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A determination of the superconducting (SC) electron pairing symmetry forms the basis for
establishing a microscopic mechansim for superconductivity. For iron pnictide superconductors,
the s±-pairing symmetry theory predicts the presence of a sharp neutron spin resonance at an
energy below the sum of hole and electron SC gap energies (E ≤ 2Δ). Although the resonances
have been observed for various iron pnictide superconductors, they are broad in energy and can
also be interpreted as arising from the s++-pairing symmetry with E ≥ 2Δ. Here we use inelastic
neutron scattering to reveal a sharp resonance at E = 7 meV in the SC NaFe0.935Co0.045As (Tc = 18
K). By comparing our experiments with calculated spin-excitations spectra within the s± and s++-
pairing symmetries, we conclude that the resonance in NaFe0.935Co0.045As is consistent with the
s±-pairing symmetry, thus eliminating s++-pairing symmetry as a candidate for superconductivity.

PACS numbers: 74.25.Ha, 74.70.-b, 78.70.Nx

A determination of the superconducting (SC) electron pairing symmetry is an important step to establish a mi-
croscopic theory for high-transition temperature (high-Tc) superconductivity [1]. Since the discovery of iron pnictide
superconductors [2–4], a peculiar unconventional pairing state, where superconductivity arises from sign-revised quasi-
particle excitations between the isotropic hole and electron Fermi pockets near the Γ and M points, respectively, has
been proposed [5–7]. A consequence of this so-called s±-pairing state is that the sign-reversed quasiparticle excitations
necessitate a sharp resonance in the spin excitations spectra (termed spin resonance) occurring below the sum of the
hole and electron SC gap energies (E ≤ 2Δ = Δh + Δe) at the antiferromagnetic (AF) wave vector Q connecting
the two Fermi surfaces [8, 9]. Although the experimental discovery of the resonance by neutron scattering in hole
and electron-doped BaFe2As2 iron pnictide superconductors has been hailed as evidence for the s±-pairing symmetry
[10–20], the mode is broad in energy and may not satisfy E ≤ 2Δ [21–23]. Furthermore, transport and nuclear
magnetic resonance (NMR) experiments [24] reveal a lack of strong impurity effect, contrary to the expectation of
the s±-pairing symmetry [25]. Finally, resonant ultrasound spectroscopy on the parent and optimally electron doped
BaFe2As2 indicates a strong AF order-electron-lattice coupling that is not expected within the s±-pairing theory [26].
Instead, these results may be interpreted as the orbital fluctuation mediated s++-pairing superconductivity, where
one expects a broad neutron spin resonance at an energy of E ≥ 2Δ [21, 22].

Here we present inelastic neutron scattering results on single crystals of SC NaFe0.935Co0.045As with Tc = 18 K
(see Fig. 1). In the normal state, the imaginary part of the dynamic susceptibility, χ′′(Q, E), at the AF wave vector
increases linearly with increasing energy E. Upon entering into the SC state, a spin gap opens below 5.5 meV and
a sharp neutron spin resonance appears at E = 7 meV with an energy width of ∼2 meV. By comparing the neutron
scattering results with a random-phase approximation (RPA) spin-susceptibility calculation within the s+− and s++
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FIG. 1: Phase diagram, real, reciprocal space, transport, and susceptibility measurements. (a) The electronic
phase diagram of NaFe1−xCoxAs, where the arrow indicates the Co-doping level of our samples. Inset shows the in-plane AF
structure of NaFeAs [27]. (b) Reciprocal space probed in the present experiment. The scan directions are shown as arrows. (c)
Temperature dependence of the in-plane resistivity ρab in NaFe0.935Co0.045As. The inset displays the low-T resistivity measured
in zero-field and 9 T. (d) The temperature dependence of the bulk susceptibility measured by DC magnetic susceptibility. (e)
and (f) Elastic neutron scattering from PUMA along the [0.5, 0.5, L] directions at 5 K. The solid lines are guided to the eyes
and the arrows indicate the positions of AFM static ordering.

pairings, we find that our data are consistent with the s+− symmetry, thus ruling out s++-pairing as a candidate for
superconductivity.

Results

Sample and experimental Details We carried out inelastic neutron scattering experiments on the thermal
(PUMA) and cold (PANDA) triple-axis spectrometers at the FRM-II, TU Müchen, Germany. For the experiments,
we coaligned 5 pieces of self-flux grown NaFe1−xCoxAs single crystals with a total mass of 5.5 g (mosaic about
1.5◦). The chemical compositions of the samples are determined as Na1.06Fe0.935Co0.045As by inductively coupled
plasma atomic-emission spectroscopy, which we denote as NaFe0.935Co0.045As. The wave vector Q at (qx,qy,qz) in
Å−1 is defined as (H,K,L) = (qxa/2π,qya/2π,qzc/2π) reciprocal lattice unit (r.l.u) using the tetragonal unit cell (space
group P4/nmm, a = 3.921 Å, c = 6.911 Å at 5 K). We used focusing pyrolytic graphite (PG) monochromator and
analyzer with fixed final energies of Ef = 14.7 meV and Ef = 5 meV at PUMA and PANDA, respectively. Both the
[H,H,L] and [H,K, 0] scattering zones have been used in the experiments and the scan directions are marked in Fig.
1(b). To characterize the samples, we have carried out resistivity and DC magnetic susceptibility measurements using
commercial physical property measurement system and SQUID magnetometer. Based on the early neutron diffraction
measurements [27], AF Bragg peaks and low-energy spin excitations are expected to occur around the (0.5, 0.5, L)
positions with L = 0.5, 1.5, · · · [Fig. 1(b)].

Figure 1(c) plots the in-plane resistivity ρab measurement at zero field which gives Tc = 18 K. The inset shows the
magnetic field dependence of ρab at 0 and 9-T, indicating a field-induced Tc suppression of ∼2 K. Figure 1(d) shows the
magnetic susceptibility measurements on the sample again showing a Tc = 18 K. Given the known electronic phase
diagrams of NaFe1−xCoxAs [28, 29], it is clear that our NaFe0.935Co0.045As samples are in the slightly overdoped
regime and do not have static AF order coexisting with superconductivity [Figs. 1(a)]. Our elastic neutron diffraction
scans through the AF Bragg peak positions are featureless and thus confirm this conclusion [Figs. 1(e) and 1(f)].

Neutron Scattering Results In previous neutron scattering work on electron doped BaFe2−xNixAs2 pnictide
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FIG. 2: Energy scans at the AF wave vector. (a) and (c) Energy scans at Q = (0.5, 0.5, 1) and Q = (0.5, 0.5, 1.5),
respectively, at 5, 25, and 50 K on PUMA. The background was taken at Q = (0.65, 0.65, 1) and Q = (0.65, 0.65, 1.5),
respectively, at 5 and 25 K. (b) and (d) are the corresponding χ′′(Q, E).(e) Energy scans at Q = (0.5, 0.5, 0) and the background
Q = (0.707, 0, 0) at 5 and 25 K on PANDA. (f) is the corresponding χ′′(Q, E). The solid and dashed lines are guides to the
eyes. The vertical dashed lines indicate the resonance energy.

superconductors [14, 17], the neutron spin resonance was found to be dispersive, occurring at slightly different energies
for different c-axis wave vector transfers. To see if this is also the case for spin excitations in NaFe0.935Co0.045As,
we carried out constant-Q scans at wave vectors Q = (0.5, 0.5, 1) and (0.5, 0.5, 1.5) below and above Tc on PUMA.
While the background scattering (BKG) taken at Q = (0.65, 0.65, 1) and (0.65, 0.65, 1.5) showed no change below and
above Tc [Figs. 2(a) and 2(c)], the scattering at the in-plane AF wave vector revealed dramatic changes across Tc.
In the normal state (T = 25 K), the scattering above BKG is featureless and increases with increasing energy. Upon
entering into the SC state (T = 5 K), a spin gap forms below ∼5.5 meV and a sharp resonance appears at E = 7 meV
[Figs. 2(a) and 2(c)]. The corresponding χ′′(Q,E), obtained by subtracting the BKG and correcting for the Bose
population factors using χ′′(Q,E) = [1 − exp(−E/kBT )]S(Q,E), are shown in Figs. 2(b) and 2(d). Inspection of
Figs. 2(a)-2(d) reveals that the resonance exhibits no c-axis dispersion and has an energy width of ∼3 meV. Figures
2(e) and 2(f) show similar scans on PANDA, which reveal a 6 meV spin gap and a sharp resonance at E = 7 meV
with an energy width of ∼1.6 meV in the SC state. This is much narrower than the energy widths of the resonances
in the hole and electron-doped BaFe2As2 [10–19].

To confirm the SC spin gap and determine the wave vector dependence of the resonance, we carried out constant-
energy scans at E = 4, 7, and 15 meV below and above Tc. Figures 3(a-c) and 3(d-f) show χ′′(Q,E) along the [H,H, 1]
and [H,H, 1.5] directions, respectively. In the SC state at T = 5 K, χ′′(Q,E) is featureless at E = 4 meV and thus
confirms the presence of a spin gap. For other excitation energies, the scattering profiles can be fitted by Gaussians
on linear BKG. By Fourier transforms of the fitted Guassian peaks along the [H,H, 1] direction, we find that the
in-plane spin-spin correlation lengths of the resonance are ξ = 24 ± 1 Å at 25 K and ξ = 30 ± 1 Å at 5 K. Along the
[H,H, 1.5] direction, ξ = 32 ± 3 Å are unchanged from 25 K to 5 K. Increasing the excitation energy to E = 15 meV
(> 2Δ), there are no observable differences in scattering intensity and spin correlation lengths (ξ = 20 ± 1 Å) below
and above Tc

Figure 4(a) shows the temperature dependence of the scattering at the AF wave vector Q = (0.5, 0.5, 1.5) for the
resonance (E = 7 meV) and spin gap (E = 4 meV) energies. While the intensity increases dramatically below Tc at
the resonance energy, it decreases at E = 4 meV signaling the opening of a SC spin gap. To test if spin excitations
in NaFe0.935Co0.045As are indeed two-dimensional in reciprocal space like in the case of Co-doped BaFe2As2 [13],
we show in Fig. 4(b) BKG subtracted constant-energy scans along the [0.5, 0.5, L] direction at the resonance energy
(E = 7 meV) below and above Tc. The monotonic decrease of the scattering with increasing L is consistent with the
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FIG. 3: Constant-energy scans at different L values across Tc. Q scans along the [H,H, L = 1, 1.5] directions below and
above Tc = 18 K at different energies: (a,d) in the gap (4 meV), (b,e) at the resonance (7 meV), and (c,f) above 2Δ (15 meV).
The solid lines are fits to Gaussians. Data are from PUMA.

square of the Fe2+ magnetic form factor, thus confirming the two-dimensional and magnetic nature of the resonance.
In the optimally hole [11] and electron-doped BaFe2As2 [16, 17, 19], the resonances form longitudinally and trans-

versely elongated ellipses, respectively. Since NaFe0.935Co0.045As belongs to the electron-doped iron pnictide super-
conductor, we mapped out spin excitations in the [H,K, 0] scattering plane on PUMA. Figures 4(c) and 4(d) show
constant-energy scans at E = 7 meV along the transverse [1/2 + H, 1/2 − H, 0] and longitudinal [H,H, 0] directions,
respectively, below and above Tc. Although there is no evidence for transverse incommensurate magnetic scattering
as in the case of LiFeAs [30], the spin resonance in NaFe0.935Co0.045As is considerably broader along the transverse
direction than that of the longitudinal direction. Figure 4(g) shows the two-dimensional image of the resonance in
the SC state, further confirming the results of Fig. 4(c) and 4(d).

Figure 4(e) and 4(f) summarizes the dispersions of the low-energy spin excitations along the longitudinal and
transverse directions below and above Tc, respectively. In the normal state, spin excitations in NaFe0.935Co0.045As are
gapless, comparing with the ∼10 meV anisotropy gap in spin waves of the undoped NaFeAs [31]. On cooling to below
Tc, the effect of superconductivity is to open a low-energy spin gap and concurrently form a neutron spin resonance.
The dispersions of spin excitations are essentially unaffected by superconductivity, but change more rapidly along the
transverse direction with increasing energy.

Discussion and Conclusions To compare with the experiment, we have performed RPA spin-susceptibility
calculation in the SC state, using the five-orbital tight-binding model taken from Ref. [32]. The details of the
calculation procedure can be found in Refs. [33, 34]. Results for the s+− and s++ pairing symmetries are given in Fig. 5.
For s±-pairing, a spin-resonance appears due to the inelastic scattering of the Bogoliubov quasiparticles whose energy
and wave vector can approximately be determined from ωQ = |ΔkF

| + |ΔkF +Q| given that sign[Δk] �=sign[Δk+Q],
where Δk = Δ0(cos kx + cos ky). There are two reasons for the resonance shift to ω < 2Δ0: (1) Due to large area of
electron pocket in these systems [35], the effective gap value on the Fermi momenta is reduced, i.e. | cos kxF +cos kyF | <
1. (2) The resonance energy shifts further to lower energy within RPA [33]. We take Δ0 ≈ 6 meV [35–37] to obtain
a resonance at 7 meV, in accord with experimental value. For the s++ pairing, due to the lack of sign-reversal, the
spin-excitation inside the SC gap is completely eliminated. However, at ω > 2Δ0, a hump like feature with intensity
appears. The many-body RPA correction shifts the hump to a higher energy (for the same value of U = 1.6 meV, we
obtain a weak feature around ω = 1.3(2Δ)), as shown in Fig. 5(b) and 5(c). With varying U as well as the intrinsic
broadening, we find that the result is robust and the resonance peak in the s± is ubiquitously sharper than that
for the s++−case. Therefore, the neutron scattering results are consistent with s±-pairing symmetry, eliminating
s++-pairing symmetry as a candidate for superconductivity.
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FIG. 5: RPA calculated resonance for s± and s++ pairing symmetries. (a) Computed spin-excitation spectrum for
s± pairing channel. (b) Same but for s++ pairing symmetry. (c) χ′′(ω) at the AF wave vector Q for both these cases. The
horizontal lines mark the 2Δ0 line, below and above which the resonance occurs in the two cases, respectively. Both calculations
are performed with fixed intrinsic broadening of 1 meV, SC gap of Δ0=6 meV, and Coulomb interaction U=1.6 eV.
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