SANDIA REPORT

SAND2011-7604
Unlimited Release
Printed October, 2011

Hierarchical Resilience with
Lightweight Threads

Kyle B. Wheeler, Sandia National Laboratories

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories



Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http:/www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering: http:/www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online




SAND2011-7604
Unlimited Release
Printed October, 2011

Hierarchical Resilience with Lightweight Threads

Kyle B. Wheeler

Abstract

This paper proposes methodology for providing robustness and resilience for a highly
threaded distributed- and shared-memory environment based on well-defined inputs and
outputs to lightweight tasks. These inputs and outputs form a failure “barrier”, allowing
tasks to be restarted or duplicated as necessary. These barriers must be expanded based on
task behavior, such as communication between tasks, but do not prohibit any given behavior.


lgalleg
Typewritten Text





Observations

One of the trends in high-performance computing codes seems to be a trend toward self-
contained functions that mimic functional programming. Software designers are trending
toward a model of software design where their core functions are specified in side-effect free
or low-side-effect ways, wherein the inputs and outputs of the functions are well-defined.
This provides the ability to copy the inputs to wherever they need to be—whether that’s
the other side of the PCI bus or the other side of the network—do work on that input using
local memory, and then copy the outputs back (as needed).

This design pattern is popular among new distributed threading environment de-
signs. Such designs include the Barcelona STARS system, distributed OpenMP systems,
the Habanero-C and Habanero-Java systems from Vivek Sarkar at Rice University, the
HPX /ParalleX model from LSU, as well as our own Scalable Parallel Runtime effort (SPR)
and the Trilinos stateless kernels. This design pattern is also shared by CUDA and several
OpenMP extensions for GPU-type accelerators (e.g. the PGI OpenMP extensions).

Beneficial Runtime Information

If programmers are willing to design their algorithms in that way, they are conceding
a great deal of potential flexibility and providing the runtime environment with additional
information about their program’s behavior.

First, such programs are essentially informing the runtime that the input memory for a
given task, at the point where they spawn that task—either synchronously or asynchronously—
is in a coherent state. More than just coherent, it is in a state that can be used to spawn
work.

Additionally, if the function is spawned asynchronously, the programmer is declaring that
the thread may technically use any method to achieve the output—whether the computation
happens locally, on a GPU, or across the network is immaterial, as long as the output ends
up where the spawning function has specified.

Leveraging the Emergent Design

Because the input is in a state that can be used to spawn work, the runtime is free to
store a copy of that input somewhere—anywhere from elsewhere in memory to non-volatile
RAM to on disk or some other reliable storage media. If the thread should, then, die for
any reason—the node went down, the link went down, the answer generated doesn’t meet
correctness criteria, etc.—the runtime has all the information necessary to re-spawn that
task somewhere else and hand it the same input. Not only could the task be re-spawned in



the case of failure, but multiple copies of it could be spawned in multiple locations, if that
is deemed useful. In addition to a well-defined input, certain additional conditions must be
true in order to enable both of these opportunities, which will be addressed in a moment.

While the spawned task may use any method to compute the output, there is one quality
that distinguishes it, and that is that it must, by definition, exist for the entire interval
between spawning and reporting the output.! It need not be alone, or even executing, for
that entire interval, however. It is free to spawn both more threads with well-defined inputs
and outputs—referred to hereafter as “functional tasks”—and threads without well-defined
inputs and outputs, or “shared-state tasks”.

New Task Categories

These two new categories of task define the limits of how they are handled by the runtime.
Shared-state tasks, because they share state with each other and with their parent, may not
move away from their shared state. If the parent task must migrate (and it is hard to envision
when this would be a good idea, for performance reasons), all of the tasks that share that
state must move with it. Additionally, should any of these shared-state threads fail for any
reason, all of the threads that share that same state must also die, because the state they
share can no longer be trusted. In that sense, the parent functional task is dependent upon
the child shared-state tasks, just as they are dependent upon it.

When a functional task spawns another functional task, that new task, unlike the shared-
state tasks, is free to execute anywhere, because of it’s well-defined inputs and outputs. The
dependence relation to the parent is different, however. Should the child functional task die,
it can be restarted, as long as the inputs have been saved. If the parent functional task
dies, however, the child functional task must also die. This is because the parent’s state is
suspect, and so the input state of the child is also suspect. The parent will, in all likelihood,
be restarted, and will regenerate not only the child’s input, but will respawn the child.

The Partitioned Hierarchy

In this sense, we have a partitioned hierarchy of threads. These partitions define reliability
domains: anything within a domain shares a fate with everything else within that domain.
This is illustrated in Figure 1.

This hierarchy is important, because we can define thread behavior and consequences of
that behavior in terms of the hierarchy. For instance, the description of task behavior so
far has assumed that tasks are entirely side-effect free, where side-effects can be considered
to be nearly all forms of inter-task communication. Such communication creates a two-way

! Continuations may appear to violate this rule, but in that they share the same output-generation re-
quirement, they can be considered to be different phases of the same task.



EEEaEan
ammm "an
=" e,

e

e ‘ Input H Output ‘ .

Shared—State
Task

Shared—State
Task

Shared—State
Task

Shared—State Shared—State

Task

Shared—State
Task

C

Output ‘

.
.
0
"
.
I
"
0
[
"
.
.
.

-
DALTS
- "
. LN e T LA

~a Chhd
R T e

Figure 1. Partitioned Hierarchy with Reliability Domains

dependence relation: tasks that communicate have altered each other’s state, and so if either
of the participants in that communication lose that state, the other is needed to re-participate
in regenerating that state. When communication creates a dependence relation, it can be
viewed as simply expanding and merging the respective tasks resilience domain.

It is possible, if the communication is considered “reliable” and “independent” (i.e. gen-
erated independent of the recipient) that this dependence may be broken—communication
itself may be stored safely and re-played, provided that certain conditions are met, such as
that the timing of the communication is not part of the communication. It is also possible,
in very limited cases (such as periodic sanity-checking) that the communication does not af-
fect any significant state within either task and therefore should not establish a dependence
relation of any kind. Any of these special-case situations may not be easy to detect by the
runtime, but can be declared to the runtime by the programmer easily enough.

The other obvious exception is the parent-child relationship of functional tasks, wherein
the parent is communicating to the child via its input and the child is communicating to the

parent via its output.



A key point to be made here is that this hierarchy is not limiting behavior, but rather is
a way of recording the consequences of behavior upon resiliency.

Micro-checkpointing

This partitioned hierarchy, with it’s defined input/output boundaries, also defines a set
of hierarchical micro-checkpoints, and with them, a hierarchy of failure, recoverability, and
resilience.

Interestingly, these micro-checkpoints don’t always need to be copied into additional stor-
age, and when it is copied, it need not be copied into particularly non-volatile storage. The
choice of whether or where to store these checkpoints may be made at runtime based on the
expected probability of failure. In many cases, nodes in large computers have early-warning
indicators that they are becoming unreliable. Such indicators include one-bit (corrected)
ECC errors and/or increasing CPU temperature, among other things. If a node is deemed
“risky”, more precautions may be taken to ensure that the computation intended to execute
on that node is reliable—that may include storing related checkpoints more securely, among
other things.

Avoiding sending the checkpoints to expensive storage improves performance and likely
reduces power consumption, but increases risk—it flattens the resilience hierarchy. If the
inputs are not stored, the child task cannot be restarted, and so if the child dies the par-
ent must die as well. Interestingly, these checkpoints have a lifetime. Once the output is
generated, the input no longer needs to be stored, and may be discarded.

While the micro-checkpoints may simply kept in memory, duplicated across the network
in other node memories, sent to NVRAM, they may also be sent to disk. It may be benefi-
cial to do both: keep most checkpoints in fast local memory, but gradually flush outstanding
checkpoints (for longer-lived tasks) to disk. One consequence of the expected pattern of send-
ing micro-checkpoints to disk is that the load placed on those disks is significantly reduced.
Traditional checkpoints are particularly challenging for even custom-designed filesystems,
while a slow trickle of checkpoints will most likely achieve better disk performance due to
the reduced disk load.

Task Teams

The hierarchy of tasks is also useful for establishing a well-defined and understandable
definition of task “teams”. These teams may define the boundaries of things like memory-
and CPU-affinity, synchronization and collective operation scope (i.e. for eurekas, barriers,
etc.), migration, and so forth. Threads, then, can technically belong to multiple teams:
each team belongs to its parent team. This hierarchy also defines a simple set of operations
that can be performed upon such teams; it is easy to wait for a team to finish (cease to

8



exist, i.e. return its output), it is easy to spawn a new team, and membership in a team is
defined by particular operations (such as communication), but has resiliency consequences.
To avoid consequences, teams are best expanded internally, by their originating functional
task spawning more team members.

This relationship reflects existing patterns of task behavior. For example, parallel loops
can appropriately be called “teams”, because one typically needs to wait for all iterations
of a loop to complete before the parent can continue. The most efficient means of spawning
parallel loop iterations is in a tree, which naturally includes them in the same team and
provides the necessary opportunity for efficient exit detection.



DISTRIBUTION:

1 MS 0899 RIM-Reports Management, 9532

10



v1.36



@ Sandia National Laboratories





