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Final	Progress	Report:	Isotope	
Identification	Algorithm	for	Rapid	
and	Accurate	Determination	of	
Radioisotopes	Feasibility	Study	

Mohini	Rawool‐Sullivan	(IAT‐1),	John	Bounds	(N‐2),	Steven	
Brumby	(ISR‐3),	Lakshman	Prasad	(ISR‐2)	&	John	Sullivan	(ISR‐1)	
 
Abstract:		
 
This is the final report of the project titled, “Isotope Identification Algorithm for Rapid 
and Accurate Determination of Radioisotopes,” PMIS project number LA10-
HUMANID-PD03. The goal of the work was to demonstrate principles of emulating a 
human analysis approach towards the data collected using radiation isotope identification 
devices (RIIDs). It summarizes work performed over the FY10 time period.  
 
Introduction	
 
The goal of the work was to demonstrate principles of emulating a human analysis 
approach towards the data collected using radiation isotope identification devices 
(RIIDs). Human analysts begin analyzing a spectrum based on features in the spectrum - 
lines and shapes that are present in a given spectrum. The proposed work was to carry out 
a feasibility study that will pick out all gamma ray peaks and other features such as 
Compton edges, bremsstrahlung, presence/absence of shielding and presence of neutrons 
and escape peaks. Ultimately success of this feasibility study will allow us to collectively 
explain identified features and form a realistic scenario that produced a given spectrum in 
the future. We wanted to develop and demonstrate machine learning algorithms that will 
qualitatively enhance the automated identification capabilities of portable radiological 
sensors that are currently being used in the field. 
 
Work	Performed	
 
In the beginning we conducted 12 sessions in which we documented the processes and 
steps the spectroscopist used in receiving, opening and analyzing a spectrum.  From these 
sessions, we extracted the steps common to the multiple separate analyses and also those 
that were unique to an individual spectrum analysis. The common steps suggest an 
overall structure for an algorithm whereas the unique ones point to analytical details that 
could complicate algorithm designs. This work is described in detail in a report titled, 
“Steps Toward Automated Gamma Ray Spectroscopy: How a Spectroscopist Deciphers 
an Unknown Spectrum to Reveal the Radioactive Source,” February 25, 2010, LA-UR- 
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Table 1: The 2/Nchan – chi-squared per degree of freedom for each combination of raw Cs-
137 spectra   
2/Nchan  Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 

Data 1 0.0      

Data 2 0.754 0.0     

Data 3 0.800 0.705 0.0    

Data 4 0.812 0.812 0.736 0.0   

Data 5 1.016 0.877  0.730  0.868 0.0  

Data 6 1.013 0.896 0.747 0.867 0.867 0.0 

 
Table 2 below shows the 2/Nchan – chi-squared per degree of freedom for each 
combination of denoised Cs-137 spectra   
 
Table 2: The 2/Nchan – chi-squared per degree of freedom for each combination of denoised Cs-
137 spectra   
 
2/Nchan  Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 

Data 1 0.0      

Data 2 0.743 0.0     

Data 3 0.815 0.707 0.0    

Data 4 0.802 0.818 0.728 0.0   

Data 5 1.023 0.863 0.734 0.844 0.0  

Data 6 0.978 0.911 0.732 0.879 0.855 0.0 

 
The differences in the de-noised spectra seem to have been largely associated with 
differences in the raw data above the photo-peak. 
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Conclusions	
 
The Wavelet shrinkage denoising may provide a way of doing robust feature 
identification in a low-statistics gamma-ray spectrum. We also applied this method to the 
spectra collected from CZT (CdZnTe detectors) and LaBr3 detectors with similar success. 
This method is most suitable for low statistics gamma-ray spectra. The differences in the 
de-noised spectra seem to have been largely associated with differences in the raw data 
above the photo-peak.  
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