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Abstract—The LBNL Visualization research program focuses 
on a key set of problems facing our community as we move 
towards the exascale regime of computing. First, we aim to better 
understand how to effectively take advantage of an evolving 
architectural landscape where there are an increasing number of 
cores per processor by examining algorithmic reformulation and 
alternative methods of programming these increasingly complex 
platforms. Second, as the gap widens between computational 
and I/O capacity, it is increasingly imperative to perform more 
visual data exploration and analysis operations concurrent with 
the simulation to avoid increasingly expensive I/O. Our approach 
is to examine several interrelated issues aimed at minimizing the 
memory footprint, data movement, and design/implementation 
issues related to deploying tools that can have broad applicability 
across many different simulation codes and science domains. 
Third, increasing computational power produces larger and more 
complex scientific data, and our research program focuses on 
new technologies aimed at enabling scientific data understand­
ing with ever-larger data. Here, we explore how multi-resolution 
data representation techniques can reduce data movement, and 
study novel approaches that focus visualization and analysis 
processing on subsets of data that are “scientifically interesting,” 
thereby also minimizing data movement while accelerating scien­
tific knowledge discovery

Index Terms—hybrid parallelism, parallel volume rendering, 
parallel streamlines, performance optimization, auto-tuning, ex­
tended memory hierarchy

1 Introduction

Many in the community believe that making the 
transition from the petascale to the exascale regime 
of computing will require a complete rethinking of 
all aspects of the computational pipeline [4]. In that 
spirit, our research focuses on several key challenge 
areas that are somewhat unique to the fields of 
visualization, analysis, and analytics.

While the concern that MPI won't scale effec­
tively into the exascale is not unique to visual­
ization and analysis, proving that it is not ef­
fective, and potential remedial strategies, includ­
ing using hybrid parallelism, which blends tra­
ditional message-based distributed memory par­
allelism with shared-memory parallel constructs, 
is the subject of Section 2. Specifically, we study 
hybrid parallelism as applied to two staple vi­
sualization algorithms, direct volume rendering 
(Section 2.1) and calculating integral curves (Sec­
tion 2.2). In both instances, we see significant per­
formance and resource-utilization advantages to 
using hybrid parallelism as compared to traditional 
distributed-memory parallelism.

Given that computational platforms are increas­
ing in complexity, the algorithms that run on them 
are similarly increasingly complex. For example, 
determining the right granularity of work unit 
decomposition to achieve optimal performance is 
not a straightforward proposition. Furthermore, the 
difference in performance between good and bad 
choices can be significant. We explore this idea in

Fig. 1: Our hybrid-parallel volume rendering application 
produced

Section 3 where we apply the principles of auto­
tuning to optimize the performance of a staple 
visualization algorithm, direct volume rendering.

Another dimension of increasing platform com­
plexity, specifically a deepening memory hierarchy, 
raises the question of how algorithms and appli­
cations can use alternative architectural configura­
tions to their advantage. We explore this idea in 
Section 4 to better understand how using a locally 
attached drive, both traditional and solid-state, can 
improve performance. We find there are significant 
performance advantages, particularly for a data 
intensive integral curve calculation algorithm.

2 Hybrid Parallelism

2.1 Hybrid Parallelism and Extreme- 
Concurrency Volume Rendering
2.1.1 Introduction
Modern computational platforms are evolving to­
wards using multi-core processors; future gener­
ations of machines will be built using processors 
containing tens or hundreds of cores. There is con­
cern that existing, traditional message-based paral­
lel programming models will not scale well on such 
platforms. The aim here is to better understand 
how well hybrid-parallelism, which combines both 
traditional message-based distributed memory par­
allel concepts with multi-core, shared-memory par­
allelism, performs for visualization algorithms, ray­
casting volume rendering specifically, as compared 
to traditional message-based, distributed-memory 
parallelism.
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Fig. 2: Hybrid-parallel system architecture.

2.1.2 Implementation and Methodology
The architectural approach we pursue uses tradi­
tional MPI-based parallelism for across nodes, and 
one of a variety of different shared-memory parallel 
approaches (e.g., POSIX threads, OpenMP, CUDA) 
within a node. The architecture, shown in Figure 2, 
illustrates that the raycasting phase of the algorithm 
runs in shared-memory parallel mode in the hybrid 
parallel configuration.

Our solution entails conducting performance and 
scalability tests of traditional and hybrid parallel 
implementations of raycasting volume rendering, a 
staple visualization algorithm. Our approach is to 
compare performance using several different met­
rics: (1) absolute runtime, (2) memory footprint at 
various stages of algorithm execution; (3) commu­
nication characteristics of the two implementations.

Strong Scaling Study. A strong-scaling study 
aims to discover how time-to-solution improves as 
more and more processors are brought to bear on 
a fixed-size problem. The expectation is that as 
you bring more processors to bear on a problem, 
time-to-solution should decrease. The focus of our 
strong-scaling study was to discover how the rela­
tive time-to-solution decrease differs between MPI- 
only and MPI-hybrid approaches over a range of 
concurrencies.

In our tests, we used a fixed size dataset of 
46083 over concurrency levels ranging from 1728 
to 216,000-way parallel, the highest level of con­
currency ever published (Figure 1). These tests, 
run on JaguarPF at ORNL, reveal that: (1) for just 
the initialization phase and before we begin any 
actual volume rendering work, the MPI-only im­
plementation consumes 12x more memory than the 
MPI-hybrid implementation due to MPI overhead; 
(2) the MPI-hybrid implementation requires 40% 
less memory for ghost data at runtime owing to

use of larger-sized data blocks; (3) the MPI-only 
implementation sends about 6x more communi­
cation messages during the compositing phase as 
compared to the MPI-hybrid implementation; (4) 
at the highest level of concurrency, the MPI-hybrid 
implementation is about 3x faster than the MPI- 
only implementation due primarily to the reduced 
communication load.

Weak Scaling Study. In contrast to the strong­
scaling study, the weak-scaling study aims to in­
crease problem size while adding more proces­
sors. The idea is that using more processors, and 
their associated memory, enables tackling ever- 
larger problems, which is important from a large- 
data perspective since we wish to use large, parallel 
computational resources to enable visual data ex­
ploration and analysis. Ideally, time-to-solution re­
mains constant at increasing concurrency for a code 
that exhibits perfect weak scaling characteristics.

In our weak scaling studies, we use a 3843 data 
block per processor at all concurrency levels. At 
1728-way parallel, the resulting mesh is 46083, and 
at 216,000-way parallel, the mesh is 230403 in size 
(12.2 trillion cells). We observe that this mesh reso­
lution far exceeds that of current scientific codes.

With raycasting volume rendering, there are ac­
tually two dimensions of "problem size." The first 
is the size of the source data itself. The second 
is the size of the resulting image. In order to 
better understand weak-scaling characteristics of 
our hybrid-parallel application, we explored two 
types of weak scaling: weak-dataset scaling and 
weak scaling. With weak-dataset scaling, we use 
a fixed-size image of 46082 pixels at all levels of 
concurrency. With weak scaling, we also increase 
the resolution of the image from 46082 pixels at 
1728-way parallel up to 230402 pixels at 216,000­
way parallel.

The results of the weak scaling studies confirm 
the favorable MPI-hybrid characteristics first ob­
served in the strong-scaling studies: (1) at initial­
ization, the MPI-hybrid implementation requires 
12x less memory than the MPI-only implemen­
tation due to MPI overhead; (2) during the ray­
casting phase of the algorithm, the MPI-hybrid 
approach shows better scalability than the MPI- 
only approach; (3) during compositing, the MPI- 
hybrid approach requires substantially less com­
munication traffic than the MPI-only approach; (4) 
the MPI-hybrid implementation consistently runs 
faster than MPI-only, as much as about 40% faster at 
216,000-way parallel on the 12.2 trillion-cell dataset.

Many-core GPU Study. In an effort to better 
understand how these performance gains would 
extend to architectures having more than a few 
cores per processor, we conducted a test run on 
a multi-GpU system (Longhorn at TACC). Our 

testing configuration consisted of running an MPI-
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runtime complexity and I/O vary greatly with 
respect to both the data set under investigation 
and the number and distribution of streamlines to 
be computed. Based on a wide range of experi­
ments we perform for typical streamline compu­
tation scenarios, our findings, presented in Camp 
et al. 2011 [3], indicate that there is opportunity 
for significant performance gains under the hybrid 
approach, ranging from modest to over a 500% 
increase, depending upon dataset and problem con­
figuration. These gains result from reductions in 
memory footprint, communication, I/O and im­
provements in parallel efficiency. Those experi­
ments were conducted with the VisIt visualization 
tool, and hence, the performance observations we 
arrive at in that paper directly apply to real-world, 
production visualization scenarios.

2.2.3 Impact
In our work, we are looking at strong and weak 
scaling of our MPI-Hybrid parallel particle advec- 
tion algorithms. We are looking at the limiting fac­
tors on scalability and performance. We will also try 
to optimize the performance on both a large-scale 
shared memory system and a large scale distributed 
memory parallel system. In the longer term, the 
results can help to inform the design and imple­
mentation of parallel particle advection algorithms 
to achieve better performance. Our published re­
sults show that the hybrid approach can produce 
a performance improvement ranging between two- 
and ten-fold, depending on various data dependent 
and data independent factors.

3 Autotuning and Performance Op­
timization for Extreme-Scale Visual­
ization

3.1 Introduction
As computer architectures evolve towards the ex- 
ascale - through a combination of increased core­
count per chip, and deeper and more complex 
memory hierarchies - it is difficult to achieve op­
timal algorithmic performance due to increasing 
architectural complexity. There are many open re­
search questions as we move towards the exascale, 
including understanding tunable algorithmic pa­
rameters and algorithmic optimizations impact per­
formance on evolving computational architectures.

3.2 Implementation and Results
Our approach is to leverage auto-tuning work that 
has been applied by the computational science 
research community to numerical solver kernels. In 
our research, we vary tunable algorithmic settings, 
along with known algorithmic optimizations and

two different memory layouts, and measure per­
formance in terms of absolute runtime, along with 
L2 memory cache misses.

Our work is a more systematic and thorough 
study than has ever been performed for a sta­
ple visualization algorithm, and the algorithmic 
optimizations, which have appeared in literature 
over the years, have not been thoroughly tested on 
modern processor architectures in conjunction with 
other tunable algorithmic parameters. Our results, 
which will appear in Bethel and Howison 2012 [1], 
indicate there is a wide variation in performance on 
all platforms, as much as 254% for the tunable pa­
rameters we test on multi-core CPUs and 265% on 
many-core GPUs, and the optimal configurations 
vary across platforms, often in a non-obvious way.

For example, our results (Figure 4) indicate the 
optimal configurations on the GPU occur at a 
crossover point between those that maintain good 
cache utilization and those that saturate computa­
tional throughput. This result is likely to be ex­
tremely difficult to predict with an empirical perfor­
mance model for this particular algorithm because 
it has an unstructured memory access pattern that 
varies locally for individual rays and globally for 
the selected viewpoint.

3.3 impact

Our research shows that high performance vi­
sualization algorithms, and related data-intensive 
cousins, stand to reap huge performance gains 
through careful tuning that has worked well in 
the computational science community. For example, 
the set of experiment runs in our work in hybrid- 
parallel volume rendering work (Section 2.1) con­
sumed on the order of 5M CPU hours. Had we 
not first conducted the performance optimization 
and autotuning work described in this chapter, the 
estimate runtime of the untuned code would have 
been on the order of 15M CPU hours.

Some of the our study's results are unexpected, 
namely those for the GPU: absolute runtime and 
memory utilization performance are a function of 
both blocking factor and device-specific behavior 
(thread divergence) that is unique to this type 
of processor and architecture. These benefits will 
likely become more pronounced in the future as the 
number of cores per chip and the cost of moving 
data through the memory hierarchy both increase. 
Our results presented in the paper raise several 
new interesting research questions for follow-on 
work, including use of some form of auto-tuning 
as part of routine initialization to enable platform- 
specific optimizations on the part of data-intensive 
applications.
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irriinviliiilolv ii'vjmi' <i>m.iiil.ilkir, imurr-
r<*iillv /id lraiW|?ai\%*i.ly 11> IliO I/I imi, <].%!•* 
rni|ti;*ri‘* fr:r~ lliok'i’.il drive I:i Ihoparallel file ^ys- 
lem, L'nerMy ir^.i'fLi^g the Vmul.dim perlni^eere

.‘rom polenlially mum skAver para lie e system. 

.Although Lie loc«l drives ir.lmdiice a new driller 
cos., t.ieyr les^n the i:vpr nance o', peak J/O band­
width, allowing for .ne SSUte to be ccnplec. v::l.i 
i. slmver (and potentially lcs^ expensive) paralk. 
rile system. rcsaJxig in an overall cc^t reduc.ion. 
lo appli:adon>. this ;ivw I/O cei'.Lguration appvr.is 
to nr.vc two distinct banewidth chaiacteri&tics. U:i 
vviitc.. the binxlwidth appeals to be goou, jince it 
is be accelerated by lo:\xl stiive. On :e<id. however 
he knu width cm <ipp\\ir \hxjt. yr ce he xod:» jrv 
kicked by idower vimVIel hie system ard the 
p«'»jcncc of the loco drive uvH ut direifly acivler 
ah; t)ii^ ih.tivity. As T/O IV uftvii t'U' vlowi*S“ f>i:rt 

x*isi.idi/Vitie i .iiu] an.ilyviv pif.\di n.'Sz ••ut>u»,7ima 
T/O r<%i<] jit onii.niiX’ will ix^snll in pi:i<r ^ivvinl 
x-baiiili/eilkir pvi kirrn iiki*. Our n**;i!irx1i i/rnsl imi i*; 
lO :>i!lli'* Iin<]<*i%l/n<] if vi*vu;iliz;a.ii>n iil^:ril’imt: :j 
1*0 iii-ur; 'tili'i I<>1 l<i k m* n<• v.* T/O /; txt%^ palli'T* 
Lhftl leverage L’^e leva I drixv6 and acL.iel’y impmve 
I/O and vieu.diralio^i perVirmanee.

4.2 Implementation and Methodology

Wi; im-esfi^ite wTivtlicr leoil ty5T?s Uf Tdf)T?s 
effectively iiicrxMX' T/O .u;•vrm.nux* ;>r*il tlicrv 
i'rx* ^ *w.j;il z;*l ioii pi'i ^iriii.iiu*:: - liy lii'.iliny, lliv* 

i!h 111 is:11*iid<<1 \»;arI u I —rni<iry 11lor.i11*1 ly. Vcliill*
I *11* . r ix';ais of nr v 1* ix k <i. ^lald vVi I ri:iii;ji*x <l0'.vz
1-i‘i MiHi! 111.1 ilzl:> A II ;»! l.Viu't h i II I! mmcilv 

lilt1 FV‘U-m. I hr- kif.ll ssr* f! i HI1D« v.m hi1
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Fig. 5: Test configurations.

used as a cache to store those blocks, considerably 
accelerating subsequent reads. We also study how 
these local drives can accelerate I/O and visualiza­
tion performance. Although many paradigms for 
processing data do not read blocks of data repeat­
edly, streamline calculations do. When parallelizing 
over streamlines (or, equivalently, over their seed 
points), particles are advected and blocks of data 
loaded dynamically based on the trajectory taken. 
This is exactly the data processing pattern that 
can benefit from an extended memory hierarchy 
and we study this approach here. The different 
test configurations, shown in Figure 5, are detailed 
below.

In the first variant, which we denote GPFS, each 
MPI task loads data blocks directly from the general 
parallel file system (GPFS), establishing a baseline 
for performance without an extended memory hier­
archy. In the second variant, Cache SSD, each MPI 
task can load data blocks from either the SSD or 
from the GPFS. For each load, it starts by checking 
the SSD, since its load times are considerably faster. 
If the SSD does not contain the data, then it loads 
the block from the GPFS and stores the data block 
back to the SSD, meaning subsequent loads of 
that block will come from the faster SSD. In the 
third variant, Local SSD, a preprocessing step is 
applied where the entire data set is copied to each 
SSD before execution begins. In this variant, every 
processor is able to fetch data directly from its SSD 
and does not have to deal with the GPFS. Note 
that this scenario is only possible when the data 
to be processed is smaller than the size of the SSD 
and, further, requires a large initialization cost. The 
fourth and fifth variants, Cache HD and Local HD, 
are identical to the second and third, except that 
the local hard drive is used in the place of the SSD. 
These tests determine the performance differences 
between SSDs and local hard drives.



“i£ 6* Usin£ :*1C \V<V <lO»"£C <*5 0 C’-x'h: :C:KSC HD, 

CVx'hf n»|Bl|« in up .0 about •" >\vlold impvovv- 
mvn? in •X'l'K'TiTinrxX' roirtp.:nv: to hi#rl:nv •x'l K'TiTinrxX* 

I '.ij. Whs'ii the ciliir- div.</;t r.:n h> inn lr:r.il >hf;ia<yr/ 
prrniTi.nifi' is hiXi'T ye? \l iK-i " 1l*>. I nr.il SI)] hut 
nsniin^* ,:n i^pisivr imr -‘ire rt.ita cx^y igi*wi.

usjug the 1%*L) or local drive oh a .ecr.l cocJu: sroeixi* 
paformir.nc ii; -ill problem cortfi^unUion^ ll:is 
t^uit i: due to the fi;ct tJv.it data vlIovaIh ;o:i be 
serviced by f:i:te*iv .uc-il storage rathei tluin jluxvei 
rnuTe distant stonige. \\:v arbA-m;* 7HC fit er tv ^ly 
yvitliii loud storage (lwal ill) u*iJ 1 ueal S&Di, 
I* n.'Si.' x«'iiti)U• rs:I on'.-tin; much hi'A'f tli;n the 
lorifip.jmtioii, but ‘i(:|uiri' ;:ri vxfX'ii'.-ivi' l>ni:-tiiiie 
i*i* a <i?|*v, '.vlii< h k*ii>v.**; 1*1 llii'^v ill*iris ;i< £ i:*y. 
This riisnlls m llil/i n|h<1v .sIkivxvi] lli.il .jmiiv ;• lix ;* 
is *i v<% 11! <*xli!iiJ Ibu memory 11 ii**;• r; *iv ; iimIikI is*iz z
I?*. i'l<ill spifcXlup *•(* ;*pp*imm;».La y .1 f<i; \«r 11 f 1 vVi>. 
Vvi• ri*velO|X\] .1 ixj.o.iOil fiM* a |^<,rf:r **vil< i* rmiJo 
LO pmdi;l :)er.Vu'mjlli>- >xzlw lifting lOVJlIv Jllfiiltiit 
Corpse. Thic <Ludy illumr.FUv; passible rlunj^ 
in I/O access pa Hems .rm. will load lo improved 
peiTorma.ice nn the I/O subsytlenn pmc.ieled lo 
exi=U zxx luLire ex<=cale machines.

4.3 Results
\\*e ex ;i mine five Jifieivnt I/O ionficVTotion^ (see 

I'ijiUiV C\*. *1 hv test rvs*jl?sV which rncuMiiV pcri&r 
rn.HKV i*f flii; ,il*;untli ** i 1 <1 itk'iv i“ <i.'iiti);i.r;:t oil-, 
IS 5*liovv*i 1*1 Figure (1. I 1 T*iyun; i), }:• ixsli n.' f'l.'r- 
I'rin.mix* \i .PF^p i'hviiXvi • 1 lo Ili<* fili'^-ysit'*"* 

will 1 rn .M* i:f WD.*; <1 lcir.il tli'iv:?;, ** ;S|vv;jv’• 
* .15*rt:l iilliO* i\iiTiKiiia|kii14 /r<- *vc ;j*i:;I lO lh.ll 
l\fc<*lhi! |'0* oim.Uki!. vvlm* li*v*I i;*r *1.0.m* f<i^li'r 
l>if r haF^Ire |vi lor malice. T^exe resulu s'^oiv ih.il



11

References
[1] E. Wes Bethel and Mark Howison. Multi-core and Many- 

core Shared-memory Parallel Raycasting Volume Rendering 
Optimization and Tuning. International Journal of High Per­
formance Computing Applications, (In press), 2012.

[2] David Camp, Hank Childs, Amit Chourasia, Christoph 
Garth, and Ken Joy Evaluating the Benefits of an Extended 
Memory Hierarchy for Parallel Streamline Algorithms. In 
LDAV: Large Data Analysis and Visualization symposium at 
IEEE Visualization 2011, Providence, RI, USA, October 2011.

[3] David Camp, Christoph Garth, Hank Childs, Dave Pugmire, 
and Kenneth I. Joy. Streamline Integration using MPI- 
Hybrid Parallelism on a Large Multi-Core Architecture. 
IEEE Transactions on Visualization and Computer Graphics, 
17(11):1702-1713, 2011.

[4] Sonia Sachs (ed.). Tools for Exascale Computing: Challenges 
and Strategies - Report of the 2011 ASCR Exascale Tools 
Workshop. Technical report, U. S. Department of Energy, 
Office of Science, Office of Advanced Scientific Computing 
Research, Bethesda, MD, USA, October 2011.

[5] Mark Howison, E. Wes Bethel, and Hank Childs. MPI- 
hybrid Parallelism for Volume Rendering on Large, Multi­
core Systems. In Eurographics Symposium on Parallel Graphics 
and Visualization (EGPGV), Norrkoping, Sweden, May 2010. 
LBNL-3297E, Best Paper Award.

[6] Mark Howison, E. Wes Bethel, and Hank Childs. Hybrid 
Parallelism for Volume Rendering on Large, Multi, and 
Many-core Systems. IEEE Transactions on Visualization and 
Computer Graphics, 18(1):17-29, January 2012. LBNL-4370E.


