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Diffusion of Xe and U in UO2 is controlled by vacancy mechanisms and under irradiation the for-
mation of mobile vacancy clusters is important. We derive continuum thermodynamic and diffusion
models for Xe and U in UO2 based on the vacancy and cluster diffusion mechanisms established
from recent density functional theory (DFT) calculations. Segregation of defects to grain bound-
aries in UO2 is described by combining the diffusion model with models of the interaction between
Xe atoms and vacancies with grain boundaries derived from separate atomistic calculations. The
diffusion and segregation models are implemented in the MOOSE/MARMOT (MBM) finite element
(FEM) framework and we simulate Xe redistribution for a few simple microstructures. In this re-
port we focus on segregation to grain boundaries. The U or vacancy diffusion model as well as the
coupled diffusion of vacancies and Xe have also been implemented, but results are not included in
this report.

I. INTRODUCTION

In UO2 nuclear fuels the retention and release of fission
gas atoms such as Xe are closely coupled to fuel perfor-
mance. For example, the formation of fission gas bubbles
induce fuel swelling, which leads to mechanical interac-
tion with the clad thereby increasing the probability of
clad breach. Fission gas bubbles also decrease the ther-
mal conductivity of the fuel. Alternatively, fission gas
can be released from the fuel to the plenum, which in-
creases the pressure on the clad walls. In order to predict
the fuel performance as function of burn-up, the redistri-
bution of fission gas atoms must be understood. Most
fission gases have low solubility in the fuel matrix, which
is especially pronounced for large fission gas atoms such
as Xe, and as a result there is a significant driving force
for segregation of gas atoms to extended defects such as
grain boundaries or dislocations and subsequently for nu-
cleation of gas bubbles at these sinks. After segregating
to grain boundaries fission gases may be released to the
fuel plenum, either via fast diffusion of individual gas
atoms along grain boundaries or via interlinked gas bub-
bles forming percolation networks.

Several empirical or semi-empirical models have been
developed for fission gas release in nuclear fuels1–6. One
of the most commonly used models in fuel performance
codes was published by Massih and Forsberg3,4,6. This
model describes release as 1) diffusion from the interior
of a spherical grain to the grain boundary represented by
the circumference and 2) release from the grain boundary
by applying time-dependent boundary conditions to the
circumference. In order to provide more detailed insight
into the role of microstructure, several authors have re-
cently applied phase field models to simulate evolution of
fission gases and related properties in nuclear fuels7–13.
Millet et al.10–13 simulated void evolution and coupling
between voids and fission gas atoms in metals, while Hu
et al.7–9 focused on similar properties in UO2. The suc-

cess of phase field models to capture the evolution of
fission gases and related phenomena relies on being able
to accurately represent atomistic mechanisms and to as-
sign correct driving forces and kinetic parameters to these
mechanisms. For this reason, we have derived contin-
uum models for Xe and vacancy (Va) diffusion and grain
boundary segregation in UO2 based on mechanisms and
data determined from DFT calculations and atomistic
simulations14,15.

This report is organized as follows. First we demon-
strate how thermodynamic and kinetic models for Xe and
vacancies in polycrystalline UO2 fuels can be developed
and parameterized using data from atomistic simulations.
Next these thermodynamic and kinetic models are used
to formulate transport equations for Xe and vacancy re-
distribution. The initial model focuses on Xe and vacan-
cies separately. The second step where, e.g., the Xe redis-
tribution is explicitly coupled to the vacancy dynamics
is not inclued in this report. The MOOSE/MARMOT
(MBM) finite element framework17,18 is then used to
solve these models for a few simple microstructures and
test cases. Here we only report results from simulations
of Xe segregation. This study does not aim at predicting
the complete microstructure evolution, but rather inves-
tigates the rate-limiting fission gas segregation step and
the detailed coupling between fission gas and vacancy
diffusion.

II. THERMODYNAMIC AND KINETIC
MODELS FOR XE AND VA SEGREGATION

A. Data from atomistic calculations

Nerikar et al. calculated grain boundary and disloca-
tion segregation energies for Xe in UO2 using atomistic
simulations based on empirical potentials16. They stud-
ied three different types of grain boundaries; Σ5 tilt, Σ5
twist and a high angle random boundary. First they de-
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termined the lowest-energy grain boundary configuration
for each boundary type by applying either relative dis-
placements of the two grains (mapping of the Γ surface)
or high-temperature annealing followed by quenching to
low temperature. After this they replaced one U atom
with one Xe atom and calculated relative energies for
Xe occupying all of the available U sites in the simula-
tion cell. This provides data on the segregation energy
as function of the distance from the boundary as well
as the distribution of segregation sites at the boundary.
The segregation energy is defined as the energy differ-
ence between a Xe atom occupying a bulk position far
away from the grain boundary and a Xe atom positioned
within the grain boundary. Note that the boundary ex-
hibits a range of segregation energies, implying that the
segregation of Xe atoms cannot be accurately represented
by a single value for the segregation energy as typically
applied in Langmuir-Mclean theory19,21. The assump-
tion that Xe atoms reside in a single U vacancy ignores
the fact that Xe atoms are believed to occupy trap sites
consisting of one U and either one or two additional O
vacancies in stoichiometric UO2

15,22,23. Nevertheless, the
relative energies obtained from this simplified assumption
should capture the segregation trends correctly and mod-
els could easily be adjusted to accommodate any differ-
ences emerging from coordination of Xe trap sites with O
vacancies. The preferred Xe location is a function of the
UO2±x stoichiometry. Unlike UO2−x and stoichiometric
UO2 where Xe atoms occupy U vacancies coordinated
with either one or two O vacancies, single U vacancies
are the preferred Xe trap site in UO2+x

15,22,23.

The segregation properties are unique for each type of
grain boundary, as illustrated in Fig. 1. This conclusion
refers to both the maximum sink strength, i.e. the most
negative segregation energy, and the distribution of segre-
gation sites as function of distance from the centre of the
grain boundary. The random boundary is the strongest
Xe sink, followed by the Σ5 tilt and Σ5 twist bound-
aries. Segregation of large atoms such as Xe is often
described in terms of elastic interactions, i.e. the extra
volume found at the grain boundary attracts the large Xe
atoms by reducing the total strain of the system. This
approach was, for example, applied in phase-field simu-
lations by Hu et al.7. Close to the boundary core this
description is expected to become less accurate. Nerikar
et al. attempted to map the Xe segregation properties
onto the strain obtained from atomistic simulations, but,
although some correlation was found, it was difficult to
quantitatively predict the segregation energy from the
local strain16. Due to the specific atomic displacement
pattern of the O sublattice at the Σ5 tilt boundary, there
is an electrostatic field across the grains24 and, since Xe
occupying a single U vacancy site is a charged defect,
there is an electrostatic contribution to the Xe segrega-
tion energy16. This gives rise to a more extended inter-
action range than for the other boundaries. The prac-
tical importance of this effect to nuclear fuel properties
is not yet clear, since the electrostatic component could

be cancelled by, e.g., associating O vacancies to Xe oc-
cupying U vacancy trap sites, by the presence of charge-
compensating U5+ ions around the Xe trap site or by
segregation of charged defects to the boundaries that ex-
hibit an electrostatic field. The first two mechanisms
make the Xe defect sites charge neutral, thus canceling
any electrostatic interactions, and the latter mechanism
instead removes the presence of electrostatic fields origi-
nating from grain boundaries. These details will not be
further explored in this report.

Fig. 3 plots the (relative) segregation energy as func-
tion of the Xe fraction in the boundary region. This
quantity was derived by independently filling available
Xe trap sites, starting from the most favorable one, up
to a certain site fraction and the segregation energy for
this concentration is then defined as the segregation en-
ergy of the next empty Xe site. Fig. 3 illustrates that the
segregation energy first increases rapidly for increasing x,
after which it levels out up to x ≈ 0.9 where the segre-
gation energy starts rising almost exponentially. This
concentration dependence must be included in order to
prevent grain boundaries from becoming infinite sinks for
Xe atoms. Since the segregation energy was derived from
calculations of individual Xe atoms at the boundary, it
neglects any explicit Xe-Xe interactions or rather, as will
be explained later, they are assumed to be the same as
in the bulk.

Following the approach of Nerikar et al. we calculated
the segregation properties of U vacancies to the three
grain boundary types investigated above. From Figs. 2
and 4 we conclude that vacancy segregation very closely
mimics the trends already established for Xe. In order to
ensure consistency we recalculated the data reported by
Nerikar et al. using the LAMMPS code. We found good
agreement with the previous study.

Andersson et al.15 and Dorado et al.20 calculated a
large set of defect parameters in bulk UO2±x using DFT,
including migration barriers and activation energies for
Xe and U transport as well as binding energies for var-
ious defect clusters of critical importance for transport
properties. Here this data will be used to formulate and
parameterize continuum-level models for Xe and U diffu-
sion in UO2.

B. Thermodynamic model

1. Xe and vacancy segregation to grain boundaries

We would like to establish a formalism for including
the detailed segregation thermodynamics outlined above
in continuum-level transport models and to investigate
to what extent such a model impacts the Xe and Va seg-
regation. The most direct approach to achieve the first
goal is to represent the atomistic segregation data sum-
marized in Figs. 1, 2, 3 and 4 in an appropriate functional
form. The following equation was applied for the concen-
tration dependent Xe and Va segregation energy density,
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FIG. 1. The Xe segregation energy as function of the distance from the centre of the grain boundary for three different boundary
types, Σ5 tilt, Σ5 twist and a high angle grain boundary classified as random (blue lines and symbols). The solid red lines
illustrate Eq. 1 without the g(yXe) term (no concentration dependence) fitted to the lowest segregation energy as function of
distance from the boundary.
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FIG. 2. The Va segregation energy as function of the distance from the centre of the grain boundary for three different boundary
types, Σ5 tilt, Σ5 twist and a high angle grain boundary classified as random (red symbols). The solid blue lines illustrate Eq.
1 without the g(yV a) term (no concentration dependence) fitted to the lowest segregation energy as function of distance from
the boundary.

EX,gbm (yX , r) (where X denotes Xe or Va):

EX,gbm (yX , ~r)

NA
=

=
∑
i,j

∫ yX

0

2 (Ci − gi(y′X)) fij(rij)dy
′
X , (1)

where

fij(r) =
1

1 + exp
(
−r2

ij/k
2
i

) − 1 (2)

and

gi(yX) = miln

(
100yX + exp

(
−bi
mi

))
+ bi (3)

EX,gbm (yX , ~r) is the total or integrated segregation energy
as function of the (projected) distance from the grain
boundary (rij) and the local Xe or Va concentration yX
on the cation sublattice. NA is Avogadro’s number con-
verting the left hand side of the equation to energy per
atom rather than mole. This convention will be applied
throughout this work. The i index covers different types
of sinks (e.g. different types of grain boundaries) and the
j index covers all sinks of a specific type i (e.g. Σ5 tilt

boundaries). Ci measures the dilute limit sink strength,
gi its concentration dependence and fij its spatial inter-
action range. The function fij(rij) describes the (nor-
malized) segregation energy in the dilute limit, which is
defined by the most negative segregation energy among
all the grain boundary segregation sites available at a
certain distance from the centre of the boundary. The
most negative segregation energy is used for normaliza-
tion (note that the normalization constant is in fact twice
the lowest segregation energy, 2Ci). In Eq. 2 the param-
eter ki determines the slope of the Xe or Va grain bound-
ary interaction range. For each type of grain boundary
the ki parameter was fitted to the data in Figs. 1 and 2.
gi(yX) (Eq. 3) describes the concentration dependence
(yX) of the segregation energy and the bi and mi parame-
ters were fitted to the atomistic data in Figs. 3 and Figs.
4. Note that the integral in Eq. 1 measures the total
segregation energy as function of the Xe or Va fraction
rather than the incremental change expressed by gi(yX)
alone. Clearly this model contains a number of simpli-
fications. For example, gi(yX) derives from analysis of
the entire grain boundary region and ignores any spa-
tial dependence, which implies some double counting in
our model. The present model for the concentration de-
pendence is strictly speaking valid for a grain boundary
that does not resolve the segregation energy as function
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FIG. 3. The concentration dependence of the Xe segregation energy (blue lines and symbols). The solid red lines illustrate Eq.
3 fitted to the calculated data.
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FIG. 4. The concentration dependence of the Va segregation energy (red symbols). The solid blue lines illustrate Eq. 3 fitted
to the calculated data.

of distance but rather treats it as a region with a con-
centration dependent segregation energy given by gi(yX)
(i.e. the grain boundary is described by a step function
rather than as a continuous function). Any contributions
that originate from entropy differences between bulk and
grain boundaries are presently ignored. The segrega-
tion energy is assumed to be independent of tempera-
ture, which ignores the statistical distribution between
segregation sites expected at high tempertaure.

Table I summarizes the fitted ki, bi and mi values as
well as the direct calculations of Ci for each grain bound-
ary type. The quality of the fij(rij) and gi(yX) fits are
in general good, which is illustrated in Figs. 1, 2, 3 and
4. Note that for some of the data in Table I the fij(rij)
the interaction range was given a higher weight in the
fitting procedure than the absolute segregation energies.
We are currently investigating the balance between these
two contributions. For Σ5 tilt boundaries the deviation
between data points and the fitted curve originates from
the presence of an electrostatic field that would require
a different functional form of the fij interaction range
or explicit calculation of electrostatic interactions to give
optimal results. Improved representation could in princi-
ple be achieved by changing the rij exponent from 2 to 1
or some non-integer value in Eq. 2. Table I also includes
the fij parameter set that describes the segregation to the
Σ5 tilt boundary in the absence of electrostatic contribu-
tions. The gi(yX) fits were performed for data points
up to the concentration level indicated by the fitted red
lines in Fig. 3. The upturn occurring beyond this point is

ignored. This approximation has no influence on the ac-
tual simulation results since the current description still
captures the saturation point for the local concentration
field and, in particular, once fission gas bubble or void
formation is incorporated, this process will be initiated
well before reaching the local concentration limit. The
models derived above refer to independent segregation of
Xe and Va.

Grain boundary type Ci (eV) ki (nm) bi mi

Xe

Σ5 tilt 4.09 1.225 0.900 0.700

Σ5 tilt, no electrostatics 3.99 0.387 0.900 0.700

Σ5 twist 0.97 0.922 0.315 0.171

Random 6.42 0.469 2.562 0.900

Va

Σ5 tilt 3.56 0.5637 -2.768 1.403

Σ5 twist 1.23 0.3890 0.111 0.317

Random 4.80345 0.5691 1.78 0.856

TABLE I. Fitted or calculated Ci, ki, bi and mi parameters
for Xe and Va segregation to different grain boundary types.

2. Xe and Va bulk thermodynamics

The thermodynamic properties of Xe and Va in bulk
UO2 are here described by the (U,Xe)O2 and (U,Va)O2
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regular solution model. For Xe the energy density is given
by (including the gradient energy terms required for cap-
turing the dissolution kinetics):

Gbulkm (yXe, T )

NA
=

(1− yXe) oGUO2

U + yXe
oGUO2

Xe + 0LyXe (1− yXe) +

+kBT ((1− yXe) ln (1− yXe) + yXe ln (yXe)) +

+
εXe
2

(∇yXe)2
+
εU
2

(∇(1− yXe))2
(4)

yXe is the mole fraction of Xe on the U sublattice, oGUO2

U
is the free energy of the U fluorite end-member com-
pound, oGUO2

Xe is the free energy of the Xe fluorite end-
member compound and 0L is the regular solution param-
eter. The last two terms in Eq. 4 are the Xe and U gradi-
ent energy coefficients, respectively. kB is the Boltzmann
constant, which implies that all parameters in Eq. 4 are
expressed in eV per atom or formula unit rather than
per mole. The 0L parameter is evaluated from atomistic
calculations of the Xe-Xe binding energy (EB), which
provides 0L = 6EB ≈ 10.35 eV. This value was obtained
by placing two Xe atoms in a void created by two bound
Schottky defects and comparing the energy with that of
Xe atoms occupying a single Schottky defect. Clearly,
this is not only a measure of the Xe-Xe interaction energy,
but also the first stage of Xe bubble formation. The high
positive value of 0L captures the insoluble character of
Xe in UO2 and this implies that the system is highly sus-
ceptible to spinodal-like decomposition25. However, this
tendency is counteracted by the gradient energy terms
εXe

2 (∇yXe)2
+ εU

2 (∇(1− yXe))2
. The instability is gov-

erned by the usual relations for the critical fluctuation
wavelength as function of, 0L, εU and εXe. εU and εXe
have not been calculated yet, but were here set to 10 eV.
Lower values give rise to numerical instabilities even for
low concentrations of Xe. The origin of these instabili-
ties is the high value for the 0L interaction parameter.
In some simulations we make the simplifying assumption
that Xe atoms form an ideal solution on the U sublattice
and, consequently, the 0L parameter is set to zero.

The oGUO2

Xe parameter can be determined from the so-
lution energy of Xe in UO2, which has been calculated
from DFT as function of the UO2±x stoichometry15. The
Xe reference state is defined as the gas phase at 298 K
and 100000 Pa. The oGUO2

U reference is arbitrarily set
to 0 eV. The Xe trap sites in UO2 involves more com-
plex defects than the U vacancy site assumed in Eq. 4.
At the UO2 composition the Xe atom is likely associ-
ated with additional O vacancies, however for simplicity
this contribution is not explicitly contained in the present
formulation. Instead oGUO2

Xe is adjusted to represent the
active defect configuration for the composition of inter-
est. The oGUO2

Xe parameter does not enter the present
diffusion simulations, since the simulations only consider
one phase but this term would be required for capturing
the relative stability of Xe atoms in fission gas bubbles
and in solution. Table II collects the bulk thermody-
namic model parameters in Eq. 4. The regular solution

model captures the interactions between Xe atoms, but
the entropy contribution is not modified. Obviously, this
is a simplification and extensions from this model have
been demonstrated using various degrees of complexity
within alloy theory. However, for the present simulations
the neglect of entropy corrections is viewed as a minor
simplification.

The thermodynamic properties of vacancies in UO2 are
described using the same model as for Xe (Eq. 4). Based

on results from DFT calculations the oGUO2

V a and 0LyV a
parameters were calculated to be 3.39 eV and -1.0 eV,
respectively (see Table II).

Note that in Eq. 4, as well as throughout this work, the
O sublattice is not explicitly treated, which is motivated
by the fact that the dynamics on the anion sublattice is
several orders of magnitude faster than the correspond-
ing dynamics on the cation (U) sublattice. This implies
that we assume quasi-equilibrium conditions to prevail
such that the O sublattice is in equilibrium with the in-
stantaneous species distribution on the cation sublattice.
Similar simplifications are applied to any species on in-
terstitial sublattices.

U-Xe model

Low irr. High irr.
oGUO2

U (eV) 0 0
oGUO2

Xe (eV) 5.24 5.24
0LXeU (eV) 10.35 10.35

∆Q0 (eV) 3.94 3.18

∆HXe (eV) 5.29 5.29

D0 (nm/s2) 5 · 1012 − 5 · 1014 N/A

U-Va model Low irr. High irr.
oGUO2

U (eV) 0 0
oGUO2

V a (eV) 3.39 3.39
0LUV a (eV) -1.0 -1.0

∆Q0 (eV) 4.22 2.92

∆HU (eV) 4.75 4.75

∆HU2 (eV) 2.61 2.61

DU
0 (nm/s2) 2 · 1011 2 · 1011

DU2
0 (nm/s2) 2 · 1011 2 · 1011

TABLE II. Bulk thermodynamic and kinetic parameters for
the Xe-U and U-Xe-Va models, respectively, under thermal
equilibrium conditions (Low irr.) and under irradiation (High
irr.). The two separate estimates for each parameter were
obtained from two different DFT data sets (see Ref. 15 for
details).
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3. Xe and Va bulk and grain boundary thermodynamics

The complete thermodynamic models for Xe and Va
in UO2 are obtained as the sum of Eqs. 1 and 4:

GTotalm (yX , T, ~r)

NA
=
Gbulkm (yX , T )

NA
+

+
∑
i,j

∫ yX

0

2 (Ci − gi(y′X)) fij(rij)dy
′
X . (5)

Here the superscript X denotes either Xe or Va. Note
that the distances rij are defined as the orthogonal pro-
jection from the position ~r to the grain boundaries. If
the grain boundary network is represented by connected
line segments the sum in Eq. 5 can be evaluated for
each point in the simulation domain. The projection is
only included in the summation if it is within the spa-
tial bounds of the line segment. Regions where the sum
over different i and/or j overlap, such as grain boundary
triple junctions, require special attention. As an alterna-
tive to inter-connected line segments the grain structure
can be represented by a phase-field model in which each
grain i is described by an order parameter φi. φi = 1
within this grain and zero in all other grains. It varies
continuously from one to zero over the boundary. At a
point on a boundary, several order parameters have val-
ues between zero and one. In the phase field description
the sum in Eq. 5 is over the number of possible pair-
ings between order parameters with values greater than
zero (to be revisited in order to improve descriptions of
grain boundary triple junctions). The index i denotes
the properties of the grain boundary type defined by the
current order parameter pair. The spatial interaction is
defined as fi = Φi − 1, where Φi = φ2

j + φ2
k. φj and

φk are the current order parameter pair. One benefit of
reformulating the original model applying line segments
into a phase field model is to facilitate coupled simula-
tions of gas bubble evolution and grain growth. Further-
more, compatibility with existing phase field models for
simulating nuclear fuel properties is ensured7,8,10–13. All
simulations presented here apply the phase-field model.

C. Kinetic model

1. Xe and Va mobilities

In order to simulate Xe transport the (atomic) mobil-
ity of Xe (MXe) must be determined. Since Xe moves
via a vacancy mechanism the relevant quantity govern-
ing Xe diffusion is the (atomic) mobility multiplied by
the vacancy fraction, MXeyV a (according to reaction
rate theory). The Xe vacancy mechanism is somewhat
unique in the sense that the vacancy is bound to the Xe
trap site, which affects both the mobility and flux equa-
tions. Exceptions to vacancy-mediated diffusion may oc-
cur for transients in high irradiation fields, as discussed

in Ref. 14 for Xe interstitials migrating via the O sub-
lattice. MXeyV a is related to the measured or calcu-
lated Xe activation energy (∆Q) via the Arrhenius re-

lation MXeyV a = D0

kBT
exp

(
− ∆Q
kBT

)
. The exact value of

∆Q depends on the details of the Xe diffusion mecha-
nism, which is a function of the UO2±x stoichiometry15.
In this study we assume stoichiometric UO2, for which
∆Q0 = EVU

F −EB +EC,VU
m = 3.9 eV from experiments26.

Here EVU

F is the U vacancy formation energy, EC,VU
m is the

migration barrier and EB is the binding energy of U va-
cancies to the Xe trap sites. DFT calculations of the indi-
vidual defect parameters provide a very similar estimate
for the activation energy (3.94 eV), which will be used in
the present simulations. This estimate applied the point
defect model derived in Ref. 20 to calculate the effective
vacancy formation energy in UO2, which explains the
slightly lower activation energy compared the prediction
in Ref. 15. The former value is believed to better corre-
spond to the experimental conditions. The derivation of
∆Q0 assumes that diffusion occurs via thermal vacancies,
however under irradiation the vacancy concentration is
expected to increase. For high non-thermal vacancy con-
centrations EVU

F should be set to zero, which gives us
∆Q0 = −EB + EC,VU

m = −0.81 + 5.29 = 4.48 eV. How-
ever, for a constant vacancy production rate the vacancy
concentration will be proportional to exp 1.3

kBT
. This fac-

tor derives from the fact the the annealing of vacancies
scales as one over the square root of the vacancy mobility.
Under irradiation the relevant vacancy migration energy
is 2.61 eV. Based on this relation ∆Q0 = 3.18 eV. Un-
fortunately, the pre-exponential factor is not known and
it is difficult to estimate for this case.

Finally, the Xe mobility is calculated as the product of
a pre-exponential factor D0 and the exponential of the
activation energy (Arrhenius model).

MXeyV a =
D0

kBT
exp

(
− ∆Q

kBT

)
(6)

The pre-exponential factor is taken to be D0 = 5 · 1013

nm2/s,26 which was obtained from experiments on Xe
diffusion.

The mobility of vacancies or equivalently U atoms is
expressed as:

MU =
D0

kBT
exp

(
−∆HU

kBT

)
(7)

As for Xe the relevant quantify for U diffusion is MUyV a
(according to reaction rate theory). Under local thermal
equilibrium MUyV a is given by the activation energy ac-

cording to MUyV a = D0

kBT
exp

(
− ∆Q
kBT

)
. For stoichiomet-

ric UO2 we have calculated the activation energy to be
4.22 eV, which is very close the experimental value of 4.4
eV. The actual migration barrier is ∆HU = 4.75 eV and
the activation energy is obtained by calculating the ef-
fective vacancy formation energy according to the model
presented in Ref. 20. However, it is not really meaningful
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to calculate vacancy segregation under thermal equilib-
rium and consequently all our simulations apply a model
where the factor yV a is explicitly treated and the mobil-
ity given by Eq. 7. DFT calculations have highlighted
the importance of U vacancy clustering for explaining
experimental measurements of U vacancy migration bar-
riers in damaged materials15. In order to model effects
of U vacancy clustering a second mobility must also be
introduced for U, MU2 .

MU2 =
D0

kBT
exp

(
−∆HU2

kBT

)
(8)

∆HU2
was calculated to be 2.61 eV and represents the

mobility of two bound U vacancies. The relevant quantity
is MU2

yV a2 , where yV a2 denotes the site fraction of di-
vacancy clusters.

The pre-exponential factor was taken as D0 = 2 · 1011

nm2/s26 for U vacancies. This value was derived from
vacancy diffusion in irradiated samples and for this rea-
son it should not include any contributions from defect
formation reactions or equilibria.

D. Transport equations

1. Xe-U model

As explained in Ref. 15, Xe diffuses via a vacancy
mediated mechanism where the vacancy is bound to the
Xe trap site and this implies that diffusion effectively
occurs via a U exchange mechanism. For the Xe-U model
the Onsager linear law applied to the lattice flux of Xe
via the vacancy mediated exchange mechanism yields:

JXe = −LXe∇ (µXe − µU ) . (9)

Here µXe − µU is the chemical potential difference be-
tween Xe and U and its spatial gradient, ∇ (µXe − µU ),
represents the driving force for diffusion of Xe. For a reg-
ular vacancy diffusion mechanism the driving force would
be ∇ (µXe − µV a). The magnitude of the resulting flux,
JXe, is controlled by the linear flux parameter, LXe. Ac-
cording to reaction rate theory the flux parameter is of
the form LXe = MXecXeyV a = MXeyXeyV a

Vm
, where MXe

is the Xe mobility for vacancy assisted diffusion, yXe and
yV a are the site fractions of Xe and Va on the U sub-
lattice, respectively, and cXe = yXe

Vm
is the concentration

of Xe. The combined factor MXeyV a was defined in Eq.
6. ∇(µXe − µU ) can be calculated from the free energy
density in Eq. 5 according to non-equilibrium thermody-
namics, which is equivalent to applying the Cahn-Hilliard
equation.

µXe − µU =
δ

δyXe

(∫
Ω

GTotalm dΩ

)
yXe+yU

=

=

(
∂GTotalm

∂yXe

)
yXe+yU

−∇ ·
(
∂GTotalm

∂∇yXe

)
yXe+yU

. (10)

The subscript yXe + yU indicates that yU = 1 − yXe is
treated as the dependent variable.

The time evolution of the Xe concentration field in the
lattice fixed frame of reference is governed by the usual
conservation law:

∂ (yXe/Vm)

∂t
= −∇ · JXe. (11)

yXe/Vm is equal to the concentration (cXe) of Xe. In
order to mimic fission events a homogeneous source term
η(t) may be added to Eq. 11, similar to previous models
by Hu et al7 and Millet et al.10–12. The molar volume is
assumed to be constant.

2. U-Va model

U diffuses via a vacancy mechanism, for which the flux
is:

JU = −LU∇ (µU − µV a) =

= −MUyV ayU
Vm

∇ (µU − µV a) (12)

LU is a kinetic parameter given by MUyV ayU . Andersson
et al. also investigated the influence of U and O vacancy
clustering on the activation energy for U (or equivalently
U vacancy) diffusion. They concluded that when there
are a significant number of non-thermal vacancies due
to irradiation, clustering spontaneously occurs and this
lowers the U (vacancy) migration barrier from 4.75 to
2.61 eV. The above equation (Eq. 12) does not account
for the clustering of U vacancies. However, if we assume
local equilibrium in each grid point this effect can be
obtained from the following reaction.

V aU + V aU 
 (V aUV aU ) (13)

The corresponding reaction energy is ∆E = 0.17 eV. In
a scenario where the U vacancies bind with oxygen va-
cancies created via irradiation this interaction becomes
attractive, but, as we will see below, even for slightly pos-
itive binding energies there are enough clusters to dom-
inate diffusion under irradiation. The fraction of bound
vacancies, yV aV a = yV a2 , is calculated by applying the
law of mass action to reaction 13.

JU = −LU∇ (µU − µV a) =

= −MU (yV a − y′Xe − yV a2) yU
Vm

∇ (µU − µV a)

−MU2yV a2yU
Vm

∇ (µU − µV a) (14)

The local clustering reaction determining yV a2 are
presently not solved in a coupled way.

The chemical potential difference that provide the driv-
ing forces for diffusion, µU −µV a, is derived according to
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non-equilibrium thermodynamics, which is equivalent to
applying the Cahn-Hilliard equation.

(µU − µV a) = − (µV a − µU ) =

=
δ

δyU

(∫
Ω

GTotalm dΩ

)
yU+yV a

=

=

(
∂GTotalm

∂yU

)
yU+yV a

−∇ ·
(
∂GTotalm

∂∇yU

)
yU+yV a

. (15)

The subscript yU +yV a indicates that yV a = 1−yU−yXe
is treated as the dependent variable and the subscript
yXe + yU that yU = 1 − yXe − yV a is used. The final
transport model is obtained by applying the continuity
equation to the U flux equation.

∂(yU/Vm)

∂t
= −∇ · JU . (16)

The molar volume is assumed to be constant.

E. Numerical simulations

The transport equations derived in Sec. II C are solved
using the MOOSE/MARMOT (MBM) framework devel-
oped at Idaho National Laboratory17,18. In order to
avoid numerical instabilities occurring for low species
concentrations due to the logarithm terms in the free en-
ergy formulation we introduced 1) a taylor expansion of
the logarithm and associated derivatives for y < 10−9 and
2) a source term for y < 10−10. The latter term is needed
to prevent concentrations from reaching negative values
when the Taylor expansion is used for y < 10−9, which
mimics generation of vacancies when the concentration
drops below the equilibrium value. The one-dimensional
simulations of segregation to grain boundaries were per-
formed using a uniform mesh, since adaption caused in-
stabilities. This issue is currently under invesitigation.
The two dimensional simulations applied non-uniform
adaptive meshing, which improved efficiency as well as
accuracy close to boundaries. All simulations used vari-
able time steps.

III. RESULTS AND DISCUSSION

1. Simulations of Xe redistribution in UO2

First Xe redistribution was simulated for bicrystal mi-
crostructures with either Σ5 twist, Σ5 tilt or random
grain boundaries. We first run simulations with 0L pa-
rameter set to zero in order to avoid instabilities related
to spinodel-like decomposition. Results for initial homo-
geneous Xe concentration of 0.001 are illustrated in Fig.
5. All simulations were performed at 1500 K and apply
periodic boundary conditions. The size of the simulation
domain was 500 × 10 nm, which mimics the one dimen-
sional character of this problem. Figs. a), b) and c)

represent steady-state solutions, though note that nucle-
ation of fission gas bubbles is not included in the present
model. Figs. d), e) and f) illustrate the distribution after
about 3600 s. The highest Xe concentration is reached
for Σ5 tilt and the random boundary, followed by the Σ5
twist boundary. The latter has significantly lower max-
imum concentration. The Σ5 tilt boundary thus seems
to be a stronger or at least as strong sink as the ran-
dom boundary, despite having a lower segregation energy
than the random boundary (see Table I). For short times
the random boundary attracts more Xe, but due to the
slower (with respect to yXe) increase in the concentration
term, gi(yXe), the Σ5 tilt boundary eventually attracts
the most Xe. The longer interaction range of this bound-
ary also plays a role for the segregation dynamics. Due
to the low initial concentration none of the boundaries
reached their saturation level. In order to illustrate this
we also performed the same simulation with yXe = 0.01
as the initial concentration.

For the yXe = 0.01 initial concentration each boundary
reached higher maximum concentration (see Fig. 6). The
bulk concentration is also higher than for the yXe = 0.001
case. For the higher initial concentration it is clear that
the Σ5 tilt boundary is a stronger sink than the random
boundary. Σ5 twist boundary still reaches much lower
Xe concentration than the other cases. Differences in the
effective grain boundary width, measured by the region
exhibiting increased concentration of Xe can also be seen
in the figures. In addition to the increase in Xe concentra-
tion at the grain boundaries we also identify a minimum
in-between the boundary and the bulk for the transient
parts of the simulations (see Figs. 5d, e, f and 6 d, e, f).
This feature indicates that, as expected, the grain bound-
aries attract Xe atoms faster than the supply from the
interior of the grains and the segregation process is thus
controlled by long-range diffusion through the bulk. In
the initial steps Xe is quickly accumulated from the near-
boundary region, while the growth rates decease signifi-
cantly once the depleted region reaches close to zero con-
centration levels and becomes dominated by long-range
diffusion.

The simulations above were performed with the 0L pa-
rameter set to zero in order to avoid instabilities related
to spinodel-like decomposition. We also performed sim-
ulations for the DFT calculated value of 0L = 10.35
eV and these results are illustrated in Fig. 7. For
yXe = 0.001 the figures illustrate the concentration af-
ter about 3600 s. For yXe = 0.01 the system wants
to separate into Xe rich regions, an indication of early
stages of spinodal decomposition. Since this happens al-
most instantaneously the simulation time is very short.
The decomposition occurs close to the boundary where
the segregation leads to changes in the Xe concentra-
tion that cause the instabilities. This is clearly evidenced
by the sinusoidal wave across the boundary. The driv-
ing force for spinodal decomposition is much smaller at
yXe = 0.001 and there is no sinusoidal wave across the
boundary. Compared to the 0L = 0 case the concen-
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tration at the boundary increases more rapidly, which is
a consequence of the higher driving force caused by the
non-zero 0L term. The unstable character of the PDEs is
also evidenced by the short time steps that are required
for convergence. Once the concentration at the boundary
reaches significant levels it is clear that the system strives
to decompose into Xe rich and poor regions. From this
we conclude that once the Xe concentration reach crit-
ical level the system will spontaneously decompose into
Xe rich and poor regions that may act as nucleation sites
for the formation of Xe bubbles. With the current simu-
lation settings this is unlikely to occur in bulk UO2 if the
the concentration level is less than 0.001, however this
limit should easily be reached at defects such as grain
boundaries where bubbles are thus expected to nucleate
first. Comparing the 0L = 10.35 eV and 0L = 0 eV simu-
lations, the former case gives rise to more Xe segregation
and segregation also occurs faster. For the yXe = 0.001
initial concentration the difference in Xe concentration
after 3600 s ranges from 50 to 100%. The reason for
the decomposition reaction not occurring at the actual
grain boundary in the simulations applying 0L = 10.35
eV could be threefold; 1) the concentration is not yet
high enough due to the limited amount of Xe in the small
simulation cell, 2) the critical fluctuation wavelength for
the present choice of gradient energy coefficient is longer
than the size of the grain boundary or 3) the current seg-
regation model favors uniform concentration along the
boundary.

Fig. 8a) (ideal solution) and b) (regular solution)
illustrate Xe redistribution for an idealized polycrys-
talline sample containing Σ5 twist, Σ5 tilt and random
grain boundaries. The size of the simulation domain
is 250 × 216.5 nm. All simulations were performed at
1300 K, homogeneous initial distribution of yXe = 0.001
was prescribed and periodic boundary conditions were
imposed. The difference between the grain boundary
types follow the same trend as for the bicrystal simu-
lations. The maximum concentration reached in these
simulations are somewhat smaller than for the bi-crystal

simulations, which may be related numerical accuracy.
This issue is currently being investigated. Also, the seg-
regation time scales are somewhat shorter for the poly-
crystal, even though the final concentrations are similar.
The reason for this could be that the region of low Xe
concentration just outside the grain boundaries acts as a
more efficient barrier for the bicrystal than for the hexag-
onal grain geometry (further analysis under way). The
difference in Xe concentration at the various boundaries
would likely influence the rate of gas bubble nucleation
and growth.

IV. CONCLUSIONS

This report summarizes the derivation of thermody-
namic and kinetic models describing Xe and U vacancy
redistribution in polycrystalline UO2 at the meso-scale
with specific focus on Xe interaction with sinks such as
various types of grain boundaries and the importance of
defect clustering under irradiation. We have emphasized
the connection to atomistic simulations by demonstrating
that unknown parameters can be obtained from existing
atomistic studies.

The Xe redistribution model is implemented in the
MOOSE/MARMOT (MBM) finite element framework
and solved for various microstructures, in particular
grain boundary distributions and different initial condi-
tions. The simulations capture the segregation of Xe to
grain boundaries and the unique characteristics of dif-
ferent boundary types clearly emerge from these simula-
tions. For short time scales random boundaries are the
strongest sinks for Xe, but when the local Xe concentra-
tion increases the Σ5 tilt overtakes the random boundary
as the strongest sink. The Σ5 twist boundary attracts
significantly less Xe than the other two cases. The use
of a realistic values for the interaction between Xe atoms
leads to spinodal-like decomposition for concentrations
above yXe = 0.001.
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FIG. 7. Xe distribution in a bicrystal composed of a) random, b) Σ5 tilt and c) Σ5 twist grain boundary. The domain size
is 500 × 10 nm, but only visualized in the x direction. For all cases the initial state was a homogeneous distribution of Xe
(yXe = 0.001). U-Xe is treated as an regular solution (0L = 10.35 eV).
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FIG. 8. a) Xe distribution for microstructure composed of random, Σ5 tilt and Σ5 twist grain boundaries. The Xe-Xe
interaction parameter was set to 0 (0L=0 eV). b) Xe distribution for microstructure composed of random, Σ5 tilt and Σ5 twist
grain boundaries. The Xe-Xe interaction parameter was set to 0 (0L=10.35 eV). For both cases the domain size is 250 × 216.5
nm and the initial state was a homogeneous distribution of Xe (yXe = 0.001).


