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Inorganic Chemistry in Hydrogen Storage and Biomass 
Catalysis 

Dave Thorn, Los Alamos National Laboratory 
 
June 15, 2012 
 
 
"Inorganic Chemistry in Hydrogen Storage and Biomass Catalysis" 
 
Making or breaking C-H, B-H, C-C bonds has been at the core of catalysis for 
many years.  Making or breaking these bonds to store or recover energy 
presents us with fresh challenges, including how to catalyze these 
transformations in molecular systems that are "tuned" to minimize energy loss 
and in molecular and material systems present in biomass.  This talk will discuss 
some challenging transformations in chemical hydrogen storage, and some 
aspects of the inorganic chemistry we are studying in the development of 
catalysts for biomass utilization. 
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The Hydrogen Storage Story 

Chemical Hydrogen Storage Center of 
Excellence, 2003 
 
Chose chemical systems that possess two 
key attributes: 
 - Inherent energy density  
  (H2 storage capacity) >6 wt% H2 
 - Favorable thermodynamics  
  for H2 release 
  

http://www1.eere.energy.gov/hydrogenandfuelcells/storage/pdf
s/targets_onboard_hydro_storage.pdf 
 
http://www1.eere.energy.gov/hydrogenandfuelcells/storage/pdf
s/targets_onboard_hydro_storage_explanation.pdf 
 
 

http://www1.eere.energy.gov/hydrogenandfuelcells/storage/pdfs/targets_onboard_hydro_storage.pdf�
http://www1.eere.energy.gov/hydrogenandfuelcells/storage/pdfs/targets_onboard_hydro_storage.pdf�
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The Hydrogen Storage Story 

Tier Chemical System Research Focus 

1 NaBH4/water (“Hydrogen 
on Demand” ®) 

More energy efficient synthesis 
of NaBH4 

2 Other B-H systems, e.g. 
NH3BH3 

Develop effective catalysts and 
systems for H2 release; 
develop energy-efficient 
regeneration 

3 “Other than boron” 
(C,N,O)-H 
{Si, P, Al}-H 

Identify systems with viable 
H2 release thermodynamics, 
and develop enabling 
catalytic processes 

This talk:   
- Systems other than boron 
- Energy-efficient regeneration of NH3BH3 
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- Dehydrogenation of e.g. decalin known for hydrogen storage, requires high grade heat   
 (ΔH ca. 17 kcal/mole of H2 at ca. 280 C for 1 atm pressure) 
 
- The need for high-grade heat limits storage efficiency  
 (ΔH requires burning ca. 0.25 mole of H2 per mole of H2 released from decalin)  
 
- Efficient hydrogen storage using (C,N,O)-H requires new concepts 
 

- Wuest et al 
- Crabtree et al 
- Cooper, Pez et al  

 

Hydrogen Storage: Systems other than Boron  
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Heteroatom Organic Systems for Hydrogen Storage 
 

 
- Borrowed from the literature:  “especially good formal donors of hydride” 
 
 
 
 
 
 
 
 
 
 

- “However, despite the juxtaposition of a hydridic C-H bond and a carboxylic acid 
.. It does not undergo intramolecular protonolysis to form H2.”   
 Can. J. Chem. 1996, 74, 689 
 

- Regarding H2 release from other, related, dihydrobenzimidazoles:   
 “Unfortunately, this novel reaction … is endothermic..”   
 J. Org. Chem. 1988, 53, 1489 

? 
Heat 
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Heteroatom Organic Systems for Hydrogen Storage 
 

“Unfortunately, this novel reaction … is endothermic..” 
 
We suspected that the reaction was actually exergonic  
 but that a suitable catalyst was needed to release H2,  
 and found that Pd(0) is an effective catalyst (RT -> 80 C) 
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Heteroatom Organic Systems for Hydrogen Storage 
 

 
Juxtaposition of a hydridic C-H bond and a carboxylic acid? 

Compound 1, recrystallized from pyridine Compound 2 

C-Hhydride   1.024 Å 
C-HCH3      0.960 Å 
C-Hbenzoate 0.930 Å 
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Heteroatom Organic Systems for Hydrogen Storage 
 

N

N

CH3

H3C

H

H RT
acetic acid

finely divided Pd
+ HOAc

N

N

CH3

H3C

H

Biacetate

+ H2

Hydrogen release is facile at room temperature (turnover rate ca. 30/min, mole/mole Pd) 
H2 release is exothermic (ΔH ca. –10(3) kcal/mole), exergonic (ΔG ca. –17(5) kcal/mole),  
 and irreversible with H2 pressure alone 
Hydrogen yield is quantitative, but limited to 1 wt% H2 by mwt of components 

- Next step:  
- H2 storage density far too low  
      (0.75% releasable H2 in compound 1) 
- eliminate benzoic acid group in favor of a 
lighter acid 

(Hydrogen evolution from organic hydrides, Chemical Communications, 2005, (47), 5919 - 5921 
Daniel E. Schwarz, Thomas M. Cameron, P. Jeffrey Hay, Brian L. Scott, 
William Tumas and David L. Thorn) 
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Heteroatom Organic Systems for Hydrogen Storage 
 

Biacetate Acetate 

Crystal structures of carboxylate products: 
Potential CH- - O hydrogen bonding,  
   expressed in a coplanar “CH pocket” motif: 
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Heteroatom Organic Systems for Hydrogen Storage 
 

Benzoate 

How robust is the coplanar “CH pocket” motif in directing dimethylbenzimidazolium 
carboxylate structures?  
 
 
Not very … 
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Catalysis:  Improve Reaction Rates 

Catalysts:  What potential in homogeneous catalysts?  
 - secondary C-H bonds traditionally difficult 

 - Wilkinson’s catalyst, ruthenium-phosphine catalysts work, but slowly  
 (< 2 turnover/min, 70 C) 

 - Found faster Pt-based homogeneous catalyst (ca. 1-10 turnovers/min at 20 C) 

Hydride transfer to metal: 
Inhibited by ligand > triflate 
(CH3CN, pyridine, acetate, ..) 

Hydride removal from metal: 
Acid must not introduce any 
ligand > triflate; 
H2 loss via L2Pt(H2)H cation? 

CH3
N

N
CH3

CH2

CH3
N

N
CH3

CH OTf

TfO Pt

PiPr3

PiPr3

H

H Pt

PiPr3

PiPr3

H

H2

N

H

OTf

N+
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Catalysis:  Why is it Necessary?? 

 
 

- Why doesn’t the juxtaposition of the hydridic C-H bond and a carboxylic acid  
enable facile formation of H2?   
 

-  In part, kinetic barrier results from poor coupling of electron and proton transfer 
 

-  In part, this can be rationalized by (lack of) symmetry:   
The covalent H-H bond requires a nearly equal participation of “valence bond” and   
    “symmetric ionic” wavefunctions 
Yet in a {hydride + proton} reaction the ionic contributions are highly asymmetric 
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Catalysis:  Why is it Necessary?? 

 
 

 
- In a very simplistic model, the asymmetry of  
the ionic contributions in the starting compound 
impose an additional transition-state energy  
relative to the energy if the two hydrogen atoms 
were symmetric in the starting compound 
 
- One way to make the two hydrogen atoms  
symmetrical, is to put them both on the same  
transition metal center 
 
e.g. [trans-(PR3)2Pt(H2)H]+ 
 

(Stahl, Labinger, Bercaw  Inorg. Chem. 1998, 37, 2422) 
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Parent system:  
 0.75% H2 

Replace C6H4COOH  
      with H2O: 
 1.2% H2 

Path to Improved Capacity 
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Replace N-CH3  
      with N-H: 
 1.5% H2 
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And on paper, we can keep going  … 

Replace N-CH3  
      with N-H: 
 1.5% H2 

and the H2O becomes 
       unnecessary: 
 1.7% H2 

Then replace the benzo 
      with additional 
      -CH2NH- units: 
 6.9% H2 

If necessary,  
stabilize by fusion 
               6.5% H2 
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… and keep going  … 

and now bring back the H2O: 
 8.6% H2 

 (13.9% H2 if water is free) 

- The big steps are 
 Getting the cyclo-(CH2NH)3 system (or fused 
   analogs) to work 
 Enabling the dehydrogenative urea formation  
 Improved catalysts for hydrogen evolution 
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Ammonia Borane Regeneration 

Tier Chemical System Research Focus 

1 NaBH4/water (“Hydrogen 
on Demand” ®) 

More energy efficient synthesis 
of NaBH4 

2 Other B-H systems, e.g. 
NH3BH3 

Develop effective catalysts and 
systems for H2 release; 
develop energy-efficient 
regeneration 

3 “Other than boron” 
(C,N,O)-H 
{Si, P, Al}-H 

Identify systems with viable 
H2 release thermodynamics, 
and develop enabling 
catalytic processes 
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+ 10 

“organic hydride” + acetic acid = H2 + “organic acetate” 

Regeneration vs. Enthalpy 

If ∆H for dehydrogenation > ca. 10 kcal, requires too much on-board heat for storage 
   If < ca. 3 kcal, requires too much pressure to rehydrogenate 
   (If < 0, exothermic, requires at least 136,000 atm) 

(for T0∆S = 7 kcal;  ΔS = 23.5 eu; 1 kcal = 42.6 deg) 

D
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Peq = 1 atm at 152 C (+10 kcal) 

Peq = 1000 atm at 34 C (+3 kcal) 

+ 20 

+ 15 

+ 5 

   0 

- 5 

- 10 

- 15 
¼ NaBH4 + H2O = H2 + ¼ NaB(OH)4 

1/5 decalin = H2 + 1/5 naphthalene 

½ NH3BH3 = H2 + 1/6 borazine  

1/3 NH3BH3 = H2 + 1/3 BN 

NH3BH3 cannot be regenerated by H2 pressure alone 

“organic hydride” + water = H2 + “pseudobase” 
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Toward AB Regeneration 

Toward minimally-costly reprocessing: 

Digestion 
 Agent competent to digest (BN)xHx,  
          readily liberated from NH3 
 Digested B species:   
          readily reducible to BH species 
 
Reduction 
 Competent reducing agent, 
         inexpensive and energy-efficient, 
                              probably stops at H1,2B entities 
 
Disproportionation, ammoniation 
 Drive all H1,2B to H3B entities, 
         cleanly re-combine with NH3 
  

Re-hydrogenation Reprocessing 
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Toward Efficient AB Regeneration:   Scheme Alpha (2006) 
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AB Regeneration, Scheme Alpha:  
Disproportionation 

HBCat 

Disproportionation 

L 

H3B-L 

B2Cat3 

L = NEt2Ph 
 
    3 HBCat + NEt2Ph = H3B-NEt2Ph + B2Cat3 
 

       Establishes equilibrium (THF solution) 
      Keq ≈ 0.15 M-2 (60 C) 
            ≈ 1.6 to 2.3 M-2 (18 C) 
                     ∆H ≈ -10 to -13 kcal,  
                     ∆S ≈ -35 to -45 eu 
 
      Slow to establish equilibrium (t1/2 O(hrs) ) 
 
      Additional minor component observable 
          could be  (NEt2Ph)2BH2

+ BCat2- 

          (11B NMR  -1 (t, H-coupled); +23 (s) ) 
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AB Regeneration, Scheme Alpha:  “Ammoniation” 

NH3 

NH3BH3 

L 

H3B-L 

H3B-L + NH3 -> ammoniaborane + free L 
 
 
L = NEt2Ph, quite promising 
 
 H3B-NEt2Ph  +  NH3  =  H3B-NH3  +  NEt2Ph 
 Keq (298 K) >> 1,    t1/2 < 30 min 
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AB Regeneration, Scheme Alpha:  Digestion/Activation 

(BN)xHy 
OH 

OH 

NH3 

B2Cat3 

HBCat 

Digestion 

“HX” 

X-BCat 

OH 

OH 

Activation 

Activation:   
 B(O-Z)3 is very difficult to reduce 
  with “M-H” anything milder than  
  alkali hydrides; 
 “activation” = conversion to more reactive  
  B-X species  
 Another possibility:  (Scheme Beta) 
 
 
  
Digestion: 
 Catechol is reported to digest TiO2, SiO2 
 Reaction with borazine or spent AB, is problematic 
 (lots of H2 formed, most residual B-H consumed) 



  
Operated by Los Alamos National Security, LLC for NNSA 

U N C L A S S I F I E D Slide 25 

 

AB Regeneration, Scheme Alpha: Reduction 

“M-X” 

Reduction 

“M-H” 

HBCat 

X-BCat 

Reduction:   
  
 Cl-BCat readily reduces to HBCat using HSnBu3 
   
 “M-X” is then ClSnBu3, which can be converted with  
 NaHCO2 into Bu3Sn(formate) and subsequently 
 thermally decarboxylated to HSnBu3 
 
 In a sense, the “thermodynamic reducing potential” 
 required to regenerate B-H bonds is provided by a  
 combination of the driving force of forming NaCl  
 plus the enthalpic input from the thermal decarboxylation 
 of Bu3Sn(formate) 
 
  (Not often is heat “upgraded” to reducing potential !) 
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AB Regeneration, Scheme Alpha:  Improvements Needed 

Process simplification! 
 5-step process will be costly, even if each step is straightforward and efficient 
 Need to combine/integrate steps 
  e.g., if NH3 will promote disproportionation, we eliminate 
  the need for “L” and for separate ammoniation step 
 
Step improvements: 
 Will need efficient digestion yet without significant waste of residual B-H 
 “Activation” step will be troublesome/costly 
 Disproportionation step is much too slow, catalyst needed 
 
Rigorous analysis: 
 How good does this overall route look under rigorous engineering and 
  economic scrutiny?   
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AB Regeneration, Scheme Beta 

(Work by J. Gordon, A. Sutton, B. Davis) 
 
Get rid of catechol. 
 Two problems with catechol: 
 (1) Loses too much of the residual B-H 
 (2) Creates stable B-O bonds, which then require activation before reduction. 
 
Replaced catechol with benzenedithiol 
 Immediately fixes (2), improves (1), but forms a mixture of B-containing products 
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AB Regeneration, Scheme Beta 

Resolving this mixture of B-containing products: 
  
 Exploit reducing potential of HSnBu3 

Now, all the B is converted to Compound 1 
 
To complete the regeneration of ammonia borane, need to either drive further 
reduction or effect a disproportionation 
 Compound 1 required H2SnBu2 for further reduction; or, exchange with NMe3 to 
 enable use of Bu3SnH 
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AB Regeneration, Scheme Beta 

First successful demonstration of AB 
regeneration that didn’t require going to 
e.g. NaBH4 or to gaseous BCl3 
 

But, recall the filter of 
Rigorous analysis: 
 How good does this overall route look 
 under rigorous engineering and 
 economic scrutiny?   
 
Lots of reagents consumed (NaOH, HCl) and 
waste generated even at 100% yields. 
 
And, lots of HSnBu3 recycled  
(>28 pounds per pound of AB); overwhelming 
capital investment and handling costs 
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AB Regeneration, Scheme Omega: 

Needed a one-pot, one-shot reducing agent. 
 
Discovered the reaction with hydrazine in liquid NH3:   
Sutton et al, Science 2011, 331, 1426  
 

This translates the challenge into  
What is the least costly and most efficient way to make hydrazine? 
 And begs the question, Might not N-N/N-H bonds be an equally effective  
                     means of storing energy? 
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Biomass for Energy / Vanadium Oxidation 

Energy:    
 
Use organic content of lignin for  
 transportation fuels or 
 non-petroleum feedstocks 
 
Depolymerize lignin by oxidative 
 C-C bond cleavage 
 
Use air as the oxidant 
   

 
 
 
 

β-O-4 linkage 

Vanadium:    
 
Earth-abundant element 
 Can sustain widespread use in  
 “energy economy” 
 
Vv known to oxidize C-H, C-C bonds
   
Viv known to re-oxidize in air 
 
Known to bind alkoxides 
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Vanadium in Oxidation Processes 

One important industrial process:  BUTOX 
 
 C4H10 + 3.5 O2  ->  maleic anhydride + 4 H2O 
 
Catalyzed by vanadium phosphates  
  -  bulk phase vanadyl pyrophosphate (VivO)2P2O7 
   - if bulk phase becomes e.g. VvOPO4, rates and yields deteriorate 
   -  actual oxidation performed by surface Vv species 
  -  detailed mechanism elusive 
 
Our interests: 
 - Improve understanding of oxidation by phosphate-ligated vanadium 
 - Study other coordination environments to discover faster oxidation 
              processes 
 - Ultimately, develop a coordination environment capable of controlled  
  C-C, C-O bond breaking for converting lignin to monomers  
 
 

 



  
Operated by Los Alamos National Security, LLC for NNSA 

U N C L A S S I F I E D Slide 33 

 

- Chemistry:

Common structure:
V

O

O
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V iv
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O
O

V v
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V v
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O

V v

O

V v

O

OR

O

(-H2O)
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Vanadium(iv):  Reoxidizing with O2 

Certain O=Viv compounds are very air-sensitive:  O=Viv + x O2  =  O=Vv-O- 



  
Operated by Los Alamos National Security, LLC for NNSA 

U N C L A S S I F I E D Slide 34 

 

Dipic allowed us to isolate the first “almost non-cluster” vanadyl phosphate compound 

VO(OiPr)3
HOiPr

N

O
OH

O
OH

V

O

N
O O

O
O

OiPr V OMe
O

O

OO
N

Omethanol
(Keq ca. 0.5)

V OP(=O)(OEt)2
O

O

OO
N

O
HOP(=O)(OEt)2
(Keq ca. 0.016)

methanol

The unfavorable equilibrium with alcohols suggests that V-phosphate bonds  
     may be kinetically labile with alcohols, and that the alcoholato form is 
     key to oxidation chemistry 

V compounds with  “O,N,O” supporting dipic ligand 
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O=P(OH)(OEt)2
    (Keq=0.008)

iPrOH

1.75 Å

1.87 Å

- Electron-withdrawing capacity of Vv 
        expressed via in-plane dxy orbital

Y.

- Chemical consequences: 
       - preference for  3º > 2º > 1º  alkoxy > OP  
         (preferences reverse as Vv becomes 
         less electron withdrawing)

V OiPr

O O

OO

N

O
O

O
V

O

N

O

O

C
Y

C
OV-

O

O

O P
O

OEt
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 - activation of VOC-H, VOC-C

LigN

O

O

O

O O

Vanadyl Chemistry:  Basal plane reactivity 
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Catalytic oxidation of lignin models 

HO O

+ air

catalyst 
(10 mol%)

DMSO-d6
100 oC
7 days

HO

O

H
+

O

OH +

OH O O

+

46% 81% 77% 9%

V

O

OiPrN

O
O

O
O

catalyst O O

Detected as an intermediate: 
~80% yield at 50% conversion 

Can we control C-H vs. C-C bond breaking on Vv? 
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A Base-Assisted C-H Bond Activation Pathway? 

With no added base: no reaction (25 oC) 
Less than 25% reacts after 3 weeks at 100 oC 

The dipicolinate ligand is important: 

N
+ O

1/2N

O
O

O
O

V O

Py

Py

+ CD3CN + OH
1/22V

O

ON

O
O

O
O

V(O)OiPr3
CD3CN
100 oC

+
N

3 Less than 2% reacts  
after 2 weeks at 100 oC 
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51V NMR chemical shift vs. [pyridine] 

V
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ON
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+
N CD3CN
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O
O N

Evidence for Pyridine Coordination 

Saturation observed at ca. 0.6 M 
pyridine 
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1H NMR: fast exchange in CD3CN (25 oC) 

pyridine 

2,6-di-tert-butylpyridine 
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Evidence for Pyridine Coordination 

Assume acetonitrile coordination in absence of pyridine 
 

NMR Chemical shifts fit to Keq=[V-pyr][CD3CN]/[V-CD3CN][pyr] ca. 352+/-22 or ΔG(298) = -3.5 kcal/mol 
  

(if no acetonitrile coordination, K’eq=18(1) mol-1 or ΔG’(298) = -1.7 kcal/mol) 
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O-iPr 1H NMR chemical shift vs. [pyridine] 

NCCD3 
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Evidence for Pyridine Coordination 

Selected Bond Lengths (Å): 

V1-O6 = 1.585(1) 
V1-O5 = 1.755(1) 

 

parent isopropoxide (dimer) pyridine ligated 

V=O = 1.588(3) 
V-OiPr = 1.756(3) 
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Kinetic Study of the Isopropanol Oxidation 

Reaction rate:   First-order in V 
    Zero order in isopropanol 
    Approximately first-order in pyridine  
    (except nonzero intercept at [pyr] -> 0) 
 
Suspect base-assisted removal of C-H 

+
O

1/2N

O
O

O
O

V O

Py

Py

+
OH

1/2
pyridine-d5

1-Py

V

O

ON

O
O

O
O N

V

O

ON

O
O

O
O

H N At 340 K: kH/kD = 5.7 

ΔHŧ = 86(4) kJ/mol = 25.5(1) kcal/mol 
ΔSŧ = -76(6) J/mol-deg = -18(2) cal/mol-deg 
ΔGŧ(298) = 31(2) kcal/mol 
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V

O

O

(strong) L
O

L' (weak)

Note:  Good Stoichiometric Reaction ≠ Good Catalysis 

“O=V(+4)(dipic)” is relatively air-stable:  It’s not of the form 
 
Isolated dihydrate and bis(pyridine) compounds, 
  rearrange to N trans to vanadyl;  
  the V-O(water/pyridine) ligands are relatively strongly bonded 

Why dipic stays cis to  
     vanadyl in isolated V(+5)   
     compounds,  
but goes trans in V(+4), 
     is not known 
 
 – but teaches us that we   
       can’t always count   
       on “O,N,O” staying cis 



  
Operated by Los Alamos National Security, LLC for NNSA 

U N C L A S S I F I E D Slide 43 

 

Probable Reaction Mechanism 

rate = k3[1-Py][pyridine] + k2k1[1-Py]/k-1 

Satisfactory fit assuming both pathways are operating 
 
But leaves one very interesting question: 
 - Product is exclusively Viv;  
  how do we accomplish a 2 e- oxidation  
  with a one-electron oxidant that exhibits first-order kinetics? 

V

O

ON

O
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O
O N

V

O

ON

O
O

O
O

- pyridine

+ pyridine

+ pyridine
k1

k-1

k2
products

+ pyridine
k3

products
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Possible Reaction Mechanism: E2 by calculation 

W. Borden, D. Hrovat, 
personal communication 
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Possible Reaction Mechanism: E2 by calculation 

Pyridine removes “H+” from isopropoxide, with concomitant Vv -> Viii 

  
 Viii is more stable as a triplet than as a singlet but finding exact singlet/triplet  
  crossover point has been difficult  
  (compounded by dipic going from cis -> trans)  
  
 
Viii rapidly conproportionates with remaining Vv to make 2 Viv 
 

However, this conproportionation is only ca. 1.4 kcal exergonic by calculation,  
 relative to the overall oxidation reaction being 10 kcal exergonic by calculation 
Two possible consequences: 
 - If V centers were surface-bound and could not conproportionate,  
  reaction could still occur 
 - Conproportionation might be incomplete i.e. reversible 
 

 
In C-H oxidation reactions, Viii has not been observed,  
 and no evidence for incomplete conproportionation  
    However, in C-C oxidation (pinacol) Viii has been isolated 
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C-C Bond Breaking:  Oxidation of Pinacol 

dxy orbital activates VOC-H 
(pryidine-assisted) 
 
But what if there is no OC-H? 
 
Using pinacol, discovered Vv  
activates VOC-C  
 
Starting pinacolato compound 
shows expected chelation to 
(dipic)vanadyl center 
 

4-6 days 

Reaction appears to go via 2-electron oxidation of the pinacol to give acetone + Viii, 
followed by rapid conproportionation with Vv to give two Viv molecules 
(Hanson et al, JACS 2009, 131, 428) 
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C-C Bond Breaking:  Oxidation of Pinacol 

Unexpectedly, the  
Viv compound reacts further  
with pinacol to give  
acetone + Viii 
 
 
Is Viv reacting with pinacol via 
2-electron oxidation to give Vii, 
followed by rapid 
conproportionation to give Viii ? 
 
 
More probable:  
Pinacol drives disproportionation  
2 Viv = Viii + Vv (pinacolato)  
 
and the Vv oxidizes the pinacol 
as before 
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C-C Bond Breaking:  Oxidation of Pinacol-monoethers 

What happens if the one of the 
pinacol hydroxyls is converted to 
an ether? 
 
C-C bond breaking can no longer 
yield two ketones 
 
 Find however that C-C bond still breaks (first), making half an equivalent of ketone, 
with the Me2COMe fragment losing a C-H bond to give half an equivalent of vinyl ether 
(Hanson et al, Inorg. Chem. 2010, 49, 5611) 
 
 
 
 
 
 
 
Next question:  If both OC-H and OC-C bonds are present, which does Vv activate? 
 
 
 
 



  
Operated by Los Alamos National Security, LLC for NNSA 

U N C L A S S I F I E D Slide 49 

 

C-C Bond Breaking:  Oxidation of Pinacol-monoethers 

If both OC-H and OC-C bonds 
are present, which does Vv 
break? 
 
It depends! 
 
For the oxidation of  
1,2-diphenyl-2-methoxy-ethanol, 
 If in pyridine solvent we see 
 C-H bond breaking (facile) 
 
  
 If in DMSO, we see primarily 
 C-C bond breaking  
 (more difficult) 
 
� 
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Dependent on Solvent, and on Ligand 

In (dipic)Vv compounds, pyridine promotes OC-H bond breaking  
(for substrates that have OC-H bonds) 
 
Absent pyridine or other base, OC-H bond breaking is much slower,  
and OC-C bond breaking can become competitive 
 
 What effect does the ligand have on these processes?   
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Ligand Effects on C-H Bond Breaking 

In (dipic)Vv compounds, pyridine promotes OC-H bond breaking  
(rapid stoichiometric oxidation reaction)  
 
However pyridine also complexes to (dipic)Viv product and inhibits aireal re-oxidation 
(makes net catalytic turnover very slow) 
 
Examined ligands other than (dipic) in catalytic processes 
 
  
 
� 
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Ligand Effects on C-H Bond Breaking 

(dipic)V  (3) is woefully inadequate catalyst; other (O,N,O) and (O,N,O)-like ligands are 
more effective 
 
At least three potential contributing reasons: 
 - (dipic)(Viv=O) goes trans, ancillary ligands inhibit reaction with O2 
 - alkoxy-containing (O,N,O) ligands increase electron density in (O,N,O)(Viv=O) 
 - nominally-tetradentate ligands promote reoxidation of Viv  
 
  
 
� 
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Ligand Effects Convolved with Substrate Effects 

Compound 4 promotes C-H oxidation at the benzylic carbon, also promotes phenol 
elimination and dehydration (C-O bond breaking)   (Son,Toste  Angew. Chem. 2010, 122, 439) 
 
Compound 5 also oxidizes benzylic C-H, but also (new!) promotes C-C bond breaking  
at the Cphenyl-Cbenzylic bond  (Hanson et al, Angew. Chem. Int. Ed. 2012, 51, 3410) 
 
Our previous work had us expecting C-C bond breaking at Cα-Cβ, or Cβ-Cγ.   
   Cphenyl-Cα bond breaking is a new pattern for us; requires phenolic O-H 
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Ligand Effects Convolved with Substrate Effects 

with (O,N,O)Vv, breaks C-H and C-O bonds 
 
with (O,N;N,O)Vv, breaks Cphenyl-Cα bond as well as C-H 
 
 
only observe C-H, C-O bond breaking 
 
 
 

Our original intent was to: 
        - Study other coordination environments to discover faster 
            oxidation processes 
 - Develop a coordination environment capable of controlled  
  C-C, C-O bond breaking for converting lignin to monomers 
 
We have interesting progress but quite a way yet to go.  
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