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Abstract

We showed that noise has distinct signatures at phase transitions in spin systems. We 
also studied charge noise, critical current noise, and flux noise in superconducting qubits 
and Josephson junctions.

1 Introduction to Noise
Much of the work described in the proposal involves noise. So we begin with a brief introduction 
to noise. To an experimentalist, noise is a nuisance at best and a serious problem hindering 
measurements at worst. However noise comes from the fluctuations of microscopic entities and 
it can act as a probe of what is happening physically at the microscopic scale. Let us set up 
our notation and define what we mean by noise. Let 5x(t) be a fluctuation in some quantity x 
at time t. If the processes producing the fluctuations are stationary in time, i.e., translationally 
invariant in time, then the autocorrelation function of the fluctuations (8x(t2)8x(t1)) will be 
a function ^(t2 — t1) of the time difference. In this case the Wiener-Khintchine theorem 
can be used to relate the noise spectral density S(w) to the Fourier transform 'd(w) of the 
autocorrelation function [1]: S(w) = 2^(w) where w is the angular frequency.

The noise spectrum often goes as 1/fa where f is frequency and a is some power. If a = 0, 
then the noise is white and independent of frequency. Thermal noise or Johnson noise is an 
example of white noise. a = 1 is 1/f noise which is ubiquitous and dominates at low frequencies. 
It results from summing over a set of Lorentzian spectra [2, 3]:

S(w) ~ / 1+ T2 2 P(t)dT (1)

Each Lorentzian spectrum comes from a fluctuation that decays exponentially with a charac­
teristic relaxation time t. P(t) is the distribution of t. If P(t) ~ 1/t for t1 < t < t2, then one 
obtains 1/f noise, i.e., S(w) ~ 1/w for t-1 ^ w ^ t-1. This form of P(t) arises, for example,



if the relaxation time is activated (t = t0 exp(E/kT)) and the distribution of activation energies 
is constant.

a = 2 can be associated with a fluctuating two-state system [3, 4], or a random walk. a 
closer to 2 is characteristic of systems far from equilibrium [5].

Second Spectrum of the Noise
In addition to the first spectrum, there is something called the second spectrum of the noise. 

To understand the second spectrum, consider the following. Suppose we take a long time series, 
divide it into segments, and calculate the first spectrum of each segment, i.e., the noise spectra 
Si(f,t2) where t2 is the time in the middle of the ith segment. So now we have a set of 
noise spectra Si(f,t2) taken at different times t2. The second spectrum is the power spectrum 
of the fluctuations of Si(f,t2) with time t2, i.e., the Fourier transform of the autocorrelation 
function of the time series of Si(f, t2) [6, 7, 8]. To calculate the second spectrum, we can divide 
each first spectrum into octaves. An octave is a range of frequencies from fL to fH where 
typically fH = 2fL. We can discretize the first spectrum by associating each octave with the 
total noise power in that octave. We do this for each data set. For each octave this gives us 
a set of numbers with one number from each data set labeled by t2. Now we can calculate 
the fluctuations in the noise power in a given octave labeled by frequency f1 . Then we can 
calculate the autocorrelation function of these fluctuations, Fourier transform it and obtain the 
noise power S2(f2,f1) which is the second spectrum. Rather than doing a Fourier transform 
for the first spectrum S(f1), one can do a simple wavelet transform which is known as a Haar 
transform [9]; this is more computationally efficient. In addition the Haar transform allows us 
to access frequencies f2 that are only slightly less than f1 , while using only Fourier transforms 
restricts us to frequencies f2 corresponding to the inverse of the duration of the data set used 
to produce each first spectrum.

2 Work Done Under Grant

2.1 Noise spectra in the vicinity of ordered first and second order 
phase transitions show signatures of the transition.

Our goal was to see if noise can be used as a probe of microscopic fluctuations. There have 
been indications that the noise in the resistivity increases in the vicinity of the metal-insulator 
transition [5]. But what are the characteristics of the noise associated with well-understood first 
and second order phase transitions? It is well known that critical fluctuations are associated 
with second order phase transitions, but do these fluctuations lead to enhanced noise? On the 
other hand, phase transitions occur in the thermodynamic limit but the noise decreases with 
increasing system size. So how do we reconcile these two aspects? We addressed these questions 
using Monte Carlo simulations to study the noise in the 2D ferromagnetic Ising model which 
undergoes a second order phase transition, and in the 5-state Potts model which undergoes a 
first order phase transition. We monitored these systems as the temperature drops below the 
critical temperature. At each temperature, after equilibration was established, we obtained the 
time series of the energy and magnetization.

On a log-log plot of noise power versus frequency f, the noise power was white (flat) at 
low frequencies and then, as the frequency increased above a frequency that we call the knee
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frequency, the noise decreased as a power law: S(f) ~ f-a. For both the magnetization per 
spin and the energy per spin, we found that for a finite size system, the total noise power (area 
under the S(f) versus f curve) and the low frequency white noise below the knee frequency 
increased as the critical temperature is approached. (We normalized the total noise power to 
the variance.) In the thermodynamic limit the noise power below the knee frequency diverges 
but the knee frequency goes to zero and the total noise power vanishes. We showed that the 
inverse of the knee frequency is approximately the equilibration time [10].

At high frequencies above the knee frequency, the noise power decreases as a power law with 
increasing frequency. Using the fluctuation-dissipation theorem, we expressed the exponent a 
of this power law in terms of the critical exponents for the 2D Ising model which undergoes 
a second order phase transition. Our findings indicate that a maximum in the measurement 
noise can be used as a signature of a phase transition. So if one sees a maximum in the noise, 
this indicates that a phase transition has occurred. However, the absence of a maximum in 
the noise does not mean that there is no phase transition since disorder which can lead to 
an inhomogeneous transition, e.g., a transition occurring at slightly different temperatures in 
different parts of the sample. As a result, in these cases there may not be a clear signature of 
the transition in the noise. In addition some transitions are accompanied by a decrease in the 
noise, e.g., the fluctuations in the center of mass can decrease if a liquid freezes [11]. This work 
was published in Physical Review Letters [10].

2.2 Our new algorithm uses pulse parameters to determine the noise 
spectra of stochastic pulse sequences, e.g., by global spin flips 
in the Ising model.

Noise due to random pulses is ubiquitous. Examples include switching the rotational direction 
of the flagellar motor in Escherichia coli bacteria [12], two-state switching in electrical resistance
[4], and the switching of the value of the magnetization of a system near a phase transition 
[10]. Yet another example is crackling noise in which slowly driven systems produce sudden 
discrete outbursts spanning a broad range of sizes [13]. Instances of crackling noise include the 
sound of paper crumpling, Barkhausen noise from domain movement in ferromagnets [14, 15], 
flux noise from vortices entering a superconductor as the external magnetic field is increased 
[16], and the seismic activity during earthquakes [17].

The question is how these pulses are reflected in the features of the power spectra commonly 
used to characterize noise. The answer could be used to estimate or predict the pulse noise 
spectrum as well as to separate the pulse contribution to the noise spectrum from other sources. 
For example, suppose one wants to determine the critical exponents of a second order phase 
transition from the noise spectra [18, 19, 10]. In a finite size system with a discrete broken 
symmetry, switching between degenerate ordered phases will also contribute to the noise spectra, 
and it is important to separate out this contribution before determining the critical exponents.

We developed a general algorithm that uses a distribution of pulse parameters to determine 
the noise spectrum of a sequence of stochastic pulses. These parameters include the height and 
duration of a pulse as well as the time between sucessive pulses. We applied the algorithm to 
the 2D ferromagnetic Ising model. From our Monte Carlo simulations, we noticed that just 
below the critical temperature TC, rather than being flat, the low frequency noise spectra of
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the magnetization has a second rise as the frequency decreases below the knee frequency. It 
finally flattens off at very low frequencies. We showed that this second rise was due to the 
magnetization flips of almost the entire (finite size) spin system by extracting a simplified 
signal from the magnetization time series. The simplified signal was a sequence of pulses due 
to magnetization jumps involving most of the spins of the system. Then we compared the 
noise spectrum of this simplified time series to the noise spectrum from the simulations and 
found that they agreed at low frequencies (below the knee frequency where the second rise is 
seen). We also deduced the distribution of pulse parameters and used our algorithm to predict 
the noise spectrum. The result was in excellent agreement with the spectrum of the simplified 
signal. This work has been published in Physical Review B [20].

2.3 Microscopic calculation shows fluctuating two level systems pro­
duce critical current noise in superconducting Josephson junc­
tions.

The superconducting Josephson junction (JJ) qubit is a leading candidate in the design of a 
quantum computer, with several experiments recently demonstrating single qubit preparation, 
manipulation, and measurement [21, 22, 23, 24], as well as the coupling of qubits [25, 26, 27]. 
A significant advantage of this approach is scalability, as these qubits may be readily fabricated 
in large numbers using integrated circuit technology. A major obstacle to the realization of 
quantum computers with superconducting Josephson junction qubits is decoherence of the 
quantum mechanical wavefunction. The goal of this aspect of our research has been to elucidate 
the microscopic sources of this decoherence and to suggest ways to eliminate or reduce these 
culprits. We have been working closely with experimentalists who are leaders in the field, 
especially John Martinis (UC Santa Barbara) and Robert McDermott (Wisconsin).

Recent experimental evidence [28] indicates that the dominant source of decoherence is two 
level systems (TLS) in the insulating barrier of the junction as well as in the dielectric material 
(e.g., SiO2) that is typically used as an insulator in the fabrication of integrated circuit chips. 
Two level systems have been used for years to describe the low energy excitations in amorphous 
materials at low temperatures (below 1 K) [29, 30, 31, 32]. The microscopic nature of two level 
systems is still unknown. However, one can think of a two level system as an atom or group of 
atoms that can sit in one of two positions. So think of a double well potential with an atom 
tunneling between the two positions.

Fluctuating two level systems produce low frequency 1/f critical current noise S1c [33, 34, 35, 
36, 37]. However, a simple microscopic model showing this was lacking. In a common scenario 
for S1c [36], two level systems in the oxide tunnel barrier affect conduction through nanometer 
sized channels. But something is troubling about this scenario. Namely, how can tiny defects 
a few angstroms in width have a noticeable effect on a big superconducting wave function 
with a micron sized coherence length that is orders of magnitude larger than the perturbing 
defect? The answer is that the tunneling current is exponentially sensitive to perturbations of 
the tunnel barrier. We confirmed this with a microscopic calculation of S1c due to fluctuating 
TLS in the barrier and obtained good quantitative agreement with experiment. This work has 
been published in Physical Review Letters [38].

Previous theoretical work postulated that the qubit was coupled to fluctuating defects by
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putting a coupling term into the Hamiltonian [39, 40, 41, 42, 43, 44], but no one had shown 
how this coupling arises microscopically. We calculated the 1/f critical current noise S1c due 
to thermally fluctuating TLS that have electric dipole moments. We assumed that the current 
I through the Josephson junction is given by I = Ic sin 5 where Ic is the critical current and 5 
is the phase difference between the superconductors. We started by calculating how a dipole 
modifies the junction’s potential barrier U(r). We then used a WKB formalism to compute the 
tunneling matrix element Tlr ~ exp (—VU) between the left (L) and right (R) electrodes. The 
critical current Ic is proportional to (|TLR|2) averaged over the junction [45]. We considered 
elastic electron tunneling where different orientations of the dipole corresponded to different 
values of TLr and hence, Ic. We could obtain S1c since each fluctuating dipole behaves as 
a random telegraph variable that has a Lorentzian noise spectrum. By averaging over the 
standard TLS distribution, and each dipole’s orientation and position along the z—axis, we 
obtained S1c. At low frequencies we found 1/f behavior for S1c, and our values are in good 
agreement with the corresponding experimental values [46, 47, 37]. Our model predicts that 
the noise is very sensitive to the tunnel barrier thickness d and that S1c ~ d5, implying that 
the noise can be greatly reduced by decreasing the tunnel barrier thickness.

2.4 Saturation of two level systems does not affect charge noise in 
Josephson junction qubits.

Fluctuating two level systems (TLS) with electric dipole moments in the substrate and in the 
tunnel junction produce charge noise in Josephson junction qubits. (The tunnel junctions are so 
small that most of the TLS are in the substrate.) This occurs because the two level fluctuators 
that have electric dipole moments can induce image charges in the nearby superconductor and 
hence produce charge noise Sq(w). [46, 48, 47, 49, 50, 41, 42, 43]

Microwaves used to manipulate the qubit also drive the TLS with electric dipole moments. 
Let us denote the electric field intensity of the microwaves by I. It was not widely appreciated in 
the qubit community that TLS can easily be strongly saturated if I ^ Ic, where Ic is the critical 
electric field intensity. Saturated TLS are in steady state with equal populations of their upper 
and lower levels. Previous theories of charge noise [41, 42, 43] neglected the important issue of 
the saturation of two level systems by electric fields used to manipulate the qubits. Dielectric 
(ultrasonic) experiments on insulating glasses at low temperatures found that when the electric 
(acoustic) field intensity I used to make the measurements exceeds the critical intensity Ic, the 
dielectric (ultrasonic) power absorption by the TLS is saturated, and the attenuation decreases 
as the field intensity increases [51, 52, 53, 54, 28]. (If E cos(Ot) denotes the electric field, then we 
define the intensity I = E2.) Previous theories of charge noise in Josephson junctions assumed 
that the TLS were not saturated, i.e., that I ^ Ic. This seems sensible since charge noise 
experiments [55] are done in the limit where the qubit absorbs only one photon. However, 
simple estimates show that the stray electric fields associated with this photon could saturate 
two level systems in the dielectric substrate which supports the qubit.

So we explored the consequences of TLS saturation on charge and polarization noise. We 
considered both the random fluctuations of the TLS as well as the fact that the dipole moments 
of these TLS couple to the applied ac electric field of the microwaves that drive the system. To 
do the calculation, we expressed the noise spectral density in terms of density matrix elements.
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To determine the dependence of the density matrix elements on the ratio I/Ic, we found the 
steady state solution for the density matrix using the Bloch-Redfield differential equations [56]. 
We then obtained an expression for the spectral density of charge fluctuations as a function 
of frequency f and the ratio I/Ic. We found 1/f charge noise at low frequencies, and white 
(constant) charge noise at high frequencies. Using a flat density of states, we found that TLS 
saturation has no effect on the charge noise at either high or low frequencies. This work has 
been published in Physical Review B [57].

2.5 Noise in Spin Glasses

Having studied noise in the vicinity of phase transitions in ordered systems, we turned our 
attention to disordered systems. In particular we used computer simulations to see if noise 
could be used as a probe of a spin glass transition. In a spin glass [58], the exchange constants 
Jij between the ith and jth spins are random, resulting randomly oriented spins even at low 
temperatures.

Can noise be a probe of spin glass transitions?
In ordered systems we saw that the total noise power and the low frequency noise have a 

maximum at the critical temperature TC for the second order phase transition in the 2D Ising 
model and for the first order phase transition in the 2D 5-state Potts model. We wanted to see 
if this was also true for a spin glass. To the best of my knowledge, no one had done simulations 
to look at the noise in spin glasses.

Noise in spin glasses could be related to flux noise in SQUIDs and Josephson 
junction qubits.

One of the reasons why noise in spin glasses is interesting and important is that it can be 
related to flux noise seen in superconducting quantum interference devices (SQUIDs) and in 
superconducting Josephson junction qubits [59]. Flux noise is one of the dominant sources of 
noise and decoherence in Josephson phase qubits [60] and flux qubits [61, 62]. It has a 1/f 
spectrum, and at f = 1 Hz, the magnitude is of order 1 ^$0/Hz1/2, where $0 = h/2e is the 
magnetic flux quantum. Despite its name, flux noise is not caused by fluctuating magnetic 
vortices. This has been shown experimentally by making SQUIDS with superconducting wires 
that are too narrow (~ 2 ^m) to trap or nucleate a vortex within them [63, 64, 65, 66]. 
Nevertheless, these narrow line SQUIDs still exhibit flux noise.

Recent work from Robert McDermott’s group at Wisconsin [66] has shown that flux noise 
is produced by fluctuating magnetic defects of unknown origin. These magnetic defects appear 
in aluminum and niobium SQUIDs which are not supposed to have magnetic impurities. They 
are thought to be on the surface and their density is estimated to be about 5 x 1017 m-2 which 
corresponds to a typical spacing of about 1 nm. The Moler group at Stanford has recently seen 
paramagnetic spins on gold and AlOx using scanning SQUID microscopy between 25 mK and 
0.6 K [67]. The fact that they see magnetic spins on oxide-free gold implies that the oxide is 
not an essential ingredient in these paramagnetic impurities. The Stanford group found that 
the susceptibility versus temperature T approximately followed a Curie law x ~ 1/T. The 
Wisconsin group uses SQUIDs to measure the flux 0 as a function of temperature. Their data 
can be fit to a Curie-Weiss law (0 ~ x ~ 1/(T — TC)) with a small Curie temperature TC 
between 0 to 60 mK. The value of TC is difficult to pinpoint since there is an arbitrary flux 
offset. However, they estimate an interaction energy scale between the spins of order 10 mK
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[66]. At 55 mK in one of the flux versus temperature curves [66], they also observed a cusp 
that is reminiscent of the cusp seen in the susceptibility of a spin glass at the spin glass tran­
sition temperature. Assuming that the flux is due to the magnetization of the magnetic spins, 
these findings indicate that the spins either are noninteracting, or have a weak ferromagnetic 
interaction with each other, or are randomly interacting with each other as in a spin glass.

If the spins are interacting, what is the nature of the interaction? Dipole-dipole interactions 
with a magnetic dipole moment of a Bohr magneton at a distance of 1 nm are too weak to 
account for TC ~ 50 mK. Direct exchange is also too weak. Faoro and Ioffe [68] have proposed 
that RKKY interactions are responsible. RKKY interactions between two localized spins a 
distance r apart are mediated by conduction electrons with spins that oscillate in sign as 
cos(2kFr)/r3 where kF is the Fermi wavevector. RKKY interactions between randomly placed 
spins are well known to produce a spin glass.

Ising spin glass noise is consistent with flux and inductance noise in SQUIDs
We did Monte Carlo simulations of 2D and 3D Ising spin glasses that produce magnetization 

noise SM consistent with flux noise. At low frequencies SM is a maximum at the critical 
temperature TC in 3D, implying that flux noise should be a maximum at TC. The second spectra 
of the magnetization noise and the noise in the susceptibility are consistent with experimentally 
measured SQUID inductance noise. This work was published in Physical Review Letters [69].
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