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I. INTRODUCTION

Theoretical studies of high-gain harmonic generation (HGHG) [1] and echo-

enabled harmonic generation (EEHG) [2, 3] often start from a simplified model

in which the beam is assumed infinitely long and longitudinally uniform and

the laser induced energy modulation is perfectly sinusoidal and of infinite

duration. In such a model the resulting seed has a spectrum consisting of

a collection of delta-functions (of zero width) located at the harmonics of the

laser frequency. Being a useful tool for study of the seed bunching amplitudes,

such a model cannot be used for realistic analysis the spectral properties of

the seed.

In this paper we take into account the finite duration of the laser pulse as

well as some possible laser phase errors to study their effect on the spectrum

of the seed.

II. DEFINITION OF BUNCHING FACTOR

Usually the bunching factor b at a given wavenumber k is defined as

b(k) =
1

N0

〈eikzN(z)〉 =
1

N0L

∫ L

0

dzeikzN(z), (1)
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where N(z) is the 1D density of particles in the beam, N0 is the averaged

density, L is the length of the beam (so that N0L is the number of particles

in the bunch), and angular brackets denote averaging over the bunch length

(see, e.g, Eq. (A5) in [3]). This bunching factor is dimensionless and does not

depend on the bunch length. This definition is appropriate if one is dealing

with a uniform beam, and is not interested in the effects due to either finite

length of the bunch of finite duration of the laser pulse. In this paper we will

focus on effects due to the finite length of the laser pulse, but will still be

assuming a long uniform bunch. In this case it is more convenient to redefine

b(k) replacing N by the density perturbation δN and dropping the term 1/L

b(k) =
1

N0

∫ L

0

dz eikzδN(z). (2)

It has now dimension of length, or, if divided by c, the dimension of time. One

can make it dimensionless by multiplying by the wavenumber kl of the laser.

Assuming that δN(z) is a localized function, we can extend integration from

−∞ to ∞, and the integral becomes the Fourier transformation

b(k) =
2π

N0

δN̂(k), (3)

with δN̂(k) = (2π)−1
∫∞
−∞ dz e

ikzδN(z).

The so defined bunching function has the following meaning. If one sends

a modulated beam with the bunching factor b(k) through a radiator in which

a single electron radiates the spectrum W(ω) (has dimension of energy per

unit frequency), then the spectrum of the beam radiation is W(ω)N2
0 |b(k)|2,

and the radiated energy is obtained by integration of this quantity over the

frequency,

N2
0

∫
dωW(ω)

∣∣∣b(ω
c

)∣∣∣2 . (4)

2



IfW(ω) is a broad function and b (ω/c) is a narrow one localized in the vicinity

of frequency ω∗, then the radiated energy is approximately equal to

N2
0W(ω∗)

∫
dω
∣∣∣b(ω

c

)∣∣∣2 , (5)

that is proportional to the integrated over the frequency square of the absolute

value of the bunching factor.

III. VARIATION OF THE LASER AMPLITUDE IN HGHG

Consider HGHG seeding with a laser pulse which has a Gaussian profile. We

assume a uniform beam much longer than the laser pulse. The initial energy

distribution of the beam is assumed also Gaussian, given by the distribution

function f0(p) = N0(2π)−1/2e−p
2/2, where N0 is the number of electrons per

unit length of the beam, and we use the notation p = (E − E0)/σE for the

dimensionless energy E deviation of a particle, with E0 the average energy of

the beam and σE the rms energy spread.

Introducing the variable ζ = klz where z is the longitudinal coordinate

in the beam, one can write the transformation of the initial coordinate ζ to

the final ζ ′ (resulting from the passage through the energy modulator and the

chicane) as

ζ ′ = ζ +Bp+BA(ζ) sin ζ, (6)

where A(ζ) = ∆E/σE with ∆E the local energy modulation in the beam, and

B = R56klσE/E0 with R56 is the dispersive strength of the chicane. In what

follows we assume

A(ζ) = A0e
−ζ2/2σ2

ζ , (7)

where σζ =
√

2σtckl with σt the rms length of the laser pulse. Note that σt

is the rms length of the Gausian envelope of the laser power while σζ is the
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dimensionless rms length of the envelope of the electric field; this explains the

factor
√

2 in the equation relating these two quantities. Using (3) we find the

bunching factor

b(κ) =
1

klN0

∫ ∞
−∞

dpf0(p)

∫ ∞
−∞

dζ
(
e−iκζ

′(ζ,p) − e−iκζ
)
, (8)

where κ = kkl. The second term in the last integral is due to the subtraction

of the initial uniform density of the beam (so that b = 0 when A = B = 0);

after integration it gives a zero frequency contribution to the bunching factor,

∝ δ(κ). Since we are interested in non-zero frequencies, in what follows, we

omit this term from the expression for b(k).

Substituting (6) into (8) and carrying out the integration we obtain

klb(κ) =
1

N0

∫ ∞
n=−∞

dpf0(p)

∫ ∞
−∞

dζe−iκBpe−iκζ−iκBA(ζ) sin ζ

= e−κ
2B2/2

∫ ∞
−∞

dζe−iκζ−iκBA(ζ) sin ζ

= e−κ
2B2/2

∞∑
n=−∞

∫ ∞
−∞

dζJn(−κBA(ζ))e−i(κ−n)ζ . (9)

The bunching spectrum near the n-th harmonic, which we denote by bn, is

given by the n-th term in the sum. Using ∆κ = κ− n, we have

klbn(∆κ) = e−κ
2B2/2

∫ ∞
−∞

dζJn(−κBA(ζ))e−i∆κζ

≈ e−n
2B2/2

∫ ∞
−∞

dζJn(−nBA0e
−ζ2/2σ2

ζ )e−i∆κζ

= σζe
−n2B2/2

∫ ∞
−∞

dξJn(−nBA0e
−ξ2/2)e−i∆κσζξ, (10)

where ξ = ζ/σζ .

Our interest now is to evaluate the bunching factor for n � 1. In an

optimized HGHG scheme with the constant amplitude of the laser pulse (that

is in the limit σζ → ∞) the maximal value of bn is achieved when BA0 ≈
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1 + 0.81n−2/3. With the laser field varying with ζ as A0e
−ζ2/2σ2

ζ this may not

be an optimal value, so we choose

BA0 = r(1 + 0.81n−2/3), (11)

where r is a number of order of one. We then have

bn(∆κ) ≈ (−1)nσze
−n2r2(1+0.81n−2/3)2/2A2

0Fn(∆κσζ , r), (12)

with

Fn(x, r) =

∫ ∞
−∞

dξJn(r(n+ 0.81n1/3)e−ξ
2/2)e−ixξ. (13)

In the limit A0 � 1 corresponding to the amplitude of modulation much larger

than the slice energy spread, one can replace in (12) the exponential factor by

1,

|bn(∆κ)| ≈ σzFn(∆κσζ , r). (14)

The integrated over spectrum bunching factor is given by∫
|bn(∆κ)|2d∆κ ≈ σ2

z

∫
Fn(∆κσζ , r)

2d∆κ =
σz
kl

∫
Fn(x, r)2dx. (15)

The seed spectrum is illustrated by Fig. 1 that shows the normalized func-

tion |Fn|2 for three values of the harmonic number n = 5, 10 and 20, calcu-

lated for r = 1 (that is for BA0 = 1 + 0.81n−2/3). One can see that higher

harmonics have broader spectra. This is due to the fact that higher har-

monics are more sensitive to the deviation from the optimization condition

BA = (1 + 0.81n−2/3). As soon as A(ζ) deviates from its maximal value A0,

the local bunching goes down, resulting in shortening of the component of

the density modulation carrying the frequency nωl. Analysis shows that while

higher harmonics have broader spectra, they still are Fourier limited pulses (of

shorter duration).

Fig. 2 shows two profiles of |F10|2 for r = 1 and r = 1.1. Note that r = 1.1

gives a larger maximal bunching factor.
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FIG. 1: Bunching spectrum for n = 5, 10 and 20 (larger harmonics have broader

profiles) for r = 1. The dashed curve is the Fourier spectrum of the laser pulse.

Each curve is normalized by its maximal value at zero. The frequency deviation ∆ω

is normalized by the rms laser pulse width (in power) σt.

-4 -2 0 2 4
0.00

0.05

0.10

0.15

0.20

DΩ Σt

|F
10

|2

FIG. 2: Plot of functions |F10|2 for r = 1 (blue) and r = 1.1 (red).

IV. VARIATION OF THE LASER FREQUENCY

Let’s now take into account possible variation of the laser frequency over

the duration of the laser pulse in HGHG seeding. More precisely, we will
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assume a frequency chirp of the laser,

ω = ωl + 2αt (16)

which corresponds to the laser phase ωlt + αt2. In laser-speak the chirp is

characterized by a spectral phase parabolic profile. Instead of using α (which

has dimension of the frequency squared) it is more convenient to introduce the

accumulated phase error φ over the duration of the pulse τ ,

φ = ατ 2. (17)

For the value of τ we choose the FWHM duration of the laser pulse, τ = 2.35σt,

where σt is the rms length of the laser pulse (in power). We will assume that

the phase error is small, φ� 1.

When such phase errors taken into account Eq. (6) should be replaced by

ζ ′ = ζ +Bp+BA(ζ) sin(ζ + βζ2), (18)

with β = α/ω2
l , and instead of (9) we now have

klb(κ) = e−k
2B2/2

∞∑
n=−∞

∫ ∞
−∞

dζJn(−kBA(ζ))e−i(κ−n)ζ+inβζ2 . (19)

Using the optimization (11) we obtain

klbn(∆κ) = (−1)nσζe
−n2r2(1+0.81n−2/3)2/2A2

0Gn(∆κσζ , nβσ
2
ζ , r), (20)

with

Gn(x, y, r) =

∫ ∞
−∞

dξJn(r(n+ 0.81n1/3)e−ξ
2/2)e−ixξ+iyξ

2

. (21)

We see that the second argument of the function Gn responsible for the phase

error is

y = nβσ2
ζ =

( √
2

2.35

)2

nφ = 0.36nφ. (22)
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We expect that the phase error effects are negligible when φ � 1, and they

become essential in the opposite limit.

Fig. 3 shows the normalized bunching factor as a function of the detuning

frequency ∆ω for the 10th harmonic for different values of the laser frequency

chirp characterized by the parameter nφ.
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FIG. 3: The bunching factor squared at a function of the detuning for various

frequency chirps of the laser. The dash line indicate the spectrum of the laser pulse.

The black solid line is the no-chirp case, φ = 0. The three broader lines of red,

magenta and green have a chirp with the parameter nφ indicated by arrows.

V. ANALYSIS

Let us consider function (21) in the limit of large values of n and use the

following representation for the Bessel function of order ν � 1,

Jν(ν + zν1/3) = 21/3ν−1/3Ai(−21/3z), (23)
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where Ai is the Airy function. In what follows we will assume r = 1,

Gn(x, y, 1) =

∫ ∞
−∞

Jn((n+ 0.81n1/3)e−ξ
2/2)e−ixξ+iyξ

2

dξ

= 21/3n−1/3

∫ ∞
−∞

Ai(−21/3n−1/3[(n+ 0.81n1/3)e−ξ
2/2 − n])e−ixξ+iyξ

2

dξ. (24)

For large n we can expand e−ξ
2/2 ≈ 1 − ξ2/2 because only small values of ξ

make dominant contribution

Gn(x, y, 1) ≈ 21/3n−1/3

∫ ∞
−∞

Ai(21/3[n2/3ξ2/2− 0.81])e−ixξ+iyξ
2

dξ. (25)

This shows that the width of the integrand in variable ξ is of the order of

n−1/3, and hence the spectrum will be wider than the laser spectrum by the

same factor. This broadening we see in Fig. 1. Noting that Gn is obtained

as a Fourier integral, we conclude that the integrand of (29) gives the time

profile of the envelope of the n-th harmonic:

Eenv(t) ∝ Ai(21/3[n2/3(t/σt)
2 − 0.81]). (26)

The plot of the function Eenv(t)2 normalized by its maximal value at the origin

for n = 50, 100 is shown in Fig. 4.

VI. QUADRATIC CHIRP IN THE BEAM ENERGY

Let us assume now that instead of the frequency chirp in the laser, we have

quadratic energy chirp in the beam

f0(p) =
N0√
2π
e−(p+aζ2)2/2. (27)

The quantity a is positive when the beam is accelerated on crest. It is easy to

see that this energy chirp produces the same effect as the laser frequency chirp.

Indeed, we now need to compute (8) with this distribution function (27):

klb(κ) =
1√
2π

∫ ∞
−∞

e−(p+aζ2)2/2dp

∫ ∞
−∞

e−iκBpe−iκζ−iκBA(ζ) sin ζdζ. (28)
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FIG. 4: The envelope profile for 50th (red) and 100th (blue) harmonic. The broken

line is the original laser profile. Each curve is normalized by its maximal value at

the origin.

Using ∫ ∞
−∞

e−(p+aζ2)2/2e−iκBpdp =
√

2πe−κ
2B2/2eiκBaζ

2

, (29)

we find

klb(k) = e−κ
2B2/2

∫ ∞
−∞

dζe−iκζ+iκBA(ζ) sin ζe−iκBaζ
2

≈ e−κ
2B2/2

∞∑
n=−∞

∫ ∞
−∞

dζJn(−κBA(ζ))e−i(κ−n)ζ+inBaζ2 . (30)

This is the same as Eq. (19) with β replaced by Ba.

VII. FINITE LASER PULSE AND FREQUENCY CHIRP IN EEHG

We now consider the EEHG case assuming a laser pulse given by (7) and

a laser frequency chirp (16). In what follows we will take these effects into

account only for the second modulator. As for the first one, we will assume

that its laser pulse is long enough so that one can neglect variation of the laser
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amplitude over the bunch length. Also, the phase errors of the first laser are

likely less important because its role is to generate energy bands in the phase

space of the beam which seem less sensitive to the phase errors.

Instead of the HGHG transformation (6) we now have to deal with a more

complicated map for the EEHG [3]

ζ ′ = ζ + (B1 +B2)p+ A1(B1 +B2) sin ζ

+ A2(ζ)B2 sin
(
Kζ +KB1p+KA1B1 sin ζ + βζ2 + ψ

)
, (31)

where ψ is the phase of the second laser, A1 = ∆E1/σE and A2(ζ) = ∆E2/σE

with ∆E1 and ∆E2 the energy modulation in the first and second undulators,

and B1 = R
(1)
56 klσE/E0, B2 = R

(2)
56 klσE/E0 with R

(1)
56 and R

(2)
56 the dispersive

strengths of the first and second chicanes, respectively. The variable ζ is now

defined as ζ = k1z with k1 the wavenumber of the first laser, and K = k2/k1

with k2 the wavenumber for the second laser. The parameter β is the same as

in (18).

We now closely follow the derivation in [3]. Substituting (31) into Eq. (2)

gives

klb(κ) =
1

N0

∫ ∞
−∞

dp e−iκp(B1+B2)f0(p)

∫ ∞
−∞

dζ

× e−iκζe−iκA1(B1+B2) sin ζe−iκA2(ζ)B2 sin(Kζ+KB1p+KA1B1 sin ζ+βζ2+ψ) . (32)

Two exponential factors in this equation can be expanded in series:

e−iκA1(B1+B2) sin ζ =
∞∑

q=−∞

eiqζJq (−κA1 (B1 +B2)) , (33)

and

e−iκA2(ζ)B2 sin(Kζ+KB1p+KA1B1 sin ζ+βζ2+ψ)

=
∞∑

m=−∞

eim(Kζ+KB1p+KA1B1 sin ζ+βζ2+ψ)Jm (−κA2(ζ)B2) , (34)
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and then, in turn, the factor eimKA1B1 sin ζ appearing on the right hand side of

Eq. (34) can also be expanded

eiA1B1Km sin ζ =
∞∑

l=−∞

eilζJl (A1B1Km) . (35)

In the limit when β = 0 and A2 does not depend on ζ (that is a very

long laser pulse without phase errors) all the terms in (32) that depend on ζ

combine into

ei(q+l+mK−κ)ζ . (36)

In this limit the integral does not vanish only if

κ = n+mK, (37)

where n = q + l is an integer. This means that the echo wavenumber is

k = kn,m = nk1 + mk2. With β 6= 0 and A2 depending on ζ, k will be close

to kn,m, k = kn,m + ∆k, and hence κ = kn,m/k1 + ∆κ, with ∆κ = ∆k/k1.

Substituting Eqs. (33)-(35) into Eq. (32) and carrying out integration over p

with the help of

1

N0

∫ ∞
−∞

dp e−iκp(B1+B2)+imKpB1f0(p) = e−
1
2

[κ(B1+B2)−mKB1]2 , (38)

and also using the identity

Js(a+ b) =
∞∑

k=−∞

Jk(b)Js−k(a)

we arrive at

bn,m(∆κ) = e−
1
2

(nB1+(Km+n)B2)2Jn (−A1 (nB1 + (Km+ n)B2))

×
∫ ∞
−∞

dζe−i∆κζ+imβζ
2+imψJm (−(Km+ n)A2(ζ)B2) , (39)
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where bn,m is the bunching factor in the vicinity of kn,m.

Let’s now assume thatK = 1 (both lasers have the same frequency), n = −1

and m = h + 1, where h is the harmonic number. We denote b−1,h+1 by bh.

Also assume a Gaussian pulse (7) for A2 and the optimized value for A0:

(m− 1)A0B2 = m+ 0.81m1/3 (see [3]):

bh(∆κ) = σζe
− 1

2
(−B1+hB2)2J−1 (−A1 (−B1 + hB2)) ei(h+1)ψ (40)

×
∫ ∞
−∞

e−i∆κσζξ+i(h+1)βσ2
ζξ

2

Jh+1

(
−((h+ 1) + 0.81(h+ 1)1/3)e−ξ

2/2
)
dξ .

We see that the dependence of bh versus ∆κ is given by the function

Gn(∆κσζ , (h + 1)βσ2
ζ , 1) defined in (21). Hence the analysis developed for

the HGHG seeding is also applicable for the EEHG.
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