From Time To Time SF Mass

0 Tlifetime mS
b,P0

Nbatch
Tcycle

Tlifetime – mS
b,P0

Nbatch
∆t

Table 2.8: Spent Fuel Consumption Profile for Fast Burner Reactors

From Time To Time SF Mass

0 – mf
b,P1

Nbatch
∆t

0 Tpipeline

(
mf
b,P1

)
Nbatch
Tcycle

Tpipeline + 1 Tpipeline + Taround

(
mf
b,P2
−mS

b,P1

)
Nbatch
Tcycle

Tpipeline + Taround + 1 Tpipeline + 2Taround

(
mf
b,P3
−mS

b,P2

)
Nbatch
Tcycle

Tpipeline + 2Taround + 1 Tpipeline + 3Taround

(
mf
b,P4
−mS

b,P3

)
Nbatch
Tcycle

Tpipeline + 3Taround + 1 Tpipeline + 4Taround

(
mf
b,P5
−mS

b,P4

)
Nbatch
Tcycle

Tpipeline + 4Taround + 1 Tlifetime

(
mf
b,P5
−mS

b,P5

)
Nbatch
Tcycle

called the pipeline time, denoted Tpipeline for simplicity. This number is then added to the time

that the fuel spends in the reactor to give the so-called around time, Taround (i.e. the time for fuel

to make one pass around a cycle of irradiation and recycling). (See also equations 2.11 through

2.14 in [12]). The net effect is that each reactor type has a defined LWR spent-fuel production or

consumption profile, the formulas for which are listed in tables 2.7 and 2.8 below. These values are

computed on a per-time-step basis within the VISION simulation and subsequently converted to

an annual basis within the optimization wrapper.

2.3.5 Initial Spent Fuel Stocks

The Legacy spent fuel category encompasses both spent fuel existing prior to the start of the

simulation and spent fuel produced by the continued operation of those reactors that exist at the

start of the simulation. The initial spent fuel inventories are spread amongst several stages of the

fuel cycle, and are specified through base-case settings for the variables listed in table 2.9. By

combining the year-by-year spent fuel production profile with the legacy reactor retirement profile

it is a straightforward matter to calculate the legacy spent fuel mass produced at each year of the

simulation, ṀLSF
k .

The legacy reactors (and all other reactors in the VISION model) retire through a three stage

process that accounts for the time required to build replacement capacity and to produce fuel

for the reactors. When the time reaches the adjusted legacy reactor retirement date, the appro-
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Table 2.9: VISION Initial Fuel Mass Terms
Description VISION Variable Sample

Time

The mass of spent fuel ini-
tially sitting dry storage.

INITIAL SF DRY STORAGE 2200

The mass of spent fuel ini-
tially stored in a Monitored
Retrievable Storage site.

INITIAL SF MRS 2200

The mass of spent fuel ini-
tially in the reactor spent fuel
storage pools.

INITIAL SF WET STORAGE 2200

The mass of spent fuel ini-
tially existing due to legacy
reactors, but not assigned to
a storage location.

adjusted initial legacy SF 2200

Total initial legacy TRU
inventory1

total initial SF active isotope 2200

The year at which the legacy
reactors begin the retirement
process

adjusted legacy reactor retirement date 2200

The number of years legacy
reactors run after ordering
(but before fabricating) the
last batch of fuel

legacy reactors retirement delay[LWR] 2200

The number of years legacy
reactors run after fabricating
the last batch of fuel

legacy reactors shutdown delay[LWR] 2200

The rate at which legacy re-
actors retire

Adjusted Legacy Reactor Retirement Rate 2200

The initial number of legacy
reactors

adjusted initial legacy reactors 2200

1 This variable was added to VISION specifically for the optimization work, and
is not part of the standard distribution.
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priate number of retiring legacy reactors are transferred from the Legacy Reactors category, to

the Legacy Reactors Near Retirement category. At this time, construction of replacement power

begins. After a number of years (4 for all Light Water reactors), the reactors move to the

Legacy Reactors Near Shutdown category. From this point on, no further fuel is ordered. Finally,

after this last delay (3.25 years), the legacy reactors are moved into the Retired Legacy Reactos [sic]

category.

2.4 Decision Variables

The VISION model provides a wealth of parameters and options that may be adjusted to specify

a wide range of fuel cycle options. Also provided are a large set of base-cases, which completely

specify many commonly examined options (one-tier, two-tier, various recycling schemes, etc). One

common feature to most base-cases is the ability to specify the percentage of new reactor capacity

to be built in any year that is filled by each of three main reactor types (LWR, LWRmf, and

FBR). These reactor split profiles are used as the primary decision variable in simulations. Thus,

the optimization algorithm is able to perturb the rate and time at which new reactor types are

introduced or phased out in order to find a pattern that minimizes the selected objective function

(described below).

2.4.1 Perturbation Algorithm

The simulated annealing algorithm explores the configuration space by repeatedly perturbing the

inputs to the simulation. The perturbation algorithm follows a simple, two step approach. First,

suitable, randomly sampled LWRmf reactor within the planning horizon is replaced by the appro-

priate number of FBRs. Then, if this substitution causes a shortfall in the forecast of available

LWR spent fuel, an LWRmf reactor is reinserted at different randomly sampled year.

The initial donor year, Ta, is selected by first compiling, and then sampling from, a list of all

years between the fast reactor phase-in year (2040) and the end of the active planning horizon

(2100) in which the forecast indicates an LWRmf reactor will be built. Let NLWR , NFBR , and

Psurplus be the currently forecast values for the numbers of LWRmf reactors and FBR reactors

and the electrical power capacity to be built beyond demand (due to integer reactor ordering),

respectively at year Ta. We wish to estimate the fraction of new power that must come from FBR

reactors, χ̃, if one of the LWRmf reactors is canceled. Therefore, additional FBR capacity must

be substituted to meet the demand. However, given that there is not a one-to-one correspondence

between LWRmf power and FBR power, and that reactors must be built in integral units, the

following equations are used to compute the new fast reactor fraction.

∆ = max

(⌈
PLWR − Psurplus

PFBR

⌉
, NFBR

)
(2.15)

χ̃ =
1

1 +
(
NLWR −1
NFBR +∆

)
PLWR
PFBR

(2.16)
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This new value is substituted into the requested distribution profile, and the deployment forecast is

regenerated. The substitution of FBRs in place of LWRs will increase the overall TRU consumption,

and can be expected to cause a fuel shortage at some point in the forecast – the second step of the

algorithm addresses this concern.

If a shortfall in LWR spent fuel inventory is predicted, then a list is compiled of all of the years

preceding the shortfall in which a fast reactor is built. From this list, a recipient year, Tb is sampled,

and, in a similar manner to the first step, an LWRmf reactor is built instead. The new requested

FBR fraction for Tb is again denoted by χ̃, given below.

∆ = max

(⌊
PLWR + Psurplus

PFBR

⌋
, NFBR

)
(2.17)

χ̃ =
1

1 +
(
NLWR +1
NFBR −∆

)
PLWR
PFBR

(2.18)

Once again, the deployment forecast is recomputed with the new distribution, and step two is

repeated until no shortfalls occur.

This entire perturbation sequence is repeated multiple times so that the configuration space

may be more quickly spanned at high annealing temperatures. The exact number of repetitions is

uniformly and randomly sampled to be between one and fifteen. In order to track the acceptance

probabilities of a given number of perturbations relative another, an overall perturbation distance

value is reported for each new sample. This value is simply the sum total of all LWRmf capacity

removed from or added to the forecast reactor build profile.

2.5 Limitations of this Calculation

The VISION model determines fuel movement based on the active isotope and total fuel mass,

while enforcing a fixed set of fuel recipes. As a result, some of the uncontrolled isotopes are not

conserved through the simulation (mass may be created or destroyed).

This forecast technique also neglects the decay of transuranic elements. Calculations of total

transuranic decay rates using the VISION decay matrix and LWR spent fuel recipe show that only

0.0224% of TRU mass is lost to decay per year. Thus five years of storage will result in losses

similar to the assumed 0.1% separations process loss.

At startup, the first Nbatch− 1 batches of fuel to be discharged from a fast reactor will not have

been fully burned; therefore the discharge isotopics will be somewhat different than the current

model calculations. Similarly, at shutdown all Nbatch batches of fuel are assumed to have full

discharge burn-up, when in reality only one batch would.
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2.6 Parallel Simulated Annealing Framework

Much effort has gone into the design and development of a scalable and extensible computational

framework for implementing a parallel simulated annealing algorithm. The basic design parame-

ters were largely specified by the requirements of the Powersim software package in which VISION

was implemented. While the Powersim Studio program offers a rich graphic interface that is ideal

for developing and testing systems dynamics models, it is poorly suited for the kind of repetitive,

large-batch operation that the simulated annealing algorithm requires. Fortunately, the underlying

Powersim Simulation Engine exposes a series of properties and methods that allow the program-

mer to interface directly with the simulation engine without invoking any unnecessary elements.

Unfortunately, the Powersim Simulation Engine is currently only available for use on the Microsoft

Windows operating system; this precludes the use of on campus High Performance Computing

resources, which are Linux based. This interface is accessible through any of the .NET compatible

languages; C# was chosen for this project. One advantage afforded by the use of the .NET platform

was the ability to make use of a great deal of pre-existing code in the Framework Class Library [6].

These provide many of the basic building blocks required to support efficient inter-machine com-

munication, process management and data handling.

In the PSA framework, one master process manages all program I/O, controls the annealing al-

gorithm, and runs communication with other machines. This master process connects with separate

server processes (possibly running on other machines) from which it receives so-called Simulation-

Drone instances. These SimulationDrone instances, which reside on the remote machines, perform

the heavy lifting of repeatedly running the VISION simulation and report the results back to the

master process. Currently the scaling of this method is limited only by the number of computers

available to be dedicated to this project.

2.6.1 Cooling Schedule

In simulated annealing, the choice of the annealing temperature parameter and the Markov-chain

update conditions comprise the so-called cooling schedule, which plays a critical role in determining

the success and efficiency of the optimization. To guarantee convergence on the global optima, the

distribution of accepted configurations must remain at equilibrium as the annealing temperature

goes to zero. In practice, it would take far too long to achieve a true equilibrium state; instead, one

tries to achieve a quasi-equilibrium state [16] by the end of each cooling step. This can be achieved

either by making large reductions in annealing temperature followed by long cooling steps or by

taking small, incremental temperature decrements and correspondingly shorter cooling steps. The

latter approach is generally preferred.

In order to maximize the efficiency of the synchronous parallel annealing algorithm (and to

maintain simplicity overall) the individual cooling chain segments are fixed to a constant length.

After sampling a total of Lchain samples, or accepting a total of Ltran samples the process each

process signals its readiness to update. (Currently, values of 75 and 30, respectively, are being
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used.) During the initial cooling step, where all proposed transitions are accepted, a separate

segment length, Lsurv, is used (currently set to 50). When more than 87% of the individual

processes indicate readiness, an update is initiated.

The initial value of the annealing temperature is chosen by examining the outcome of the first

cooling step. Because it is desired that the majority of samples be accepted early in the cooling

cycle, the initial temperature is chosen to be a fixed multiple, BT , of the standard deviation of the

sampled objective values.

T0 = BTσF (2.19)

Currently, BT has been assigned a value of 2.0.

As is it desired to keep the sampled objective function distribution near to equilibrium after

each temperature update, it is necessary to update the temperature in small increments such

that the change to the equilibrium distribution is small. This is accomplished by using Huang’s

algorithm [1], which uses equation 2.20 below to ensure that the expectation value of the new

distribution is within one standard deviation of the previous distribution.

Tk+1 = Tke
−λHTk/σF (2.20)

The value of λH , defined by the user, is always less than 1.0, and is currently set at 0.7. To prevent

quenching in the event that only a narrow distribution of samples has been accepted, the overall

temperature reduction factor is limited to a minimum value of 0.5.

In order to develop the annealing algorithm and to measure the convergence of the results, a

simple set of search termination criteria are used; the search is terminated after a total of Llngth

samples have been evaluated across all processes. The ability to restart a saved optimization run

with different cooling parameters further enhances the ability to test end-of-cooling convergence

properties and cooling parameter values.

2.6.2 Constraint Multipliers

During an optimization cycle, the penalty constraints are incorporated into the objective func-

tion through the use of penalty multiplier values, resulting in the so-called Augmented Objective

Function, F obj .

F obj = Fobj +
∑
i

λiΘi (2.21)

The augmented objective function, thus penalized, tends to constrain the solution chain to those

solutions that minimize the constraint violations. The multipliers are increased in response to

continued constraint violations, thus increasing the pressure on the optimization to reject offending

solutions.

The algorithm used to increment the penalty multipliers is borrowed from the FORMOSA-B code

[3, 10], which aims to achieve, in even logarithmic increments, a specified total reduction factor in

the mean constraint violation value. First, define the average constraint violation reduction factor
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Table 2.10: Optimization Terms Defined

Term Description

F Unaugmented Objective Function

F Augmented Objective Function

Θi Penalty Constraint Function

λi,k Penalty Constraint Multiplier i at cooling step k

Λi,k Mean value of Θi over cooling step k

fÑ Final mean constraint violation reduction factor

χp Foreshortening factor for constraint violation re-
duction

Llngth The specified maximum number of configurations
to evaluate during a single cooling cycle.

Lchain The specified maximum number of configurations
to evaluate on a single parallel thread during a
single cooling step.

Ltran The specified maximum number of configurations
to accept on a single parallel thread during a sin-
gle cooling step.

Lsurv The specified maximum number of configurations
to evaluate on a single parallel thread during the
temperature initialization step.

Nthread The number of parallel threads used in the opti-
mization.

Nsampled The total number of configurations sampled
across all processes.
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for cooling step k + 1,

fk+1 = Λk+1/Λk (2.22)

Next, define the average penalty reduction factor for cooling step k + 1,

Ck+1 =
λk+1Λk+1

λkΛk
(2.23)

Substitute 2.22 into 2.23 and solve for λk+1 to get

λk+1 =
Ck+1

fk+1
λk (2.24)

Assume that Ck and fk remain roughly constant throughout the cooling cycle, and require that

by cooling step Ñ , (defined below) that an overall specified reduction factor of fÑ will have been

achieved. It follows that if the mean constraint violation is to be reduced by the required factor by

the requested cooling step, that

fk+1 = 10

(
log(fÑΛ0/Λk)

Ñ−k

)
(2.25)

It is desired that the constraint violations be effectively removed before the end of the cooling cycle

(after N steps), so the foreshortened value Ñ is used.

Ñ = k + χp

[
Llngth −Nsampled

LchainNthread

]
(2.26)

The constant parameter χp < 1 is specified by the user.
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Chapter 3

Progress to Date

To date, the simulated annealing framework implementation is largely complete and tested. Some

additional work will be required to fine-tune the cooling parameters and to implement the multi-

objective optimization capability.

Extensive modifications have been made to the VISION model to reduce its run-time and to

ensure that it functions according to the assumptions and requirements of the optimization method-

ology. Among these modifications are the removal of all output-oriented spreadsheet connections,

the streamlining of most of the embedded VBFUNCTION-defined variables, the ability to override the

built-in heuristic rules controlling the maximum number of fast reactors to order in a given year,

and the ability to run simulations over an extended 200 year time horizon.

The degree of confidence that one can have in the results of an automatic optimization scheme

are directly related to one’s confidence in the underlying model. Therefore, a great deal of effort

has gone into testing and verifying many aspects of the VISION model. Because the number

and variability of the random perturbations attempted by the annealing algorithm far exceed the

bounding cases previously tested in the model, a number of modifications and clarifications were

required to ensure valid results could be obtained.

The single objective optimization capability is being fine-tuned and tested using the Long-term

Heat objective function; optimization testing using other objective functions is expected to begin

shortly.

The Socially Conscious Approach to closing the planning horizon is also being fine-tuned and

tested to ensure that it functions as anticipated and meets the requirements.

3.1 Test Cases and Results

Throughout the development work to date, numerous test cases have been performed a number of

times with varying, but improving, degrees of success. In order to keep the voluminous output data

in order, each run is named after the date on which it was started or the run which it is continuing.

Thus, as the run described below was the first run started on 27 July, it is named 7-27a.

Overall, the results of test 7-27a indicate that the optimization algorithm performs as intended.
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Although subsequent testing has revealed that there were several inconsistencies in the forecasting

model at the time of the test, it is not believed that this invalidates the optimization method

itself, but it does indicate the potential for greater improvement in the results obtained. This

work is currently ongoing. As seen in figure 3.1, the fraction of samples accepted at each cooling

step tends to decrease as the optimization proceeds. The relatively high final acceptance ratio of

approximately 40% indicates that either the algorithm had not yet converged, or that there exist

a number of nearby optimal solutions. However, the perturbation distances of accepted histories,

shown in figure 3.2 remain rather uniformly distributed, indicating that the previously noted high

final acceptance ratio is likely due to insufficient cooling.

Table 3.1: Test 7-27a Settings

Parameter Value

Objective Long-term Heat

Nthread 16

Llngth 8000

Lchain 75

Ltran 40

Lsurv 50

χp 0.75

λH 0.70
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Table 3.2: Test 7-27a Results
Parameter Value

Total Samples 9251

Accepted Samples 6130

Rejected Samples 3121
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Figure 3.1: Test 7-27a Percentage Accepted by Cooling Step
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Figure 3.2: Test 7-27a Configuration Perturbation Size by Sample Number
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Many of the following plots are paired so that the upper plot shows the mean and deviation of

all accepted solutions along with the best and worst solutions from the archive, listed by annealing

segment. The lower plot shows the saved values for each accepted sample according to the adjusted

sample number. The adjusted sample number is computed simply by adding the maximum adjusted

sample number of the previous cooling step to the index of the given sample on a parallel process

relative to the start of the last annealing step.

Figures 3.3 and 3.4 show that the optimization algorithm is indeed working to minimize the

Long-term Heat objective function value with each cooling step. In particular, it can be noted in

figure 3.3 that for the final cooling steps the best and worst archived solutions have nearly identical

objective function values, indicating that there exists a family of nearby optimum solutions. In

addition, figure 3.4 shows that although after the fifth cooling step the minimum accepted objective

function value does not markedly decrease, the average value of the accepted solutions does continue

to drop.
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Figure 3.4: Test 7-27a Long Term Heat Objective Value by Sample Number
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One feature of the perturbation algorithm is that while trying to minimize the leftover LWR SF

inventory, it might select a configuration that will cause some FBRs to run out of fuel. While such

configurations are obviously non-optimal, their acceptance as part of the annealing chain may be

useful to promote the full coverage of the configuration space. Thus, the idled (or unused) capacity

penalty function is used to progressively guide the optimization away from these configurations as

the cooling cycle evolves. Figures 3.5 and 3.6 indicate that while there were a small number of

accepted configurations with constraint violations, none were accepted into the solution archive,

and the segment mean constraint violation value was successfully reduced during the cooling cycle.

Figure 3.7 shows how the penalty multiplier value was adaptively increased throughout the cooling

cycle in order to further decrease the number of configurations accepted in spite of constraint

violations.

38



10-4

10-3

10-2

10-1

100

101

 0  1  2  3  4  5  6  7  8

G
W

-y
r(

e)

Segment

Idled Capacity vs. Cooling Step

Segment Mean
Archive Best

Archive Worst
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Figure 3.6: Test 7-27a Unused Capacity Constraint by Sample Number
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Figure 3.7: Test 7-27a Idle Capacity Penalty Multiplier by Cooling Step

Figures 3.8 and 3.9 indicate while the overall uranium utilization for all accepted solutions shows

a slight variation from one configuration to another, both the best and worst archived solutions

had identical results for most cooling steps.
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Figure 3.8: Test 7-27a Accepted Sample Average Uranium Utilization Objective by Cooling Step

0.1200

0.1205

0.1210

0.1215

0.1220

0.1225

0.1230

0.1235

0.1240

0.1245

 0  100  200  300  400  500  600

K
t-

or
e/

G
W

-y
r(

e)

Adjusted Sample Number

 Uranium Utilization vs. Adjusted Sample Number 

Figure 3.9: Test 7-27a Uranium Utilization Objective by Sample Number
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Figures 3.10 and 3.11 show that, after an initial drop, the total weapons usability metric tends to

hover near the same value as the optimization progresses, indicating that it is loosely coupled to the

long-term heat objective value (as would be expected, because many of the actinides active in the

weapons metric also emit decay heat and are produced and consumed through similar processes).
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Figure 3.11: Test 7-27a Weapons Usable Objective by Sample Number
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Figure 3.12: Test 7-27a Best-Solution Archive FBR Request Distribution

Finally, figure 3.12 depicts the distribution in the requested FBR build profile in the archive

of configurations from the final cooling step. The error-bars indicate the extent of the accepted

configurations, while the solid bars indicate the average distribution; the best configuration is

plotted as a solid black line. Because of the increasing electrical demand, a given variation in the

percentage of FBR capacity requested toward the end of the planning horizon will correspond to

a greater variation in the actual number of FBRs requested than it would at the beginning of the

planning horizon. One interesting feature to note is that all of the archived configurations show a

generally increasing FBR request from 2070-2090, yet request zero FBRs for the years 2097-2099,

followed by a slight uptick at 2100. The reason for this is not yet known. Clearly from a new build

viewpoint, a smooth variation in the start of new builds per year with time is desired, which can

be addressed by a penalty function.
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Chapter 4

Plan of Future Work

There are several goals remaining in this work – first among them are the complete specification,

implementation, and testing of the economics objective function. Furthermore, it is desired to

refine the Weapons Usable objective function to account for the relative vulnerabilities of various

types of fuel cycle facilities. As there are a number of objective functions available, it is also

desired to include a multi-objective simulated annealing (MOSA) capability within the code; this

will be used to estimate the trade-off surfaces that exist between select objectives. Finally, the

Socially Conscious methodology restricts the decision space to an area that minimizes residual

TRU, suggesting an eventual phase-out of the nuclear enterprise. We wish to explore a Dynamic

Growth case, where all TRU existing prior to the end of the planning horizon has been consumed

and a stationary reactor distribution at the end of the planning horizon will accommodate an

assumed constant future growth rate without introducing any additional TRU disposal burden.

The specifics of this scenario have not yet been finalized, and are subject to change.
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Appendix A

VISION Base Case Settings

To simplify the process of specifying an individual fuel cycle deployment scenario, the VISION

code incorporates a large number of predefined base-cases. These base-cases cover most of the

commonly requested scenarios, ranging from a simple phase-out of the current reactor fleet, to a

two-tier evolution from the current state to a system with full spent fuel recycling and breeding

reactors. For the current optimization studies a one-tier base-case with fast reactor recycle is used.

Initially, only thermal reactors are available and their fuel is not recycled. After the year 2040,

fast burner reactors (conversion ratio of 0.5) may be built. These FBRs are initially fueled entirely

with recycled LWR spent fuel, transitioning to a time-varying mixture of recycled FBR and LWR

spent fuel as they age.

The separations technology modeled in this base-case is based on the UREX-1a process for

thermal fuel and a pyroprocessing method for fast fuel. The fuel is partitioned between various

output streams with the efficiencies listed below in table A.1

Several reactor parameters pertinent to the optimization methodology are listed below in table

A.2.

In order for the Socially Conscious approach to forecast LWR SF inventories efficiently, it must

compute the mass of TRU required for each batch of spent and fresh recycled fuel. These are listed

below in table A.3.
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Table A.1: Separations Efficiencies

Thermal Oxide Fuel

Stream He FP1 U TRU2 3H C Kr Sr Tc I Cs

PNAC3 0.000 0.000 0.000 0.999 0.000 0.000 0.000 0.000 0.000 0.000 0.000

RU4 0.000 0.000 0.999 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Iodine 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.999 0.000

Gas 0.999 0.000 0.000 0.000 0.999 0.000 0.999 0.000 0.000 0.000 0.000

Tc 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.749 0.000 0.000

Cs, Sr 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.999 0.000 0.000 0.999

Lanth FP 0.001 1.000 0.001 0.001 0.001 1.000 0.001 0.001 0.001 0.001 0.001

UDS5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.250 0.000 0.000

Fast Metallic Fuel

Stream He FP1 U TRU2 3H C Kr Sr Tc I Cs

RU PNAC 0.000 0.000 0.034 0.999 0.000 0.000 0.000 0.000 0.000 0.000 0.000

RU 0.000 0.000 0.934 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Gas 0.999 0.000 0.000 0.000 0.999 0.000 0.999 0.000 0.000 0.000 0.000

Cs, Sr 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.999 0.000 0.999 0.999

Lanth FP 0.001 1.000 0.000 0.001 0.001 1.000 0.001 0.001 0.001 0.001 0.001

Zr, SS6 0.000 0.000 0.034 0.000 0.000 0.000 0.000 0.000 0.999 0.000 0.000

1 Fission products isotopes include: 226Ra, 228Ra, 206Pb, 207Pb, 208Pb, 210Pb, 228Th, 229Th,
230Th, 232Th, 209Bi, 227Ac, 231Pa

2 Transuranic isotopes include: 237Np, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, 244Pu, 241Am, 242mAm,
243Am, 242Cm, 243Cm, 244Cm, 245Cm, 246Cm, 247Cm, 248Cm, 250Cm, 249Cf, 250Cf, 251Cf, 252Cf

3 Recycled Uranium
4 Recycled Plutonium, Neptunium, Americium and Curium
5 Undissolved Solids
6 Zirconium and stainless steel cladding and structural material
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Table A.2: Basic Reactor Data
LWR FBR

Thermal Power 3088 MWth 1667 MWth

Electric Power 1050 MWe 600 MWe

Efficiency 34% 36%

Load Factor 90% 85%

Tlifetime 60 yr 60 yr

Tcycle 1 yr 0.434 yr

Nbatch 5 7.3

Fuel Form oxide metallic

Conversion Ratio - 0.5

Total Core Mass 100 tonnes 9.3 tonnes

Discharge Burn-up 51 GW-day/MT-IHM2 176.6-176.9 GW-day/MT-IHM3

1 Conversion Ratio is defined as “the ratio of mass of transuranic isotopes
created over those destroyed during fuel irradiation” [7]

2 Legacy fuel from Gen-II reactors has only 33 GW-day/tonne burn-up
3 MT-IHM stands for Metric Ton of Initial Heavy-Metal content.

Table A.3: TRU Batch Loading

Tonnes/batch

Pass Feed Spent

LWR 0 0.000 0.247

FBR 1 0.374 0.300

2 0.386 0.310

3 0.397 0.321

4 0.410 0.331

5 0.422 0.343
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