‘ ! ! . LLNL-SR-499454

LAWRENCE
LIVERM ORE
NATIONAL

womrone | LIQhtwelght and Statistical Techniques for
Petascale Debugging: Correctness on
Petascale Systems (CoPS) Preliminry
Report

B. R. de Supinski, B. P. Miller, B. Liblit

September 16, 2011

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Lightweight and Statistical Techniques for Petascale Debugging:

Correctness on Petascale Systems (CoPS) Preliminry Report
Bronis R. de Supinski, Barton P. Miller and Ben Liblit

1 Project Summary

Petascale platforms with O(10°) and O(10°) processing cores are driving advancements in a wide range
of scientific disciplines. These large systems create unprecedented application development challenges.
Scalable correctness tools are critical to shorten the time-to-solution on these systems. Currently, many DOE
application developers use primitive manual debugging based on printf or traditional debuggers such as
TotalView or DDT. This paradigm breaks down beyond a few thousand cores, yet bugs often arise above
that scale. Programmers must reproduce problems in smaller runs to analyze them with traditional tools, or
else perform repeated runs at scale using only primitive techniques. Even when traditional tools run at scale,
the approach wastes substantial effort and computation cycles. Continued scientific progress demands new
paradigms for debugging large-scale applications.

The Correctness on Petascale Systems (CoPS) project is developing a revolutionary debugging scheme
that will reduce the debugging problem to a scale that human developers can comprehend. The scheme
can provide precise diagnoses of the root causes of failure, including suggestions of the location and the
type of errors down to the level of code regions or even a single execution point. Our fundamentally new
strategy combines and expands three relatively new complementary debugging approaches. The Stack Trace
Analysis Tool (STAT), a 2011 R&D 100 Award Winner, identifies behavior equivalence classes in MPI jobs
and highlights behavior when elements of the class demonstrate divergent behavior, often the first indicator
of an error. The Cooperative Bug Isolation (CBI) project has developed statistical techniques for isolating
programming errors in widely deployed code that we will adapt to large-scale parallel applications. Finally,
we are developing a new approach to parallelizing expensive correctness analyses, such as analysis of memory
usage in the Memgrind tool.

In the first two years of the project, we have successfully extended STAT to determine the relative
progress of different MPI processes. We have shown that the STAT, which is now included in the debugging
tools distributed by Cray with their large-scale systems, substantially reduces the scale at which traditional
debugging techniques are applied. We have extended CBI to large-scale systems and developed new compiler-
based analyses that reduce its instrumentation overhead. Our results demonstrate that CBI can identify the
source of errors in large-scale applications. Finally, we have developed MPlecho, a new technique that will
reduce the time required to perform key correctness analyses, such as the detection of writes to unallocated
memory. Overall, our research results are the foundations for new debugging paradigms that will improve
application scientist productivity by reducing the time to determine which package or module contains the
root cause of a problem that arises at all scales of our high end systems.

While we have made substantial progress in the first two years of CoPS research, significant work
remains. While STAT provides scalable debugging assistance for incorrect application runs, we could apply
its techniques to assertions in order to observe deviations from expected behavior. Further, we must continue
to refine STAT’s techniques to represent behavioral equivalence classes efficiently as we expect systems with
millions of threads in the next year. We are exploring new CBI techniques that can assess the likelihood that
execution deviations from past behavior are the source of erroneous execution. Finally, we must develop
usable correctness analyses that apply the MPlecho parallelization strategy in order to locate coding errors.
We expect to make substantial progress on these directions in the next year but anticipate that significant
work will remain to provide usable, scalable debugging paradigms.

2 STAT: The Stack Trace Analysis Tool

STAT, a scalable lightweight tool that won the R&D 100 Award this year, identifies process equivalence
classes, groups of processes that exhibit similar behavior. It samples stack traces over time from each task
of the parallel application, which it merges into a call graph prefix tree as shown in Figure 1. The call
graph prefix tree intuitively represents the application’s hierarchical behavior classes over space and time.
Our graphical representation indicates these equivalence classes by node colors and the edge labels that
identify which tasks are in the class. The developer can use these classes to reduce the number of tasks and to
narrow down the code regions upon which to apply traditional techniques such as a detailed code tracing
with a full-featured debugger. In this section, we describe the basic architecture of STAT and then detail an
important advance made under CoPS.

2.1 STAT Background

Conceptually, STAT has three main components: the front end, the tool
daemons, and the stack trace analysis routine. The front end controls
the collection of stack trace samples by the tool daemons, and the stack
trace analysis routine processes the collected traces. Each component
of STAT leverages scalable tool infrastructures in order to achieve its
primary design goal of scalability. It uses LaunchMON [1] to co-locate
tool daemons scalably with the distributed target application processes by
coordinating with the native resource manager or scheduler. The Stack
Walker API is used to construct stack traces with very low overheads.
Finally, the MRNet tree based overlay network (TBON) reduces the trace
data and processing loads on STAT’s front end through a custom MRNet
filter that efficiently merges the stack traces.

The development and deployment of STAT has been very successful.
The tool is effective in debugging real-world scientific applications such
as the Community Climate System Model (CCSM) [15] by substantially
reducing the search space to a handful of representative tasks for anomalies such as deadlock, livelock and
infinite loops [5]. Our initial results demonstrated that the basic architecture and intelligent implementation
of the filter routines support scalability to four thousand tasks.

Subsequently, we developed a STAT emulator that supported exploration of tool performance at two orders
of magnitude more tasks than the number of processors available on the system [28]. These experiments led to
design modifications that made STAT the first parallel debugging tool to scale to tens of thousands processors
while achieving execution times that are appropriate for interactive use. More recently, we demonstrated
that additional design research and tool performance analysis led to an understanding of new issues that
arise for scalable debugging of over one hundred thousand tasks [26]. The critical lesson of these studies is
that each order of magnitude increase in system size will present new hurdles that must be addressed with
additional research. Our ability to emulate significantly large systems will allow us to understand those issues
prior to deployment of the expected million processor systems, leading to solutions that are available when
application developers most need them: when the system first becomes available for use.

While emulation is an essential aspect of our strategy to provide timely debugging solutions, we have
conducted experiments on the world largest supercomputers as we incrementally scaled up STAT. These ex-
periments stressed all components and guided our optimizations that enable it to function at those scales. Our
lessons included an understanding of the importance of data structures that allow the tool to exploit TBONs
effectively at extreme scale. Figure 2 shows the stack traces merge time results from BG/L with our latest
bit vector optimization in comparison to the original implementation that used an » bit vector at each node

Figure 1: STAT stack prefix tree

35

25

1.5

0 ro=—== T T T T T >\ \7_/’7

Time (seconds)

SIS ISP IS ES TS
T NN o 9 Y S W B Q) OO
CILTETEFT PSS Y

~ ~ ~ ~ ~ ™~ f\,
Number of Processes
2-cdeep CO 2-deep VN =+ 3-deep CO —#-3-deep VN

——2-deep CO opt & 2-deep VN opt 3-deep CO opt 3-deep VN opt

Figure 2: Optimized bit vector STAT merge time versus original bit vector STAT merge time

of the TBON to represent the global rank space of size n in order. The original data structure led to linear
tool network bandwidth requirements, which prevented the desired logarithmic scaling for tool performance.
Thus, we realized that achieving interactive scalability beyond tens of thousands of tasks required utilizing
not only a TBON but also distributed data structures that limit the total data volume sent through it. By
redesigning the tool to use such data structures, STAT can now merge stack traces from over two hundred
thousand tasks on BG/L in under half a second — performance sufficient for interactive use.

2.2 Temporal Ordering

STAT originally aggregated stack trace information across all nodes to form equivalence classes of processes,
which identify a small subset of processes that can be debugged as representatives of the entire application.
While often sufficient, stack traces can be too coarse grain for grouping processes and for understanding the
relationship between their execution state. This coarseness may miss critical differences or dependencies.
Thus, STAT did not always allow bug isolation and root cause analysis. Instead, we must identify additional
data that capture the relative execution progress in each process and that supports accurate mapping of the
debug state across all processes.

We have developed a novel, non-intrusive and highly scalable mechanism that refines process equivalence
sets and captures the progress of each process. This technique creates a partial order across the process
equivalence classes that corresponds to their relative logical execution progress. For sequential code regions,
our approach analyzes the control structure of the targeted region and associates it with an observed program
location. For loops or other complex control structures, we use static data flow analysis, implemented in the
ROSE source-to-source translation infrastructure [11, 37], to determine which application variables capture
relative progress. We then extract their runtime values in all processes to refine the process equivalence sets
and to determine their relative execution progress. Similarly to previous work [19], our static techniques
significantly reduce the amount of runtime data needed for analysis.

Our methodology requires no source code changes; it analyzes the existing code and then uses the results
to locate the relevant dynamic application state through the standard debugger interface. Thus, our approach
meets a critical debugging requirement: we can apply it to production runs, e.g., after the application aborts
or hangs due to deadlock or livelock, thus manifesting a program bug.

/* Exchange ghost points of A */ (1) int poisson() {
(5) exchange_band(...);

/* Jacobi sweep, computing B from A */ (2) it = 0;
(6) sweep_band(...); (3) converged = 0;
(7) get_norm(...);

/* Exchange ghost points of B */ (4) while (it < MAX) {
(8) exchange_band (...);
/* Jacobi sweep, computing B from A */ ..
sweep_band (...); fragment shown in (a)
get_norm (...);
MPI_Allreduce (...);
if (diff <= tolerance) (18) if (converged

converged = 1; (19) break;

) 1f (converged) (it++;
) handle_converged(...); (
) else (
) handle_not(...); (}

(a) Solver program fragment (b) Iterative method that contains figure 3a

return converged;

)
)}
)
)

Figure 3: MPI program solving the Poisson problem iteratively

2.2.1 Comparing Process State through Relative Progress

We provide the required process equivalence class refinement and source code insight by distinguishing
processes by their relative progress, i.e., how far their overall execution has advanced compared to the other
processes. Conceptually, we compare the dynamic control flow graphs of the processes up to the current state
of execution. Thus, we reduce the relevant state to those variables that capture progress through that control
flow. Further, as we will demonstrate, we can identify the relevant variables in most cases automatically
through static analysis.

The relative progress of processes in a parallel application is an intuitively simple concept: we want to
order processes by how much of the dynamic execution they have completed. We can capture significant detail
about the execution history of a process by considering stack traces. A single stack trace can provide simple
but significant runtime data about a process’s execution. However, it captures limited temporal information:
the sequence of functions (i.e., the call path) immediately executed to reach the current state. We could track
a sequence of stack traces to capture a much richer notion of progress through the source code, which we
could use to compare processes in the same run. This approach is simple but infeasible: we cannot track the
stack traces from the beginning of a run in general, particularly for production runs. Thus, we need some
alternative representation from which we can deduce progress.

Stack traces alone are insufficient. Even if we tracked stack traces throughout execution, the same stack
trace may appear multiple times in this sequence so additional information must distinguish them. Since
we cannot practically capture the ordering of a sequence of stack traces, we instead look for variables that
partially capture this sequencing information. We illustrate this concept with the fragment of a Poisson solver
that figure 3 shows.

In any execution of the fragment in figure 3a, the call to exchange_band at (5) always occurs before the
call to sweep_band at (6). Alternatively, the calls to handle_converged at (15) and handle_not at (17)
cannot be ordered within the fragment since control flow ensures that only one will be executed; in multiple
processes they are essentially concurrent. However, the context of a full execution can change these orderings.
A process at (5) has progressed further than a process at (6) if it is at later iteration of the loop at (4) (i.e., it is
larger in the first process). Similarly, the value of it can order processes at (15) and (17). table 1 summarizes
the orderings based on the call stack information captured at those lines and the values of it, in which it; and

Line Number

Process 1 Process2 Rel. iter. count Logical execution order

(&) (6) it) <itp Process 1 is behind Process 2
5) (6) it] > ity Process 2 is behind Process 1
(15) 17) it] <itp Process 1 is behind Process 2
(15) 17) ity > ity Process 2 is behind Process 1
(15) 17 it] =it No relative progress order

Table 1: Two MPI processes executing the Poisson solver

ity are the values of it in processes 1 and 2.

Formally, we assume a parallel application with N processes that execute the same program (extending
our methodology to MIMD applications only requires us to merge the respective state sets). An execution
point is a relative point of execution as defined by the current stack trace and the state (values) of variables
relevant to control flow. We denote the set of all possible execution points as X. The current execution point
of a process i is P, € ¥.

Definition 2.1 Relative progress is a partial order <X C X x ¥ between two processes, i and j, with 0 < i, j <
N, such that P; X P; if and only if process j has reached or passed P; during its execution before reaching P;.

Intuitively, if a process is executing code with a given control flow variable state that another process
could have already executed with the same state then that first process is earlier in its execution than the
second. Thus, it has made less progress in the logical execution space. Relative progress is a partial order
since it is reflexive, antisymmetric and transitive. Relative progress is distinguished from previously explored
partial orderings of parallel processes [9, 24] in that two processes may be ordered even when no chain of
messages connects them.

Relative progress provides a theoretical foundation to compare the progress of different processes.
However, in order to be practical, we must efficiently and scalably represent a process’s progress at any point
of its execution. Thus, we define an execution point representation that uniquely identifies any execution
point by combining the static program locations of the current execution point with dynamic variable state
information. Our representation hierarchically describes each program point relative to its enclosing statement
block (e.g., a basic block, loop or function call). Thus, we can locally determine the information required
to identify any program location. We augment these program points with dynamic execution information
in the form of iteration counts, i.e., how often a particular program point has already been executed. We
then combine this information into a tuple from which we can derive a lexicographic order that exactly
corresponds to relative progress.

Our representation must treat loops very carefully because loop iteration counts should take precedence
in ordering. For the code in figure 3b, we represent the program points (5) and (6) as:

(5) = ((4—1), (iterCount), (5 —4)) — (3, (iterCount), 1)
(6) = ((4—1),(iterCount),(6 —4)) — (3, (iterCount),?2)

Here, both program points are in the while loop beginning at (4) in the function starting at (1), denoted by
its relative offset, (4 — 1), which equals 3. Within that loop, (5) has relative offset (5 —4) = 1 while (6) has
offset (6 —4) = 2. In order to represent the execution points, we also must determine the iteration count (it),
which we place next to the loop statement’s offset. The runtime value must take precedence over the offsets
within the body of the loop. We must also ensure that we properly encode incomparable execution points,
such as program points in distinct branches of a conditional statement. We represent the program points (15)
and (17) in figure 3 as follows:

poisson@(5)

<3,(it1),1> < <3,(it2),2>
=> Task; < Task,

exchange_band.. NENJ

Figure 4: Annotated stack traces for Poisson solver processes; first divergence determines relative progress

Task,

<..> = <...> for all pairs in the
prefix

(15) = (4 — 1), (iterCount), (14 — 14)€14=%) (15— 14)
— (3, (iterCount),0'°, 1

(17) = ((4— 1), (iterCount), (16 — 14)€14=4) (17— 16)
1

)
)
)
— (3, (iterCount),25'° 1)

With these representations, (15) and (17) are incomparable when the values of it are equal since Q€10
|| 2€1°. Figure 4 illustrates relative progress through the Poisson solver for a stack trace representation of
two processes. This figure represents each active stack frame with a tuple of the function name and the line
number of the callee invocation point. For illustration, we assume that the relative progress of the processes
are equal up to the invocation of poisson. Thus, the lexicographical order of (5) and (6) determines the
relative progress of processes 1 and 2, eliminating a need to evaluate later frames. We exploit this property to
determine relative progress efficiently for large scale applications.

2.2.2 Automatic Extraction of Application Progress

We have implemented the necessary analysis techniques to determine the progress of a running process in
this section. We begin by determining the components of our lexicographic order in general, which we split
into two steps. The first step finds necessary offsets while the second determines the variables that we can use
for iteration counts. We then conclude this section by showing how to limit the process dynamically only to
relevant data, thus making it practical for use on large scale systems.

Our simple but efficient abstract syntax tree (AST) analysis technique translates a program location into
the representation described in section 2.2.1. Our system represents a program location by the source file and
line number of an instruction. We adopt this simplification since most application developers do not typically
write multiple expression statements on a single line. Conceptually, our line number rewriting system is
a syntax-directed definition that uses the offset, an iteration count token, and a conditional branch token
as inherited attributes for each target high-level language statement. For every production of a statement,
the definition associates the statement’s offset within the containing compound statement’s body and, if
appropriate, either of the tokens, to the statement’s attribute, prepended with the attribute of the compound
statement, which has been produced similarly.

Our analysis uses ROSE [11, 37], a compiler infrastructure that parses high-level language source files
and provides mechanisms to manipulate the resulting AST. We use a set of line numbers within a target
function as input (we assume the binary is properly compiled with source and line number directives so that
the debugging information is consistent with those seen by ROSE) and derive a stack object for each. After
our ROSE translator parses the function’s source file, it performs a postorder walk on the AST, during which
it identifies all nodes that correspond to compound statements and function definitions and tests if any of their
line number ranges span our target line numbers. We push any AST node with spanning line numbers onto
the corresponding stack. Thus, each stack holds a set of compound statement and function definition nodes
that span the associated line number after we walk the AST. These nodes appear on the stack in decreasing
order of containment (e.g., the function definition node is on the top of the stack).

Next, we emit a lexicographical representation of each input line number. We first set the baseline to 0
and then pop each AST node off of the stack. For each of these nodes, we emit the displacement between
its beginning line number and this baseline, which we then advance by that displacement. Also, we emit a
special non-terminal token immediately after the offset if the node is a loop statement node. This token serves
as a placeholder in which our subsequent analysis can capture the iteration count precedence for statements
within the loop body. Similarly, we emit a special token if the node is a conditional branch so that we can
identify incomparable execution points.

Static analysis alone cannot fully resolve our lexicographic order when program points are contained in a
loop. The first part of our technique only produces a placeholder for the iteration count. Therefore, we devise
a static analysis technique that identifies Loop Order Variables (LOVs), key program variables with runtime
state from which we can resolve relative progress.

A LOV must satisfy certain properties. Its runtime sequence of values must increase (or decrease) during
the execution of the target loop. Further, all processes must assign the same sequence of values. Our LOV
analysis identifies program variables that satisfies these requirements.

Definition 2.2 Consider a variable x that is assigned a sequence of values during the execution of loop .
Let x;(p) be the function returning the i'" value of x for the task p. Then x is a LOV with respect to l if:

(1) xis assigned a value at least once every iteration of [;

(2) the sequence of values assigned to x is either strictly increasing or strictly decreasing during the execution
of | (i.e., either Vi : x;(p) > xi+1(p) or Vi : xi(p) < xi+1(p)); and

(3) xi(p) is identical for all the tasks (i.e., Vp1, p2, xi(p1) = xi(p2)).

Our LOV analysis builds on two related branches of static analysis. First, it borrows from the extensive
study on loop induction variables including loop monotonocity characterizations of these variables [17, 40, 42].
Unlike our dynamic testing scenario, strength reduction optimizations, loop dependence testing and runtime
array bound and access anomaly checking primarily motivate these techniques. Second, our LOV analysis
also uses the concept of the single-valued variable, a variable that maintains identical values across all
MPI tasks through all possible control flows [3, 43]. Those analyses classify variables as single-valued or
multi-valued in order to verify a program’s synchronization pattern. Like other induction variable analysis
techniques, LOV analysis requires the def-use chain of the function containing the target loop. LOV analysis
characterizes uses and definitions of key variables and tests them for ambiguities through the def-use chain.

Definition 2.3 The use of the loop invariant variable c with respect to the loop [(i.e., no definition of ¢ inside
[reaches to the use) is ambiguous if:

(1) multiple definitions of c reach to this use (e.g., in if (condl) a < 1 else a < 2 endif; do_work(a);,
the use of a in do_work is ambiguous); or

(2) the only definition of c results from multiple data flows into [(e.g., in if (condl) a < 1 else a
2 endif; b ¢ a; do_work (b);, the use of b in do_work is ambiguous); or

(3) the value of ¢ cannot statically be resolved into a compile-time constant within its containing function
(e.g.,ina < random_func(); b < a; theuseofainb < ais ambiguous).

Definition 2.4 The use of the loop variant variable v with respect to the loop [(i.e., one or more definitions
of v inside [reach to the use) is ambiguous if either a definition of v reaching from outside | is ambiguous by
the loop invariant ambiguity rules in definition 2.3 or multiple definitions of v inside | reach to the use.

Figure 5: LOV candidate variable state changes; dotted lines represent transitions for unlisted conditions

Our LOV analysis first scans the target loop and constructs a list of expression statements in the loop
that assign values to scalar variables of integer types, hence creating new definitions of them. For example,
in the case of the C language, the list includes explicit assignment statements like x =3 and x =x+yx*z
and implicit statements like x + 4. Next, LOV analysis tests the basic LOV candidacy of these expression
statements: does the expression have uses of the same variable, explicitly or implicitly, that it defines (e.g.,
the same variable appears on both the right-hand and left-hand sides of an explicit assignment expression).

The next phase of LOV analysis considers a statement only when its expression can be reduced, using
the def-use chain, to a form of basic monotonic statements: x <— x+c¢, X <~ x — ¢, X < x*c and x < x/c
where c is a positive compile-time integer literal or a positive loop invariant variable (when ¢ is negative,
LOV analysis simply exchanges the rule between x <— x — ¢ and x <— x+ ¢ while x < x*c and x < x/c are
classified as non-monotonic).

We do not consider other more complex statements such as the dependent monotonic statement [40]
where its defining variable inherits the loop monotonicity from other monotonic variables. We adopt
this simplification because extracting one variable suffices for loop ordering, unlike other applications of
monotonic variables, and thus the more complex monotonic variables are unnecessary.

As part of the expression reduction process, LOV analysis tests variable usage for ambiguity based on
definition 2.3 and definition 2.4. If the ¢ term in a monotonic statement is ambiguous, LOV analysis assigns
the chaos state (_L) to its defining x. Similarly, LOV analysis assigns L to its defining x if its use is ambiguous.

Figure 5 illustrates the state changes of a loop order variable candidate. Each node represents a candidate
loop order variable state and each edge represents a possible state transition that its labeled conditions trigger.
The subscript of x in a node encodes the initial value of x on entry to the loop: + means the initial value (xop)
is greater than or equal to zero and — indicates it is less than zero. The superscript of x in a node represents
the loop monotonicity direction: 1 and | indicate monotonically increasing and monotonically decreasing
respectively. Similarly, the subscript of the loop invariant ¢ denotes the sign of its value. As LOV analysis
iterates over the assignment statements, it determines the state of the variable defined by that statement based
on its previously classified state and the current classification. For example, the state of a candidate variable
becomes L, regardless of its previous state, if LOV analysis classifies the current statement as L. Similarly, if
the previous state is xl and the current statement is of the form x <— x * ¢, the state remains xl. Any variable
that is not 1 or T (the initial state) when LOV analysis completes is a true LOV.

Our algorithm identifies it in figure 3 as a LOV with the xi attribute with respect to the loop that
spans (4) and (21). The loop has only one corresponding monotonic statement, it++ at (20), and it has an
unambiguous, implicit use of it with an unambiguous initial value with the + attribute. We can reduce this

expression to it < it + 1 that triggers the state transition from T to xl. Thus, this variable satisfies all
LOV properties. So, we can use its runtime value instead of the placeholder established in the first analysis.

2.2.3 Program Point Selection Strategy

Our combined static and dynamic analysis method to determine the relative progress of tasks could incur
significant overhead. Transforming all stack trace frames into the lexicographical representation on compute
nodes would allow a trace merging engine like STAT to resolve the lexicographic order at all branching points
of the resulting prefix tree. However, dramatically increased file system access, data storage and transfer
requirements at the fringes of an analysis tree [27] would quickly eclipse these benefits for large scale runs
that use up to hundreds of thousands of MPI tasks. Thus, we designed an adaptive prefix tree refinement
method that addresses these scalability challenges.

Our method begins with STAT’s basic stack trace prefix tree and allows a user to refine the tree adaptively
from the root to the leaves of the tree. Thus, the user can selectively focus on parts of the tree likely to exhibit
errors. A simple menu action invokes the first step in which we analyze all frames leading up to the children
of the first branching point, which transforms an unordered tree into an ordered one up to the branching point.
We gather runtime information for a frame through a scalable communication infrastructure only when the
lexicographical representation for the frame contains one or more LOV tokens. Otherwise, a single static
analysis can evaluate a frame for all tasks. We stop the refinement if the runtime LOV resolution creates a
new branching point; otherwise we continue up to the children of the branching point.

Our heuristic classifies the tasks into a set of temporal equivalence classes, thus presenting a user with a
limited set of high-level choices in which to explore relative progress further. The user selects a class for
further refinement and then a menu action invokes our method for the sub-prefix tree determined by that
temporal equivalence class. Thus, we exploit the transitivity of the partial order: all frames in the sub-prefix
tree maintain the same order, in relation to tasks of the other classes, as determined previously. In a sense,
each branching point in the prefix tree is an idiom analogous to an individual frame of a singleton stack
trace. As each frame allows a user to explore the temporal direction of the sequential execution space, each
branching point in our relative progress tree allows the user to explore the temporal direction of the distributed
execution space. Thus, our methodology transforms an execution chronology unaware prefix tree into a
chronology aware one.

2.2.4 Demonstrating the Utility of Our Temporal Ordering

Our experiments demonstrate the utility of our temporal order analysis and that our prototype extension to
STAT achieves scalable performance that more than supports interactive debugging. As discussed previously,
we build upon ROSE’s AST manipulation capabilities and def-use analysis [11, 37] to implement the analyses
described in section 2.2.2. We have performed fault injection experiments that demonstrate the effectiveness
of our techniques over a wide range of applications and faults. Our performance results demonstrate that the
technique achieves sufficient speed to support interactive debugging. We also performed a case study that
applyied the mto Algebraic MultiGrid (AMG) 200, a scalable iterative solver and preconditioner that is widely
used in Office of Science applications. In preparation for extending it to unprecedented numbers of multicore
compute nodes, the AMG team was testing performance-enhancing code modifications at increasingly large
scales when a hang occurred at 4,096 tasks.

In order to diagnose this issue, we first examined the first level of detail with STAT, which merged stack
traces based on the function names, which indicated that the hang occurred in the preconditioner setup phase
during creation of the mesh hierarchy. However, no equivalence class was clearly the cause of the hang. Thus,
we examined the line number-based, chronology-unaware tree and began the adaptive refinement process. As

‘ HYPRE_BoomerAMGSetup@[T1] ‘

096:[0-4095]

‘ hypre_BoomerAMGSetup@[T1] ‘

4084:[0-893,895....] 12:[894,896,898,...] "earliest"

‘ hypre_BoomerAMGBuildExtPIInterp@[T1.2] ‘

4074:10-892,899-988...1110:[893.895.897,..]

‘ hypre_NewCommPkgCreate@[T1.2.1] ‘ hypre_NewCommPkgCreate@[T1.2.2]

'/4074:[0—892 899-988,..] 10:[893 ,895,897,...] 2:[894 ,896.898,...]

‘ hypre_NewCommPkgCreate_core@... ‘ hypre_ParCSRMatrixCreate AssumedPartition@...

10:[893 ,895.897....] 2:[894 896.,898....]

hypre_LocateAssummedPartition@...

Figure 6: Chronology-aware prefix tree for a code hang exhibited by AMG2006 at 4,096 MPI tasks

figure 6 shows, this refinement quickly identified a group of twelve tasks that had ceased progressing due to a
type coercion error at a function parameter in the big_insert_new_nodes function.

At the first refinement step, our method evaluated all frames leading up to the hypre_BoomerAMGSetup
function and found that they were temporally equal. During this evaluation, we found one active loop,
the while loop that tests the completion of the coarsening process within hypre_BoomerAMGSetup. LOV
analysis identified the 1evel variable, which keeps track of multigrid levels, as an LOV with the xi attribute.
We found that its values were four in all 4,096 tasks.

The next refinement determined that a group of twelve tasks had made the least progress as indicated
by edges in blue in figure 6. Because the next refinement step for these twelve tasks found all frames
preceding the next branching point to be equal and the branching point was in the MPI layer, we manually
inspected the code for relevant execution flows in and around the hypre_BoomerAMGBuildExtPIInterp —
big_insert_new_nodes — hypre_ParCSRCommHandleDestroy path. We quickly found a type coercion
problem for int offset, a function parameter of big_insert_new_nodes. The application team had
recently widened key integer variables to 64 bit to support matrix indices that grow with scale. However,
they overlooked the definition of this function, causing the type coercion. We theorize that at this particular
scale and input, the 64-bit integers were truncated when coerced into 32-bits during parameter passing for
the twelve tasks, which in turn caused the tasks to send corrupted MPI messages. Ultimately, this incorrect
communication caused these tasks to hang in the MPT_Waitall call.

3 CBI: Cooperative Bug Isolation at Scale

Cooperative Bug Isolation (CBI) is a body of techniques and tools for diagnosing bugs in widely-deployed
software systems. Prior to CoPS, CBI work focused on mainstream desktop software with large user
communities. As its name suggests, CBI aggregates information from large numbers of runs in order to
fix problems affecting many users. A cooperative approach also allows load sharing: each individual run
incurs only a small instrumentation overhead to make its contribution to the much larger diagnostic picture.
Yet from the developer’s perspective, aggregation provides a critical window into the software’s behavior
(and misbehavior) to help to identify and to fix critical bugs rapidly. Under CoPS, we have extended CBI to
consider the processes in a MPI application run as individual runs, which allows a single user to accumulate
the data necessary to provide CBIs statistical methodology.

Debugging using CBI has two key phases: instrumentation and analysis. During the instrumentation
phase, extra monitoring code is injected into an application before deployment. This monitoring code
tracks run-time events of potential interest for debugging, such as branch directions, function return values

10

Table 2: Example CBI failure predictor list

Thermometer Predicate Line
[] files[filesindex].language > 16 5869
((*(fi + 1)))->this.last_line == 5442
token_index > 500 4325
(p + passage_index)->last_token <= filesbase 5289
[__result == 0 is TRUE 5789
config.match_comment is TRUE 1994
I | i == yy_last_accepting_state 5300
new value of f < old value of f 4497
[] files[fileid].size < token_index 4850
passage_index == 293 5313
| ((*(fi + 1)))->other.last_line == yyleng 5444
min_index == 64 5302
[| ((*(fi + i)))->this.last_line == yy_start 5442
] (passages + 1)->fileid == 52 4576
| I passage_index == 25 5313
[| strcmp > 0 4389
[i > 500 4865
[I token_sequence[token_index].val >= 100 4322
L] i == 50 5252
| I passage_index == 19 5313
[bytes <= filesbase 4481

and unusual floating-point numbers. CBI instrumentation is lightweight, using sparse random sampling to
limit both overhead and feedback data size. During CBI’s analysis phase, feedback data from deployed,
instrumented applications is collected and mined for clues as to the root causes of failure. Each run is
labeled as “successful” or “failed” in some generic or application-defined way. We then build statistical
models that reveal program (mis)behaviors that are strongly predictive of failure, which is essentially a very
high-dimensional supervised-learning problem, with monitored program behavior as inputs and subsequent
success/failure as the output.

For example, CBI’s analyses might determine that if x == 0 and a specific branch goes left, then the
program under analysis is much more likely to crash. We can present this information directly to a developer,
or use it to direct the attention of heavyweight analyses that would have been impractical without such a
focus. CBI data analysis combines ideas from both program analysis and machine learning; we use the term
statistical debugging to describe CBI’s use of statistical models to drive bug diagnosis and repair.

Table 2 shows an example of statistical debugging output. Each row presents one failure predictor,
believed by CBI to represent one underlying bug. The first column uses a graphical representation, the
bug thermometer, that we have developed to display summary data about program misbehavior. Failure
predictors are ranked by severity and diagnosis confidence. Programmers should focus on wide thermometers
that are mostly filled with red: these represent frequently recurring problems for which we have a very
high-confidence explanation. The live, running system offers further interactivity not possible on paper, such
as clickable links to source code and extensive drill-down detail for each failure predictor.

CBTI’s blend of static, dynamic and statistical methods has led to significant, transferable advances in all of
these areas. Prior CBI research describes methods for lightweight, statistically fair instrumentation sampling

11

[30], shows that sparse data can be aggregated to isolate previously-unreported bugs [45], and develops a
practical infrastructure for deploying and managing instrumented applications in real user communities [31].
Recent work focuses on CBI’s second stage: data modeling to drive debugging. Various statistical debugging
models have been developed, both by co-PI Liblit [29, 32, 33, 45, 46] and by others building on his work
[14, 21, 22, 41, 44]. Some of these models constitute advances in pure machine learning [4], while others
represent novel hybrids between static and dynamic/statistical sources of information. As an example of
the later, work with Lal et al. [23] uses both statistical failure models and a static interprocedural dataflow
analysis (based on weighted pushdown systems [38]) to identify failure-inducing program paths.

CBI has successfully isolated both fatal and non-fatal bugs relating to such varied problems as input
validation, bad comment handling, unchecked return values, inconsistent data structure coordination, buffer
overruns (both with and without memory writes), configuration-sensitive hash table mismanagement, memory
exhaustion, premature returns, poor error-path handling, race conditions and dangling pointers [6, 23, 29, 30,
33]. CBI’s statistical approach is robust in the face of uncertain, unrepeatable, and incomplete data, remaining
effective at sampling rates of one event per hundred or even one per thousand [31].

Scientific computing represents a tantalizing new arena in which to apply statistical debugging techniques,
but carries some unique challenges. Unlike desktop software, scientific applications are rarely, if ever, finished.
Any given version of a scientific application is run very few times by very few users, rather than many times
by many users as for widely-deployed desktop applications. Fortunately, scientific applications are often run
at a large scale, with many individual processes participating. If we treat each process as a program run in
the traditional sense, we can gather large quantities of feedback data for analysis in the few runs available.
Unfortunately, because all of these processes are communicating, they are no longer independent; this violates
one of the key assumptions underlying most of the statistical models used in feedback analysis.

Performance represents another challenge. The instrumentation used to observe program behavior at run
time is generally lightweight and works very well for desktop applications. However, this instrumentation
fares worse in the presence of the tight loops that are common to computationally-intensive code. However,
if this problem can be surmounted, then there is good reason to expect that statistical debugging itself should
scale well, as it requires no extra communication between compute processes.

3.1 Sampling Scientific Workloads

CBI’s original instrumentation sampling procedure works well for typical interactive desktop applications,
which spend most of their time waiting for user input. However, scientific workloads are CPU-bound and
spend most of their time in loops performing numeric computations. The logic to choose between the fast or
instrumented path is executed once per acyclic path, and therefore, once per loop iteration. This imposes
a significant overhead, especially for loops with small bodies. We present an optimization to the sampling
transformation to reduce sampling overhead substantially for most numeric loops.

3.1.1 Sampling Optimizations for Loops

Listing 1 shows a normal loop after the sampling transformation. Note the path check on line 2 that is based
on the countdown and the two copies of the loop body: one instrumented and the other with only countdown
decrements (the fast path). The WEIGHT constant referenced in the path check is, again, the maximum number
of instrumentation sites in any path through one copy of this loop’s body.

For small loops, the weight of the loop body is much less than the countdown and a significant fraction
of these checks are wasted and result in the fast path being chosen. Our optimization amortizes the cost
of the path check over as many iterations as possible. If the loop meets certain conditions, discussed in
section 3.1.2, then we can precisely bound the number of loop iterations that can execute before we require
another countdown check.

12

~N N A WD~

O 00 N AN W R WD =

e e S S
wm A W NN = O

Listing 1: A simple sampled loop

for (1 = 0; 1 < vec_len; 1 += STRIDE) {
if (countdown > WEIGHT) ({
// Fast path
} else {
// Instrumented path
}
}
Listing 2: Optimized variant of listing 1
i=0;
while (i < vec_len) {
int loop_start = i;
int bound = vec_len;
if (countdown <= (bound - 1) / STRIDE * WEIGHT)
bound = i + (countdown - 1) / STRIDE * WEIGHT;
for (; 1 < bound; i += STRIDE) {
// Completely uninstrumented path
}

countdown -= (i - loop_start) / STRIDE * WEIGHT;
if (i < vec_len) {
// Instrumented path

}
i += STRIDE;

We rewrite the loop in three parts. First, it executes without any instrumentation, not even countdown
decrements, up to the computed bound. Next, since the optimized loop body has no countdown decrements,
we must update the countdown to reflect the number of instrumentation sites that were executed. Finally,
execution enters a fully instrumented version of the loop body where we know a sample will be taken. We
wrap these two steps inside of a driving loop to repeat the process as many times as is necessary to reach the
total required number of iterations.

As a demonstration, the optimized form of the previous code example can be seen in listing 2. The
constant STRIDE is the amount by which the induction variable changes each iteration. Line 2 shows the
driving loop that ensures we execute the appropriate number of loop iterations. The bound is computed in
lines 4 to 6, and determines the number of consecutive uninstrumented loop body iterations in line 7. The
countdown is updated in line 10 to reflect the number of executed instrumentation sites. The additional check
in line 11 ensures that we do not execute the loop body an extra time if the fully uninstrumented path included
the last iteration of the loop.

The optimization generalizes and nested loops are fully supported, assuming each loop meets the
transformation requirements. In practice we rarely find that the optimization can be applied to loops nested
more than three deep. More complicated nested looping constructs are rare and typically contain other
violations of the conditions in section 3.1.2. Further, the performance benefits of the optimization are
typically maximized by doubly-nested loops due to the complexity of the loop bound calculation for more
deeply-nested structures and limits imposed by the sampling rate.

13

3.1.2 Conditions on the Loop Body

Loop bodies must satisfy two high-level requirements in order to qualify for the loop optimization: the weight
of the loop body must be finite and the number of iterations must be symbolically expressible. We further
require that all paths through the loop body have the same weight and have no control-flow—altering constructs
such as break. In principle, this restriction is not necessary; we can insert dummy instrumentation sites to
balance out all of the paths through a loop. In practice, this type of loop typically fails to meet the finite-weight
requirement and does not derive any benefit from the path balancing. The dummy instrumentation sites are
undesirable, particularly in loop bodies, because they consume randomness without the chance to provide
useful feedback data. Since they rarely offer performance benefits, we do not use them.

In order for the number of loop iterations to be symbolically expressible, the following conditions must
hold:

e the loop body must not modify the induction variable,

e the loop body must not modify the bound on the iteration count,
e the stride must be constant,

o the loop condition must be idempotent, and

e the induction variable must be local.

The idempotence condition is required because the transformation duplicates the evaluation of the upper
bound of the loop. When optimizing nested loops, the loop upper bounds and initial induction variable values
must have no data dependencies on variables defined in enclosing loops.

3.1.3 Non-uniform Sampling Rates

The preceding optimization effectively amortizes path checks in numeric loops over many iterations. Un-
fortunately, realistic sampling rates tend to be about V100, limiting the scope of the amortization. Loops
that are subject to this transformation are, by definition, computational leaves and are not permitted to call
side-effecting functions. The instrumentation sites in these loops are typically floating-point operations and
are less interesting from a debugging perspective than other operations. Moreover, they occur frequently,
with event counts reaching the hundreds of millions.

We leverage the nature of these loops by dynamically reducing the sampling rate for their duration [18].
This, in turn, magnifies the amortization benefit of the loop-splitting optimization. Each optimized loop runs
in a learning mode in which we discover how many iterations it executes during its first execution. Each time
the loop completes a set of uninstrumented iterations, we reduce the sampling rate by a factor of 10, with a
minimum sample rate determined by an environment variable. This mechanism exponentially decays the
number of samples taken in each loop based on the size of its inputs. The new sampling rate for the loop is
memoized and re-used in future executions of the loop.

3.1.4 Revisiting Numeric Loops

The loop-splitting transformation identifies a class of numerically- and computationally-intensive loops
as optimization targets. The information that we obtain by instrumenting these loops has little diagnostic
value for many classes of bugs. Consider a vector normalization function. The loop termination condition
contributes two predicates since it can be observed to be either true or false on each iteration. However, these
predicates are often redundant; assuming the loop executes at least once, predicates preceding the loop imply
that the loop condition could be observed to be true. Likewise, predicates after the loop imply that the loop

14

condition could be observed to be false. If the loop never terminates, no predicates after the loop will be
observed, yielding approximately equivalent results. When diagnosing these types of bugs, omitting the
instrumentation from these loops entirely is an option.

3.2 Data Collection

Some prior work [31] relies on the instrumented application to report its own feedback data by writing to
a file. This approach can be a barrier to scalability due to I/O pressure, and is not even possible in some
computing environments (e.g. BlueGene/L). Additionally, reporting feedback data from a failing process
requires handling POSIX signals to catch events like segmentation faults. Performing complex tasks in signal
handlers is unwise at the best of times; when the process is failing and in an unsteady state, it is even more
questionable. To address these problems, we (1) move the reporting infrastructure from the instrumented
process to an external warchdog, and (2) propagate feedback data to a reporting node using MRNet [39].

3.2.1 Reporting Machinery

The watchdog process uses the Dyninst framework [7] to monitor instrumented processes for termination,
abnormal or otherwise. To communicate feedback data efficiently from the instrumented process to the
watchdog, we employ a shared memory segment visible to both processes. The instrumented process stores its
feedback data within the shared memory segment. When the instrumented process terminates, the watchdog
simply reads the feedback data out of the shared memory segment. In the event of an abnormal termination,
the watchdog also captures a stack trace.

Besides efficiency, the shared memory segment offers significant robustness advantages over an in-
process reporting approach. With in-process reporting, heap corruption could easily render the instrumented
application incapable of producing a report at all, or worse, could cause it to produce a seemingly-valid report
with hidden corruption. Standard library components such as I/O buffers or file descriptors are likewise
vulnerable. By contrast, when using a shared memory segment, only the small area occupied by that segment
is exposed to possible corruption. Relative to the entire address space, this is a much smaller surface of
vulnerability. Even in the face of extreme termination measures such as SIGKILL, a shared memory segment
still allows feedback to be captured, whereas in-process reporting does not.

After the watchdog collects all of the available feedback reports, it sends the data to a reporting node via
MRNet, a scalable Multicast/Reduction Network. MRNet provides a tree-structured communication network
in which our watchdog processes form leaves, or backends in MRNet parlance. Data is propagated up the
tree to a frontend node, which we use as a reporting node to write the feedback data to disk.

Once feedback data enters the MRNet communication tree, it passes through filter functions at each level
of the tree until reaching the frontend node. These filter functions allow arbitrary transformations of the data
as it propagates; we use them to losslessly compress samples. Each watchdog process sends its feedback
data into the communication tree uncompressed and the first layer compresses it with a standard compression
algorithm. Further levels in the communication tree concatenate the data they receive. This approach allows
the compression algorithm to exploit a large window of redundancy across more feedback reports than are
available to a single watchdog.

3.2.2 Data Format

Feedback reports are ordered tuples of integers. Each tuple represents a single instrumentation site, while
each entry in the tuple denotes the number of times that individual predicate was observed to be true at that
instrumentation site. Many predicates are never observed to be true, or are observed to be true only a few
times. On the other hand, predicates in nested loops can easily be observed hundreds of millions of times.

15

This range of data benefits from the implicitly variable-length encoding afforded by plain text; however,
textual formats are wasteful in their use of delimiters and representation of very large numbers. An alternative
is to use the standard Abstract Syntax Notation (ASN.1), which is a binary encoding with variable-length
integer representations.

Furthermore, many instrumentation sites are never reached in a given run of a program. We use a sparse
representation to reduce the space overhead of unreached code. Each feedback report has an associated
bitmask and tuples containing all zeros are represented by a zero in the bitmask. All tuples containing data
are represented by a one, and the full sequence of tuples is reconstructed at analysis-time. The sparse ASN.1
format has shown space savings of 35% to nearly 700% in report encodings.

We simulated data collections through feedback reports generated by IRS. The reports are encoded using
the sparse ASN.1 representation discussed above and compressed using bzip2. Additionally, the reports are
randomly perturbed to prevent the compression algorithm from achieving trivial best-case behavior. This
simulation indicates that data format and communication infrastructure can collect reports from 500,000
processes in less than 50MB.

3.3 Implementation

We have implemented a new instrumenting compiler as a source-to-source translator using the ROSE
compiler infrastructure [12]. To coordinate our watchdog processes with the applications that we debug, we
start them simultaneously using LaunchMON [2]. These watchdogs monitor applications via the Dyninst
StackwalkerAPI [7] and report results using MRNet [39], a scalable communication medium. We leverage
the OpenMP, C++, and Fortran support in ROSE to handle a larger selection of applications than previous
source-based instrumenting compilers. This support is particularly important for scientific applications, many
of which use some features from (or components written in) these languages.

Three C++ language features complicate our instrumentation mechanism: (1) reference types, (2) objects
with user-defined constructors or destructors (known as non-Plain Old Data, or non-POD, types), and (3) try
blocks. These features are all troublesome for the same underlying reason: they inhibit jumping between fast
and instrumented paths. We divide each function into two paths: the fast and instrumented. At the beginning
of each acyclic region, execution can either stay on its current path or jump to the other, depending on the
value of the countdown. After this jump, the same variables must all be in scope with the same values. This
is easily facilitated in C by lifting all variable declarations, with proper renaming, to the top of a function
body. In fact, we instrument C++ code that does not use any of the aforementioned three features in exactly
this way.

Reference types are complicated because they must be initialized and cannot be made to refer to another
object after initialization. If the declaration of the reference is lifted to the top of the function, its initializer
might not yet be in scope. We handle this case by rewriting reference-typed variables as pointer-typed
variables and making previously-implicit dereferences explicit.

Non-POD declarations also pose a scoping problem: if we move or duplicate these declarations then we
also move or duplicate the side effects of their constructors or destructors. Additionally, execution cannot
jump past the declaration of non-POD objects. We do not move non-POD declarations; instead we recursively
treat the code that they dominate as a new function for the purposes of creating fast and instrumented paths.
Effectively, we split the code around them. In principle, we could do this for all variable declarations.
However, this technique negative impacts performance by making fast code paths shorter. Therefore, we
apply this transformation only for non-POD variables. We continue to lift POD variables up to the top-level
scope in each function.

C++ try blocks introduce a similar difficulty to non-POD declarations: execution cannot jump from
the middle of one try block into the middle of another. Thus, we treat t ry blocks similarly to non-POD
variable declarations: we never clone them, but instead recursively treat try block bodies as though they

16

Table 3: Failure predictors for ParaDiS

Predicate Function

i < home->newNodeKeyPtr SortNativeNodes
inode < home->newNodeKeyPtr MonopoleCellCharge
tag.domID == home->myDom GetNodeFromTag
cycleEnd == DD3dStep

iNbr > nXcells InitCellNeighbors
rembDom == GetNodeFromTag
node != 0 CommPackGhosts

were the entry points of new functions for purposes of fast versus instrumented path creation.

3.4 Evaluation of CBI for MPI Applications

We have applied our techniques to ParaDiS [8], a dislocation dynamics simulator. Version 2.0 of this code
suffers from a bug that causes it to crash on most of its inputs. We instrumented the code to sample predicates
on branches taken and function return values. After finding a working input, we applied our analysis to
several crashing runs and a few runs on the successful input; the analysis identified the predicates in table 3
as significant failure predictors.

This code divides the problem space, and hence dislocations, into domains that are distributed among
compute nodes. ParaDiS refers to dislocations as “nodes” internally, particularly in function names; except
for direct references to ParaDiS functions with “node” in the name, we use the term to refer only to compute
nodes in a cluster. Each domain is divided into cells and is responsible for a set of native dislocations;
non-native dislocations are represented as ghosts. At each step in the computation, each compute node

1. migrates ownership of dislocations that cross the boundary of its domain to appropriate neighbors,
2. organizes its remaining native dislocations into cells,

3. sends updates of ghost information to neighboring nodes, and

4. computes the local effects of forces on dislocations.

The failure manifests as a segmentation fault in the OrderNodes function. This function is called by
MonopoleCellCharge in the loop controlled by the predicate identified by our analysis. We can explain
the bug by working backwards in the call graph from this point of failure. The nearest failure predictor is
remDom == 0 evaluating to true in GetNodeFromTag. This returns a NULL pointer, which eventually causes
the segmentation fault.

Temporally, the next preceding predictors are in CommPackGhosts and SortNativeNodes, which update
ghost dislocations in neighboring domains and divide local dislocations into cells, respectively. Both of these
predictors arise because they are executed more frequently in failing runs, thus appearing in fewer successful
runs. This suggests a correlation between failure and runs with many dislocations.

Temporally, the next nearest predictor is in InitCellNeighbors. This function is called before the first
time step. Note that each step of the computation begins by migrating some dislocations to neighboring nodes.
From here, we hypothesize that the crash arises because dislocation ownership is not tracked correctly. This
leaves nodes with an inconsistent view of the dislocations owned by their neighbors after the first migration.
MonopoleCellCharge causes the crash when it attempts to inspect non-existent dislocations on a neighbor
node. The cases in which the application succeeds are those with few dislocations which happen to not fall

17

near cell boundaries. Inspection of the next ParaDiS release (2.2) shows that the code tracking dislocations
eligible for migration and ghosts has been completely rewritten, suggesting that this was indeed a significant
contributor to the underlying bug.

The predictor trace offers significant detail not available from backtraces. Backtraces can only show the
state of the stack when a problem occurs; predictor traces can link together events from different branches
of the run-time call graph. In this case, the backtrace would not include GetNodeFromTag, InitCell-
Neighbors, SortNativeNodes, or CommPackGhosts, which are essential to our understanding of the actual
root cause.

Our evaluations of our implementation of CBI for MPI applications demonstrated that we achieve
reasonable overhead. We examined the overhead imposed by our instrumentation on AMG, IRS and ParaDiS
against baseline versions compiled with GCC. Observed overheads are between 10% and 15% for IRS and
ParaDiS, closely tracking the serial overheads reported previously. AMG also falls largely within this range,
but with spikes up to 25% overhead at some problem sizes that have short running times, which provide little
opportunity for instrumentation costs to be amortized.

4 MPIEcho: Parallelizing Dynamic Correctness Checking

Dynamic correctness checking or semantic debugging supports checking that application exectuion conforms
to rules of correct usage of program constructs such as dynamic memory allocation. This important class
of correctness tools works well on short, single node executions. Simple techniques have extended the
basic tools to multinode systems but these techniques do not support application of the tools to large-scale
executions, let alone millions of cores. Heavyweight debugging tools such as Valgrind [36] and Parallel
Inspector [20] are indispensable when solving smaller problems, but their overhead precludes their use at
scale except as a last resort: memory checking can reach 160x slowdown and thread checking can reach
1000x. In order to allow development of more scalable semantic debugging, we have developed MPlecho, a
novel runtime platform that enables cloning of MPI ranks. Given identical execution on each clone, we can
parallelize the heavyweight debugging approaches to reduce their overhead to a fraction of the serialized case.
We have shown that this platform can be useful in isolating the source of hardware-based nondeterministic
behavior and provide a case study based on a recent processor bug at LLNL.

In our work, we parallelize heavyweight tools in order to reduce the overhead incurred by existing
tools and to allow the development of novel approaches. Per-instruction instrumentation such as that used
by the Maid memory access checking tool can be rendered effectively embarrassingly parallel. The more
interesting cases, such as parallelizing read-before-write detection, can still show substantial reduction in
runtime overhead by duplicating write instrumentation and parallelizing read instrumentation. We have also
shown this platform is flexible enough to be used in hardware debugging and performance analysis. By
assuming cloned ranks should exhibit identical execution we can perform fast hardware fault detection by
observing when this assumption is violated and correlating the fault to a particular node. We examined a case
study of a recent processor bug at LLNL that has informed the design of MPlecho.

While total overhead will depend on the individual tool, we have shown that the platform itself contributes
very little: 512x tool parallelization incurs at worst 2x overhead across the NAS Parallel benchmarks,
hardware fault isolation contributes at worst an additional 44% overhead. Finally, we show how MPlecho
can lead to near-linear reduction in overhead when combined with Maid, a heavyweight memory tracking
tool provided with Intel’s Pin platform. We demonstrate overhead reduction from 1,466% to 53% and from
740% to 14% for cg.D.64 and Iu.D.64, respectively, using only an additional 64 cores.

18

app_world

MPI_COMM_WORLD

Processes MPI ranks Communicators

D Application === comm_app
== MPI_COMM_WORLD
= Clone === comm_family

Figure 7: Architecture of MPlecho

Sending from a cloned process

® 1. Local XOR of buffer

>=<=p 2 XOR Reduction and
check on comm_family

Receiving to a cloned process

= 1. Receive buffer on comm_app

e==p 2. MPI_Bcast to comm_family

Figure 8: Send and Recv under MPlecho

4.1 MPIecho Overview and Implementation

The goal of the MPlecho platform is to provide duplicate execution of arbitrary MPI ranks. Overhead should
be kept to a minimum and the behavior of the clones should not perturb the correctness of execution. In this
section we describe the architecture of the platform as well as the experimental measurement of the tool’s
overhead.

At at high level, the design is simple. At startup, a cloned MPI process r (the parent) will distribute
all messages it receives to one or more clones c. Messages sent from the clones are routed to the parent if
necessary but are not otherwise distributed to the rest of the system (see Figure 7 and Figure 8). As long as the
state of a process depends only on the initial program state and inputs received via the MPI API, this general
approach will guarantee identical execution on the clones. The overhead of this approach is dominated by the
additional messages sent to the clones. If the cloned process is on the critical path, any additional overhead
will accrue in overall execution time.

At a lower level, the function calls provided by the MPI API have IN, OUT, and INOUT parameters.

19

When any function call completes, the OUT and INOUT parameters should be identical across the parent and
clones. For example, an MPI_Recv call has a buffer updated by the incoming message. This condition also
applies to the parts of the API that are not involved with communication, for example querying the size of a
communicator or constructing a derived datatype. A naive implementation could simply copy every OUT
and INOUT parameter to the clones. This approach incurs unnecessary overhead and relies on non-portable
knowledge of how opaque handles are implemented. Instead, we have minimized communication between
the parent and clones using the following techniques:

1.

Broadcast. The parent communicates with the clones via MPI_Bcast using a communicator dedicated
to that purpose. In MPI implementations we are familiar with, this implies the parent sends out
only log, (|c|) messages per communication (where |c| is the number of clones). We have found this
sufficiently fast for our needs, but scaling this approach to thousands of clones may require the parent
sending a single message to a single lead clone with the lead clone then (asynchronously)broadcasting
to the remaining clones.

. Opaque handles. MPI relies on several different opaque handles that cannot be queried except through

the API. Copying these requires knowledge of their internal structure; this tends to be non-portable.
Instead, we only communicate on a “need-to-know” basis. For example, a call to MPT_Comm_split
will not be executed by the clones. Instead, the parent will send the associated index value of
the new communicator to the clones, along with values for size and rank. Clones will not use this
communicator for communicating and so no additional information is needed. Calls to MPI_Comm_size
and MPI_Comm_rank can be resolved locally without any further communication with the parent, thus
cutting out a potentially significant source of overhead.

. Translucent handles. The MPI_Status datatype is only partially opaque: users may query several

values directly without going through the API. Any call that potentially modifies a status results in
copying just these values to the clones. For calls such as MPT_Waitall the visible status values are
batched together and sent using a single broadcast.

Vectors. Several MPI calls such as MPI_Alltoallv support sending and receiving (possibly non-
contiguous) vectors. Using derived datatypes, we construct a datatype that describes all updated buffers
and uses this derived datatype to issue a single MPI_Bcast to the clones.

. Non-blocking communication. Both the clone and parent record the count, type and buffer associated

with each MPI_Request. In the case of the MPI_Wait family of calls both the parent and clone
implicitly wait on an identical index and the broadcast occurs when the wait returns. In the case of
MPI_Test the results are communicated in a separate broadcast, followed by the updated buffer if the
test returned true.

Barriers. Some MPI calls, such as MPI_Barrier, have no OUT or INOUT parameters. The clone does
not need to execute these calls at all, as no program state is changed. The clones resynchronize with
the parent at the next communication call.

. Return values. MPI calls return an error value, but there is no provision for recovery if the value is

anything other than MPI_SUCCESS. We make the assumption that if an error condition occurs on either
the parent or a clone, the only sensible choice is to indicate where the error occurred and halt. Future
versions of MPI may make better use of the return codes; if so we will need to distribute them to the
clones.

We use the PMPI profiling interface in our implementation. We intercept each MPI call and route it to
our library. We use the wrap [16] PMPI header generator to create the necessary Fortran and C interface

20

Bench-
mark Number of clones

8 16 32 64 | 128 | 256 | 512
bt 1.5 27| -20| 73| 75| 63| 11.5
cg 20| 03| 26| 36| 90| 85| 157
ft 03] 38| 26| 35| 39| 34| 2.7
is 87140 | 134 | 144 | 114 | 105 | 17.5
Iu -14 | 44| 22| 21| -1.5 1.5 9.2
mg 26.5 | 30.8 | 33.7 | 41.0 | 59.5 | 67.7 | 99.0
sp 23| 00| 3.6 14| 65| 102 | 155

Table 4: Percent overhead for cloning rank 0

code. These design choices allow us to use a single broadcast in the common case, and never more than two
broadcasts per MPI call. Overhead is dominated by the size and number of messages. Effectively, the worst
case cost is:

Overhead =Bcast (nranks x typesize x messagesize)

+ Bcast (nranks X statussize)

Because the clones do not execute any send functions (unless required by a tool implementation), they do not
tend to remain on the critical path: the overhead should be limited to the direct cost of the barriers except in
pathological cases.

4.2 Experimental Measurement of Overhead

We intend this platform to support parallel tools, but the time saved by committing more processors to the
tools will eventually be offset by the additional time necessary to communicate with those processors. The
overhead of the platform should contribute as little as possible to the overall overhead.

We executed the MPlecho experiments in this report on the Sierra cluster at Lawrence Livermore National
Laboratory. We compiled the NAS Parallel Benchmark Suite [35], MPlecho and tools using GCC 4.1.2
fortran, ¢ and c++ compilers and -O3 optimizations. We ran the experiments using MVAPICH?2 version
1.5. All results are expressed in terms of percent time over the baseline case run without MPlecho. Process
density has a significant affect on execution time: using 64 12-core nodes to run the baseline 64-process
benchmarks can be usefully compared with 64 processes and 8 x 64 clones also running on 64 12-core nodes
due to increased cache contention. We made a best-effort to keep process densities similar across all runs and
increased node counts as needed.

In table 4 we show the percent measured overhead for several clone counts. Duplicating execution on
node 0 scales to 512 clones with less that 18% execution time overhead for all benchmarks other than MG.
In the case of MG, we observed an unusually high ratio of communication time to computation time which
did not afford the opportunity to amortize the cost of the broadcasts to the same extent. However, even in
this worst case we note that this approach still scales well: 512 clones of node O resulted in only doubling
execution time. These results establish that the overhead incurred by the platform is low enough to be useful
for parallelizing high-overhead tools.

4.3 Send Buffer Check

In this section we give a brief outline of the design, implementation and performance of SendCheck, a tool
used to detect intermittent hardware faults. We illustrate how such a tool could have been useful in diagnosing

21

arecent CPU bug at Lawrence Livermore National Laboratory. With increasing processor and core counts,
we expect similar tools to be increasingly important.

4.3.1 Problem Scenario

A user had reported seeing occasional strange results using the CAR [10] climate model. To the best of the
user’s knowledge the problem was isolated to a particular cluster and did not always manifest itself there. At
this point, members of the Development Environment Group at LLNL were asked to assist with determining
the source of the error. Since the problem appeared to be isolated to a particular cluster, the possibility of a
hardware fault was raised early on in the process.

The first task was to determine if the problem was caused by a particular compute node. Node assignments
on this particular cluster are nondeterministic and the user might only occasionally be assigned a particular
bad node. After dozens of test runs the faulty node was eventually isolated. For a particular sequence of
instructions a particular core failed to round the least significant bit reliably. Because the CAR climate model
is highly iterative, repeated faults ultimately caused significant deviation from correct execution.

This bug was pathological in several ways: only a very specific instruction sequence triggered the fault,
the fault is intermittent, and when the fault does occur it will only be noticeable in calculations that are
sensitive to the values of the least significant bit. Indeed, one of the most curious manifestations of this fault
was the observations that error could be introduced into partial results, disappear and the then reappear later.
The design of the software allowed only partial results to be checked per timestep. These results did not
provide sufficient granularity to isolate the fault to before or after a particular MPI message. For a complete
description of the bug and the debugging process, see Lee [25].

4.3.2 SendCheck Design and implementation

We begin by noting that we are only interested in faults that affect the final state of the solution at the root
node. The remaining nodes only affect the root node by sending messages to it. Rather than having to
validate the entire machine state across multiple clones we have a far more tractable problem of validating
only messages that would be sent by the clones.

The naive implementation is straightforward. At each MPI call where data is sent to another node, each
clone copies its send buffer to the parent and the parent compares the buffers. If the buffers are not identical,
the program is nondeterministic in a sense not accounted for by MPlecho. If all of the buffers are unique
the cause of the nondeterminacy likely lies in the software. If only a single clone has a different buffer, the
most likely explanation would be a fault isolated to that node. A small number of subsequent runs should
distinguish between the two cases.

Copying potentially large messages is both expensive and unnecessary. Our implementation takes an md5
hash [13] of the message buffer and then executes a bitwise MPI XOR reduce across all clones of a given
parent (see Figure 8). This optimization limits the amount of communication to a 16-byte hash per clone
and allows the parent to perform an inexpensive check for differences. The saving in communication far
outweighs the expense in creating the hash. This approach will not catch all errors: pathological conditions
may be masked by the XOR. While unlikely, the user can fall back to the naive implementation if this msking
is suspected.

4.3.3 SendCheck Experiments

For each of the benchmarks run we dynamically generated an md5 hash value for every send buffer before
each MPI call executed. This was not restricted to the MPI_Send family, but included any call that transferred
data to another MPI rank, including MPT_Isend/MPI_Wait and MPI_Alltoallv. The bitwise XOR of all
hashes was send to the parent using an MPI_Reduce.

22

Bench-

mark Number of clones

8 16 32 64 | 128 | 256 | 512
bt 2.1 67| -02| 00| -08| 25| -0.3
cg 7.5 84| 130|113 | 113|149 | 134
ft 05| -18] 01| 03| -0.7]| -07 | -04
is 46.8 | 46.9 | 55.0 | 48.1 | 50.8 | 50.8 | 42.4
Iu 6.0 02 1.6 | 34109 | 86| -1.5
mg 1.2 | 28| 4.1 5.1 4.5 1.2 | 3.7
sp -1.8| 54| -07| 5.7 1.6 | -1.8 | -2.6

Table 5: Percent additional overhead for Sendcheck tool

Bench-
mark Number of clones
8 16 32 64 | 128 | 256 512

bt 20 23| -37| 57| 5.1 7.4 9.46
cg 11.7 | 145 | 229 | 22.3 | 28.5 | 32.1 39.16
ft 05 26| 32| 39| 39| 33 3.01
is 622|703 | 78.6 | 72.2 | 70.8 | 69.4 | 70.05
Iu 28 | 29| 21 38| 75| 84 5.76
mg 26.2 | 327 | 374 | 46.3 | 64.5 | 67.4 | 103.59
sp 03] 52| 27| 70| 79| 8.0 12.08

Table 6: Percent total overhead for Sendcheck tool

23

Tables 5 and 6 show the additional and total overhead of the SendCheck. The overhead is marginal except
in the case of IS. Here, the overhead introduced by the extra calls to md5Ssum could only be amortized over
small amount of program execution. Validating messages up through 512 clones usually requires at most a
5% additional overhead with the worst case being less than 55%. In the worst case timing, numerous small
messages prevented the usual amortization of the md5sum costs. We expect that we can lower this overhead
significantly by selectively applying mdSsum based on message size.

Had MPlecho been available when diagnosing the Opteron hardware fault we would have been able either
to rule out hardware faults quickly (if the error appeared to be independent of node assignment) or to identify
the hardware using a small number of runs. Thus, SendCheck would have saved months of debugging time.
We plan to bring this tool into service debugging production code.

4.4 Maid

The Intel binary instrumentation platform Pin [34] provides several examples of tools that leverage its features.
In this section we examine the Maid tool and explain not only why the serial case exhibits so much overhead
but also how this kind of tool may be parallelized. We then present results using the combination of Pin,
Maid, MPlecho and NAS Parallel Benchmark suite [35].

4.4.1 Overview of Pin and Maid

Pin can be thought of as a just-in-time compiler with two separate user interfaces: instrumentation and
analysis. Instrumentation code determines where dynamic code will be inserted, and analysis code is what
executes at the instrumentation points. Instrumentation code executes once when the binary is loaded into
memory. Analysis code executes whenever the underlying code executes. The overhead due to instrumentation
is paid only once and thus this code can be relatively complex. The overhead due to analysis will be paid
every time the instruction is executed.

Maid identifies all instructions that access memory (both reads and writes) and inserts analysis code that
checks if the effective address used by the instruction matches any of the addresses provided by the user.
Similar functionality can be found in watchpoints in modern debuggers. However, a serial debugger must
check every instruction to see if any memory references are of interest. A naive parallel implementation
would divide memory regions among the clones and thus have each clone check only a small fraction of the
potential address space. However, this implementation ends up being as slow as the serial case: every clone
still checks every instruction.

Instead, given n processes, each clone instruments every nth instruction, starting from the ith instruction
(where i is the process rank). This choice does not necessarily distribute the work evenly. In the pathological
case that executes a single instruction in a tight loop, effectively nothing is parallelized. However, more
realistic cases involve dozens to hundreds of instructions at the innermost loop level. Given sufficient clones
each clone will instrument only a single instruction in the loop.

4.4.2 Maid Experiments

Only clones executed the dynamic binary instrumentation. We measure overhead against the no-clone,
uninstrumented case: a single clone with all memory instructions are instrumented. For two clones, each
clone instrumented half of the instructions, etc. The Maid tool is set up to check multiple memory locations
with the overhead increasing as more locations are checked. For this set of experiments we check only a
single memory location.

Table 7 lists our results. For the common case over a small number of clones we achieve near-linear
scaling. In the most dramatic cases, bt went from an overhead of 1,466% to only 53% and lu went from an

24

Bench-
mark Number of clones

1 2 4 8 16 | 32 | 64
bt 1466 | 737 | 375 | 207 | 124 | 78 | 53
cg 317 | 138 | 131 | 144 | 187 | 185 | 194
ft 521 | 294 | 146 | 98 | 106 | 109 | 97
is 375 1239 | 144 | 127 | 110 | 107 | 128
Iu 740 | 369 | 183 | 100 | 58 | 24 14
mg 810 | 428 | 217 | 136 | 108 | 90 | 101
sp 376 | 180 | 84 | 37| 23 14 12

Table 7: Percent total overhead for Maid tool

overhead of 740% to 14%, both using only 64 additional cores as clones. However, we note that in several
cases the overhead due to additional nodes begins to dominate the savings gained by those nodes: in the cases
of cg, is, and mg performance is worse at 64 clones than at 32 clones. However, the worst case, cg, still drops
from 317% to 131% using only 4 clones.

4.5 MPIecho Discussion

Moving from a serial model of computation to a parallel model of computation not only led to existing
problems being solved faster, it also allowed new kinds of problems to be solved. MPlecho allows a similar
transformation to be brought to bear on debugging tools. Methods that may be left unexplored or unused to
do prohibitive overheads may now be feasible, so long as they can be parallelized.

5 Conclusion

Given the expected processor counts in petascale systems, current strategies for debugging large-scale
scientific applications will incur substantially increased costs. Since the costs of employing those strategies
on existing systems are already far too high and represent a significant loss in application scientist productivity,
new directions are essential. CoPS represents a paradigm shift for analyzing and understanding programming
errors in large-scale scientific applications that will dramatically lower those costs. Overall, our results are
creating new debugging paradigms that will provide debugging solutions for current and future large-scale
systems. Our approach automates root cause analysis in many cases and substantially simplifies the use of
traditional tools even when it fails to identify root causes automatically.

25

6 Literature Cited

[1] D. H. Ahn, D. C. Arnold, B. R. de Supinski, G. L. Lee, B. P. Miller, and M. Schulz. Overcoming
Scalability Challenges for Tool Daemon Launching. In 7o appear in the Proceedings of the International
Conference on Parallel Processing (ICPP), 2008.

[2] D. H. Ahn, D. C. Arnold, B. R. de Supinski, G. L. Lee, B. P. Miller, and M. Schulz. Overcoming
scalability challenges for tool daemon launching. In /ICPP, pages 578-585. IEEE Computer Society,
2008.

[3] A. Aiken and D. Gay. Barrier inference. In POPL ’98: Proceedings of the 25th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 342-354, New York, NY, USA, 1998.
ACM.

[4] D. Andrzejewski, A. Mulhern, B. Liblit, and X. Zhu. Statistical Debugging Using Latent Topic Models.
In J. N. Kok, J. Koronacki, R. L. de Mantaras, S. Matwin, D. Mladenic, and A. Skowron, editors, ECML,
volume 4701 of Lecture Notes in Computer Science, pages 6—17. Springer, 2007.

[5] D.C. Arnold, D. H. Ahn, B. R. de Supinski, G. L. Lee, B. P. Miller, and M. Schulz. Stack Trace Analysis
for Large Scale Debugging. In The International Parallel and Distributed Processing Symposium, Long
Beach, CA, 2007.

[6] P. Arumuga Nainar, T. Chen, J. Rosin, and B. Liblit. Statistical Debugging Using Compound Boolean
Predicates.

[7] B. R. Buck and J. K. Hollingsworth. An API for Runtime Code Patching. The International Journal of
High Performance Computing Applications, 14(4):317-329, 2000.

[8] V. Bulatov, W. Cai, J. Fier, M. Hiratani, G. Hommes, T. Pierce, M. Tang, M. Rhee, K. Yates, and
T. Arsenlis. Scalable line dynamics in ParaDiS. In SC, page 19. IEEE Computer Society, 2004.

[9] K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states of distributed systems.
ACM Trans. Comput. Syst., 3(1):63-75, 1985.

[10] W. D. Collins and P. J. Rasch. Description of the NCAR community atmosphere model (CAM 3.0).
Technical Report TN-464+STR, National Center for Atmospheric Research, 2004.

[11] K. Davis and D. Quinlan. ROSE: An optimizing code transformer for C++ object-oriented array class
libraries. In Workshop on Parallel Object-Oriented Scientific Computing (POOSC’98), at 12th European
Conference on Object-Oriented Programming (ECOOP’98), Brussels, Belgium, volume 1543 of Lecture
Notes in Computer Science. Springer Verlag, July 1998.

[12] K. Davis and D. J. Quinlan. ROSE: An optimizing transformation system for C++ array-class libraries.
In S. Demeyer and J. Bosch, editors, ECOOP Workshops, volume 1543 of Lecture Notes in Computer
Science, pages 452—453. Springer, 1998.

[13] L. P. Deutsch. Independent implementation of MD5 (RFC 1321). Aladdin Enterprises, 2002.

[14] L. C. Diaz. MUCODE: Cédigo Critico en Aplicaciones GNOME sobre Debian. Master’s thesis,
Universidad Rey Juan Carlos, Madrid, Spain, Sept. 2007.

[15] J. B. Drake, P. W. Jones, and J. George R. Carr. Overview of the Software Design of the Community
Climate System Model. Int. J. High Perform. Comput. Appl., 19(3):177-186, 2005.

26

[16] T. Gamblin. The wrap MPI Wrapper Generator. https://github.com/tgamblin/wrap, 2011.

[17] M. P. Gerlek, E. Stoltz, and M. Wolfe. Beyond induction variables: detecting and classifying sequences
using a demand-driven ssa form. ACM Trans. Program. Lang. Syst., 17(1):85-122, 1995.

[18] M. Hauswirth and T. M. Chilimbi. Low-overhead memory leak detection using adaptive statistical
profiling. In S. Mukherjee and K. S. McKinley, editors, ASPLOS, pages 156-164. ACM, 2004.

[19] R. Hood, K. Kennedy, and J. Mellor-Crummey. Parallel program debugging with on-the-fly anomaly
detection. In Supercomputing *90: Proceedings of the 1990 conference on Supercomputing, pages
74-81, Los Alamitos, CA, USA, 1990. IEEE Computer Society Press.

[20] Intel Corporation. Parallel Inspector. http://software.intel.com/en-us/articles/
intel-parallel-inspector/, 2011.

[21] L. Jiang and Z. Su. Automatic Isolation of Cause-Effect Chains with Machine Learning. Technical
report.

[22] L. Jiang and Z. Su. Context-Aware Statistical Debugging: From Bug Predictors to Faulty Control
Flow Paths. In Proceedings of the 22nd IEEE/ACM International Conference on Automated Software
Engineering, Atlanta, Georgia, Nov. 2007.

[23] A. Lal, J. Lim, M. Polishchuk, and B. Liblit. Path Optimization in Programs and Its Application to

Debugging. In P. Sestoft, editor, ESOP, volume 3924 of Lecture Notes in Computer Science, pages
246-263. Springer, 2006.

[24] L.Lamport. Time, clocks, and the ordering of events in a distributed system. Commun. ACM, 21(7):558-

565, 1978.
[25] G. Lee. Comparative debugging: Identifying the source of rounding error on at-
las587. Technical report, Lawrence Livermore National Laboratory, 2010. See also

https://computing.llnl.gov/linux/corefputest.html.

[26] G. Lee, D. Ahn, D. Arnold, B. de Supinski, M. Legendre, B. Miller, M. Schulz, and B. Liblit. Lessons
Learned at 208K: Towards Debugging Millions of Cores. In To appear in Supercomputing 2008, 2008.

[27] G. L. Lee, D. H. Ahn, D. C. Arnold, B. R. de Supinski, M. Legendre, B. P. Miller, M. Schulz, and
B. Liblit. Lessons learned at 208k: towards debugging millions of cores. In SC '08: Proceedings of the
2008 ACM/IEEE conference on Supercomputing, pages 1-9, Piscataway, NJ, USA, 2008. IEEE Press.

[28] G. L. Lee, D. H. Ahn, D. C. Arnold, B. R. de Supinski, B. P. Miller, and M. Schulz. Benchmarking
the Stack Trace Analysis Tool for BlueGene/L. In Parallel Computing: Architectures, Algorithms and
Applications (Proceedings of the Internation Conference ParCo 2007), Julich/Aachen, Germany, 2007.

[29] B. Liblit. Cooperative Bug Isolation: Winning Thesis of the 2005 ACM Doctoral Dissertation Competi-
tion, volume 4440 of Lecture Notes in Computer Science. Springer, 2007.

[30] B. Liblit, A. Aiken, A. X. Zheng, and M. 1. Jordan. Sampling User Executions for Bug Isolation.
In A. Orso and A. Porter, editors, RAMSS °03: Ist International Workshop on Remote Analysis and
Measurement of Software Systems, pages 5-8, Portland, Oregon, May 9 2003.

27

[31] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Public Deployment of Cooperative
Bug Isolation. In A. Orso and A. Porter, editors, Proceedings of the Second International Workshop
on Remote Analysis and Measurement of Software Systems (RAMSS ’04), pages 57-62, Edinburgh,
Scotland, May 24 2004.

[32] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. 1. Jordan. Scalable Statistical Bug Isolation. In
V. Sarkar and M. W. Hall, editors, PLDI, pages 15-26. ACM, 2005.

[33] B.R. Liblit. Cooperative Bug Isolation. PhD thesis, University of California, Berkeley, Dec. 2004.

[34] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood.
Pin: building customized program analysis tools with dynamic instrumentation. In ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), 2005.

[35] NASA Advanced Supercomputing Division. NAS Parallel Benchmark Suite. http://www.nas.nasa.
gov/Resources/Software/npb.html, 2006. Version 3.3.

[36] N. Nethercote and J. Seward. Valgrind: A framework for heavyweight dyanmic binary instrumentation.
In ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), 2007.

[37] D. Quinlan. ROSE: Compiler support for object-oriented frameworks. In Proceedings of Conference on
Parallel Compilers (CPC2000), Aussois, France, volume 10 of Parallel Processing Letters. Springer
Verlag, January 2000.

[38] T. W. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems and their application to
interprocedural dataflow analysis. Sci. Comput. Program., 58(1-2):206-263, 2005.

[39] P. C. Roth, D. C. Arnold, and B. P. Miller. Mrnet: A software-based multicast/reduction network for
scalable tools. In SC, page 21. ACM, 2003.

[40] M. Spezialetti and R. Gupta. Loop monotonic statements. /[EEE Trans. Softw. Eng., 21(6):497-505,
1995.

[41] H. M. G. H. Wassel. An Enhanced Bi-clustering Algorithm for Automatic Multiple Software Bug
Isolation. Master’s thesis, Alexandria University, Egypt, Sept. 2007.

[42] P. Wu, A. Cohen, J. Hoeflinger, and D. Padua. Monotonic evolution: an alternative to induction variable
substitution for dependence analysis. In ICS '01: Proceedings of the 15th international conference on
Supercomputing, pages 78-91, New York, NY, USA, 2001. ACM.

[43] Y. Zhang and E. Duesterwald. Barrier matching for programs with textually unaligned barriers. In
PPoPP ’07: Proceedings of the 12th ACM SIGPLAN symposium on Principles and practice of parallel
programming, pages 194-204, New York, NY, USA, 2007. ACM.

[44] A. X. Zheng. Statistical Software Debugging. PhD thesis, University of California, Berkeley, Dec.
2005.

[45] A. X.Zheng, M. L. Jordan, B. Liblit, and A. Aiken. Statistical Debugging of Sampled Programs. In
S. Thrun, L. K. Saul, and B. Schoélkopf, editors, NIPS. MIT Press, 2003.

[46] A. X. Zheng, M. 1. Jordan, B. Liblit, M. Naik, and A. Aiken. Statistical Debugging: Simultaneous
Identification of Multiple Bugs. In W. W. Cohen and A. Moore, editors, ICML, volume 148 of ACM
International Conference Proceeding Series, pages 1105-1112. ACM, 2006.

28

