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Final Progress Report: [sotope
[dentification Algorithm for Rapid
and Accurate Determination of
Radioisotopes Feasibility Study

Mohini Rawool-Sullivan (IAT-1), John Bounds (N-2), Steven
Brumby (ISR-3), Lakshman Prasad (ISR-2) & John Sullivan (ISR-1)

Abstract:

This is the final report of the project titled, “Isotope Identification Algorithm for Rapid
and Accurate Determination of Radioisotopes,” PMIS project number LA10-
HUMANID-PDO03. The goal of the work was to demonstrate principles of emulating a
human analysis approach towards the data collected using radiation isotope identification
devices (RIIDs). It summarizes work performed over the FY10 time period.

Introduction

The goal of the work was to demonstrate principles of emulating a human analysis
approach towards the data collected using radiation isotope identification devices
(RIIDs). Human analysts begin analyzing a spectrum based on features in the spectrum -
lines and shapes that are present in a given spectrum. The proposed work was to carry out
a feasibility study that will pick out all gamma ray peaks and other features such as
Compton edges, bremsstrahlung, presence/absence of shielding and presence of neutrons
and escape peaks. Ultimately success of this feasibility study will allow us to collectively
explain identified features and form a realistic scenario that produced a given spectrum in
the future. We wanted to develop and demonstrate machine learning algorithms that will
qualitatively enhance the automated identification capabilities of portable radiological
sensors that are currently being used in the field.

Work Performed

In the beginning we conducted 12 sessions in which we documented the processes and
steps the spectroscopist used in receiving, opening and analyzing a spectrum. From these
sessions, we extracted the steps common to the multiple separate analyses and also those
that were unique to an individual spectrum analysis. The common steps suggest an
overall structure for an algorithm whereas the unique ones point to analytical details that
could complicate algorithm designs. This work is described in detail in a report titled,
“Steps Toward Automated Gamma Ray Spectroscopy: How a Spectroscopist Deciphers
an Unknown Spectrum to Reveal the Radioactive Source,” February 25, 2010, LA-UR-
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LA-UR-10-01009. This report was submitted as a progress report at the end of February
2010. In this work we were focusing on low resolution low statistics spectra.

We found the best approach that worked reasonably well was applying wavelet shrinkage
denoising." In this approach the spectrum is represented as a linear combinations of

wavelet basis functions that capture spectral characteristics by means of a projection §(e)
of the spectrum S(e) onto a smooth subspace spanned by the localized wavelet basis
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Once a wavelet transform is taken the signal is typically represented by a few high-
magnitude coefficients and noise generally has low magnitude coefficients occurring at
all scales j and positions k. Noise can then be removed by reducing coefficient
magnitudes by a predetermined threshold commensurate with noise level in the signal.
The signal is then reconstructed by the inverse wavelet transform using the processed
wavelet coefficients. After that we applied simple maxima finding algorithm on the
reconstructed denoised spectrum to extract feature locations. The wavelet toolkit from
MATLAB was used to perform the work.?

We tried several wavelets, however the wavelet that worked best for the Nal(TI) spectra
was SYM4 or Symlet4. SYM4 is a near symmetric, orthogonal, relatively smooth
wavelet. The scaling function and wavelet function for SYM4 is shown in Figure 1.

Figure 1: To the left is a scaling function and to the right is a wavelet function for SYM4.

! David L. Donoho. “Denoising via soft thresholding,” IEEE Transactions on Information Theory, 41:613—
627, May 1995
2 http://www.mathworks.com/products/matlab/




Application of the Method

Typical data collected at US borders using RIIDs (Radiation Isotope Identification
Device) are low resolution data collected for a live time anywhere from half to 1 minute.
The measurement dead time can also be large. Often the calibration is not perfect.

Figure 2 shows a spectrum acquired from a CardioGen-82 shipment. CardioGen-82 is a
radionuclide generator that provides Rb-82 for positron emission tomography (PET)
myocardial perfusion imaging (MPI). The Rb-82 is produced from its precursor Sr-82.
The generator may also contain contaminant radionuclides such as Sr-85.2 The vertical
lines in the figure mark where the Rb-82 gamma-rays would show up if the calibration
was perfect.
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Figure 2: Data collected from a Cardiogen-82 shipment. Note the dead time is more than
15%. Live time is 59 sec.

This spectrum (without performing a calibration) was then denoised by using wavelet
shrinkage method. A simple maxima finding algorithm was used to locate the maxima.
Figure 3 shows the data from figure 2 (blue cross marks), denoised spectrum (solid red
line) and feature locations found by the maxima algorithm after the spectrum is denoised.
The feature were found at energies 78 keV, 112.5 keV, 168 keV, 516 keV, 661.5 keV,
774 keV and 1356 keV.

® http://www.cardiogen.com/patients.html




The 78 keV feature in the spectrum is from lead X-rays (around 72 and 74 keV)
generated in the lead shielding of CardioGen-82.
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Figure 3: CardioGen-82 measured spectrum (same as in Figure 2) along with denoised
spectrum of the data (solid red line) and locations found by the maxima finding
algorithm.

Work up to this point was presented at the RadSensing2010 meeting at the Argonne
National Laboratory in Chicago, Illinois.*

Understanding method sensitivity to the statistical fluctuation

We have tried to test our de-noising algorithm experimentally by collecting a spectrum
from the same source with the same detector and the same configuration in a short period
of time. In principle, the only difference between the spectra would be the statistical
fluctuations. At least one issue we are attempting to understand is how sensitive the de-
noised spectra are to statistical fluctuations in the original data. Seven spectra were taken.
Six of the spectra were taken for 60 seconds. Inadvertently, one of the spectra was taken
for 64 seconds. In some of the plots and tables which follow, the 64 second spectrum in
included to show how much different (or not) it is. Table 1 summarized the live times and
total number of counts for each spectrum — numbered 0 through 6. Figure 4 shows the
source and detector configuration used in the measurements, which were taken with an
identiFINDER (Thermoelectric) hand-held detector and a 90.35 uCi **’Cs source.

* Mohini Rawool-Sullivan, “Isotope Identification Algorithm for Rapid and Accurate Determination of
Radioisotopes,” LA-UR 10-03583, May 28, 2010, presented at the SNM Movement Detection / Radiation
Sensors and Advanced Materials Portfolio Review, RadSensing2010
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Table 1: Summary of the total number of counts and the live time for each spectrum
number.

Spectrum number Total counts Live time (seconds)
0 71106 60
1 71811 60
2 71392 60
3 71624 60
4 71911 60
5 75934 64
6 71617 60

Table 1 summarizes the total number of counts and the live time for each spectrum
number.
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Figure 4 shows the configuration of the source and detector. The source was 4.5 inches
from the front surface of the Nal detector.

Table 1 below shows the y%/Ncnan — chi-squared per degree of freedom for each
combination of raw Cs-137 spectra




Table 1: The x%/Nehan — chi-squared per degree of freedom for each combination of raw Cs-
137 spectra

%*/Nchan Data 1 Data 2 Data 3 Data 4 Data 5 Data 6
Data 1 0.0

Data 2 0.754 0.0

Data 3 0.800 0.705 0.0

Data 4 0.812 0.812 0.736 0.0

Data 5 1.016 0.877 0.730 0.868 0.0

Data 6 1.013 0.896 0.747 0.867 0.867 0.0

Table 2 below shows the %%Ncnan — chi-squared per degree of freedom for each

combination of denoised Cs-137 spectra

Table 2: The %%/Nchan — chi-squared per degree of freedom for each combination of denoised Cs-

137 spectra

%*/Nehan Data 1 Data 2 Data 3 Data 4 Data 5 Data 6
Data 1 0.0

Data 2 0.743 0.0

Data 3 0.815 0.707 0.0

Data 4 0.802 0.818 0.728 0.0

Data 5 1.023 0.863 0.734 0.844 0.0

Data 6 0.978 0.911 0.732 0.879 0.855 0.0

The differences in the de-noised spectra seem to have been largely associated with

differences in the raw data above the photo-peak.




Conclusions

The Wavelet shrinkage denoising may provide a way of doing robust feature
identification in a low-statistics gamma-ray spectrum. We also applied this method to the
spectra collected from CZT (CdZnTe detectors) and LaBr3 detectors with similar success.
This method is most suitable for low statistics gamma-ray spectra. The differences in the
de-noised spectra seem to have been largely associated with differences in the raw data
above the photo-peak.

[END of DOCUMENT]



