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Abstract 
 
This white paper accompanies a demonstration model that implements methods for 
the risk-informed design of monitoring, verification and accounting (RI-MVA) systems 
in geologic carbon sequestration projects. The intent is that this model will ultimately 
be integrated with, or interfaced with, the National Risk Assessment Partnership (NRAP) 
integrated assessment model (IAM). The RI-MVA methods described here apply 
optimization techniques in the analytical environment of NRAP risk profiles to allow 
systematic identification and comparison of the risk and cost attributes of MVA design 
options.  
 
1. Introduction 
 
A prime objective of the National Risk Assessment Partnership (NRAP) is the 
development of methodological and modeling resources to help ensure that carbon 
sequestration technologies are reliable, effective, and safe [NETL, 2011]. To achieve 
this objective, the new generation of risk methods that emerge from NRAP will meet a 
broad set of decision-making demands, including integrated, strategic, risk-based 
monitoring and mitigation protocols.  
 
Well-designed monitoring, verification and accounting (MVA) systems will ultimately 
serve to narrow the uncertainties associated with sequestration risk. Conversely, risk 
insights have the potential to inform the design and operation of MVA systems. Risk-
informed MVA (RI-MVA) design is the focus of this white paper. Specifically, a 
methodological framework for RI-MVA compatible with the NRAP Integrated 
Assessment Model (IAM) is described. To demonstrate this framework, a rapid 
prototype analytical tool has been developed.  
 
MVA is a major cost component of geologic sequestration and systematic identification 
of MVA options along with their risk implications will provide a key basis for assessing 
MVA cost-efficacy. The methodology and demonstration tool described in this white 
paper incorporate optimization methods that facilitate understanding of the risk 
profiles of optional MVA strategies and designs, as well and providing the means of 
establishing the tradeoffs between risks and costs.   
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2. Optimization Techniques and Sensor Network Design 
 
There is substantial precedent for the application of mathematical optimization  
techniques to the design of sensor networks and monitoring systems. One historic 
focus has been on analytical frameworks for the design of sensor networks in drinking 
water distribution systems, with optimization objectives that include contamination 
detection times and sizes of affected populations [Ostfeld et al, 2006; Storck et al., 
1997; Krause et al. 2008]. National security is another domain that has made 
significant investment in developing methods to optimize sensor network designs [Zou 
and Chakrabarty, 2004]. There does exist precedent for use of optimization principles 
in the design of sensor networks serving geologic storage systems [Houston, 2000]; 
some specifically oriented to carbon sequestration [Saripalli et al., 2006]. Appendix 1 
provides a fuller account of precedents in sensor network design optimization.  
 
Drawing on these precedents, the intent here is to develop optimization algorithms 
that are explicitly risk-based and that reflect the risk metrics, methods, models, 
priorities, and insights being identified under the NRAP program. There are numerous 
categories of risk and prospective risk metrics associated with geologic carbon 
sequestration. NRAP has selected a set of impact categories as the near-term focus of 
risk characterization [NETL, 2011]. These are: 
 
 (1) Return of CO2 to the atmosphere  
 (2) Degradation of groundwater quality 
 (3) Impacts on the geosphere such as nuisance or destructive induced   
  seismicity. 
 
For the purposes of RI-MVA methodology and tool development, our principal focus 
will be on the risk associated with scenarios involving confinement failure of the 
primary reservoir and associated consequence metrics. 
 
The general form of the RI-MVA framework to be described is captured in Figure 2-1. 
The efficacies and reliabilities with which various confinement failure scenarios are 
detected or pre-empted are determined for a large set of MVA design alternatives. In 
the setting of a risk model, the potential degrees of mitigation associated with 
confinement failure scenarios are then assessed for each MVA alternative, and this 
provides a basis for comparison of MVA system costs to risk-reduction benefit.  
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Figure 2-1. 
The RI-MVA Framework 
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3. General Risk Formulation 
 
In FY11 the NRAP program produced a set of preliminary risk profiles. By the end of 
CY11, the intent is to develop an integrated assessment model (IAM) that incorporates 
uncertainty quantification and provides the platform for a full set of first generation 
risk profiles. Our objective is to develop an RI-MVA framework that will be compatible 
with the NRAP IAM. Since the specific form of the IAM is yet to be fully established, the 
methods defined in this white paper are based on projections of its likely form. 
However, the RI-MVA methodology will be sufficiently robust to accommodate a range 
of IAM structures.  
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Underlying the first generation risk profiles will be a set of deterministic hydrologic, 
geologic, mineralogic and chemical models that address the phenomena associated 
with primary reservoir behavior, wellbore leakage, natural pathway leakage, and 
aquifer response. Uncertainties associated with the magnitudes of the input 
parameters to the models will be represented by probability distributions. The 
distributions will then be propagated through the integrated suite of models to 
determine the probability distributions over the output consequence metrics, such as 
the spatial and temporal distributions of pH levels and total dissolved solids (TDS) in 
shallow aquifers. Figure 3-1 represents this conceptual process.  
 

Figure 3-1. 
Calculational Framework for NRAP Risk/Uncertainty Analysis 

[from NETL, 2011] 
 

 
 
 
Numerical methods - Monte Carlo analysis - will be used to propagate the probability 
distributions through the models, likely using the GoldSim platform [GoldSim 
Technology Group, 2006]. Given the substantial run-times associated with some of the 
source science models, it is likely that faster-running surrogate models will be used 
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for the integrated analyses. These surrogate models may be based either on statistical 
response surfaces that emulate with adequate fidelity the input/output behavior of the 
underlying models [Iman and Conover, 1980], or on reduced form physical models that 
simplify the formulations of the underlying science.  
 
The scenarios addressed in the model will involve reservoir confinement failure 
mechanisms such as   

 
- caprock permeation 
- leaky wellbores 
- existing transmissive faults or fracture zones 
- induced faults or fractures, 

 
along with the potential migration paths and mechanisms determined by the 
connectivity of the confinement failure locations to the volumetric endpoints of interest 
[Oldenburg et al., 2009]. In the first generation risk profiles, the endpoints will be: 
 

- underground sources of drinking water  
- surface water 
- atmosphere. 

 
Based on an analysis such as that represented in Figure 3-1, the typical output of the 
IAM will take the general form of a joint probability distribution P(C) over some vector 
of consequence metrics, C, which would include, for example, time-dependent pH and 
TDS levels defined at various volumetric endpoints (compartments, in the vernacular of 
the Certification Framework [Oldenburg et al., 2009]). 
 
The probability density P(C) can then form the basis for several representations of risk. 
The most conventional representation has the form  
 
 Risk = Probability x Consequence,      (1) 
 
where a vector of risk indices is expressed as 
 
 Ri =  ∫ Pi(Ci) Ci dCi         (2) 
 
Ri is the risk with respect to the i'th consequence metric, Ci, and Pi is the marginal 
probability distribution over Ci. In essence, this risk is equal to the expectation value of 
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the consequence metric under the uncertainties associated with the model input 
parameters. An alternative and common characterization of risk is the complementary 
cumulative distribution function (CCDF) associated with the marginal probability 
density; that is, 
 
 CCDFi(Ci) = Ci∫ ∞ Pi(Ci') dCi'         (3) 
 
which represents exceedence probabilities for various levels of consequence severity. 
These characterizations of risk can be viewed as the accumulation of risk contributions 
from a set of confinement failure scenarios and subsequent leak paths. 
 
To this point we assume that the confinement failure scenarios are unmitigated. That 
is, in these representations of risk, no credit has been taken for mitigative actions. 
Now consider the presence of an MVA system with the design objective of identifying 
anomalies associated with potential confinement failures. In principle, the detection of 
such failures would prompt response actions intended to mitigate the impact. (Halting 
injection would be a key mitigative action. Additional means of mitigation will be a 
future focus for NRAP.) Therefore, the risk model could be modified to take credit for 
prospective mitigation actions once a confinement failure is detected. In this case 
(starting with Equation 2) we have 
 
 R'i =  ∫ P'i(Ci) Ci dCi         (4) 
 
where the prime attached to the risks and probability densities indicates that mitigative 
actions have been accounted for, and the associated reduction in consequence 
severities for each scenario have been incorporated into the integrated model. 
 
The degree to which a confinement failure can be mitigated will depend on the efficacy 
and reliability of the MVA system in place to detect the failure. For example, the 
timeliness of anomaly detection would be one factor expected to drive both the degree 
to which mitigation is practical, and the potential efficacy of mitigative response. 
Therefore, Equation 4 can be re-expressed as 
 
 Rik =  ∫ Pik(Ci) Ci dCi         (5) 
 
where the index k enumerates MVA system design and operational options; that is, 
Equation 5 expresses risk as a function of the MVA design option. If Equation 5 were 
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implementable, then it would be the basis for risk-informed MVA design. 
Implementation would require: 
 
1.  modeling the performance of optional MVA systems/configurations relative to 

the range of scenarios and conditions identified in the underlying physical 
models, and 

 
2.  modeling the operator's decision-making and mitigative response actions 

subject to inferences made from MVA.  
 
While future NRAP activity will focus on mitigation, we make some tentative 
assumptions here to allow near-term progress on the RI-MVA framework. We assume 
first that a key determinant of the potential to mitigate a confinement failure scenario 
is the timing of anomaly detection. That is, the greater the time to detection, the 
greater the impact of a scenario is likely to be. While we would expect a monotonic 
relationship between time to detection and consequence severity, the specific nature of 
that relationship is yet to be established. As an interim, surrogate measure of 
consequence severity, we can use the time to detection itself. That is we define the 
following as a surrogate risk measure: 
 
 Rk =  ∫ Pk(t) t dt         (6) 
 
where t is the time interval between confinement failure and anomaly detection, and k 
is an index that enumerates the MVA design options. 
 
As noted earlier, the propagation of uncertainty in NRAP methodology is based on 
Monte Carlo methods. That is, Equation 6 would be implemented by numerical 
methods and the output of the risk analysis would be a sample of values of a given 
output consequence metric from which its probability distribution can be constructed. 
Each sample member represents a single, quantitative realization of all input 
parameters to the physical models. The means of integrating such a risk model with 
the RI-MVA framework resides in establishing the time to confinement failure detection 
for the physical conditions realized in each sample member (that is, for those sample 
members that involve confinement failure) and for each MVA option. This forms the 
basis for implementing Equation 6.  
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4. Monitoring System Characterization 
 
A given MVA system option is assumed to be defined by a network of sensors of 
varying technologies/types, deployment timings, and locations (fixed and dynamic) 
[NETL, 2009]. In general sensor types might include: 
 
- Atmospheric monitoring 
 - Direct CO2 detectors 

- LIDAR 
- Tracers 
- Eddy covariance 
 

- Near Surface monitoring 
- Areal optical methods (including satellite imagery) 
- Tracers 
- Groundwater monitoring (head, chemistry) 
- Soil gas monitoring 
- Electrical, including resistivity, Sp, induced polarization 
 

- Subsurface monitoring  
- Surface and cross-well multi-component seismic time-lapse 
- Magneto-telluric sounding 
- Deep electromagnetic induction tomography 
- Time-lapse gravity 
- Vertical seismic time-lapse 
- Ground deformation (tiltmeters, InSAR, microgravity) 
- Well logging of electrical, acoustical or chemical properties, fluid saturations, 

cement bond 
- Microseismic activity (induced seismic)  
- Mechanical well integrity tests   
- Annulus Pressure 
- Fluid chemistry  
 

For the purposes of the RI-MVA demonstration model, two sensor types are 
considered: direct CO2 detectors and pressure sensors. The model is principally 
concerned with two sensor attributes: cost (ultimately, both the initial capital cost and 
periodic operating or maintenance costs) and the threshold for detection. In brief, the 
threshold is the minimum stimulus level to which a sensor is exposed such that the 
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operator concludes that an anomalous event has occurred. It is not, however, the 
minimum stimulus required to infer confinement failure. Inference of confinement 
failure is assumed to require an appropriate combination of anomalous events 
(confirmatory data), as specified by the RI-MVA inference model. 
 
For a given distribution of sensors, the RI-MVA model estimates the time to anomaly 
detection for each Monte Carlo output sample member generated by the risk model; 
that is, for each realization of physical input parameters.  An anomalous event is 
assumed to be the detection of a signal by a sensor that would (1) imply occurrence of 
a confinement failure scenario, or (2) prompt or focus additional monitoring activity to 
confirm or disconfirm that confinement failure has occurred. In general, we assume 
that there would need to be mutually-enforcing evidence or confirmatory output from 
multiple sensors to produce an inference that is sufficiently robust to support response 
actions. Since sensors would be expected to employ disparate technologies and rely 
upon differing physical stimuli, the basis for defining the thresholds for robust 
inferences will vary. 
   
Sensor thresholds are not treated as static in RI-MVA. Rather, we allow a given sensor’s 
thresholds to vary based on measurements obtained from other sensors. This is 
because multiple sensors may reinforce each other and provide greater evidence of 
anomalous activity than a single sensor. As defined previously, a sensor’s threshold 
level is a measure of the evidence required to conclude that anomalous activity is 
occurring. The amount of evidence required from a given sensor is reduced if other 
sensors are providing confirmatory evidence. This dependency between sensors is 
captured in an inference model, which is a module within the larger RI-MVA model. 
More details of the inference model are contained in Appendix 2. 
 
5. Risk-Informed Optimization Principles 
 
There can be numerous alternative and complementary risk-informed decision criteria 
for MVA system design. In the demonstration analysis, the expectation value of the 
time to anomaly detection is the surrogate risk metric. This, in combination with 
consideration of the costs of each MVA option, would provide the basis for cost-
benefit comparison. In a fuller analysis, design selection would address multi-attribute 
risks (as defined by risk metrics selected under NRAP) as well as system costs 
associated with installation, operation and maintenance. The current basis for 
addressing the cost component of the analysis is described in Section 7. 
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A key technical challenge for RI-MVA is the ability to systematically identify and 
analyze MVA design options. In principle, an optimization analysis would need to 
consider a space of options that spans sensor types, counts, physical configurations, 
and installation times. The characterization and exploration of this abstract, multi-
dimensional space is not straightforward and presents the key challenge for the RI-
MVA methodology - computational cost being a key factor. To explore that space and 
select MVA options, the analytical technique of Simulated Annealing has been adopted, 
as described in the following section. 
 
6. Optimization and Simulated Annealing 
 
Simulated annealing is a randomized optimization algorithm that iteratively searches 
through numerous candidate solutions until it converges to the “best” one - in this 
case, the option in which risk (the expected time to confinement failure detection) is 
minimized for a given system cost constraint. Built-into the algorithm are means of 
avoiding early convergence to local risk minima (that is, local in the option space), and 
this increases the likelihood that the resulting risk is a global minimum.  
 
Central to the algorithm is a mutation function. This function sequentially generates a 
new candidate solution from the previous solution using a randomized approach. The 
particular form taken by the randomization is problem dependent: in our case, we 
randomly select sensor types and randomly alter their locations. The resulting new 
solution may or may not be better (lower risk) than the prior one from which it was 
mutated. So:  
 
(1) If it is better, it is accepted as the starting point for subsequent mutations. It is also 
compared to the best solution found thus far. If it is better, then it is retained as the 
new best solution.  
 
(2) If it is worse than the solution from which it is mutated, it is accepted as the next 
starting point provided that the difference between the risk associated with the current 
and previous solutions is less than a certain threshold level, which is defined as part of 
the algorithm. The purpose of accepting a worse solution is to allow the algorithm to 
periodically escape a local risk minimum. Note that the algorithm still retains memory 
of the best solution – this is only modified if the mutation is strictly better.  
 
This process is represented in Figure 6-1. 
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Figure 6-1. 
Simulated Annealing Algorithm 

 

 
 
One of the major advantages of simulated annealing is that it does not require any 
particular functional form for the objective function (detection time). The only 
requirement is the ability to evaluate the objective function for various candidate 
solutions generated by the algorithm. As outlined in Appendix 2, the current problem 
involves an objective function that has no closed form representation, and this 
precludes the use of more conventional optimization techniques such as linear 
programming. 
 
It should be noted that simulated annealing, like all randomized algorithms, cannot 
ensure convergence on identical solutions for multiple implementations.  However, 
techniques do exist to increase the likelihood that the resulting configurations do in 
fact reflect the global risk minimum, or a good  approximation to it. These techniques 
include adjustments to the number of allowed iterations and the modification of 
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internal algorithm parameters. These techniques are employed in the RI-MVA model. 
Overviews of simulated annealing algorithms can be found in Bertsimas and Tsitsiklis 
[1993] and Kirkpatrick et al [1983]. 
 
Note that the RI-MVA algorithm is designed to handle a large number of confinement 
failure scenarios. Each member of the Monte Carlo sample (from the underlying risk 
model) represents a scenario, or “state of the world”, selected from numerous 
alternative reservoir plume characteristics, confinement failure points/mechanisms, 
and release migration pathways. The sample data will be spatially and temporally 
indexed, which will allow us to evaluate the time to confinement failure detection for a 
particular configuration of sensors. The objective function used in the simulated 
annealing algorithm is the expectation value of the detection time (or, more generally, 
of the consequence metric) over the Monte Carlo sample. More detail of the process is 
in Appendix 2. Figure 6-2 illustrates how the Monte Carlo sample of times to 
confinement failure detection forms the basis for calculating the objective function - 
the mean time to detection. 

 
Figure 6-2. 

Monte Carlo Sample and the Objective Function 
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7. Demonstration Model 
 
The NRAP integrated assessment model (IAM) will provide the ultimate basis for 
implementation of the RI-MVA methods described here. As an interim basis for 
implementing and calibrating the RI-MVA methods, Geological Storage Consultants, 
LLC (GSC) has shared a dataset representing a hypothetical confinement failure 
scenario. These data consist of spatial-temporal CO2 concentrations, along with 
pressure field data, for cells defined in a hypothetical sequestration site. GSC 
generated the data using an efficient vertically averaged numerical model. Figure 7-1 
represents the general structure of the model. Some salient aspects of the model are:  
 

 The confinement failure mechanism is an abandoned permeable well.  
 

 The site is modeled using two layers: one layer represents the reservoir, the 
other represents locations above the reservoir. Since we assume no sensors are 
placed in the reservoir, all sensors in the demo have a single depth coordinate. 
We expect future datasets to include multiple vertical strata, which RI-MVA is 
designed to accommodate. 
 

 The original GSC data represent a single confinement failure location and a 
subsequent deterministic characterization of CO2 migration. This can be viewed 
as equivalent to a single Monte Carlo sample member of data that would emerge 
from the NRAP risk model. To emulate additional Monte Carlo sample members, 
the GSC data were augmented with meta-data which was based on geographic 
translations of the confinement failure point in the original data. Five failure 
locations are thus represented, assumed to reflect a Monte Carlo sample of size 
5. 
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Figure 7-1 
Illustration of the GSC Model 
[from Dobossy et al., 2010] 

 
 
In addition to these features of the data,  several simplifying assumptions have been 
made for the purposes of the model demonstration. These assumptions pertain to  
sensor characteristics, specifically the costing model and the basis for setting  
detection thresholds for the sensors: 
 

 The emphasis of the demo project has been on establishing the calculational 
principles and algorithms for MVA design optimization rather than on the 
collection of supporting data for implementation. For current purposes, costs 
associated with various MVA designs have been denominated in arbitrary units. 
For example, CO2 sensors and pressure sensors are associated with costs of 100 
units and 150 units per sensor, respectively. It's also recognized that the 
structure of the costing model is currently simplistic and will require substantial 
refinement. For example, the current model simply adds the cost of individual 
sensors for a given configuration; whereas, more realistically, cost will be 
nonlinear and account for costs associated with the placement of the instrument 
wells required for a given configuration. Also, a more refined model will allow 
the explicit costing of system installation, operation, and maintenance.  
 

 Sensor detection thresholds have been assigned nominal values for the demo 
model. These values were based on inspection of the GSC data set in 
conjunction with some preliminary judgments. Again, the emphasis of the demo 
is on establishing the calculational algorithms rather than on the collection of 
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supporting data. In collaboration with the MVA Working Group, more realistic 
sensor models will ultimately be established. 

 
Operation 
 
Figure 7-2 shows the RI-MVA data input screen. The algorithm requires the following 
user inputs: 
 

 Initial sensor configuration: the user enters a series of sensors as the initial MVA 
design option. The sensors are defined in terms of their type (CO2  and pressure 
sensors are current options) and location. 
 

 Number of iterations: the simulated annealing algorithm involves iterative 
mutation of solutions to ultimately arrive at the “best” solution. The quality of 
the output depends on the number of iterations. However, there is a tradeoff: an 
excessive number of iterations is computationally expensive and may provide 
limited improvement in the solution.  
 

 Cost constraints: the user also enters a total cost constraint on the MVA system. 
Cost is presently modeled as constraint on the solution, but the user has the 
option of incorporating cost into the objective function itself (see Appendix 2). 
The user has the option of adding alternative cost constraints, in which case the 
model sequentially uses these constraints to show the relationship between the 
risk minimum achieved and the total system cost.  

 
Once the user has entered the required input, the algorithm is executed.  
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Figure 7-2. 
Initial Input Screen 

 

 
 
 

Figure 7-3 represents initiating data for the algorithm. The map shows a configuration 
of sensors -  pressure sensors represented by blue diamonds and CO2 sensors by red 
diamonds - the equiprobable confinement failure locations represented by green 
diamonds (representing a Monte Carlo sample of data from the risk model), and the 
injection point, represented by the black diamond. The initial user specified sensor 
configuration consists of four sensors that are equidistant from the injection point.  
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Figure 7-3. 
Initial Configuration: 

Black point is the injection location, green points are the equiprobable confinement 
failure locations, blue/red points are pressure/CO2 sensors.  

 

 
 
 
Results 
 

When execution of the algorithm is complete, several sets of results are displayed.  
Figure 7-4 illustrates the optimal configuration determined by RI-MVA  for a cost 
constraint of 650 units (30% greater than the cost of the initial configuration). The 
figure represents the configuration with the smallest probability-weighed confinement 
failure detection time for a cost no greater than 650 units. Comparison of Figures 7-3 
and 7-4 reveals that sensors have been relocated closer to the confinement failure 
points, as would be expected. To interpret this optimized configuration, note that the 
top right confinement failure point results in the  “most isotropic” leak pathways in the 
sense that CO2 migration  is distributed uniformly about the source point. In the other 
scenarios (i.e., the other four confinement failure locations) the direction of CO2 
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migration is predominantly to the right of the source. This anisotropy of CO2 migration 
is reflected in the optimal sensor configuration.  

 
An additional output is a comparison of the risk-minimized solutions to the initial 
user-provided configuration as a function of the allowable system costs. This is 
represented by graphs showing the risk and achievable risk reductions associated with 
increasing system cost (see Figure 7-5). Such data provide a transparent basis for 
cost-benefit analysis of MVA options. This basis will become more robust once the 
surrogate risk measure of expected time to detection is replaced by a more meaningful 
risk metrics.  

 
Figure 7-4. 

Risk-Minimized Configuration for a Cost Constraint 650 Units: 
Black point is the injection location, green points are the equiprobable confinement 

failure locations, blue/red points are pressure/CO2 sensors.  
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As expected, higher allowable costs result in lower-risk solutions; however, Figure 7-5 
clearly shows the diminishing returns as allowable cost is increased. The top graph 
shows the percent improvement in the optimal configuration relative to the initial, 
user-provided configuration, as a function of cost constraint. The bottom graph shows 
the optimal configuration’s risk score (expected time to detection) as a function of the 
cost constraint. We see that for the best configuration at a cost constraint of 2,450 
units, the minimum risk score is 55 days (the expected time between confinement 
failure and detection of the failure), a 99% improvement over the initial risk score. The 
optimal configuration for a cost constraint of only 650 units also yields a very 
significant improvement over the initial configuration. A cost-benefit analysis in this 
hypothetical case might suggest that expenditure beyond 650 units is unwarranted. 
 

Figure 7-5. 
Algorithm Outputs 

 
 

 
8. Conclusions 
 
The principles and features of an approach to risk-informed MVA (RI-MVA) system 
design and operations have been described, along with supporting optimization 
algorithms. Through leveraging and extending existing methodologies for sensor 
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network optimization, a rapid prototype model has been developed that is oriented 
towards integration with the NRAP IAM. A demonstration application of the model 
indicates that RI-MVA has the potential to provide a systematic, risk-informed basis 
for facilitating the cost-effective design of MVA systems. By ongoing collaboration with 
the NRAP working groups, the intent is to refine the RI-MVA model through: 
 
1.  Replacing the surrogate risk metrics and surrogate risk model with the IAM and 

its associated risk metrics as they emerge, and  
 
2.  Making refinements to RI-MVA model with respect to factors such as sensor 

definitions, MVA operational strategy, anomaly inference modeling, and system 
costing. 

 
In the next section, some specific areas of improvement are identified.   
 
9. Future Steps  
 
Planned refinements to RI-MVA include -  
 
1.  Sensor definitions: The inventory of sensor types available to RI-MVA will be 

expanded and sensor capability will be more realistically modeled. 
 
2.  Data sampling: Strategies for sensor data sampling will be more realistically 

modeled, thus improving the basis for estimating the timing of anomaly 
detection. 

 
3.  Dynamic MVA design: The ability to model the phased deployment of sensors 

will be incorporated, accounting for evolving knowledge of plume 
characteristics. 

 
4.  System costing: Realistic bases for design option costing will be incorporated 

into RI-MVA, addressing installation, operational, and maintenance elements. 
 
5. Inference and mitigation models: The operational inference and response 

models will be refined to more realistically reflect anomaly diagnostics, 
confirmatory analyses, and associated mitigative actions. 
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6.  Sensor reliabilities: Included in the risk model will be scenarios is which sensors 
fail to meet their design intents. 

 
7. IAM interface: RI-MVA analytical interfaces will be developed to reflect the 

emerging structure and metrics of the IAM.   
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APPENDICES 
Note: work cited in the appendices is included in the reference listing of the main 
report (Section 10). 

 
Appendix 1 

Precedents in Sensor Network Optimization Methods 
 

The approach to MVA optimization for geologic carbon sequestration systems 
described in this white paper draws upon and extends precedents in this domain.  It 
also draws upon an array of approaches that have been applied in other domains, 
ranging from groundwater and water distribution network monitoring, to surveillance 
and target location in security and defense contexts, to system failure and fault 
detection in engineered systems.   
 
Our application extends previous approaches within the geologic carbon sequestration 
domain by explicitly addressing risk through algorithmically optimizing sensor 
placement.  Saripalli et al. (2006) attempted to identify the spacing and density (or 
number) of sensors necessary to effectively quantify leakage fluxes and 
concentrations.  However, in contrast to the approach taken in this white paper, their 
approach was deterministic in that uncertainty was not included in predictions of CO2 
transport and tracer leakage from the geological reservoir being modeled.  They 
acknowledged that receptor zones of greater value would likely warrant closer sensor 
node spacing, and noted the importance of assessing risk.  However, no algorithmic 
approach to optimization was employed to do so.  Morris et al. (2009) focused not on 
risk per se, but rather on physical modeling of multiple injections at a large scale (tens 
of kilometers) sequestration site.  They linked a reservoir flow model to a 
geomechanical model, enabling them to investigate the potential for fault activation, 
itself a potential precursor to CO2 leakage.   
 
In an application to groundwater monitoring, Meyer et al. (1994) developed a design 
optimization method which, when linked to a groundwater flow and transport model, 
identified preferred well monitoring networks against three objectives. The objectives 
were (1) minimizing network cost; (2) maximizing probability of detecting a 
contaminant leak; and (3) minimizing the extent of contamination when the leak is first 
detected.  The approach considered uncertainty both in the spatial distribution of 
saturated hydraulic conductivities and location of the leak for a two-dimensional 
domain.  Storck et al. (1997) extended this approach to consider a three-dimensional 
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model of the domain.  In a further extension, Kollat et al. (2011) applied an ensemble 
Kalman filtering approach that accounted for uncertain and biased model predictions 
that are conditioned on uncertain data. This last study addresses decisions of whether, 
in a given time period, samples should be collected from preexisting locations, but the 
authors note that it could be extended to consider installation of new sampling wells 
(as is done in the methods reported in this white paper).  The approach was 
demonstrated using a laboratory-based physical aquifer tracer experiment.  Six 
objectives were considered: (1) Minimize monitoring costs; (2) Maximize the 
information provided to the Kalman filter; (3) Minimize failures to detect the tracer; (4) 
Maximize the detection of tracer fluxes; (5) Minimize error in quantifying tracer mass; 
and (6) Minimize error in quantifying the centroid of the tracer plume.  Their 
optimization approach belongs to a class of solution tools termed multiobjective 
evolutionary algorithms, which has been applied in a broad range of water resources-
related applications (e.g., Nicklow et al. 2010).  For their reported application, this 
general approach was combined with an emerging new class of evolutionary 
algorithms termed probabilistic model building genetic algorithms in order to address 
challenges that are unique to optimization problems involving four or more objectives.  
Vrugt and Robinson (2007) developed an evolutionary optimization approach that 
performed well for multiple objectives by running multiple algorithms simultaneously 
while sharing information between them.  Their approach has not to our knowledge 
been applied in a sensor placement application.  Formulations considering multiple 
objectives are under consideration for future applications of the approach presented 
within this white paper. 
 
The problem of contaminant detection in water distribution systems is characterized 
by the need to consider, for typical problems, potential sensor placement locations 
within thousands of junction combinations in the system.  Effective solution 
approaches must be able to cope with option spaces of this problem size.  Model 
performance is also typically evaluated on the basis of multiple criteria.  For example, 
Aral et al. (2009) considered water volume contaminated, time to detection, and 
detection likelihood, and implemented an approach based on a sorting genetic 
algorithm.  Competing approaches include that by Krause et al. (2008).  They used a 
combination of approaches, including mixed integer programming, simulated 
annealing, and a greedy algorithm in order to exploit particular features of this type of 
problem.  This problem has also been addressed by federal agencies such as the 
USEPA, which has developed a publicly available software package called Threat 
Ensemble Vulnerability Assessment: Sensor Placement (TEVA-SPOT, Berry et al. 2008  
See Murray et al. (2008) for an application using TEVA-SPOT.)   
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In a more general application context, sensor placement is done to achieve effective 
areal coverage for purposes of surveillance and target location.  These concerns are 
often the focus in security and military applications.  In this domain, addressing 
placement represents a recent advance relative to historical applications that only 
considered communication between sensors and “sensor fusion” (e.g., Wu et al. 2002, 
2003).  In sensor communication the primary issue is how sensors share information, 
while in sensor fusion the primary issue is how to optimally combine information from 
multiple sensors so that the result is in some sense more informative than if the 
sensors were used individually.  Recent applications attempt to place sensors optimally 
while considering the following issues: uncertainty associated with whether a sensor 
will detect a target, preferential coverage of more vulnerable locations, resilience to 
sensor failures, and the nature of the terrain (e.g., the existence of obstacles).   
 
Dhillon et al. (2002) and Dhillon and Chakrabarty (2003) used a greedy algorithm that 
optimally added sensors one at a time, in order to optimally improve a miss probability 
matrix.  Using an algorithmic extension to that approach, Zou and Chakrabarty (2004) 
considered a situation where the precise locations of the sensors are known only 
within uncertainty limits, as the sensors may have been dropped from an airplane or 
may have drifted with the current if deployed underwater.  Vickers et al. (2006) used a 
gradient ascent, non-linear optimization technique in a problem in which the 
environment in the form of a flowing river influences the most effective deployment 
locations for detecting an object such as a diver moving with the current.  Barrett 
(2007) used genetic algorithms in a similar application.  Some of these applications 
reflect sensors that will have capabilities (e.g., inter-sensor communication) or features 
(e.g., location uncertainty, movement) not characteristic of the carbon sequestration 
context.  Other issues are either addressed through the placement algorithm (e.g., 
target detection uncertainty, preferential coverage of more vulnerable locations, 
existence of geologic obstacles) or operator interpretation of sensor output (including 
inference resilience in light of sensor failures). 
 
Systems engineering contexts in which the focus is on optimizing sensor placement to 
maximize probability of detection of failures or faults are another domain of 
application.  Khan et al. (1998) described a case in which both placement and number 
of sensors was optimized to improve failure detection in automotive body assembly.  
In their application, a sensor location was desirable if it enabled distinction between a 
culpable fault and a culpable fixture.  Optimization required analysis of six diagnostic 
vectors that corresponded to potential fault modes lying along six degrees of freedom.  
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In quite a different kind of problem, Gao and Rose (2006) described a general 
approach that combined genetic and evolutionary optimization methods to model 
structural health in potentially many aerospace, civil, and mechanical infrastructure 
contexts.  In an application, they obtained a tradeoff relationship between optimized 
sensor network performance and the number of sensors for an aircraft wing section in 
which sensors are placed to detect crack initiation.  Guratzsch and Mahadevan (2007) 
applied structural health modeling to reporting a flight vehicle’s condition in real time.  
Uncertainty was incorporated via random realizations of spatially and temporally 
uncertain model parameters in a finite element-based modeling analysis that was used 
to compute the system’s response to the various loads.  They employed an 
optimization scheme that was designed for optimization of noisy objective functions 
that are costly to evaluate due to computational or experimental complexity.  This 
domain typically involves a distinct set of problems compared to the geologic 
sequestration context.  For example, a far greater knowledge of the system and 
quantity of experimental data is typically available for analysis.   
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Appendix 2 
Supplementary Technical Details 

 
A. Inference Model 
 
The inference model is used to combine evidence obtained from individual sensors. Its 
role is to determine at what point it would be inferred that a confinement failure has 
occurred. The inference model is implemented in two ways: first, it has a component 
that dynamically updates sensor thresholds. Second, it defines various combinations of 
evidence that must be obtained to infer that confinement failure has occurred. In the 
absence of these combinations, inference cannot be made. 
 
A.1. Dynamic Updating of Thresholds 
 
A sensor of type A has a pre-defined threshold of B. B is defined in terms of the  units 
of measurement for the stimulus relevant to the sensor type, and it represents the 
stimulus level that must be achieved  for an operator to infer an anomaly. However a 
anomalous level in a single sensor is insufficient to infer a confinement failure. This 
requires additional evidence of anomalous activity). B is therefore a statement about 
our confidence in the evidence provided by the sensor: a reading below B is too noisy 
for us to infer an anomaly..  
 
We have extended this concept by modeling sensor thresholds as dynamic. Suppose 
that our initial MVA option consists only of one sensor, of type A. As noted above, we 
require this sensor to achieve a reading of B for us to believe that anything anomalous 
is occurring. Now suppose that we place an additional sensor, also of type A, 
somewhere in the sequestration site remote from the first sensor. Suppose also that 
both of these sensors register nonzero (i.e., above noise) readings, but both readings 
are below B. It is plausible to suggest that, even though B is not exceeded, we have 
stronger evidence of anomalous activity than in the case of an individual sensor 
reading below B. That is, we now have two nonzero readings in distinct locations. This 
suggests that we lower the threshold B: the sensors, by virtue of their nonzero 
readings and distinct locations, reinforce the inference of a confinement failure. As a 
result, a stimulus level below  B can be sufficient to reinforce inference of a 
confinement failure. 
 
This example  can be extended by considering the addition of a sensor of type A’. 
Similar reasoning suggests that if this new sensor also registers a nonzero reading we 
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do not need to require evidence as strong as B from the first sensor. The inference 
model works in this way by reducing sensor thresholds if certain other sensors register 
nonzero readings. Note that this is a preliminary inference model and we anticipate 
significant modifications to reflect more realistic decision-making criteria.  
 
A.2. Combinations Required for Leak Inference 
 
In addition to dynamically updating sensor thresholds, the inference model also checks 
for specific combinations of exceeded thresholds. The idea is that a reading in excess 
of a sensor’s threshold (initial or updated threshold) is not sufficient to infer that 
confinement failure  is occurring – it is only sufficient to infer an anomaly. Multiple 
anomalies must be detected to confidently infer that leak has occurred, as mitigation is 
a potentially costly process and should not be attempted without strong evidence for 
its necessity.  
 
B. Optimization Model 

 
As discussed, our tentative consequence metric is time to detection, and this is 
evaluated for a given MVA design option with respect to several confinement failure  
scenarios, each representing a single Monte Carlo sample member from the underlying 
risk model. The constraints currently modeled are cost constraints, and we recognize 
the possibility of imposing additional constraints in future, such as geographical 
constraints upon the locations of the  sensors.  
 
The mathematical formulation of the problem is as follows: 
 
 Minx TTD(x)  s.t. 
 C(x) ≤ α         (2.1) 
 
Where TTD is the function used for evaluating time to detection, C is the cost function, 
α is the cost constraint, and x is the variable representing alternative MVA design 
options. 
 
The TTD function itself can be represented as follows: 
 
 TTD(x) = ∑i piTi(x)           (2.2) 
 



Risk‐Informed	MVA	 Page	34	
 

where Ti(x) represents the time it takes MVA option x to detect leak corresponding to 
scenario i, and pi represents the probability of scenario i (in the numerical 
implementation, each scenario is represented by an equiprobable Monte Carlo sample 
member). Note that Ti(x) is the time to detection measured from the onset of that 
confinement failure – it is not the time to  detection measured from the beginning of 
the injection period. For instance, if leak scenario i does not involve actual leakage 
until time period N, and MVA option x detects that leak at time N+M, the value of Ti(x) 
will be M.  
 
The reason simulated annealing was chosen as the optimization technique is related to  
the nature of the objective function. While the TTD function is itself a linear 
combination of individual Ti(x) functions, these individual functions themselves cannot 
necessarily be expressed as linear functions, or indeed as any functions with closed 
form expressions. Each of these functions is evaluated by querying a database of 
scenario data against sensor types and locations found in x. It is possible that this is 
highly nonlinear: if there is a geologic impediment to CO2 flow, for example, an MVA 
option placed on one side of the impediment will yield a finite time to detection, but a 
slight shift of that option to the other side of the impediment will not yield no 
detection  at all. In addition, future versions of the objective function may involve 
different consequence metrics which can also be nonlinear. Simulated annealing is a 
good technique for optimization problems with so-called “black box” objective 
functions, such as this one. The technique does not require differentiation or any other 
mathematical operation to be applied to the objective function. It only requires us to 
be able to evaluate the objective function for the feasible candidate solutions. 
 

 
B.1 Cost-Objective Analysis of MVA Design Options 
 
While the objective function as described above is an expected time to detection (mean 
over the Monte Carlo sample), we allow for the possibility of incorporating cost directly 
into the objective function. More specifically, the user has the option of entering a 
nonzero number in the Cost Coefficient section of the user input page. If this is done, 
then the objective function becomes 
 
 TTD’(x) = TTD(x) + βC(x)       (2.3) 
 
where β is the number entered by the user (representing a cost/risk tradeoff). In this 
case, the rest of the inputs and algorithm operation are the same as they were before – 
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the only difference is in the way in which different MVA design options are compared. 
The rationale behind this approach is to discount design options that provide little 
reduction in time to detection at high cost.  
 




