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I. INTRODUCTION

In this paper we derive equations for the image formation of transverse

profile of a relativistic beam obtained by means of optical transition radiation

(OTR) from flat and rough metal surfaces. The motivation behind this study

lies in the desire to suppress coherent transition radiation (COTR) observed

in experiments at modern free electron lasers [1].

The physical mechanism behind the problem of COTR is that the OTR is

predominantly radiated at small angles of order of 1/γ where γ is the rela-

tivistic factor of the beam. This means that the transverse formation size of

the image is of order of λγ where λ = λ/2π with λ the radiation wavelength.

For relativistic beams this can be comparable or even exceed the transverse

size of the beam, which would mean that the image of the beam has very little

to do with its transverse profile. It is fortuitous, however, that the incoherent

image is formed by adding radiation energy of electrons and results in the

transverse formation size being of order of λ/θa, with θa is the aperture angle

of the optical system [2]. The COTR image, in contrast, is formed by adding

electromagnetic field of electrons, and leads to the formation size λγ. In sit-

uations when the COTR intensity exceeds that of OTR the COTR imaging

makes the diagnostic incapable of measuring the beam profile.
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It is clear from the previous explanation that a way to suppress COTR

would be either to get rid of the central part of the radiation withing the cone

1/γ or somehow spread it out in a wider range of angles. The former can be

implemented by masking angles near the axis in the optical system [3], and the

latter may be achieved by using a rough surface with local angles randomly

varying from point to point by amount larger than 1/γ. Analysis of the image

formation for these two cases is the subject of this paper.

II. EQUATIONS FOR ELECTRIC FIELD OF RADIATION

For simplicity of analysis we assume that the beam hits the surface at right

angle and study the backward propagating OTR. To calculate the radiation

field in the far zone we use the Kirchhoff diffraction integral [4–6] with the

following equation for the electric field E radiated in the direction of vector

k,

E =
eikR

R

i

2π
k ×

∫
e−ik·rn× Es(r)dS , (1)

where Es is the electric field generated by the currents on the surface (needed

to compensate the tangential component of the incident field of the beam),

r = (x, y) is the two-dimensional vector in the plane of the metal surface, k is

the wave vector in the direction of the radiation, k = |k| = ω/c, and n is the

unit vector perpendicular to the surface of the metal directed in vacuum. In

the small-angle approximation (that is when the angle θ between k and n is

small) this equation can be simplified. Introducing a 2D vector κ = (kx, ky)

and neglecting small terms in the product k × n× Es we find:

E(κ) = −e
ikR

R

ik

2π

∫
e−iκ·rEsd2r. (2)

Note that κ ≈ kθ.
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Considering (2) as a 2D Fourier integral we can invert it to obtain

Es = − R

2πik
e−ikR

∫
eiκ·rEd2κ. (3)

III. TRANSITION RADIATION OF A SINGLE ELECTRON FROM

FLAT SURFACE

Consider a relativistic electron that hits the metal at the origin of the

coordinate system. As is well known, the electric field Ee of the incident

electron at frequency ω = ck is

Ee =
ke

cπγ
K1

(
kr

γ

)
ν, (4)

with ν = r/r and K1 the modified Bessel function of the second kind. The

total field Ee + Es on the surface of a perfectly conducting metal is equal to

zero, hence Es = −Ee. It is clear that E given by (2) is directed along κ, that

is E = Eκ/κ. For E we obtain

E =
eikR

R

i

2π

k2e

cπγ

∫
d2rK1

(
kr

γ

)
e−iκ·rν · κ

κ

=
eikR

R

i

2π

k2e

cπγ

∫ ∞
0

rdr

∫ 2π

0

dφK1

(
kr

γ

)
e−iκr cosφ cosφ. (5)

The integral over φ can be taken using∫ 2π

0

e−iα cosφ cosφ dφ = −2πiJ1(α), (6)

with the result

E =
eikR

R

k2e

cπγ

∫ ∞
0

K1

(
kr

γ

)
J1(krθ)rdr =

eikR

R

e

cπ

θ

θ2 + γ−2
. (7)

The spectral intensity of the radiation is proportional to the quantity

|E|2 =
( e

cπR

)2 θ2

(θ2 + γ−2)2 , (8)

3



which is a well known angular distribution of the transition radiation from a

single relativistic electron. Integrated over the angle from zero to θm � 1/γ

the intensity is

2π

∫ θm

0

|E|2θdθ = 2π
( e

cπR

)2
(

ln(θmγ)− 1

2

)
. (9)

From this expression we see that the integrated intensity increases (logarith-

mically) with θm, which means that a noticeable radiation energy goes into

angles much larger than 1/γ. As we will see in the next section, this is the

reason behind the ability of an OTR foil to make an image of a beam with

cross sectional dimensions much smaller than λγ.

IV. POINT-SPREAD FUNCTION FOR A FLAT FOIL

In this section we will calculate the point-spread function (PSF) for a flat

surface of the foil. PSF is defined as intensity distribution in an image of a

single electron. To simplify consideration, we accept a simple model of the

image system which consists of a lens located in the far zone and focuses the

light to make an image with unit magnification. Mathematically, the electric

field E in the image plane of the lens is defined by the following integral [1]:

E(r) = A

∫ kθa

0

d2κE(κ)eiκ·r, (10)

where now r is a two-dimensional vector in the image plane, θa is the collection

angle for the imaging apparatus, and A is a constant whose exact value we

will not need. We can rewrite this integral as

E(r) = A

(∫ ∞
0

d2κE(κ)eiκ·r −
∫ ∞
kθa

d2κE(κ)eiκ·r
)
, (11)

and then use (3) in the first integral:

E(r) = A

(
−ik
R
eikREs −

∫ ∞
kθa

d2κE(κ)eiκ·r
)
. (12)
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Assuming θa � 1/γ, for the second integral we will approximate (7) by

E =
eikR

R

e

cπ

1

θ
, (13)

which gives

E(r) = A
eikR

R

(
2ik2e

cγ
K

(
kr

γ

)
ν − e

cπ

∫ ∞
kθa

d2κ
κ

κ

1

θ
eiκ·r

)
. (14)

The second integral in this equation will be directed along ν = r/r,∫ ∞
kθa

d2κ
κ

κ

1

θ
eiκ·r = Bν, (15)

with

B =

∫ ∞
kθa

κdκ
1

θ

∫ 2π

0

dφ cosφeiκr cosφ = 2πik
1

r
J0(krθa). (16)

This gives for E(r)

E(r) = Aiν
2ke

c

eikR

R

(
k

γ
K1

(
kr

γ

)
− 1

r
J0(krθa)

)
. (17)

In the limit γ →∞ one can approximate K1(kr/γ) ≈ γ/kr with the following

result

E = Aiν
2ke

c

eikR

R

1− J0(krθa)

r
. (18)

This function has a zero value at r = 0 and decays with r as 1/r at large

distances.

The distribution of the intensity on the image screen is proportional to

IPSF ≡ E ·E∗ = |A|2 4k4e2

R2c2
θ2
a

(1− J0(ξ))2

ξ2
, (19)

with ξ = krθa. As follows from (19) the spot size is of order of ξ ∼ 1, or

r ∼ 1/kθa. To find the total energy in the spot size, we need to integrate the

quantity
∫∞

0
dξ ξE · E∗. Note that with expression (19) the integral diverges

5



at ξ → ∞ which means that for energy calculations one should use a more

accurate expression (17) for the field. Analysis shows that with that expression

the energy integral converges at r ∼ λγ (that is the transverse formation size),

and involves ln γ.

Our analysis can be easily extended to the case when there is a mask on the

lens that blocks small angles. Let us assume that the mask blocks radiation

from the foil propagating within 0 < θ < θ0. In this case the integral (10)

extends from θ0 to θa and Eq. (18) is replaced by

E = Aiν
2ke

c

eikR

R

J0(krθ0)− J0(krθa)

r
. (20)

This function oscillates and decays at large distances as r−3/2. The integral∫∞
0
dξ ξE · E∗ with E given by (20) now converges and gives finite energy in

the field of the image.

For illustration, in Fig. 1 we plot the functions θ2
a(1− J0(ξ))2/ξ2 (blue line)

and θ2
a(J0(1

2
ξ))2 − J0(ξ))2/ξ2 (red line) for 1/k = 0.1 µm and θa = 100 mrad

(both functions are multiplied by 103).
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FIG. 1: PSF functions for a flat surface.
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V. IMAGE OF TRANSVERSE BEAM PROFILE FOR A FLAT SUR-

FACE

Consider now an image generated by a beam consisting of many electrons

hitting the foil. The electric field of a single electron hitting the foil at point

rn will result in the electric field on the detector given by (18) with the origin

shifted from zero to rn

En(r, rn, zn) = Ai
2ke

c

eikR

R
eikzn

r − rn
|r − rn|

1− J0(k|r − rn|θa)
|r − rn|

. (21)

In this equation we also added the factor eikzn which is the phase due to the

arrival time at the foil for an electron that has the longitudinal coordinate zn

in the bunch.

In what follows we calculate the averaged intensity distribution of the image

by averaging

N∑
n,l=1

En ·E∗l =
N∑
n=1

|En|2 +
N∑
n6=l

En ·E∗l (22)

over the distribution function of electrons in the beam. Here N is the total

number of electrons. To carry out the averaging we need a two-particle dis-

tribution function f2(r, z, r′, z′) which gives the probability that in a pair of

electrons one is located at r, z and the other one at r′, z′. Following a standard

representation in statistical physics, we write f2 as a product of one-particle

distributions plus a correlation function g

f2(r, z, r′, z′) = f1(r, z)f1(r′, z′) + g(r, z, r′, z′). (23)

Using the distribution function (23) the averaging is carried out as

I(r) = N

∫
d2r1dz1f1(r1, z1)|E1(r, r1, z1)|2 (24)

+N(N − 1)

∫
d2r1dz1d

2r2dz2E1(r, r1, z1) ·E2(r, r2, z2)∗

× [f1(r1, z1)f1(r2, z2) + g(r1, z1, r2, z2)].
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Let us consider the first term in (24) which we denote by Iincoh. It is due to

the incoherent transition radiation. Note that |E1(r, r1, z1)|2 does not depend

on z1. Using (18) we obtain for this term

Iincoh(r) = N |A|2 4k2e2

R2c2

∫
d2r1f̃1(r1)

(1− J0(kθa|r − r1|))2

|r − r1|2
, (25)

where f̃1 =
∫
dzf1. For illustration we show in Fig. 2 the plot of Iincoh(r) for
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FIG. 2: Comparison of the incoherent image (red dots) with the original beam

profile (blue line). We assume λ/θa = 1 µm and σx = σy = 20 µm. The dashed line

shows a Gaussian fit to the image with σx = σy = 23 µm. Magenta dots show the

image with the central part of radiation masked (θ0 = 1
2θa) and intensity multiplied

by a factor of 4.6. One can see that the masked image has a better representation

of the beam profile compared with the one without the mask.

a beam with a Gaussian profile with rms transverse sizes σx = σy = 20 µm.

For the particular choice of parameters indicated in the caption to the figure,

the measured profile has σx = σy = 23 µm—close to the original values of the

beam parameters.

Let us consider now the second term in (24), due to coherent transition

radiation, which we denote by Icoh. We assume that the 1-particle distribution
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function f1 is a smooth function of z and has a negligible harmonic contents at

the wavenumber k. Then the only contribution comes from the g term in (24),

Icoh(r) = N2

∫
d2r1dz1d

2r2dz2g(r1, z1, r2, z2)E1(r, r1, z1) ·E2(r, r2, z2)∗,

(26)

where we replaced N(N − 1) ≈ N2.

To simplify calculations, we will focus on a simple case when

f2(r, z, r′, z′) = f1(r)f1(r′)(1 + g(z − z′)). (27)

This is the case of a beam that on average is uniform in z with particles’

positions correlated in that direction, while there are no correlations in the

radial direction. The model (27) is reasonable when the correlation length

along the bunch is much smaller than the bunch length—a typical situation

for OTR with submicron wavelengths. For the model (27) we introduce

ĝ(k) =

∫
dzeikzg(z1 − z2). (28)

Using (21) in (26) we obtain

Icoh(r) = |A|2 4k2e2

R2c2
N2Lĝ(k)

(∫
d2r1f1(r1)

(r − r1)

|r − r1|2
[1− J0(k|r − r1|θa)]

)2

,

(29)

where L is the length of the bunch. The integral on the right hand side is not

localized around point r—the whole beam area contributes to the light at one

point of the image.

For further comparison with rough surface (considered in the following sec-

tions) it is convenient to separate the factor

|A|2 4k4e2

R2c2
N2Lĝ(k) (30)
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from the integral in (29) and redefine Icoh as dimensionless quantity

Icoh = k−2

(∫
d2r1f1(r1)

(r − r1)

|r − r1|2
[1− J0(k|r − r1|θa)]

)2

. (31)

In case of a mask that blocks radiation at 0 < θ < θ0, Eq. (31) is replaced by

Icoh = k−2

(∫
d2r1f1(r1)

(r − r1)

|r − r1|2
[J0(k|r − r1|θ0)− J0(k|r − r1|θa)]

)2

.

(32)

This result immediately follows from (31) if one compares (18) and (20). To

analyze (32) we will note that

r

|r|2
[J0(krθ0)− J0(krθa)] =

1

2πi

∫ kθa

kθ0

d2κ
κ

κ2
eiκ·r, (33)

and rewrite (32) as

Icoh =

(
1

2πk

)2 ∣∣∣∣ ∫ d2r1f1(r1)

∫ kθa

kθ0

d2κ
κ

κ2
eiκ·(r−r1)

∣∣∣∣2. (34)

Assuming a Gaussian beam profile

f1(r) =
1

2πσ2
e−r

2/2σ2

, (35)

and using

1

2πσ2

∫
d2r1e

−r21/2σ2

e−iκ·r1 = e−κ
2σ2/2, (36)

we obtain

Icoh =

(
1

2πk

)2 ∣∣∣∣ ∫ kθa

kθ0

d2κ
κ

κ2
eiκ·re−κ

2σ2/2

∣∣∣∣2. (37)

This integral becomes exponentially small when kσθ0, kσθa � 1.

Let us return to the case of no mask, θ0 = 0, and assume that and kθaσ � 1.

In this limit we can then replace the upper limit in the integral by infinity,

Icoh =

(
1

2πk

)2 ∣∣∣∣ ∫ ∞
0

d2κ
κ

κ2
eiκ·re−κ

2σ2/2

∣∣∣∣2 =

(
1

kr

)2

(1− e−r2/2σ2

)2. (38)
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This function is shown in Fig. 3 by a solid blue line. It indicates a “doughnut”

shape of the image with a dark region near the center and illuminated ring1.
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FIG. 3: Comparison of the coherent image (solid blue line) with the (Gaussian)

beam profile (dashed line). Plotted is the quantity Icoh(kσ)2.

Let us also consider a flat beam profile of radius R

f1(r) =
1

πR2
h(R− r), (39)

with h the step function defined by h(x) = 1 for x ≥ 0 and h(x) = 0 for x < 0.

Note that the rms size of such a beam is σx = σy = σ = 1
2
R. Using

1

πR2

∫
d2r1h(r1 −R)e−iκ·r1 =

1

πR2

∫ R

0

r1 dr1

∫ 2π

0

dφ e−iκr1 cosφ

=
2

Rκ
J1(κR), (40)

1 The “doughnut” shape of COTR image was also derived in [1], where it was shown that

Icoh is proportional to the gradient of the transverse distribution f1. However, this result

was obtained in the limit σ � λγ, while in this paper we assume an opposite inequality

(that is we consider the limit γ →∞), more appropriate for highly relativistic beams.

11



we obtain (again assuming a mask covering θ < θ0)

Icoh =

(
1

2πk

)2 ∣∣∣∣ ∫ kθa

kθ0

d2κ
κ

κ2
eiκ·r

2

Rκ
J1(κR)

∣∣∣∣2
= 4

(
1

kR

)2 ∣∣∣∣ ∫ kθa

kθ0

dκJ1(κr)
1

κ
J1(κR)

∣∣∣∣2. (41)

The plot of this function for θ0 = 1
2
θa and R = 20/kθa is shown in Fig. 4.

There is clearly no resemblance of this image to the original Gaussian profile
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FIG. 4: Coherent image of a flat profile with a mask. Plotted is the quantity

105Icoh(kR)2.

of the beam.

VI. DIFFRACTION RADIATION FROM A ROUGH SURFACE

Let’s consider a rough surface whose local height at point (x, y) deviates

from a flat one by ξ(x, y) where ξ(x, y) is a normally distributed random field

with 〈ξ〉 = 0. Illustration of a random surface profile is given by Fig. 5.

Deviation of the metal surface from a flat one modifies the Kirchhoff inte-

gral (1) in two places. First, it adds an additional phase factor e−ikξ(r) under
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FIG. 5: Illustration of a rough surface profile: the function ξ versus x (left plot)

and the angle dξ/dx versus x (right plot).

the integral due to the increased (for ξ < 0) or decreased (for ξ > 0) path

needed for a wave to propagate from the surface element at point x, y. Sec-

ond, the normal vector n to the surface now varies from one point to another.

This second effect is small if we assume that the characteristic value of the

roughness angle, |∇ξ|, is small. We will neglect it in what follows. Finally,

one has to add an additional phase e−ikξ(r) to the right hand side of (4) for

the field of the electron at the surface of the metal. Combining both phase

factors, instead of (5) we obtain

E(κ) =
κ

κ

eikR

R

i

2π

k2e

cπγ

∫
d2rK1

(
kr

γ

)
e−2ikξ(r)e−iκ·rν · κ

κ
. (42)

To calculate the spectral intensity of radiation E · E∗ we will average it

over various realizations of the roughness profiles denoting the averaging with

angular brackets,

〈E ·E∗〉 =
1

4π2R2

k2e2

π2c2γ2θ2

∫∫
K1

(
kr

γ

)
K1

(
kr′

γ

)
e−iκ·(r−r

′)

× 〈e2ik(ξ(r)−ξ(r′))〉(ν · κ)(ν ′ · κ)d2rd2r′ . (43)

For a normally distributed roughness field with 〈ξ(r)〉 = 0 the following equa-
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tion holds [7],

〈e2ik(ξ(r)−ξ(r′))〉 = e−2k2〈[ξ(r)−ξ(r′)]2〉 = e−4k2σ2
ξe4k2ψ(|r−r′|), (44)

where ψ is the correlation function of the field, and σξ is the rms height of

roughness. In what follows we will assume a simple exponential form for the

correlation function,

ψ(r) = σ2
ξe
− r

2

r20 (45)

with r0 the correlation distance.

Let us assume that we are dealing with roughness which has the property

kσξ � 1. Rewriting this inequality as σξ � λ, we see that it means that

the rms roughness height is much larger than the reduced wavelength of light.

This is an important condition—when it is satisfied, all the emitted light has

a diffuse character. In the opposite case most of the light is specular, and the

situation is not much different from a smooth flat foil. In the limit kσξ � 1

the main contribution to the integral (43) comes from the region |r− r′| � r0

and we can expand the exponential function in (45), ψ(r) ≈ σ2
ξ (1− r2/r2

0),

and use

〈e2ik(ξ(r)−ξ(r′))〉 ≈ e−4k2σ2
ξ |r−r

′|2/r20 . (46)

We will also require 1 � r0/σξ � γ. Noting that θr ≡ σξ/r0 has the

meaning of the characteristic slope of the roughness, this condition can also

be written as

1� θr � 1/γ, (47)

that is the slope is larger than 1/γ, but much smaller than one.
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VII. PSF FOR A ROUGH SURFACE

We can now calculate the PSF for a rough OTR surface. The equation for

the image field is given by (10) with E(κ) defined by (42). Combining these

two equations we find for the intensity of the image E ·E∗ (which is, as before,

defined as I) the following expression,

I(r) ≡ E(r) ·E∗(r) =

(
1

2πR

k2e

cπγ
A

)2 ∫ kθa

0

d2κeiκ·r
κ

κ2
(48)

×
∫
d2r′K1

(
kr′

γ

)
e−2ikξ(r′)e−iκ·r

′
ν ′ · κ

·
∫ kθa

0

d2κ′e−iκ
′·r κ

′

κ′2

∫
d2r′′K1

(
kr′′

γ

)
e−2ikξ(r′′)e−iκ

′·r′′ν ′′ · κ′.

We average I over the roughness, replace K1 by its asymptotic expression in

the limit of large γ, K1 (kr/γ) ≈ γ/kr, and use (46):

〈I(r)〉 =

(
1

2πR

ke

cπ
A

)2 ∫ kθa

0

d2κd2κ′
κ′ · κ
κ′2κ2

ei(κ−κ
′)·r

×
∫
d2r′

r′
d2r′′

r′′
〈e−2ik(ξ(r′)−ξ(r′′))〉eiκ′·r′′−iκ·r′(ν ′ · κ)(ν ′′ · κ′)

=

(
2k2e

Rc
A

)2(
1

2π

)4
1

k2

∫ kθa

0

d2κd2κ′
κ′ · κ
κ′2κ2

ei(κ−κ
′)·r

×
∫
d2r′

r′
d2r′′

r′′
e−4k2σ2

ξ |r
′−r′′|2/r20eiκ

′·r′′−iκ·r′(ν ′ · κ)(ν ′′ · κ′). (49)

Note that 〈I(r)〉 involves an 8-dimensional integration!

To calculate the integral (49) we first separate the factor (2k2eA/Rc)
2
,

〈I(r)〉 =

(
2k2e

Rc
A

)2

J, (50)

where

J =

(
1

2π

)4
1

k2

∫ kθa

0

d2κd2κ′
κ′ · κ
κ′2κ2

ei(κ−κ
′)·r

×
∫
d2r′

r′
d2r′′

r′′
e−4k2σ2

ξ |r
′−r′′|2/r20eiκ

′·r′′−iκ·r′(ν ′ · κ)(ν ′′ · κ′) (51)
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This integral is somewhat simplified in Appendix A and reduced to a 4-

dimensional integral (A11) which can be computed numerically. The resulting

PSF function, for a particular choice parameters, is illustrated in Fig. (6).
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10
3
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FIG. 6: Plot of the function (A11) for 2θr = 0.1, θa/2θr = 3 and λ = 0.1 µm.

VIII. COTR IMAGE FROM A ROUGH SURFACE

We now proceed to calcuation of the COTR image of the beam generated

with a rough surface. For this we use (26) averaged over the roughness

〈Icoh〉 = N2

∫
d2r1dz1d

2r2dz2g(r1, z1, r2, z2)〈E1(r, r1, z1) ·E2(r, r2, z2)∗〉.

(52)

For the electric field E1 we use (10) and (42) to which we introduce the phase

factor eikz1 (see (21))

E1(r, r1, z1) = eikz1
eikR

R

i

2π

k2e

cπγ
A

∫ kθa

0

d2κ
κ

κ
eiκ·(r−r1)

×
∫
d2r′K1

(
kr′

γ

)
e−2ikξ(r′)e−iκ·r

′
ν ′ · κ

κ
. (53)
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We then obtain

〈Icoh〉 = N2

(
1

2π

k2e

Rcπγ
A

)2

Lĝ(k)

∫
d2r1d

2r2f1(r1)f1(r2)

×
∫ kθa

0

d2κ1
κ1

κ1

eiκ1·(r−r1)

∫
d2r′K1

(
kr′

γ

)
e−iκ1·r′ν ′ · κ1

κ1

×
∫ kθa

0

d2κ2
κ2

κ2

e−iκ2·(r−r2)

∫
d2r′′K1

(
kr′′

γ

)
eiκ2·r′′ν ′′ · κ2

κ2

× 〈e−2ik(ξ(r′)−ξ(r′′))〉. (54)

Using again the approximation K1 (kr/γ) ≈ γ/kr and (46) and separating the

numerical factor (30) we obtain

〈Icoh〉 = |A|2 4k4e2

R2c2
N2LJcoh (55)

with

Jcoh =

(
1

2π

)4

k−2

∫
d2r1d

2r2f1(r1)f1(r2)

×
∫∫

d2r′

r′
d2r′′

r′′
e−4k2σ2

ξ |r
′−r′′|2/r20 (56)

×
∫∫ kθa

0

d2κ1d
2κ2

(
κ1

κ1

· κ2

κ2

)
eiκ1·(r−r1−r′)e−iκ2·(r−r2−r′′)

×
(
ν ′ · κ1

κ1

)(
ν ′′ · κ2

κ2

)
.

Using the Gaussian transverse distribution (35) this integral is simplified and

reduced to a one-dimensional integral in Appendix B. For illustration, it is

plotted in Fig. 7 and compared with the of COTR from a flat surface.
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FIG. 7: Comparison of the coherent image from a rough surface according to (38)

with the true profile (dashed line). We assumed 2kθrσ = 20, θa � θr, 2θr = 0.1,

λ = 0.1 µm.
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APPENDIX A

We start from performing integration over κ and κ′ in (51). Let us denote

by R the following vector integral

R =

∫ kθa

0

d2κ
κ

κ2
eiκ·(r−r

′)(ν ′ · κ). (A1)

In tensor notation Kα = Jα,βν
′
β (summation over repeated indexes is assumed)

where

Jα,β =

∫ kθa

0

d2κ
κακβ
κ2

eiκ·ρ, (A2)

with ρ = r − r′. It is clear that Jα,β = C(ρ)δα,β + D(ρ)ραρβ, where C and

D are scalar functions of their arguments. We have Jα,α = 3C + Dρ2 and

Jα,βραρβ = Cρ2 +Dρ4, from which we find

C =
1

2
Jα,α −

1

2ρ2
Jα,βραρβ, D =

1

2ρ2
Jα,α −

3

2ρ4
Jα,βραρβ. (A3)

For Jα,α and Jα,βραρβ we obtain

Jα,α =

∫ kθa

0

d2κ eiκ·ρ =
2π

ρ
kθaJ1(ρkθa), (A4)

and

Jα,βραρβ =

∫ kθa

0

d2κ
(κ · ρ)2

κ2
eiκ·ρ = 2π (−1 + J0(kθaρ) + kθaρJ1(kθaρ)) ,

(A5)

which gives

C(ρ) =
π

ρ2
(1− J0(tρ)) , D(ρ) =

3π

ρ4

(
1− J0(tρ)− 2

3
ρtJ1(tρ)

)
, (A6)
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where t = kθa. The function C is finite at the origin, but D has a singularity

∼ −πt2/4ρ2.

The integral (51) can now be written as

J =

(
1

2π

)4
1

k2

∫
d2r′

r′
d2r′′

r′′
e−4k2σ2

ξ |r
′−r′′|2/r20

× [C(ρ′)δα,β +D(ρ′)ρ′αρ
′
β]ν ′β[C(ρ′′)δα,µ +D(ρ′′)ρ′′αρ

′′
µ]ν ′′µ, (A7)

where ρ′ = r − r′ and ρ′′ = r − r′′. Note that even though the function D

has a singularity at the origin the integral converges because D is multiplied

by ραρβ. Returning to vector notations, we obtain

J =

(
1

2π

)4
1

k2

∫
d2r′

r′
d2r′′

r′′
e−4k2σ2

ξ |r
′−r′′|2/r20

× [C(ρ′)C(ρ′′)ν ′ · ν ′′ + C(ρ′)D(ρ′′)(ν ′ · ρ′′)(ν ′′ · ρ′′)

+D(ρ′)C(ρ′′)(ν ′ · ρ′)(ν ′′ · ρ′) +D(ρ′)D(ρ′′)(ρ′ · ρ′′)(ν ′ · ρ′)(ν ′′ · ρ′′]. (A8)

It is convenient to change the integration variables from r′ and r′′ to ρ′ and

ρ′′ respectively,

J =

(
1

2π

)4
1

k2

∫
d2ρ′

r′
d2ρ′′

r′′
e−4k2σ2

ξ |ρ
′−ρ′′|2/r20

× [C(ρ′)C(ρ′′)ν ′ · ν ′′ + C(ρ′)D(ρ′′)(ν ′ · ρ′′)(ν ′′ · ρ′′)

+D(ρ′)C(ρ′′)(ν ′ · ρ′)(ν ′′ · ρ′) +D(ρ′)D(ρ′′)(ρ′ · ρ′′)(ν ′ · ρ′)(ν ′′ · ρ′′]. (A9)

We now introduce the variables ζ = 2rkσξ/r0, ζ ′ = 2ρ′kσξ/r0 and ζ ′′ =

2ρ′′kσξ/r0. We also use the notation κ = r0/2σξ = 1/2θr, and redefine C and

D making them dimensionless (and using notations C̃ and D̃)

C̃(ζ) =
1

ζ2
(1− J0(κθaζ)) , D̃(ζ) =

3

ζ4

(
1− J0(κθaζ)− 2

3
κθaζJ1(κθaζ)

)
.

(A10)
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We then have

J =

(
1

2π

)4
π2

κ2

∫
d2ζ ′

|ζ − ζ ′|
d2ζ ′′

|ζ − ζ ′′|
e−|ζ

′−ζ′′|2

× [C̃(ζ ′)C̃(ζ ′′)ν ′ · ν ′′ + C̃(ζ ′)D̃(ζ ′′)(ν ′ · ζ ′′)(ν ′′ · ζ ′′)

+ D̃(ζ ′)C̃(ζ ′′)(ν ′ · ζ ′)(ν ′′ · ζ ′) + D̃(ζ ′)D̃(ζ ′′)(ζ ′ · ζ ′′)(ν ′ · ζ ′)(ν ′′ · ζ ′′]. (A11)

APPENDIX B

We first carry out the integration over r1 and r2 in (56) using∫
d2r1

1

2πσ2
e−r

2
1/2σ

2

e−iκ1·r1 = e−κ
2
1σ

2/2, (B1)

which gives

Jcoh =

(
1

2π

)4

k−2

∫∫
d2r′

r′
d2r′′

r′′
e−4k2σ2

ξ |r
′−r′′|2/r20 (B2)

×
∫∫ kθa

0

d2κ1d
2κ2

(
κ1

κ1

· κ2

κ2

)
eiκ1·(r−r′)−κ21σ2/2e−iκ2·(r−r′′)−κ22σ2/2

×
(
ν ′ · κ1

κ1

)(
ν ′′ · κ2

κ2

)
.

Assuming a large collection angle in the optical system, σ � 1/kθa, we can

extend integration in (B2) over κ1 and κ2 to infinity. One can select in (B2)

the integral

T =

∫ ∞
0

d2κ
κ

κ2
eiκ·(r−r

′)−κ2σ2/2(ν ′ · κ), (B3)

and perform the integration analogous to (A1). In tensor notation Tα = Jα,βν
′
β

where

Jα,β =

∫ ∞
0

d2κ
κακβ
κ2

eiκ·ρ−κ
2σ2/2, (B4)

with ρ = r − r′. It is clear that Jα,β = C(ρ)δα,β + D(ρ)ραρβ from which we

obtain Jα,α = 3C +Dρ2, Jα,βραρβ = Cρ2 +Dρ4 and

C =
1

2
Jα,α −

1

2ρ2
Jα,βραρβ, D =

1

2ρ2
Jα,α −

3

2ρ4
Jα,βραρβ, (B5)
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with

Jα,α =

∫ ∞
0

d2κ eiκ·ρ−κ
2σ2/2 =

2π

σ2
e−ρ

2/2σ2

, (B6)

and

Jα,βραρβ =

∫ ∞
0

d2κ
(κ · ρ)2

κ2
eiκ·ρ−κ

2σ2/2 = 2π

(
e−ρ

2/2σ2

(
ρ2

σ2
+ 1

)
− 1

)
.

(B7)

We now find

C(ρ) =
π

ρ2
(1− e−ρ2/2σ2

), D(ρ) =
π

ρ4

(
3− 3e−ρ

2/2σ2 − 2ρ2

σ2
e−ρ

2/2σ2

)
.

(B8)

The function C is finite at the origin, but D has a singularity ∼ 1/ρ2 which,

however, does not lead to problems because D is multiplied by ραρβ. We now

obtained exactly the result (A8) but with C and D defined by (B8):

Jcoh =

(
1

2π

)4
1

k2

∫
d2r′

r′
d2r′′

r′′
e−4k2σ2

ξ |r
′−r′′|2/r20

× [C(ρ′)C(ρ′′)ν ′ · ν ′′ + C(ρ′)D(ρ′′)(ν ′ · ρ′′)(ν ′′ · ρ′′)

+D(ρ′)C(ρ′′)(ν ′ · ρ′)(ν ′′ · ρ′) +D(ρ′)D(ρ′′)(ρ′ · ρ′′)(ν ′ · ρ′)(ν ′′ · ρ′′].

(B9)

Some further progress can be made if we make an additional assumption.

Note that functions C and D vary on the scale of order of ρ ∼ σ and the

factor e−4k2σ2
ξ |r

′−r′′|2/r20 effectively limits the difference |r′ − r′′| ∼ r0/kσξ. Let

us assume that

σ � r0

kσξ
∼ λ

θr
, (B10)

that is the transverse size of the beam is larger than the reduces wavelength

divided by the roughness angle. In this limit we can set ρ′′ = ρ′ in the ar-

guments of C and D and carry out integration over r′′ taking into account

22



the only dependence of the factor e−4k2σ2
ξ |r

′−r′′|2/r20 on r′′. Hence we need to

calculate the vector

T =

∫
d2r′′

r′′
e−a

2|r′−r′′|2ν ′′, (B11)

where a = 2kσξ/r0. It is clear that it is directed along ν ′, T = T ν ′, with

T =

∫
d2r′′

r′′
e−a

2|r′−r′′|2ν ′′ · ν ′ = 2π

a2r′
(1− e−a2r′2). (B12)

We now substitute this in (B9) and set ρ′′ = ρ′

Jcoh =

(
1

2π

)3
1

k2a2

∫
d2r′

r′2
(1− e−a2r′2)

× [C(ρ′)2 + 2C(ρ′)D(ρ′)(ν ′ · ρ′)2 +D(ρ′)2ρ′
2
(ν ′ · ρ′)2]. (B13)

Again we use the variables ζ = 2rkσξ/r0, ζ ′ = 2ρ′kσξ/r0, ζ ′′ = 2ρ′′kσξ/r0,

κ = r0/2σξ = 1/2θr, Σ = 2σkσξ/r0 and dimensionless C̃ and D̃

C̃(ζ) =
1

ζ2
(1− e−ζ2/2Σ2

), D̃(ρ) =
1

ζ4

(
3− 3e−ζ

2/2Σ2

)− 2ζ2

Σ2
e−ζ

2/2Σ2

)
.

(B14)

which gives

Jcoh =

(
1

2π

)3
π2

κ2

∫
d2ζ ′

|ζ − ζ ′|2
(1− e−|ζ−ζ′|2)

× [C̃(ζ ′)2 + 2C̃(ζ ′)D̃(ζ ′)(ν ′ · ζ ′)2 + D̃(ζ ′)2ζ ′
2
(ν ′ · ζ ′)2]. (B15)
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