
SANDIA REPORT 
SAND 2011-8448 
Unlimited Release 
October 2011 
 
 
 

Robust Automated Knowledge Capture 
 
 
Robert G. Abbott, Michael Haass, Michael Trumbo, Susan Stevens-Adams, Stacey 
Hendrickson & Chris Forsythe 
 
 
 
 
 
Prepared by 
Sandia National Laboratories 
Albuquerque, New Mexico  87185 and Livermore, California  94550 

 
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,  
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's  
National Nuclear Security Administration under contract DE-AC04-94AL85000. 
 
Approved for public release; further dissemination unlimited. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



2 

 
 
 
 

Issued by Sandia National Laboratories, operated for the United States Department of Energy 
by Sandia Corporation. 
 
NOTICE:  This report was prepared as an account of work sponsored by an agency of the 
United States Government.  Neither the United States Government, nor any agency thereof, 
nor any of their employees, nor any of their contractors, subcontractors, or their employees, 
make any warranty, express or implied, or assume any legal liability or responsibility for the 
accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represent that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, 
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government, any agency thereof, or any of 
their contractors or subcontractors.  The views and opinions expressed herein do not 
necessarily state or reflect those of the United States Government, any agency thereof, or any 
of their contractors. 
 
Printed in the United States of America. This report has been reproduced directly from the best 
available copy. 
 
Available to DOE and DOE contractors from 
 U.S. Department of Energy 
 Office of Scientific and Technical Information 
 P.O. Box 62 
 Oak Ridge, TN  37831 
 
 Telephone: (865) 576-8401 
 Facsimile: (865) 576-5728 
 E-Mail: reports@adonis.osti.gov 
 Online ordering: http://www.osti.gov/bridge 
 
Available to the public from 
 U.S. Department of Commerce 
 National Technical Information Service 
 5285 Port Royal Rd. 
 Springfield, VA  22161 
 
 Telephone: (800) 553-6847 
 Facsimile: (703) 605-6900 
 E-Mail: orders@ntis.fedworld.gov 
 Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online 
 
 

 
 

 



3 

SAND 2011-8448 
Unlimited Release 

October 2011 
 
 

Robust Automated Knowledge Capture 
 
 

Robert Abbott & Michael Haass 
Cognitive Systems 

 
Michael Trumbo 

Cognitive Modeling 
 

Susan Stevens-Adams & Stacey Hendrickson 
Human Factors and Statistics 

 
Chris Forsythe 

Cognitive Modeling 
 

Sandia National Laboratories 
P.O. Box 5800 

Albuquerque, New Mexico  87185-1188 
 
 

Abstract 
 

This report summarizes research conducted through the Sandia National Laboratories 
Robust Automated Knowledge Capture Laboratory Directed Research and 
Development project.  The objective of this project was to advance scientific 
understanding of the influence of individual cognitive attributes on decision making.  
The project has developed a quantitative model known as RumRunner that has proven 
effective in predicting the propensity of an individual to shift strategies on the basis of 
task and experience related parameters.  Three separate studies are described which 
have validated the basic RumRunner model.  This work provides a basis for better 
understanding human decision making in high consequent national security 
applications, and in particular, the individual characteristics that underlie adaptive 
thinking. 
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1.  INTRODUCTION  
In formulating the Robust Automated Knowledge Capture LDRD project, the objective had been 
to establish relationships between individual aptitudes on different measures of cognitive 
performance and an individual’s predilection to select different strategies for a given task.  This 
research question was based on a dynamical systems theory perspective regarding brain function 
(Port & Van Gelder, 1995).  In accordance with this theory, the brain consists of tissue 
specialized for performing various computational algorithms and is in essence a collection of 
these algorithms.  Different individuals possess varying endowments with respect to their 
capacity to execute various algorithms with these differences reflected in various measures of 
cognitive aptitude.  Within everyday settings, as an individual is faced with various cognitive 
demands, they bring together combinations of algorithms that manifest as a specific strategy. 
Given individual differences in cognitive aptitudes, different individuals may bring together 
different combinations of algorithms with the product being somewhat different strategies.  For 
example, if asked to memorize a list of words, an individual proficient with mental imagery may 
evoke mental images of each item whereas an individual proficient with verbal processes may 
construct sentences or merely repeat the word.  Consequently, a key hypothesis was that for a 
given task, individuals will exhibit different strategies with the specific strategy employed 
being a product of their intrinsic skills. 
 
The second component of a dynamical systems perspective considers the role of feedback.  It is 
assumed that there will be feedback regarding the effectiveness of actions taken in response to 
various cognitive demands.  However, individuals should differ with respect to their capacity to 
utilize positive and negative feedback in evaluating selected strategies and switching from less 
effective to more effective strategies, a trait that has been referred to as adaptability.  Thus the 
second key hypothesis was that individuals will exhibit varying levels of adaptability with an 
individual’s adaptability determining their propensity to switch strategies in response to 
changing conditions. 
 
The following report summarizes experiments conducted over the course of the three-year 
project to test and expand upon the above hypotheses. 
 
 
2.  FIGURE-8 DRAWING TASKS 
 
In this study, a task was employed, the Figure-8 Drawing Task, which required subjects to trace 
a figure-8 depicted on a touch tablet.  Although seemingly simple, this task offered several 
desirable characteristics. The horizontal and vertical symmetry allow for consistency when 
modifying the stimulus or instructions and analyzing the data. Moreover, it is a moderately 
complex task, thereby negating a potential lack of understanding of the task, which could inhibit 
optimal strategy selection. Such a task is also largely free of variations in prior knowledge or 
expertise (as opposed to chess, for example), yet allows for multiple strategies. 
 
Subjects participated in 2 two-hour sessions.  During the first hour, they performed the figure-8 
drawing task and during the second hour, they completed a battery of cognitive aptitude 
measures.  With this task, as shown in Figure 1, a figure was presented on a Wacom Techno 
Cintiq 21UXTM system utilizing a 43 cm x 33 cm LCD monitor.  Using a stylus, subjects 
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completed a series of experimental conditions that varied with respect to the drawing conditions 
and instructions given to the subjects.  As illustrated in Figure 2, after each trial, subjects were 
provided a feedback score, which depending on the experimental condition, involved a weighted 
composite of their speed and accuracy.   

 
 

 
 

Figure 1  Apparatus used for Figure-8 Drawing task. 
 

 
 
 

 
 

Figure 2  Feedback was presented on display monitor following each trial. 
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Six experimental conditions were tested which included:  
 

(1) practice, which emphasized familiarization with the system with there being no 
performance feedback;  

(2) baseline, which included feedback in which speed and accuracy were equally 
weighted (see Figure 3);  

(3) random size, which varied the size of the figure subjects were asked to trace (see 
Figure 3);  

(4) infinity, with figure-8 presented horizontally and described as an infinity symbol 
(see Figure 3);  

(5) memory, in which different images (e.g. five-pointed star, SNL logo) were briefly 
presented and the subject was asked to draw the image from memory;  

(6) angle trace, in which figure-8 was rotated at various angles (see Figure 3);  
(7) angle draw, in which figure-8 was presented at different angles and the subject 

was asked to reproduce the figure in an adjacent panel, as opposed to tracing the 
figure;  

(8) speed, subjects were asked to focus on speed and the feedback was adjusted 
accordingly; 

(9) accuracy, subjects were asked to focus on accuracy and the feedback was 
adjusted accordingly; 

(10) no ink, subjects used the stylus to trace the image, but the pen produced no marks, 
and thus, provided no immediate feedback; 

(11) Random interstimulus interval (ISI), in which the interval between trials was 
randomly varied; and 

(12) Trial timeout, in which after a random duration had passed, if the subject was not 
complete, the trial would timeout giving a composite score of zero. 
 

 

 
  

Figure 3 Examples of stimuli. Clockwise 
from top-left: Baseline, Random Size, Angle 

Trace, and Infinity. 
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After completing the drawing tasks, subjects were administered a battery of tests to assess 
various cognitive aptitudes.  These tests included: 
 

(1) SAT, subjects self-reported their score on the SAT reasoning test or their ACT score, with 
ACT scores being converted to an SAT equivalent score for the analysis of results;  

(2) OSPAN or Automated Operation Span Task, which assessed working memory capacity 
Unsworth, Heitz, Schrock, & Engle, 2005);  

(3) RAT or Random Associates Task, which assessed creativity (Mednick, 1963); 
(4) Mental Rotation Task, which assessed spatial reasoning (Shepard & Metzler, 1971); 
(5) Raven’s Progressive Matrices, which assessed fluid intelligence (Raven, 1958); 
(6) Figure-Comparison Task, which assessed visual search and motor speed (Salthouse & 

Mitchell, 1990); 
(7) Einstellung Water-Jug Strategy Task, which assessed strategy shifting (Tresselt & Leeds, 

1953); and  
(8) Shipley’s Vocabulary Test, which assessed verbal abilities (Shipley, 1946). 

 
With the exception of the self-reported SAT/ACT scores, each of the tests was administered by 
computer.   
 
Table 1 provides a correlation matrix showing the relationship between performance for the 
cognitive aptitude measures.  The most obvious pattern involved four measures (i.e. Vocabulary, 
RAT, OSPAN and SAT) that tended to each correlate with one another.  The Mental Rotation, 
WaterJug and Ravens tasks did not correlate with the other measures.  It was noted that there was 
insufficient variability between subjects on the WaterJug task for it to be an effective indicator. 
 
 

Table 1 Correlations for the cognitive aptitude measures. 
 

Pearson Correlation Matrix 
 VOCAB ROTATION RAT SPEEDWATERJUGOSPANRAVENS SAT 

VOCAB 1.000        

ROTATION 0.059 1.000       

RAT 0.386 -0.060 1.000      

SPEED 0.230 -0.125 0.113 1.000     

WATERJUG 0.015 -0.031 0.177 -0.183 1.000    

OSPAN 0.286 0.133 0.364 0.251 -0.099 1.000   

RAVENS 0.286 0.171 0.220 0.200 0.267 0.297 1.000  

SAT 0.568 0.117 0.304 0.275 0.062 0.458 -0.037 1.000 

  Note: yellow signifies p<0.01 and blue p<0.05. 
 
The correlations between performance on the cognitive aptitude measures and performance on 
the different experimental conditions for the line drawing task are shown in Table 2.  Of 
particular note, the SAT and Vocabulary tests both statistically correlated with most of the line 
drawing conditions.  This suggests a generalized aptitude that enabled subjects to effectively 
cope with the unusual demands placed upon them by the experimental conditions.  The OSPAN 
correlated with performance in three conditions in which it is reasonable to assert that greater 
working memory capacities could have been beneficial (i.e.  No Ink, Random Inter-Stimulus 
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Interval and Speeded), although interestingly, OSPAN did not correlate with performance for the 
memory condition.  The Figure Comparison Task (i.e. SPEED) correlated with performance in 
the Angle and Timeout conditions, which both could have benefited from perceptual-motor 
skills. 
 
 

Table 2 Correlations between cognitive aptitude measures and performance measures 
for the line drawing task. 

 
Pearson Correlation Matrix 
  VOCABROTATIONRAT SPEEDWATERJUGOSPANRAVENS SAT 

ACC 0.070 -0.126 0.0560.373 0.030 0.161 -0.282 0.136 

ANGLEDRAW0.316 0.153 0.1850.192 -0.039 0.235 0.215 0.451 

ANGLE 0.302 0.061 0.2160.254 0.116 0.244 -0.254 0.515 

SIZE 0.190 0.047 0.1600.198 0.105 0.260 -0.323 0.477 

INFINITY 0.284 0.053 0.1390.186 0.101 0.154 -0.393 0.399 

MEMORY 0.351 0.054 0.4470.206 0.007 0.198 0.077 0.426 

NO_INK 0.341 -0.029 0.1890.219 0.173 0.306 -0.091 0.476 

PRACTICE 0.120 0.031 0.1860.191 -0.211 0.187 0.071 0.014 

ISI 0.298 0.125 0.1140.178 0.005 0.365 -0.446 0.456 

TIMEOUT 0.305 0.128 0.1410.251 0.018 0.243 -0.180 0.460 

SPEEDED 0.302 0.057 0.2410.231 0.080 0.314 -0.008 0.443 

UNGUIDED 0.102 0.036 0.2100.103 -0.149 0.169 0.085 -0.021 

  Note: yellow signifies p<0.01 and blue p<0.05. 
 
In further analyzing these results, the performance in each of the experimental conditions was 
compared to performance during the initial practice sessions.  As shown in Table 3, there was a 
correlation between how well subjects performed during practice and most of the conditions.  
However, the notable exceptions were the Angle Draw and Memory conditions.  It is believed 
that these conditions placed demands upon subjects to adapt to unfamiliar task demands and 
subjects were more or less effective in doing so. 
 
Observation of subject performance revealed three salient strategies that provided the basis for 
much of the subsequent analysis (see Figure 4).  In accordance with these strategies, trials were 
categorized as either: Circles, indicating that the subject drew a circle, after which they lifted 
their pen and drew a second circle; Middle, indicating that they began in the middle and drew a 
figure-8, Extreme, indicating that they began at the top and drew a figure-8; or Other, in which 
their strategy did not correspond to any of the three predominant strategies.  Table 4 shows the 
proportion of trials for which each strategy was observed for each experimental condition. 
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Table 3 Correlation between performance during initial practice sessions and later 
performance during experimental conditions. 

 
Pearson Correlation Matrix 
  PRACTICEUNGUIDED

ACC 0.193 0.395 

ANGLEDRAW-0.013 -0.132 

ANGLE 0.286 0.255 

SIZE 0.184 0.252 

INFINITY 0.250 0.326 

MEMORY -0.033 -0.111 

NO_INK 0.208 0.259 

ISI 0.318 0.350 

TIMEOUT 0.204 0.276 

SPEEDED 0.390 0.537 

    Note: yellow signifies p<0.01 and blue p<0.05. 
 
 
 
 
 

 
 
 

Figure 4 Illustration of the three predominant strategies observed for the Figure-8 
Drawing task. 
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Table 4 Proportion of trials in which strategies were observed for each experimental 
condition. 

 
Condition  Other Circles Middle Extreme  
Practice  0.34  0.24  0.18  0.24  
Baseline  0.02  0.26  0.54  0.17  
Accuracy  0.00  0.30  0.47  0.23  
Angle Draw  0.05  0.58  0.20  0.17  
Angle Trace  0.02  0.22  0.70  0.07  
Random Size  0.01  0.20  0.70  0.09  
Infinity  0.01  0.15  0.75  0.09  
Memory  
No Ink  

0.17  
0.02  

0.33  
0.19  

0.28  
0.71  

0.21  
0.08  

Random ISI  0.02  0.17  0.61  0.20  
Trial Timeout  0.01  0.21  0.57  0.21  
Speed  0.02  0.23  0.50  0.25  
Total  0.06 0.26 0.52 0.17 

 
 
Variation in strategy selection for the present study was calculated using Shannon’s Entropy 
(Shannon, 1948).  Calculations showed that entropy strongly and significantly (p < .05) 
correlated with recurrence (r = -.989), repetitiveness of strategy use across trials with higher 
recurrence indicating greater use of a similar set of strategies, and determinism (r = -.862), 
repetitive patterns in strategy use with high determinism indicating more repetitive patterns.   
 
For each experimental condition, trials were split into blocks representing the initial series of 
trials and the final series of trials.  For example, for a condition with 50 trials, entropy for the 
initial trials was computed using trials 1-15 and entropy for the final trials was computed using 
trials 25-50.  A 2 × 10 (phase [initial|final] × condition) repeated measures analysis of variance 
revealed a significant main effect for condition, F(9, 666) = 80.21, Mse = .092, p < .001, partial 
η2 = .520. Bonferroni posthoc tests indicated that there was significantly more entropy in the 
memory condition than the others (p < .05). This was expected, as both the stimuli and task were 
far more complex than any other condition. Also, the entropy associated with the Angle Draw 
condition was significantly greater than the Accuracy, Infinity, No Ink, Random ISI, Trial 
Timeout, and Speed conditions; there were no differences for the other conditions.  These 
findings indicate that for the Memory and Angle Draw conditions, subjects showed a greater 
tendency to explore alternative strategies for coping with the demands associated with these 
tasks. 
 
There was also a significant main effect for phase, F(1, 74) = 68.67, Mse = .045, p < .001, partial 
η2 = .837. As expected, initial entropy was significantly higher than final entropy, MINITIAL = 
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.579, (SE = .017); MFINAL = .366 (SE = .020). With the exception of the memory condition, 
final entropy was always lower than initial entropy. Table 5 displays the initial and final entropy 
scores for each condition. 
 
 

Table 5 Initial versus final entropy. 
 

Condition  Initial  
M  

SD  Final  
M  

SD  Effect 
size d  

Accuracy  0.50  0.25  0.20  0.29  1.10  
Angle Draw  0.67  0.33  0.42  0.35  0.74  
Angle Trace  0.53  0.33  0.32  0.32  0.64  
Random Size  0.50  0.30  0.33  0.34  0.54  
Infinity  0.51  0.29  0.20  0.33  0.99  
Memory  1.09  0.17  1.08  0.18  —  
No Ink  0.50  0.28  0.30  0.35  0.62  
Random ISI  0.47  0.29  0.26  0.32  0.71  
Trial Timeout  0.52  0.29  0.27  0.23  0.99  
Speed  0.50  0.26  0.30  0.33  0.71  

 
 
 
In general, there was more uncertainty in strategy selection during the initial trials of each 
condition and less uncertainty during the final trials. Additionally, entropy during the final trials 
was not zero, indicating that at least some participants were still switching strategies at the end of 
the block of tests. Finally, and more importantly, with the exception of the Memory and Angle 
Draw conditions, entropy was largely consistent across conditions. This indicates that it is not the 
task constraints, but individual differences, that best explain patterns in strategy use. 
 
As shown in Table 6, cognitive aptitude measures were correlated with entropy for initial and 
final trials for each experimental condition.   Verbal ability (Shipley’s Vocabulary test and SAT), 
working memory span (OSPAN), and creativity (RAT) correlated with entropy. The negative 
correlations between Vocabulary, OSPAN, and SAT indicate that participants with higher verbal 
ability and executive function demonstrated less variability in strategy selection. Some 
interesting patterns emerge when one considers initial versus final entropy. Participants with 
high verbal ability (Vocabulary and SAT) were more likely to settle on a preferred strategy 
(negative correlation with high entropy). Participants with high working memory span (OSPAN) 
consistently show lower entropy (negative correlation with both initial and final entropy). 
There also seems to be a different pattern in creativity and intelligence. The RAT shows a 
positive correlation with both overall and initial entropy, suggesting a relationship between 
creativity and initial exploration.  
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Table 6 Correlation between cognitive aptitude measures and entropy. 
 

ID Measure  Overall 
Entropy  

Initial 
Entropy  

Final 
Entropy  

Vocabulary  -.256**  -.143  -.433***  
SAT  -.234*  -.120  -.283**  
Ospan  -.419*** -.289*  -.415***  
RAT  .205*  .274**  .189  
Rotation  -.073  -.041  -.080  
Speed  -.093  -.031  -.178  
Water Jug  .069  .152  .074  
Ravens  .008  .055  -.111  

           Note *** p < .01, ** p < .05, * p < .10 
 
In summary, differences in creativity, vocabulary, and memory span predicted the variability in 
strategy use for individual test subjects. Creative participants were more likely to shift strategies 
and explore different strategies, whereas participants with high verbal ability and memory span 
were more likely to persevere with their selected strategies. 
 
 
3.  RUMRUNNER MODEL OF STRATEGY SHIFTING 
 
Based on the experimental results reported in the previous section, steps were undertaken to 
develop a computational model that predicts the likelihood of an individual subject shifting 
strategies based on task and individual factors.  The resulting model combined a number of 
factors which are summarized in the following sections, and described in detail in Appendix 1. 
 
Task Shift 
Task Shift refers to any change in the task that might prompt the adoption of a different strategy. 
For example, if a football coach loses a star running back due to injury, the coach may adapt by 
calling more passing plays and fewer running plays. This is probably the most straight-forward 
aspect of the model as it is clear that when people are faced with new challenges, they are likely 
to alter their behavior to compensate for next-task demands.  For example, when a task becomes 
more difficult, people are likely to change to a more optimal strategy (Reder, 1987). In 
RumRunner, the probability of strategy shift increases in proportion to task shift.  
 
Already Doing 
Already Doing nullifies the effect of Task Shift in cases where the current strategy is suitable for 
the task even after the task changes. For example, the coach whose running back is injured might 
already have been favoring passing plays because the opponents are weaker at defending a pass. 
Furthermore, people tend to use a particular strategy that has proven effective in the past (Reder 
& Schunn, 1999).  Hence, if a task change biases their previous strategy, it would make sense for 
them to continue doing it. 
 



19 
 

Time on Task 
The longer a person has been doing a particular task, the greater the probability of switching to a 
new strategy.  Although there is some evidence that under certain circumstances, people will 
continue with a strategy even after it has become ineffective (e.g. Broder & Schiffer 2006), it is 
also possible that as familiarity with the task increases, the person may come to a deeper 
understanding of the task itself, its limits, possibilities, and operation, which allows for the 
realization that other strategies can be used.  RumRunner can accommodate either hypothesis 
because the coefficient on each model factor may be positive or negative.  Time on Task is a 
task-based factor because at each point in the task, it affects everyone equally and remains 
agnostic to a person’s individual experiences. Here, Time on Task is defined as the number of 
trials or events relative to the current trial. This is operationalized in RumRunner as a slow-
moving power function that uses time on task as its input.  
 
Recently Shifted 
If there has recently been a strategy switch, then it is less likely that a person will switch 
strategies again in the near future. In other words, individuals give each new strategy a trial 
period to assess its effectiveness. As such, a person will persist with the new strategy, giving it a 
chance to improve performance. This is a well-known principle that extends back to research on 
mental set in problem solving in which a person will persist, even when a strategy has become 
suboptimal (e.g., Luchins, 1942). This principle was implemented in RumRunner as a fast-
moving power function with a very strong influence immediately after a strategy shift, which 
quickly decreases over time.  This is in contrast to the Time on Task Factor which has the 
opposite effect of increasing the probability of strategy shift over time, but over a longer 
timeframe.  The net effect is that each strategy is unlikely to be used for either a very short or 
very long period of time. 
 
Number of Strategy Shifts 
It was observed that the more strategy shifts that had occurred, the less likely it was that a person 
would shift in the future. This may be viewed as a frustration factor because the more often a 
person has switched strategies in the context of a given task, the more likely they are to be 
frustrated with their performance, and hence the less likely they are to try a different strategy in 
the future. We are unaware of any research directly bearing on this idea, but we are proposing it 
here as a plausible process that can be operating during a given task. This is also implemented as 
a power function of the number of strategies already tried, with the earlier ones having a greater 
influence than the later ones. That is, while there is an influence of the number of strategies tried 
for a task, the fewer strategies that have been tried, the larger the influence that a new strategy 
will have.  However, as the number of different strategy attempts increases, there is a resulting 
decrease in the cumulative influence of each additional new strategy attributable to an individual 
becoming increasingly frustrated.  
 
Planning/Preparation 
When switching strategies within a task, Luwel (2009) reported a switch cost in the form of 
longer response times; accuracy, however, was not affected.  Thus, increased delay before 
strategy execution implies impending strategy shift. This is the only factor to use information 
from the current trial (as opposed to previous trials). In a discrete task, this is operationalized as 
the amount of planning time prior to producing a behavioral response. In a continuous task, this 
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would be operationalized as a decrease in active performance, consistent with the idea that the 
person has momentarily disengaged from the task to plan and prepare a new strategy.  This factor 
is a power function of the extra planning time spent on the current trial, relative to the 
individual’s previous trials.  This power function increases as planning time becomes further 
removed from the maximum of the current range of trial times. 
 
Performance Dip 
A decrease in performance may motivate a person to shift to a new way of completing the task 
(Brand, 2008; Lovett & Anderson, 1996; Reder, 1987; Reder & Schunn, 1999). That is, if a 
person notices that their performance is declining, they will be motivated to change their strategy 
in order to improve, with the greater the drop, the greater the motivation to change strategies. 
The performance dip factor is operationalized in the model as a power function, again based on 
the extent to which the person’s performance falls below the minimum level of performance 
attained in the recent past. The greater the deviation from that minimum, the greater the 
influence will be. 
 
Bad Shift 
The increased likelihood of a strategy shift following a performance dip is even more likely if the 
dip occurs as a consequence of a strategy shift. We call this factor Bad Shift because the change 
to a new strategy was unsuccessful. If a new strategy decreases performance, the person will be 
motivated to revert to the previous one or try yet another. In RumRunner, this factor doubles the 
probability of an impending strategy shift because it is the result of both a performance dip and a 
strategy change. 
 
Spasms 
In other cases, decreased performance may simply be the result of inattention or random 
variability.  These phenomena are referred to collectively in RumRunner as Spasms.  In such 
cases, people are less likely to switch strategies (as phenomenologically, it will be clear that the 
performance dip is not due to an ineffective strategy, but rather a lack of attention and effort) and 
simply reassert their current strategy. We operationalize the presence of a spasm in performance 
by dividing in half the influence of an increase in the probability of switching strategies that was 
derived by the performance dip. 
 
No Improvement 
Related to the idea that strategy shifts can be caused by dips in performance, it is also possible 
that a strategy shift can occur if a person has been persisting with a strategy for a period of time 
or a number of trials without any improvement. When this happens, a plateau has been reached 
and, under those circumstances, a person may be motivated to try a new strategy to boost 
performance.  
 
Flexibility 
Finally, it is well-known that there are individual differences in strategy selection (e.g., Miller et 
al., 2002; Rakow et al., 2010; Schaeken, De Vooght, Vandierendonck, & d'Ydewalle, 2000), and 
so it seems likely that there will be individual differences in the likelihood that a given person 
will be predisposed to strategy switching. Some people have a more liberal bias, and are more 
willing to experiment. Alternatively, others are more conservative and are more willing to persist 
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with a strategy, switching only when other factors strongly push them to do so. These biases 
were illustrated in the previous findings regarding the relationships between certain cognitive 
aptitudes and the propensity to explore alternative strategies.  This is operationalized in 
RumRunner by providing a running average of the difference between the predicted probability 
that a person will switch strategies, and whether a strategy shift actually occurred. Note that 
while the Number of Strategies factor of the model varies with how long a person has been on 
task, the Flexibility factor is a more stable continuous influence on strategy switching.  
 
3.1  Validation of RumRunner Model 
 
To assess how well the Rum Runner model predicted strategy shifts, it was fit to three data sets, 
two based on the Figure-8 Drawing Task, and a third from a higher-level decision task.  
 
Figure-8 Drawing Task 
As described previously, subjects were given a series of figures to trace (or, in some conditions, 
draw elsewhere on the screen) using a drawing tablet.  The standard figure was two stacked 
circles (resembling a figure 8), with different variations presented in the two experiments. In one 
experiment (Curve Drawing 1), the variables were the angle of rotation, the size of the figure, 
whether the figure was traced or drawn separately, whether a person could see what they were 
drawing, a horizontal eight that was relabeled as an infinity sign, etc. From this data set, three 
drawing strategies were identified. These were (a) circles, in which a person drew two circles 
using two strokes, (b) middle, in which a person started at the intersection of the circles and drew 
it in a single stroke from there, and (c) extreme, in which a person started anywhere except the 
intersection of the circles and used a single stroke from there. Together, these strategies 
accounted for over 98% of all trials. 
 
In a second experiment (Curve Drawing 2), the variables were the angle of rotation, whether the 
figure was drawn or traced, and three conditions in which the figure-8 was slowly altered over 
the course of 12 trials to encourage one of three strategies (the morph conditions; see Figure 5). 
To encourage the circles strategy, the two circles that comprised the figure-8 were slowly 
separated. To encourage the extreme strategy, the figure was altered so that it was less 
symmetrical and appeared hand-drawn. Finally, to encourage the middle strategy, the figure was 
altered such that the lower left part of the figure was disconnected from the intersection and 
slowly moved away. After data collection, it was apparent that this actually did not encourage 
people to use a strategy in which they started at the middle crossing point. Instead, people were 
beginning with the hook end. This was relabeled as the hook strategy. Finally, there was a jumble 
condition in which stimuli from the various prior conditions were randomly presented. 
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Figure 5 Alterations to figure-8 used to encourage subjects to adopt alternate strategies. 
 
 
There were 74 participants in the Curve Drawing 1 and 83 in Curve Drawing 2 data set. 
Participants were undergraduates recruited from the University of Notre Dame and the 
University of Memphis. The Curve Drawing 1 data set yielded 31,529 trials in 12 conditions, 
while there were 14,608 trials across eight conditions in the Curve Drawing 2 data set. The base 
probabilities of trial-level strategy switch were 0.240 and 0.244 in data sets 1 and 2, respectively. 
 
An important difference between the experiments was that the stimulus was largely stable in 
Curve Drawing 1 (with the exception of minor changes in the angle of the target figure to 
eliminate practice effects), but greatly varied in Curve Drawing 2 (i.e., the morph and jumble 
conditions). Consequently, the RumRunner model predicts that there should be a greater 
influence of experience-based factors in Curve Drawing 1, as compared to Curve Drawing 2. 
 
Binary Choice Task 
For this task, subjects were asked to make a series of choices. On each trial, they were asked to 
select their daily choice for their home temperature setting, how they would listen to music, how 
they would watch a movie, and which snack they would eat. The choices for the temperature 
option were 62, 64, 66, 68, 70, 72, 74, 76, 78, and 80 degrees. The choices for the music option 
were radio, own CD, buy CD, own iPod, download, and live music. The choices for the movie 
option were TV, Redbox, Blockbuster, download, dollar theater, and theater. Finally, the choices 
for snack were apple, banana, cookie, chips, and Cold Stone (an ice cream parlor).  
 
At the beginning of the study, subjects were asked to select their ideal preference for each of 
these three choices. Then, for the primary task, on each trial subjects were to make choices for 
each of these options to maximize their score. The score was derived using three basic 
components. These were (a) the most economical choice, (b) a hedonistic ideal, and (c) the time 
to respond. The most economical choices for each of the options were temperature: 62, music: 
radio, movie: TV, and snack: chips. To calculate the hedonistic ideal we took the difference 
between their quality of life scores on the present trial and the scores from their initial 
preferences; that is there was no preset standard of preference. The default options presented by 
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the task were temperature: 72, music: live music, movie: theater, and snack: Cold Stone. Finally, 
the performance score was influenced by how long it took a person to complete a trial, with the 
score decreasing with longer response times.  
 
Participants were 36 individuals who volunteered for monetary compensation on Amazon 
Mechanical Turk™ (AMT). AMT allows participants to receive small rewards for completing 
Human Intelligence Tasks (HITs) online. Research has suggested that AMT is a reliable and 
valid source of experimental data (Paolacci, Chandler, & Ipeirotis, 2010)  All participants who 
completed the study were paid $1.75. The Making Choices data set contained 1404 valid 
observations with a switch rate of 0.529. 
 
For this task, we identified five strategies. These were (a) no change from what was done on the 
previous trial, (b) change single in which subjects changed the value for one choice compared to 
the previous trial, (c) change some in which subjects changed the values for two or three of the 
choices compared to the previous trial, (d) change all of the values compared to the previous 
trial, and (e) speed in which subjects completed all of the choices at a speed of 8 seconds or less. 

 
RumRunner Model Fitting Procedure 
A logistic regression model was used to predict the probability of strategy switching (1 = switch, 
0 = no switch) at the trial level from the 11 predictors of the RumRunner model.  Due to the 
nested structure of our data where trials are nested within conditions and conditions are nested 
within subjects, a mixed-effects logistic modeling approach was adopted (Pinheiro & Bates, 
2000). Mixed-effects models include a combination of fixed and random effects. The random 
effects for the present analyses were subject, condition, trial number, and number of active 
components. Subject was a categorical variable with 74 levels in Curve Drawing 1, 83 levels in 
Curve Drawing 2, and 36 levels in Making Choices. Condition was also a categorical variable 
with 12 and 8 levels in Curve Drawing 1 and 2, respectively. Condition was not included in 
Making Choices because there was only one condition in that Study. Trial number and the 
number of active components were integers. The number of components was included as a 
random effect because all 11 components were not applicable in every trial. For example, the 
Bad Shift component is not applicable when a person does not switch strategies on the prior trial. 
 
The fixed effects were the 11 model factors.  Spasm was excluded because transitory spasms 
were very rare in the data sets. All three task-based factors were included as fixed effects in the 
Curve Drawing 2 model, but the Already Doing factor was excluded from the Curve Drawing 1 
and Making Choices models, because we were not explicitly biasing any particular strategy in 
those studies. The Task Bias factor was also excluded from the Making Choices model because 
the task did not systematically change in that study. 
 
Five models were estimated for each data set, yielding 15 models in all. These included: (a) a 
task-based model with only task-related predictors (i.e. Task Shift, Already Doing and Time on 
task), (b) an experience-based model with only experience-related predictors (Recently Shifted, 
Number Strategy Shifts, Planning/Preparation, Performance Dip, Bad Shift, Spasm, No 
Improvement and Flexibility), (c) a task-experience model with both task and experience-related 
predictors, (d) an intercept-only model with a fixed intercept, and the random factors, but none of 
the task or experience-related predictors, and (e) a random model, which was identical to the 
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task-experience model, but with a randomly shuffled surrogate of the dependent variable 
(strategy switch); this model was included as a control  
 
A tolerance analysis was performed to detect potential multicollinearities prior to constructing 
the logistic regression models. With the exception of Number of Strategy Shifts, Time On Task, 
and Flexibility (with tolerances in the 0.10 to 0 .27), tolerance values of the remaining eight 
components exceeded or were very close to the recommended value of 0.4 (Allison, 1999). This 
indicates that multicollinearity was not a major concern with the predictor set. 
 
RumRunner Model Fitting Results 
Receiver operating characteristic (ROC) curves obtained from the 15 models are shown in Figure 
6. For Curve Drawing 1, the random model yielded the poorest fit, while the experience-based 
and the task-experience models yielded the best fits. Fits obtained by the task-based and 
intercept-only models were between these two extremes. Thus, the task-based predictors were 
minimally relevant, and it is the experience-derived factors that best predicted strategy switching 
in the Curve Drawing 1 data set. 
 
The model-fitting procedure yielded a somewhat similar outcome for Curve Drawing 2. As 
expected, the ROC curves indicate that the random model yielded performance that was lower 
than that expected by chance (chance = .5 for ROC curves). Similar to Curve Drawing 1, the 
experience-based and task-experience models yielded the best performance, while performance 
was lower for the task-based and intercept-only models. One difference in Curve Drawing 2 was 
that the task-based model outperformed the intercept-only model. Although the difference in 
AOC values was small, a likelihood-ratio test indicated that the difference in log likelihoods 
associated with these models was significant χ2(2) = 286.8, p < .0001. Another difference was 
that the task-experience model yielded a better fit than the experience-based model in Curve 
Drawing 2, χ 2(3) = 676.8, p < .0001.  
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Figure 6  Receiver Operator Curves for RumRunner modeling fitting. 

 
 
 
The pattern of results for the Making Choices data set was very similar to the Curve Drawing 1 
data set.  Specifically, the random model yielded the poorest fit, the experience-based and task-
experience models had the best fits, and fits associated with the task-based and null models were 
in between these two extremes. Taken together, the results from all three data sets indicate that 
the experience-derived factors were the most diagnostic predictors of strategy switching. 
Although the task-based predictors yielded negligible effects in Curve Drawing 1 and Making 
Choices, they had some impact in Curve Drawing 2, where the task was more explicitly and 
systematically manipulated.  
 
RumRunner Classification Accuracy 
The subsequent discussion focuses on the task-experience models for all data sets, as these 
models encompass all the predictors and outperformed the random and intercept-only models. 
Classification tables were obtained by comparing the predictions generated by these models to 
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observed strategy shifts. An analysis of the ROC curves indicated that a probability threshold of 
0.6 was optimal in separating trials where a strategy shift occurred (probability > 0.6) from trials 
where there was no shift in strategies (probability <= 0.6). The 0.6 cutoff is optimal because it 
maximizes the true-positive rate while minimizing the false-positive rate.  
 
A number of conclusions can be drawn from the classification tables (See Table 7). First, the 
models accurately predicted strategy switches in 66% of the cases in both curve drawing 
experiments; this exceeds the 24% base-rate of strategy shifting. Accuracy of predicting strategy 
switches was substantially higher (91.1%) for the Making Choices study (base rate = 53%). The 
models also accurately predict when a participant uses the same strategy with an accuracy rate of 
90% in both curve drawing experiments. Accuracy of predicting no strategy switch was 78% for 
Making Choices. Taken together, classification accuracy (computed from the diagonals of the 
classification tables) was 84.3%, 84.1%, and 84.9% for Curve Drawing 1, 2, and Making 
Choices data sets, respectively.  
 
 

Table 7 Classification tables for task-experience models. 
 Curve Drawing 1  Curve Drawing 2  Making Choices 
  Pred.   Pred.   Pred. 
 Obs. 0 1  Obs. 0 1  Obs. 0 1 

N 0 21600 2368  0 9943 1100  0 515 146 
1 2573 4988  1 1221 2344  1 66 677 

            
% 0 90.1 9.90  0 90.0 10.0  0 77.9 22.1
 1 34.0 66.0  1 34.2 65.8  1 8.88 91.1
 
 
Although these results suggest that Rum Runner is quite effective in predicting strategy 
switching, one problem with the analyses was that the models were constructed and validated on 
the entire data set. This limits claims of generalizability of the models to new trials from new 
individuals. We addressed this concern by assessing the classification accuracy of the three task-
experience models with a between-subjects split-half evaluation method. The analyses proceeded 
as follows for each data set. Half of the participants were randomly selected and their data points 
were assigned to the training set. Data from the remaining participants were assigned to the test 
set. A logistic regression model was constructed from the training data and was used to generate 
predictions on the testing data. Classification accuracy associated with this split-half evaluation 
procedure was 82.6% for both curve drawing experiments. This is comparable to the 84% 
accuracy obtained from the training set alone.  
 
There was a reduction in split-half classification accuracy for the Making Choices data. Here, 
split-half classification accuracy was 74.4%, which is somewhat lower than the 84.9% accuracy 
obtained from the entire training set. We suspect that this reduction in accuracy is a consequence 
of the smaller number of data points in this data set (approximately 1,500 data points in Making 
Choices compared to the approximately 14,500 and 31,500 data point in Curve Drawing 1 and 2, 
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respectively). Hence, split-subjects accuracy is expected to increase with more subjects and data 
points. Despite this qualification, it is important to note that this 74.4% split-half accuracy is 
greater than what could be expected by chance (52.0% base rate). Taken together, these results 
indicate that RumRunner is indeed a moderately accurate model of strategy switching that is 
robust across differences in the three studies and generalizes to new individuals. 
 
RumRunner Model Parameters 
Table 8 lists the fixed-effects estimates of the task-experience models for all three data sets. The 
RumRunner components were standardized prior to computing these models in order to afford 
comparisons across parameters that vary in scale. Parameters with B weights greater than 0.5 are 
emphasized in bold. We note that Number of Strategy Shifts, Flexibility, and Time on Task are 
influential positive predictors of strategy switching in all three data sets. The direction of the 
latter two components is consistent with our predictions. Specifically, people with an intrinsic 
bias to switch strategies (Flexibility) are more likely to switch and the probability of switching to 
a new strategy increases as a function of how long a person is engaged in the task (Time on 
Task). In contrast, we predicted that a person will be less likely to switch in the future if 
considerable strategy switching is currently occurring. This predictions was not supported 
because No. Strategy Shifts was a positive instead of a negative predictor. 
 
 

Table 8 Fixed-effects parameter estimates for task-experience models. 
 

 Curve 

Drawing 1

Curve  

Drawing 2 

 Making 

Choices

Fixed Effect B SE B SE  B SE

Intercept -1.95 .399 -1.62 .294  .600 .476
   
Experience-based   

Z Recently Shifted -.109 .017 -.080 .027  .603 .104
Z No. Strategy Shifts .932 .046 1.63 .072  6.12 .372
Z Planning/Preparation .194 .019 .197 .026  ns.066 .134
Z Performance Dip ns.044 .030 ns.042 .040  ns.041 .149
Z Bad Shift .209 .024 .134 .032  ns -.033 .154
Z No Improvement ns.011 .024 .122 .031  ns.106 .102
Z Flexibility 2.23 .036 1.91 .043  6.84 .352

   
Task-based   

Z Task Biases .515 .066 .645 .042  - -
Z Already Doing - - 1.00 .049  - -
Z Time on Task .680 .223 1.70 .102  1.78 .305

Notes. All parameters significant at p < .05 unless noted by ns. Fixed-effects were standardized 
prior to constructing logistic models 
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In contrast to these three components that were highly predictive in all three data sets, the 
predictive power of three other components was tied to one or two data sets. These include 
Recently Shifted, which was dominant in the Making Choices data set, and Task Biases and 
Already Doing which were predictive when task constraints changed as was the case in the 
Curve Drawing data sets. Our prediction that people will be less likely to shift strategies when 
they have recently adopted a new strategy was also not confirmed by the fact that Recently 
Shifted was a positive instead of negative predictor of strategy switching. In contrast, our 
prediction that task biases would induce strategy switching was supported because Task Bias 
positively predicted switching. 
 
In addition to the aforementioned six components that were consistently or contextually 
predictive of strategy switching, four components yielded either non-significant or significant but 
small effects across all three data sets. These include Planning/Preparation, Performance Dip, 
Bad Shift, and No Improvement. It is possible that these components might play a more 
substantial role in alternate data sets, a possibility that warrants testing the model on additional 
data sets. 
 
Finally, it is important to note that our categorization of the components as consistently, 
contextually, and minimally predictive does not mean to imply that one or two predictors are 
driving the overall predictions. In contrast, the models are quite robust to small parameterization 
changes. This was confirmed with a simple sensitivity analysis where model fits were assessed 
after components were individually removed. With the exception of flexibility in the Making 
Choices data set, individual component removal had negligible impacts on the model (AOC 
values always exceeded .8), so there is some confidence that a single component does not bias 
model performance. 
 
 
4. STRATEGY SWITCHING IN MULTI-TASKING 
 
Although considerable research has focused on the individual differences that predict 
multitasking ability, relatively little research has been devoted to multitasking adaptability. We 
operationalize multitasking ability as some metric of performance when the difficulty level of the 
individual tasks are at some baseline. In contrast, adaptability refers to a person’s capacity to 
adapt to changing task constraints. That is, how is performance impacted if the difficulty of one 
or more of the tasks increases or if a new task is introduced. Therefore, ability and adaptability, 
although related, are not necessarily the same construct. 
 
Branscome and Grynovicki (2007), assessed adaptability using SynWork (Elsmore, 1994), a 
multitasking environment with four tasks (memory, math, auditory, and monitoring). They also 
added a military target-identification task that involved identifying friendly vs. enemy targets. 
The three (counterbalanced) conditions in their study consisted of: all four SynWork tasks, three 
SynWork tasks plus the target-identification task, and all four SynWork tasks plus the target-
identification task. They found that the third (most difficult) condition was associated with a 
significant drop in performance compared to the other two conditions.  Additionally, Wang, 
Proctor, and Pick (2007) found that when certain SynWork tasks were biased via a payout 
structure (i.e., more points were awarded for some tasks), some people were able to strategically 
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adapt to the new task constraints. This suggests that some individuals show a greater propensity 
for multitasking adaptability than others. Identifying the individual differences associated with 
multitasking adaptability is the primary goal of this paper. 
 
Another goal of this study was to identify groups of individuals on the basis of their adaptability 
profiles. A framework to conceptualize adaptivity may be useful in order to distinguish between 
changes in performance (from a baseline) under increased task difficulty (Target task) versus 
constant task difficulty (Off-Target task). Such a framework is presented in Figure 7. The 
vertical axis represents performance on a difficult task(s) relative to a given baseline, whereas 
the horizontal axis represents performance on a task(s) with baseline difficulty. The different 
regions in the figure represent various adaptability profiles. It is important to note that “Target” 
and “Off-Target” do not necessarily refer to the importance of the task, but only to the difficulty 
level relative to a baseline. For example, if a person is driving while talking on the phone and 
they receive another call, the difficulty of the phone task has increased so it is the Target task, 
and driving is the Off-Target task (even though it remains the primary task in terms of 
importance). 
 

 
 

Figure 7  Framework to characterize multi-tasking adaptability. 
 
 
Five major adaptability profiles are noted in Figure 7. Individuals whose performance is not 
compromised when additional difficulty in a task(s) is encountered are consistent performers 
(circle around the origin in Figure 1). The top-right quadrant encompasses the individuals whose 
performance increases in both the Target and Off-Target tasks (good adapters). Conversely, the 
bottom-left quadrant represents individuals who show a decline in performance in both Target 
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and Off-Target tasks (poor adapters).  There might also be situations when an individual 
sacrifices performance in one task(s) for the sake of another. When encountering additional 
difficulty on a task(s), some individuals may choose to tackle the difficult task(s) at the expense 
of the other task(s). These individuals are referred to as attackers (top-left quadrant). 
Alternatively, others may neglect the difficult task(s) and focus on the other tasks which are at 
baseline difficulty. These are the avoiders (bottom-right quadrant). 
 
There are two important points to note about the proposed adaptability framework. First, the 
distribution of individuals to adaptability profiles need not be uniform. For example, there may 
be no avoiders for a given multitasking context, whereas all individuals might be classified as 
avoiders for a different context. In the latter case, the differences among the individuals may still 
be useful, because all avoiders are not equivalent, and the relative differences among avoiders 
can be quite informative. 
 
Second, the five adaptability profiles listed above are sensitive to differences in multitasking 
contexts. That is, a poor adapter in context A is not necessarily a poor adapter in context B. Quite 
different from a rigid dispositional characterization of an individual’s ability to adapt, the 
primary purpose of the framework is to organize the relationship between individuals or groups 
within a given multitasking context.  
 
The present study addressed the relationship between cognitive faculties and multitasking ability 
and adaptability in a pilot simulation task. We collected scores on standard cognitive measures 
and correlated these with performance under baseline difficulty (ability) and the individual 
change in performance when task(s) difficulty increased (adaptability). We also grouped 
individuals based on multitasking adaptability and investigated whether these groups could be 
differentiated on the basis of the cognitive measures associated with ability and adaptability.  
 
 
4.1  Methodology for Multi-Tasking Study 
 
Subjects consisted of 32 participants either enrolled in a Midwestern university or volunteers of 
various educational backgrounds from a Southern city in the United States. At the start of the 
experiment, participants completed a computer-administered battery of cognitive aptitude 
measures assessing scholastic aptitude, working memory, creativity, and spatial ability.  Specific 
measures included: SAT or ACT score, OSPAN, RAT, and Mental Rotation Task. 
 
Multi-tasking performance was assessed using the NASA Multi-Attribute Test Battery or MAT-
B (Comstock & Arnegard, 1992). The MAT-B is a computerized flight simulator that requires 
users to simultaneously attend to four individual tasks:  System Monitoring, Communications, 
Resource Management, and Tracking. Each individual task had four difficulty levels: automatic 
(0), low (1), medium (2), and high (3). The MATB interface is shown in Figure 8 and the 
following sections describe individual components of the task. Performance was calculated as a 
product of the scores on the four individual tasks (the composite score) and was displayed to 
participants via a performance gauge at the bottom of the screen. Therefore, completely 
neglecting any one task would yield a composite score of zero. Performance scores can range 
from 0 to 100.  
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Figure 8  The MATB interface, with the composite score displayed at the bottom. 
 
 
 
System Monitoring  
In the top-left quadrant of the screen, participants were asked to respond to feedback from lights 
and gauges. There were two lights at the top of the quadrant: a green light and a red light. 
Participants were instructed to press the F5 key if the green light turned off and to press the F6 
key if the red light came on. Doing so turned the green light on and turned the red light off, 
respectively. 
 
Beneath the two lights were four gauges, each associated with a corresponding key on the 
keyboard. Each gauge also had a yellow pointer that typically hovered around the center line. 
Participants were asked to press the corresponding key (F1 to F4) if any gauge’s pointer 
exceeded one unit in either direction of the gauge’s center line. When a correct action for a gauge 
was performed, participants would receive feedback via a yellow line that would briefly appear 
on the respective gauge. 
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Communications 
In the bottom-left quadrant, participants were given an identifying call sign (NGT504) and asked 
to follow audio instructions directed to their call sign while ignoring instructions for other call 
signs. Each message began with a six-character call sign (which was repeated), followed by a 
command to change one of four ports (two navigation and two communication) to a particular 
frequency, represented by a four-digit number.  An example command would be, “NGT504, 
NGT504, change navigation two to one-one-zero-point-five.” Participants selected between the 
four navigation and communication ports with the up and down arrow keys, and modified the 
frequency using the left and right arrow keys. 
 
Resource Management  
In the bottom-right quadrant, participants were asked to manage the fuel levels (represented in 
green) of two tanks, A and B. The fuel levels in tanks A and B decreased constantly as the fuel 
was used, but participants were instructed to keep the fuel level of both tanks between the tick 
marks indicated on each tank (5/8ths full). This was done by turning various pumps on or off to 
transfer fuel from another tank. Tanks C and D had a finite supply, whereas the other two tanks 
had an unlimited capacity. To turn a pump on or off, participants pressed the number key 
corresponding to the pump flow indicators on the screen (one through eight). At various points, 
one or more pumps would ‘fail’ and become unusable for a set period of time. 
 
Tracking  
In the top-right quadrant, participants were asked to keep a moving reticle (crosshairs) as close as 
possible to the center crosshairs using a standard joystick. The reticle would drift and randomly 
change directions with varying force. 
 
Scheduling and Pump Status.  
The Scheduling and Pump Status zones on the far right provide supplementary information for 
the Communications and Resource Management tasks, respectively. They were not necessary for 
completing any of the tasks, so they will not be discussed here. 
 
 
4.2  MAT-B Difficulty Levels 
 
Participants first completed the cognitive aptitude measures on one computer for approximately 
one hour. After a short break, they completed the MATB task on a separate computer for another 
hour. Participants were seated and used a keyboard and mouse (cognitive aptitude measures) or 
joystick (MATB), and used speakers or headphones for audio output. The MATB had five 
separate conditions: Practice, Baseline, Single Difficulty, Paired Difficulty, and Difficulty Ramp-
Up. Participants were not given instructions regarding priority of the individual tasks nor were 
they told how the composite score was calculated.  
 
Practice  
The first condition consisted of four separate practice sessions wherein the participants received 
instructions from the experimenter and then completed each task individually for a total of nine 
minutes. The composite score was displayed at the bottom of the screen in all practice 
conditions. Subsequent conditions had participants attend to all four tasks simultaneously, 
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Baseline (BL). The Baseline condition had all four tasks set at the low difficulty level for five 
minutes. Participants were not given feedback on their scores to encourage them to concentrate 
on completing all four tasks simultaneously. Subsequent conditions provided feedback on the 
composite score. 
 
Single Difficulty (SD)  
The Single Difficulty condition began with a three-minute warm-up during which all tasks were 
at baseline difficulty, after which the difficulty level of one task was set to hard (Target task) for 
one minute, while the others were at easy difficulty (Off-Target). All difficulties were then set to 
easy for another minute. This was done for all four tasks in succession, then the process was 
repeated, for a total of 16 minutes. 
 
Paired Difficulty (PD)  
The Paired Difficulty condition raised the difficulty of both the System Monitoring and 
Communications tasks to hard for two minutes (Target), while the Resource Management and 
Tracking tasks remained at easy difficulty (Off-Target). System Monitoring and 
Communications were selected as Target tasks in this condition because both provide discrete 
events which immediately impact participants’ scores, thereby forcing them to constantly attend 
to these tasks.  
 
Difficulty Ramp-Up (Ramp-Up, RU) 
For the final condition, after a one-minute warm-up, the difficulty of all four tasks were raised to 
medium for one minute (RU2), and to the hardest difficulty for one additional minute (RU3). 
 
 
4.3  Multi-Tasking Ability 
 
Table 9 displays the mean scores and standard deviations for each task in each condition, as well 
as an average across tasks. There did not appear to be major differences in the average scores 
across conditions, indicating that participants were able to adapt to increased difficulty. 
 
In order to assess which of the cognitive aptitude measures predicted performance on the MATB, 
we correlated the scores of each measure with average performance in each condition (see Table 
10).  Consistent with previous research, the results indicated that scholastic aptitude and working 
memory were associated with superior performance on the MATB task (ability). 
 
 
 
 
 
 
 
 
 
 
 



34 
 

 
 
 
 

Table 9  Means and standard deviations of MATB scores for each task and condition. 

 Task  

Condition Monitoring Comms. Resource Tracking Average 

Baseline 93.0 (3.35) 85.0 (16.6) 82.1 (12.3) 84.3 (5.35) 86.1 (9.4) 

      
Single Difficulty      

Monitoring 67.6 (9.19) 81.9 (20.9) 82.2 (18.5) 83.4 (8.78) 78.8 (14.3) 
Communicatio

ns 94.9 (4.77) 84.1 (17.7) 81.4 (22.8) 85.8 (5.21) 86.6 (12.6) 
Resource 93.7 (4.05) 81.6 (20.2) 80.3 (20.6) 86.7 (3.95) 85.6 (12.2) 
Tracking 94.5 (6.25) 78.9 (23.8) 84.0 (21.0) 75.9 (7.18) 83.3 (14.6) 

      
Paired Difficulty 86.0 (7.67) 86.9 (18.8) 85.7 (11.6) 85.5 (4.85) 86.0 (10.7) 
      
Ramp-Up 2 91.7 (5.33) 91.8 (12.9) 89.8 (11.9) 78.1 (8.08) 87.8 (9.6) 
Ramp-Up 3 86.3 (9.89) 86.0 (18.7) 86.7 (16.9) 70.5 (8.40) 82.4 (13.5) 

 
Note. Bolded values represent tasks with increased difficulty (i.e., the Targets) 

 

Table 10  Correlations between cognitive aptitude measures and MATB scores in each 
condition. 

Measure Baseline Single

Difficulty 

Paired

Difficulty

Ramp 
Up 2 

Ramp
Up 3

Aptitude **.436 **.447 ***.503 *.381 *.337
Spatial Ability -.052 *.343 .247 .308 **.402
Creativity -.169 *-.364 -.146 .023 -.005
Working Memory *.353 ***.648 *.394 .203 *.356

Notes. * p < .10  ** p < .05  *** p < .01 

 
4.4  Multi-Tasking Adaptability 
 
The correlations presented in Table 10 represent the cognitive aptitudes associated with 
multitasking ability. However, it remains to be seen if these are the same abilities that govern 
adaptability.  To answer this question, partial correlations on cognitive aptitude measures and 
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MATB scores were performed using Baseline performance as a covariate (Table 11). These 
correlations indicate which cognitive faculties predict performance when task difficulty increases 
after accounting for general multitasking ability (Baseline scores).  
 
The partial correlations presented in Table 11 were illuminating in a number of respects. First, 
scholastic aptitude was not significantly predictive of adaptability (change in performance under 
increased task difficulty). With the exception of the Single Difficulty condition, working 
memory also played no role in predicting adaptability. Interestingly, spatial ability was a 
significant predictor of adaptability. Taken together, this pattern indicates that the cognitive 
aptitudes that predicted general performance (ability) were distinct from those which predicted 
adaptability.  The next step was to determine if we could identify different types of adapters both 
within and across experimental conditions. 
 
 

Table 11  Partial correlations between cognitive aptitude measures and MATB scores 
after controlling for Baseline scores. 

Measure Single 
Difficulty

Paired 
Difficulty

Ramp 
Up 2 

Ramp
Up 3

Aptitude .224 .324 .167 .113
Spatial Ability ***.514 *.399 **.461 ***.563
Creativity -.253 .024 .160 .124
Working Memory ***.599 .095 -.070 .083

Notes. * p < .10  ** p < .05  *** p < .01 

 
 
 
Single Difficulty (SD)  
Difficulty of each of the four tasks in the experimental conditions was either increased from the 
Baseline difficulty (Target) or equal to the Baseline difficulty (Off-Target). We calculated delta 
scores for each of the four Target tasks in the SD condition by subtracting the corresponding 
Baseline score for that task. The four delta scores were then averaged together to yield an 
average delta Target score. For example, according to Table 10, the average delta Target score 
for Single Difficulty would be: ((67.6 - 93.0) + (84.1 - 85.0) + (80.3 - 82.1) + (75.9 - 84.3)) / 4 = 
-9.13 . The average delta Off-Target score would be computed from the 12 Off-Target scores 
(non-bolded Single Difficulty scores in Table 10) in a similar fashion. Of course, the actual 
computations of Target and Off-Target delta scores were performed at the subject level, instead 
of the aggregate scores as in the example above. In this fashion, there was one average delta 
Target and one average delta Off-Target score for each participant in the Single Difficulty 
Condition. 
 
After computing the Target and Off-Target delta scores, we used a 2-dimensional k-means 
cluster analysis to identify different types of adapters in this study. The results of the clustering 
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are presented in Figure 9. We used a k of 3 because preliminary testing indicated that a 3-cluster 
solution yielded the best separability of the data. 
 

 
 

Figure 9 Cluster analyses for all three conditions. 
 
 
We tentatively identified these clusters as Clusters 1, 2, and 3. In order to differentiate the 
clusters in terms of their performance on the Target task, a one-way between-subjects ANOVA 
on delta Target scores with Cluster as a three-level independent variable was performed. The 
model was significant, F(2, 27) = 72.5, p < .001, and Bonferroni post-hoc tests revealed the 
following pattern in the data:  Cluster 3 > Cluster 2 > Cluster 1 (See Table 12). Similarly, an 
ANOVA on the delta Off-Target scores was also significant, F(2, 27) = 46.6, p < .001. 
Bonferroni post-hoc tests indicated that Cluster 3 > Cluster 2 > Cluster 1. In line with these 
findings, we refer to Clusters 1, 2, and 3, as the Low, Medium, and High adaptability groups, 
respectively.  
 
It is important to note that the clusters in the Single Difficulty condition did not differ on their 
Baseline scores, F(2, 27) = 1.20, p = .316. That is, each cluster was equivalent in terms of 
baseline multi-tasking ability, but there were differences in terms of adaptability. 
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Table 12  Means and standard deviations (SD) for delta scores in each cluster. 

Condition N  Delta 

Target

Delta 

Off-Target

Delta  

RU-2 

Delta 

RU-3

Single Difficulty   
C1 (Low)  13 -21.2 (4.98) -10.3 (4.22)  
C2 (Mid) 12 -10.3 (1.96) -0.97 (2.77)  
C3 (High) 5 -3.47 (2.49) 4.60 (2.61)  

   

Paired Difficulty   

C1 (Low) 7 -8.04 (4.15) -1.38 (2.37)  
C2 (Mid) 16 -2.03 (2.97) 3.36 (4.06)  
C3 (High) 5 11.7 (5.44) 2.61 (0.842)  
   

Ramp-Up   

C1 (Low) 3   -14.4 (7.83) -32.2 (6.51)
C2 (Mid) 16   .186 (4.92) -6.27 (4.24)
C3 (High) 10   13.2 (5.12) 4.55 (4.23)

Note. Number of participants are not equal across conditions because occasional outliers were 
removed. C1, C2, C3 = Cluster 1, 2, and 3, respectively. 

 
 
Paired Difficulty (PD)  
The analyses for the Paired Difficulty condition proceeded in a similar fashion. For PD, the 
System Monitoring and Communications tasks were the Target tasks, whereas the Resource 
Management and Tracking tasks were Off-Target. The clustering yielded 3 clusters as illustrated 
in Figure 9. 
 
The ANOVA on delta Target scores was significant, F(2, 25) = 41.4, p <0 .001. Bonferroni post-
hoc tests revealed the following pattern in the data: Cluster 3 > Cluster 2 > Cluster 1. The 
ANOVA on the delta Off-Target scores was also significant, F(2, 25) = 4.90, p =0 .016. 
Bonferroni post-hoc tests indicated that Cluster 2 had greater delta Off-Target scores than 
Cluster 1. Cluster 3 was not statistically significantly different from Clusters 1 or 2 (see Table 
12). As with the SD clusters, the PD clusters did not differ on their Baseline performance, F(2, 
25) = 0.458, p =0 .638, indicating that the clusters are distinguishing individuals on the basis of 
adaptability rather than general ability.  
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Difficulty Ramp-Up. 
 For the Difficulty Ramp-Up condition, all four tasks in Ramp-Up 2 and Ramp-Up 3 were raised 
in difficulty, thereby negating the Target and Off-Target distinction. Our delta scores were 
calculated by subtracting the Baseline scores from both the RU2 and RU3 conditions and clusters 
were derived in same fashion described above. Therefore, these delta scores represent 
performance in the face of moderate (delta RU2) and high (delta RU3) difficulty. 
 
The ANOVA for the RU2 delta score was significant, F(2, 26) = 39.88, p <0 .001, and 
Bonferroni post-hoc tests revealed the following pattern in the data: Cluster 3 > Cluster 2 > 
Cluster 1 (see Table 12). The ANOVA for the RU3 delta score was also significant, F(2, 26) = 
74.98, p <0 .001, and Bonferroni post-hoc tests again indicated that Cluster 3 > Cluster 2 > 
Cluster 1.  
 
Unlike the SD and PD conditions, there was a difference in baseline performance among the 
Clusters in the Difficulty Ramp-Up condition F(2, 26) = 6.86, p =0 .004), where Cluster 2 (M = 
78.5) outperformed Cluster 3 (M = 66.0). However, there was no difference between the clusters 
for the warm-up phase of the Ramp-Up condition (RU1), F(2, 26) = 0.841, p =0 .443. This 
indicates that the clusters exhibited equal performance before the difficulty increased. Our 
analyses used the Baseline score as the reference in order to stay consistent with the SD and PD 
conditions. 
 
Clustering Consistency Across Conditions  
One remaining question is if the individual membership in each cluster is consistent across 
conditions. For example, does the High adaptability cluster in one condition contain the same 
individuals as the High adaptability cluster in another condition? Failure to find consistencies 
across conditions might complicate (though not invalidate) any further analyses on the clusters. 
Fortunately, Spearman correlations on cluster membership (see Table 13) indicated that cluster 
membership was, in fact, consistent across conditions. 37% of the individuals were in the same 
cluster (High, Medium, or Low) across all three conditions, while 63% of the individuals were in 
the same cluster in two of the three conditions. No individual was assigned to different clusters 
in all three conditions. This suggests that there was some consistency in cluster membership 
across conditions. 
 
 

Table 13  Spearman correlations between clusters and conditions. 

 Paired Difficulty Difficulty Ramp-Up 

Single Difficulty .621*** .395** 

Paired Difficulty  .447** 

Notes. * p < .10  ** p < .05  *** p < .01 
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Predicting Adaptability Type 
After grouping individuals into the different clusters, our next analysis was to determine whether 
the three clusters in each condition differed on the basis of any cognitive measures. Based on the 
partial correlations (see Table 11), we would expect that spatial ability would distinguish the 
clusters, and that the other cognitive aptitude measures would have no impact. We performed 
separate between-subjects ANOVAs for each condition with Cluster as the independent variable 
with 3 levels (for High, Medium, and Low) and spatial ability scores as the dependent variable. 
The analyses yielded significant models for Single Difficulty, F(2, 22) = 4.89, p =0 .018 and 
Paired Difficulty F(2, 22) = 4.02, p =0 .032, and a marginally significant model for Difficulty 
Ramp-Up F(2, 21) = 2.77, p =0 .086.   
 
Descriptive statistics for the spatial ability measure are displayed in Table 14. Bonferroni post-
hoc tests indicated that individuals assigned to the High adaptability cluster in the SD condition 
had higher spatial ability scores than individuals assigned to the Medium adaptability cluster 
(High > Medium). Individuals in the High adaptability cluster also had higher spatial ability than 
individuals in the Low adaptability cluster for the PD condition (High > Low). This High > Low 
pattern was replicated in the RU condition but was only marginally significant (p =0 .090).  
The ANOVAs were repeated with the other four cognitive measures (scholastic aptitude, 
working memory, and creativity) as dependent variables. Importantly, none of the models were 
statistically significant in any condition (p >0.05), further indicating that these measures did not 
play a major role in discriminating individuals on the basis of adaptability. 
 
 

Table 14  Spatial ability means (standard deviation in parenthesis) for clusters in each 
condition. 

Condition Low  Medium  High 

Single Difficulty 3.50 (4.51)  2.60 (5.95)  10.5 (6.43) 
Paired Difficulty 3.60 (4.83)  6.40 (5.79)  12.8 (4.15) 
Difficulty Ramp-up -1.50 (2.12)  7.64 (5.72)  8.88 (5.84) 
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5.  CONCLUSION 
 
The Robust Automated Knowledge Capture LDRD was successful in that the project advanced a 
scientific understanding of individual differences in cognitive performance.  The primary product 
of the LDRD has been the RumRunner model which identifies the task and experience related 
factors that predict an individual’s propensity for strategy shifting.  This is important because 
many national security applications place individuals in situations where they must appraise 
complex, often ambiguous, conditions and decide whether they should persist with their current 
strategy or abandon their current strategy in favor of an alternative strategy.  RumRunner 
provides the basis for assessing performance on a decision-by-decision basis to ascertain how 
various factors are likely to impact subsequent decision making.  Furthermore, by applying 
RumRunner as a basis for evaluating expert decision making, it may provide insight into the 
factors that distinguish expert from novice decision makers within a given domain. 
 
Based on the research conducted through the Robust Automated Knowledge Capture LDRD, 
individual measures of cognitive performance have been identified that are believed to provide a 
basis for assessing individual adaptability.  Here, adaptability refers to an individual’s capacity to 
effectively recognize and cope with changing circumstances.  In particular, three measures have 
been identified: (1) sensitivity to negative feedback in association with changing stimulus 
conditions; (2) sensitivity to changing contingencies underlying positive feedback and (3) mental 
flexibility as measured through the Mental Rotation Task.  Subsequent work building on the 
success of the Robust Automated Knowledge Capture LDRD will focus on incorporating these 
measures into a test battery to provide a tool for assessing individual capacity for adaptive 
thinking. 
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APPENDIX 1 
 
 
Detailed Description of RumRunner Parameters 
RumRunner models the probability of strategy shift as the sum of factors: 
 
Already Doing 

Already Doing nullifies Task Shift in cases where the stimulus changes, but is now clearly 
biasing a strategy which the subject is already using. Like Task Shift, this factor is task-specific. 
In the drawing task, it is used for the Morph Conditions (Figure 1D) in Experiment 2, which 
progressively bias the subject towards a specific strategy. The value of this factor was between 0 
and -0.1 in 71% of trials, and evenly distributed between -0.1 and -0.5 otherwise. 

Bad Shift 
 Bad Shift doubles Performance Dip if the previous trial was a strategy shift. 
Flexibility  

Flexibility is the base rate (i.e. prior probability) of strategy shift for the individual. It is 
initialized to 0 and updated according to the learning rate (0.1) and error term for the previous 
prediction,  where  is 1 if strategy shifted on the previous trial and 0 otherwise, 
and  is the output of RumRunner, i.e. the probability of shift on the previous trial. 

No Improvement   

Where  is the score slope, or average of the 3 most recent differences 

in successive scores, weighted by recency. It is only active when the slope is negative. 
No Improvement is practically linear within the range of M observed in the experiment; 

 
Number of Strategy Shifts  

S is the total number of strategy shifts by this individual (across all conditions). Number of 
Strategy Shifts is practically linear within the range of S observed in the experiment; 

 
Performance Dip  

Where the decrease , where  is the composite score on the 

previous trial and ,  are the minimum and maximum scores from the 10 preceding . 
Performance Dip is practically linear within the range of C observed in the experiment; 

 
Planning/Preparation  

Where the delay , where   is response time, i.e. the number of 

seconds between presentation of stimulus and onset of drawing/tracing for the current trial.  
and  are the maximum and minimum response times in the previous 10 trials. 
Planning/Preparation is practically linear within the range of D observed in the experiment; 

 
Recently Shifted   
  is the number of trials since the previous strategy shift. 
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Task Shift 

This factor is task-dependent and reflects recent changes in stimulus that might prompt shift in 
strategy. In the drawing task, Task Shift is defined differently depending on how the stimulus is 
changing: 
1) Degree of morph: the amount by which the current trial is “deformed” from the canonical 

shape (see Figure 1D; Experiment 2 only). 
2) Degree of rotation: the amount by which the stimulus in the current trial is rotated, compared 

to the previous trial (e.g. difference in angles; Experiments 1 and 2). 
The resulting distribution of Task Shift in the figure-drawing experiment approximates a one-
sided normal distribution. Task Shift was between 0 and 0.1 in 38% of trials, between 0.4 and 0.5 
in 10% of trials, and greater than 0.6 in 1% of trials. 

Time on Task  
 is the total number of trials (across all conditions) completed by the individual. Time on Task is 

practically linear within the range of  observed in the experiments;  
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