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1 Introduction

The expected or mean neutron number (or density) provides an adequate characterization
of the neutron population and its dynamical excursions in most neutronic applications, in
particular power reactors. Fluctuations in the neutron number, originating from the inherent
randomness of neutron interactions and fission neutron multiplicities, are relatively small and
ignorable for operational purposes, although measurements of the variance and time corre-
lations provide valuable diagnostic information on fundamental reactor physics parameters.
However, it is well known [1] that there exist situations of great interest and importance in
which a strictly deterministic description, or even one supplemented with a knowledge of low
order statistical averages (variance, correlation), provides an incomplete and very unsatis-
factory description of the state of the neutron population. These situations are marked by
persistent large fluctuations in the neutron number where the emergence of a deterministic
phase is suppressed. Such situations are strongly stochastic and therefore unpredictable (i.e.,
the mean is not representative of the actual population), and can arise either by design or
by accident. Examples where the stochastic behavior of neutron populations must be taken
into account include: nuclear weapon single-point safety assessment; criticality excursions in
spent fuel storage and in the handling of fissile solutions in fuel fabrication and reprocessing;
approach to critical under suboptimal reactor start-up conditions; preinitiation in fast burst
research reactors; and weak nuclear signatures in the passive detection of nuclear materials.
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What distinguishes strongly stochastic neutronic systems from strongly deterministic sys-
tems is that, in the former, neutron multiplication occurs in the presence of weak neutron
sources, such as spontaneous fission and background (cosmic) radiation. Weak sources (in a
sense that can be made quite precise) lead to well separated fission chains (a fission chain is
defined as the initial source neutron and all its subsequent progeny) in which some chains
are short lived while others propagate for unusually long times. Under these conditions,
fission chains do not overlap strongly and this precludes the cancellation of neutron number
fluctuations necessary for the mean to become established as the dominant measure of the
neutron population. The fate of individual chains then plays a defining role in the evolution
of the neutron population in strongly stochastic systems, and of particular interest and im-
portance in supercritical systems is the extinction probability, defined as the probability that
the neutron chain (initiating neutron and its progeny) will be extinguished at a particular
time, or its complement, the time-dependent survival probability. The time-asymptotic limit
of the latter, the probability of divergence, gives the probability that the neutron population
will grow without bound, and is more commonly known as the probability of initiation or
just POI. The ability to numerically compute these probabilities, with high accuracy and
without overly restricting the underlying physics (e.g., fission neutron multiplicity, reactiv-
ity variation) is clearly essential in developing an understanding of the behavior of strongly
stochastic systems.

The theory of continuous time Markov processes [2, 3, 4, 5, 6] provides a general probabilisitic
framework for the description of stochastic neutron populations. For point or lumped sys-
tems, differential Chapmann-Kolmogorov or so-called Master equations of the forward and
backward type can be derived for the probability of finding a certain number of neutrons as
a function of time [7, 5, 13, 6, 8, 9]. Both approaches yield systems of differential-difference
equations for the neutron number probability distribution function (pdf), with the distinction
that the backward Master equation is nonlinear in the pdf while the forward equation is lin-
ear. Another difference is that while any intrinsic or external source can be included explicitly
in the forward Master equation, the backward approach describes the fate of a single neutron
chain and must be supplemented with an auxiliary equation to account for a random neu-
tron source. Thus, although the information content of these equations is formally the same,
namely the neutron number distribution, the solution of each equation presents different
challenges. This is particularly true for the computation of the chain survival and divergence
probabilities of interest here and as discussed below. For nonlumped systems, where the neu-
tron phase-space cannot be ignored, the backward formulation is the only viable approach
for the computation of the survival and divergence probabilities [12, 13, 14, 15, 16] but it
is computationally expensive in multidimensional, energy dependent applications. A point
or lumped model, on the other hand, that incorporates leakage effects through an effective
multiplication factor provides an efficient method of generating quantitative results and is
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particularly useful in conducting comprehensive parametric investigations.

The forward approach [7, 5, 6, 8, 9] requires the complete neutron number distribution func-
tion to be first obtained from which the extinction/survival probability is extracted as a
special case [7, 8, 9]. However, since the equations for the number distribution are not
closed, direct numerical solution requires this set to be truncated at a suitable order which,
however, may be too high for this approach to be computationally practical. For instance,
in the estimation of the divergence probability it is necessary to consider neutron numbers
typically in the millions in order for a chain to potentially be declared as diverged. Even for
a lumped model, numerical solution of such large systems of equations is impractical. More-
over, given the nonzero (albeit small) probability of extinction of even a large population,
in practice the exact or theoretical POI cannot be computed without an irreducible error
using the forward approach. Monte Carlo simulation of chain growth is subject to a similar
constraint on the chain length that can realistically be managed, and the simulation must
be terminated either after a fixed time or when the chain has reached a prescribed length
(however, see Booth [10] for a recently proposed variance reduction scheme). Closed form
analytic solutions for the neutron number distribution after transforming to the generating
function formulation, on the other hand, are only possible when significant simplifications
of the underlying physical models are introduced, in particular for the fission neutron multi-
plicity. The quadratic approximation introduced by Bell [7, 6, 8, 9] enables an exact solution
of the forward Master equation to be obtained but yields accurate results only for weakly
supercritical systems and large neutron populations. Singlet-emitting steady sources and
a static-alpha are additional constraints typically necessary in order to obtain closed form
solutions for the number distribution in the presence of an intrinsic source. Under less re-
strictive constraints on the physical models and parameters - when the system reactivity, and
potentially the source strength, are arbitrary functions of time and when it is essential to use
a general model of fission neutron multiplicity (both for the source and induced fission), and
not some convenient approximation - the forward Master equation is intractable to general
solution.

The backward approach, as will be developed below, yields a closed form nonlinear dif-
ferential equation directly for the time dependent survival probability for a single neutron
chain under general conditions, thereby bypassing the need to first solve the hierarchy of
differential-difference equations for the number distribution. An auxiliary differential equa-
tion then relates the survival probability when a random intrinsic (spontaneous fission) source
of arbitrary multiplicity is present to that for a single neutron chain. Both equations can be
easily solved without further approximation using standard numerical methods for first order
nonlinear ordinary differential equations, which greatly expands the scope of relevancy of the
results and makes it possible to quantitatively assess the accuracy of various approximations

3



employed in the forward formulation. Moreover, the explicit form of the equations enables
the effect of uncertainty in the fundamental parameters (multiplicities, lifetime, alpha) on
the survival probability and the POI to be accurately evaluated.

The purpose of these notes is to present a detailed derivation of the backward Master equa-
tion for the chain survival probability in a lumped-model setting. The relevant equation can,
of course, be extracted from Bell’s general equation for an unlumped system [12] by striking
the streaming term and eliminating the energy and direction dependence. It is, however, in-
structive to derive the lumped model equation from first principles and directly in differential
form [13] as opposed to the integral form that results from the traditional derivation based
on the regeneration point technique [12, 6]. The possibilities arising from a relatively small
investment in numerical effort become clear while limitations are also apparent. It is hoped
that the pedagogical development of the lumped backward Master equation formulation as
encapsulated in these notes will prove of some value to the nonexpert and expert reader alike.

The scope of these notes is as follows. The hierarchy of backward equations for the neutron
number probability distribution function for a single chain is derived directly in differential
form, using probability balance arguments familiar from continuous time Markov process
theory, and transformed to a single nonlinear partial differential equation for the generating
function. Noting a special property of the backward formulation, the generating function
equation is then reduced to the desired nonlinear ordinary differential equation for the time-
dependent survival probability. Next, an auxiliary equation is obtained that relates the
survival probability for neutron chains initiated by a random source of arbitrary multiplicity
to the extinction (or survival) probability for a single neutron chain. A closed form analytic
solution is then obtained in the quadratic approximation and shown to be equivalent of that
obtained previously using the forward Master equation with and without the random source.
Finally, we make some remarks on the numerical solution of the survival probability equation
for a single chain as well as for chains initiated by a random source of neutrons.

2 Backward Master Equation

We begin with some definitions. Let τ be the neutron lifetime. The probability that a neutron
experiences an interaction in a short time ∆s is then given by ∆s/τ , which follows from the
Markovian property of neutron interactions. Let pf be the probability that the interaction is
fission and let pν be the fission neutron multiplicity, i.e., probability that ν prompt neutrons
(ν = 0, 1, . . . νmax) are emitted in a fission. The multiplicity distribution is assumed to be
normalized:
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νmax∑
ν=0

pν = 1, (1)

so that the mean number of fission neutrons is given by:

ν =
νmax∑
ν=0

ν pν , (2)

and the factorial moments are defined as:

χm =
νmax∑
ν=0

ν(ν − 1) · · · (ν −m+ 1) pν , m = 1, 2, . . . νmax . (3)

Similarly, we define the source factorial moments as:

χsm =
Ks∑
k=0

k(k − 1) · · · (k −m+ 1) qk, m = 1, 2, . . . Ks . (4)

The physical interpretation of the factorial moments is that χ2/2! is the mean number of
neutron doublets, χ3/3! is the mean number of neutron triplets, · · · χm/m! the mean number
of neutron m-tuplets, from a single fission. The probability that a neutron interaction results
in the production of j prompt neutrons is then expressed as pf pj ∆s/τ = cj ∆s/τ , j =
0, 1, . . . νmax. We also define c0 = 1 − pf as the probability of all non-fission events, such as
parasitic capture and leakage, in which case the interacting neutron is considered lost from
the system. Finally, the probability that a source decays in ∆s is S∆s and the probability
that the decay results in k prompt neutrons is qk, k = 0, 1, . . . Ks, which again is normalized
as
∑Ks

k=0 qk = 1. The quantity:

S = S
Ks∑
k=0

k qk = S k (5)

is the mean rate of generation of source neutrons, or the source strength. Thus, for a singlet
emitting source, qk = δk,1 and the source strength is just S. Note that by “source neutrons”
we refer to neutrons appearing in the system through a mechanism that is independent of the
instantaneous neutron population. Such sources are often referred to as “fixed”, “volume”
or “external” sources to distinguish them from neutrons produced in fission reactions (or
through other nuclear processes) that are induced by existing neutrons. Examples of neu-
tron sources include spontaneous fission, spallation reactions, background (cosmic) neutrons,
(n, 2n) reactions, amongst many others.
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We now perform a balance of all independent and mutually exclusive elementary events to
develop an equation for the probability Pn(t|s), n ≥ 0, of finding precisely n neutrons in
the system at time t given one neutron introduced into the system at s. Pn(t|s) is defined
to be zero for t < s and n < 0. The balance in the backward approach is done in the first
collision interval so that the operational time is the initial time variable s, in contrast to the
forward approach where the balance is done over the last collision interval and the final time
is then the variable time. Specifically, we consider the transitions that the initial neutron can
undergo in the short time between s and ∆s and use the Markov property to account for all
subsequent transitions, over the time interval (s + ∆s, t), that contribute to the final state.
We note that it is not possible in the backward approach to write down a closed equation
for the survival probability when the medium contains an intrinsic random source. In this
case, as will be shown below, the survival probability must be obtained through an auxiliary
equation that explicitly depends on the survival probability of a single chain.

The probability balance can be stated as:

Pn(t|s) = (1− ∆s

τ
)Pn(t|s+ ∆s) + c0

∆s

τ
δn,0 +

{
c0

∆s

τ
δn,0 + c1

∆s

τ
Pn(t|s+ ∆s) +

+ c2
∆s

τ

∑
n1+n2=n

Pn1(t|s+ ∆s)Pn2(t|s+ ∆s)+

+ c3
∆s

τ

∑
n1+n2+n3=n

Pn1(t|s+ ∆s)Pn2(t|s+ ∆s)Pn3(t|s+ ∆s) + . . .

}
(6)

In Eq.(6), the various terms on the right hand side have the following physical interpretations:

• The first term expresses the probability that there is no interaction in ∆s and the
neutron does not leak from the system, and, for this event to contribute to the final
state, the probability must be multiplied by the probability that n neutrons will be
produced by this neutron over the subsequent time interval (s+ ∆s, t).

• The second term expresses the probability that the neutron is radiatively captured or
leaks from the system, and this event will contribute to the final state only if the final
state is empty, i.e, n = 0.

• The remaining terms, those in braces, account for the contribution to the final state
from fission neutrons of various multiplicities. Thus:

– the first term expresses the probability that 0 neutrons are produced in fission,
and this event will contribute to the final state only if the final state is empty, i.e,
n = 0,
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– the second term expresses the probability that 1 neutron is produced in fission,
and this probability must be multiplied by the probability that the fission neutron
will lead to n neutrons over the subsequent time interval (s+ ∆s, t),

– the third term expresses the probability that 2 neutrons are produced in fission,
and this probability must be multiplied by the probability that both these neutrons
will independently and collectively result in exactly n neutrons over the subsequent
time interval (s+ ∆s, t),

– the third term expresses the probability that 3 neutrons are produced in fission,
and this probability must be multiplied by the probability that these 3 neutrons
will independently and collectively result in exactly n neutrons over the subsequent
time interval (s+ ∆s, t),

– the terms corresponding to higher numbers of fission neutrons have similar inter-
pretations.

By rearranging terms, Eq.(6) can be conveniently expressed as:

Pn(t|s)− Pn(t|s+ ∆s)

∆s
= −1

τ
Pn(t|s+ ∆s) + c0

1

τ
δn,0 +

{
c0

∆s

τ
δn,0 +

1

τ
c1Pn(t|s+ ∆s) +

+
1

τ

∑
n1+n2=n

c2Pn1(t|s+ ∆s)Pn2(t|s+ ∆s)+

+
1

τ

∑
n1+n2+n3=n

c3Pn1(t|s+ ∆s)Pn2(t|s+ ∆s)Pn3(t|s+ ∆s) + . . .

}
.

(7)

Taking the limit ∆s→ 0 transforms Eq.(7) into the differential equation:

−∂Pn(t|s)
∂s

= −1

τ
Pn(t|s) + c0

1

τ
δn,0 +

{
c0

1

τ
δn,0 +

1

τ
c1Pn(t|s) +

+
1

τ

∑
n1+n2=n

c2Pn1(t|s)Pn2(t|s)+

+
1

τ

∑
n1+n2+n3=n

c3Pn1(t|s)Pn2(t|s+ ∆s)Pn3(t|s) + . . .

}
, (8)

or, more compactly,

7



−∂Pn(t|s)
∂s

= −1

τ
Pn(t|s) + c0

1

τ
δn,0 +

1

τ

νmax∑
k=0

∑
n1+n2+···nk=n

ck

k∏
j=1

Pnj
(t|s), s ≤ t, (9a)

where the c0 term corresponding to zero fission neutrons has been incorporated into the
summation and it is understood that the product is unity when k = 0. The solution to this
equation is subject to the “final time” condition:

lim
s→t

Pn(t|s) = δn,1. (9b)

That is, when the initial time of neutron injection corresponds to the final time t, the prob-
ability of finding any number of neutrons is zero unless n = 1 in which case it is a certainty.

Eq.(9a) is the backward differential Chapmann-Kolmogorov equation, also known as the
backward Master equation, for the neutron number probability distribution function. It is
a nonlinear differential equation, with nonlinearity of degree νmax, and must be solved in
reverse time. That is, given the final condition Eq.(9b) at some fixed time t, the solution
proceeds backwards to some earlier time s where −∞ < s ≤ t. Although the backward
equation differs markedly in mathematical structure from the linear forward equation, they
are both valid formulations of the neutron number distribution function Pn(t|s). It is often
remarked that the choice between forward or backward formulations is a matter of taste,
but in many situations one approach may have distinct advantages over the other, as will be
illustrated in these notes.

3 Equation for the Generating Function

The set of nonlinear differential-difference equations given by Eq.(9a) can be converted into
a nonlinear partial differential equation for the generating function from which an equation
for the survival probability can be derived. The ordinary generating function is defined by
the discrete transformation:

G(x, s) =
∞∑
n=0

xn Pn(t|s), s ≤ t, (10)

where x is a real, continuous variable and the final time t has been suppressed as an argument
of G for notational convenience. Since the Pn are normalized, i.e.,

∑∞
n=0 Pn = 1, it follows

that the sum in Eq.(10) converges for 0 ≤ x ≤ 1 (we note, however, that the radius of
convergence of this sum may exceed unity). Applying this transform successively to each
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term in Eq.(9a), we note that the left hand side and the first two terms on the right hand
side transform trivially but the terms involving the multiplicities are more complex. Consider
the transform of the term corresponding to multiplicity order k:

Ik(x, s) =
∞∑
n=0

xn
∑

n1+n2+···nk=n

k∏
j=1

Pnj
(t|s),

=
∞∑
n=0

xn
∞∑

n1=0

Pn1

∞∑
n2=0

Pn2 · · ·
∞∑

nk=0

Pnk
, n1 + n2 + · · ·nk = n,

=
∞∑

n1=0

Pn1

∞∑
n2=0

Pn2 · · ·
∞∑

nk−1=0

Pnk−1

∞∑
n=0

xnPn−(n1+n2+···nk−1) (11)

Setting m = n− (n1 + n2 + · · ·nk−1) in Eq.(11) and rearranging terms gives:

Ik(x, s) =
∞∑

n1=0

xn1Pn1

∞∑
n2=0

xn2Pn2 · · ·
∞∑

nk−1=0

xnk−1Pnk−1

∞∑
m=−(n1+n2+···nk−1)

xmPm,

=
∞∑

n1=0

xn1Pn1

∞∑
n2=0

xn2Pn2 · · ·
∞∑

nk−1=0

xnk−1Pnk−1

∞∑
m=0

xmPm,

= [G(x, s)]k , (12)

where, in going from the first to the second line, we have noted that Pm = 0 for m < 0, by
definition. The equation for the generating function finally becomes:

−∂G(x, s)

∂s
=
c0
τ
− 1

τ
G(x, s) +

1

τ

νmax∑
k=0

ck [G(x, s)]k (13a)

lim
s→t

G(x, s) = x. (13b)

We note that if the generating function for the neutron multiplicity is defined as:

g(x) =
νmax∑
k=0

xk pk,

then, upon substituting ck = pf pk in Eq.(13a), the equation for G can be written compactly
as:

−∂G(x, s)

∂s
=
c0
τ
− 1

τ
G(x, s) +

pf
τ
g(G)
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For purposes of obtaining an equation for the survival probability, it is expedient to express
the above equation in terms of the variable G̃ defined by [12]:

G̃(x, s) = 1−G(x, s). (14)

Substituting for G from Eq.(14) into Eqs.(13a) & (13b) and using a binomial expansion to
expand the nonlinear terms, we obtain:

∂G̃(x, s)

∂s
=
c0
τ
− 1

τ

[
1− G̃(x, s)

]
+

1

τ

νmax∑
k=0

ck

[
1− G̃(x, s)

]k
,

=
c0
τ
− 1

τ

[
1− G̃(x, s)

]
+

1

τ

νmax∑
k=0

ck

k∑
i=0

(−1)i
k!

(k − i)!i!
G̃i(x, s) (15)

The last term on the right hand side of the above equation can be further simplified to give:

1

τ

νmax∑
k=0

ck

k∑
i=0

(−1)i
k!

(k − i)!i!
G̃i(x, s) =

1

τ

νmax∑
i=0

(−1)i

i!
G̃i(x, s)

νmax∑
k=i

k!

(k − i)!
ck,

=
pf
τ

νmax∑
i=0

(−1)i
χi
i!
G̃i(x, s), (16)

where we have introduced the factorial moments χi defined in Eq.(3). Inserting the above
result into Eq.(15) finally yields:

∂G̃(x, s)

∂s
=
c0
τ
− 1

τ

[
1− G̃(x, s)

]
+
pf
τ

νmax∑
k=0

(−1)k
χk
k!
G̃k(x, s), (17a)

with final condition:

lim
s→t

G̃(x, s) = 1− x. (17b)

4 Single Chain Extinction/Survival Probability

The quantity P0(t|s) is known as the extinction probability, and is defined as the probability
that, given one neutron in the medium at time s, the neutron population will vanish at some
later time t. It then follows that:
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1− P0(t|s) =
∞∑
n=0

Pn(t|s)− P0(t|s),

=
∞∑
n=1

Pn(t|s),

= P (t|s), (18)

which defines the survival or nonextinction probability. Further noting upon setting x = 0
in Eq.(10) that:

P0(t|s) = G(0, s), (19)

it follows from Eq.(14) that the survival probability can also be expressed in terms of the
generating function:

P (t|s) = 1−G(0, s) = G̃(0, s). (20)

Now observing that the variable x appears explicitly in the boundary condition, Eq.(17b),
but only implicitly in the actual equation for the generating function, Eq.(17a), setting x = 0

trivially transforms the equation for G̃(x, s) into one for the survival probability, P (t|s). Thus
the survival probability satisfies the following nonlinear differential equation:

∂P (t|s)
∂s

=
c0
τ
− 1

τ
[1− P (t|s)] +

pf
τ

νmax∑
k=0

(−1)k
χk
k!
P k(t|s), (21a)

with the appropriate final condition obtained by setting x = 0 in Eq.(17b):

lim
s→t

P (t|s) = 1. (21b)

Eq.(21a) can be simplified further by isolating the k = 0 term in the sum over the neutron
multiplicity and rearranging to obtain:

∂P (t|s)
∂s

=
1

τ
[pf − (1− c0)] +

1

τ
P (t|s) +

pf
τ

νmax∑
k=1

(−1)k
χk
k!
P k(t|s). (22)

But recalling that c0 = (1− pf ), the first term on the right hand side of Eq.(22) vanishes to
give:
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∂P (t|s)
∂s

=
1

τ
P (t|s) +

pf
τ

νmax∑
k=1

(−1)k
χk
k!
P k(t|s), (23)

or, also isolating the k = 1 term:

∂P (t|s)
∂s

= −1

τ
(pfν − 1)P (t|s) +

pf
τ

νmax∑
k=2

(−1)k
χk
k!
P k(t|s). (24)

Recognizing and introducing the multiplication factor k:

k = ν pf , (25)

and defining α as:

α =
k − 1

τ
, (26)

we finally obtain the desired equation for the survival probability:

−∂P (t|s)
∂s

= α(s)P (t|s)− pf (s)

τ

νmax∑
k=2

(−1)k
χk
k!
P k(t|s), (27a)

with final condition:

lim
s→t

P (t|s) = 1, (27b)

where we have explicitly indicated that the fission probability and hence the multiplication
factor can be a function of time. The negative sign on the time derivative underscores the fact
that the backward equation describes a process that is adjoint in time. The mathematical
problem is therefore well posed and, although we have not addressed existence and unique-
ness of solutions to Eqs.(27a) – (27b), we note that a solution, if it exists and is unique, can
be obtained by integrating backwards in time.

Finally, we remark that the probability of initiation (POI) is given by lims→−∞ P (t|s), i.e.,
the initiating neutron is injected in the infinite past, and if a nonzero limit exists, the POI
defines the probability that the neutron population will diverge [9]. Under these conditions,
the POI is given by the nontrivial root that lies in the interval (0, 1] of the nonlinear algebraic
equation obtained by setting the time derivative in Eq.(27a) to zero:
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α(−∞)POI − pf (−∞)

τ

νmax∑
k=2

(−1)k
χk
k!

(POI)k = 0. (28)

It is readily shown that the only stable solution for the POI in subcritical and critical systems
is zero while for supercritical systems a nonzero stable solution in the range (0, 1] exists
[4, 6]. For time varying α and pf , the system criticality as determined by limiting values
of these parameters as t → ∞ (assumed bounded) dictates the possibility of divergence of
the chain. We close this discussion by remarking that although the above equation based
on the backward formulation allows the POI to be computed, to demonstrate that the POI
corresponds to the probability that the neutron population has actually diverged requires
a knowledge, and a careful limiting analysis, of the actual time dependent neutron number
probability distribution [9].

5 Extinction/Survival Probability With Intrinsic Ran-

dom Source

The backward Master equation cannot be generalized to account for the presence of an
intrinsic random source as is readily done in the forward approach. The reason is quite
simple: the operational variable in the backward approach is defined to be the time of
injection of a source neutron and this definition loses uniqueness when source neutrons are
repeatedly and randomly introduced into the system. To allow for a source, it is necessary
to carry out a separate balance that accounts for random emission of source neutrons and
their contribution to the neutron population at the final time.

Let Θn(t|t0) be the probability that n neutrons will be found at time t given a neutron
source that was “turned on” at some arbitrary time t0 ≤ t. That is, there are no neutrons in
the system prior to this time. Consider now the time interval (t0, t0 + ∆t0) and events that
are possible during ∆t0 that eventually lead to the final state. A probability balance can be
written as follows:
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Θn(t|t0) = (1− S∆t0) Θn(t|t0 + ∆t0)+

+ S∆t0 q1
∑

n1+m1=n

Pn1(t|t0 + ∆t0) Θm1(t|t0 + ∆t0)+

+ S∆t0 q2
∑

n1+n2+m2=n

Pn1(t|t0 + ∆t0)Pn2(t|t0 + ∆t0) Θm2(t|t0 + ∆t0)+

...

+ S∆t0 qk
∑

n1+n2+···nk+mk=n

k∏
j=1

Pnj
(t|t0 + ∆t0) Θmk

(t|t0 + ∆t0)+

... (29)

In Eq.(29) the various terms on the right hand side have the following physical interpretations:

• The first term describes the event that no source neutron is emitted in ∆t0 and that the
final state of n neutrons is attained by later source events in the interval (t0 + ∆t0, t).

• The second term describes the event that 1 source neutron is emitted in ∆t0 which
contributes n1 neutrons to the final state with probability given by the single chain
probability and with the difference m1 = n − n1 contributed by subsequent source
events in the interval (t0 + ∆t0, t).

• The third term describes the event that 2 source neutrons are emitted in ∆t0 which
independently contribute n1 and n2 neutrons to the final state, with the difference
m2 = n− n1 − n2 contributed by subsequent source events in the interval (t0 + ∆t0, t).

• The terms corresponding to higher numbers of source neutrons have similar interpre-
tations.

Rearranging terms and taking the limit ∆t0 → 0 yields the differential form:

−∂Θn(t|t0)
∂t0

= −SΘn(t|t0) + S
Ks∑
k=1

qk
∑

n1+n2+···nk+mk=n

k∏
j=1

Pnj
(t|t0) Θmk

(t|t0), (30a)

with the final condition:

lim
t0→t

Θn(t|t0) = δn,0. (30b)

14



This is consistent with the condition that no source neutrons can exist prior to the initial time
which in this case is also the final time. We note that Eq.(30a) is linear in the probability
Θn and depends on the neutron number probability corresponding to a single initial neutron
which satisfies Eq.(9a). To solve Eq.(30a), we first transform it to an equation for the
corresponding generating function which is defined as:

G(x, t0) =
∞∑
k=0

xkΘn(t|t0), t0 ≤ t, (31)

where the dependence of G on final time t is implicit. Using the same manipulations as
before, it can be shown that this generating function satisfies:

−∂G(x, t0)

∂t0
= −SG(x, t0) + S

Ks∑
k=1

qk [G(x, t0)]
k G(x, t0), (32a)

with the final condition:

lim
t0→t
G(x, t0) = 1. (32b)

Combining the two terms on the right hand side of Eq.(32a) yields the more compact form:

−∂G(x, t0)

∂t0
= S

[
Ks∑
k=1

qkG
k(x, t0)− 1

]
G(x, t0). (33)

This is an elementary first order differential equation with a variable but known coefficient
which can be solved by integrating backwards from the final condition Eq.(32b). The final
result is:

G(x, t0) = exp

∫ t

t0

S

[
Ks∑
k=1

qkG
k(x, t′)− 1

]
dt′, t0 ≤ t, (34)

From the definition in Eq.(31), G(0, t0) = Θ0(t|t0) is just the probability that the neutron
population will become extinct at time t given that a random emitting source exists between
(t0, t). Thus, setting x = 0 and recalling that G(0, t0) = 1− P (t|t0), immediately transforms
Eq.(33) to one for the extinction probability:

−∂Θ0(t|t0)
∂t0

= S

[
Ks∑
k=1

qk (1− P (t|t0))k − 1

]
Θ0(t|t0). (35)

Expanding the integrand using the binomial theorem and introducing the source factorial
moment notation further simplifies this result to:
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−∂Θ0(t|t0)
∂t0

= S

[
Ks∑
k=0

(−1)k

k!
χskP

k(t|t0)− 1

]
Θ0(t|t0). (36)

Finally, noting that χs0 = 1, Eq.(36) reduces to the more convenient form:

−∂Θ0(t|t0)
∂t0

= S

[
Ks∑
k=1

(−1)k

k!
χskP

k(t|t0)

]
Θ0(t|t0), (37a)

with the terminal condition:

lim
t0→t

Θ0(t|t0) = 1. (37b)

Integrating Eqs.(37a) – (37b) gives for the extinction probability in the presence of a random
source the explicit result:

Θ0(t|t0) = exp

∫ t

t0

S

[
Ks∑
k=1

(−1)k

k!
χskP

k(t|t0)

]
dt′. (38)

Thus, if the survival probability for a single chain is known, given by the solution of Eqs.(27a)
– (27b), the above result gives the extinction probability for a neutron population that is
driven by a random source of arbitrary multiplicity. The corresponding survival probability
for the random source case is then simply obtained from:

PS(t|t0) = 1− G(0, t0) = 1−Θ0(t|t0). (39)

Note that the source-event probability S can in principle be time dependent and for this
reason has been retained under the time integral in Eq.(38). For a singlet-emitting source,
such that:

qk = δk,1, χsk = δk,1, (40)

Eq.(38) reduces to a particularly simple and well known result:

PS(t|t0) = 1− exp

[
−
∫ t

t0

S P (t|t′)dt′
]
. (41)

This is just the classical formula of Bartlett [2, 6] and Eq.(38) provides the generalization of
Bartlett’s formula to multiplet-emitting sources.
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6 Exact Solution in the Quadratic Approximation

To facilitate construction of closed form solutions to the forward Master equation, Bell [7, 8]
introduced the quadratic approximation for a function that was closely related to the neutron
multiplicity generating function. In addition to allowing an exact solution to be obtained
for the neutron generating function and, by inversion of the generating function transform,
the neutron number distribution function, the quadratic approximation has been shown to
produce accurate neutron distributions for a marginally supercritical system at late times,
i.e, when the mean number is large [7, 8]. In this section, we use the quadratic approximation
to show that the nonlinear equation for the survival probability derived above can also be
solved exactly for both single chain and random source scenarios and yields identical results
to those obtained using the the forward approach.

The equivalent quadratic approximation in the backward formulation corresponds to trun-
cating the nonlinear terms in the sum in Eq.(27a) at second order. The equation for the
survival probability now reads:

−∂P (t|s)
∂s

= α(s)P (t|s)− pf (s)χ2

2τ
P 2(t|s), (42a)

with:

lim
s→t

P (t|s) = 1. (42b)

Eq.(42a) is a Bernoulli equation that can be solved by first transforming it to a linear differ-
ential equation using the variable change:

Q(t|s) =
1

P (t|s)
, (43)

to get:

∂Q(t|s)
∂s

= α(s)Q(t|s)− pf (s)χ2

2τ
, (44a)

with:

lim
s→t

Q(t|s) = 1. (44b)

Eqs.(44a) & (44b) can be readily solved using the integrating factor technique, eventually
obtaining for the survival probability:
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P (t|s) =
exp

[∫ t
s
α(s′)ds′

]
1 + 1

2

∫ t
s
ds′ χ′2(s

′) exp
[∫ t

s′
α(s′′)ds′′

] , s ≤ t. (45)

where we have defined:

χ′2(s) =
pf (s)χ2

τ
. (46)

For a constant reactivity, so that α and χ′2 are independent of time, the integrals in Eq.(45)
can be evaluated exactly and the result simplifies to:

P (t|s) =
expα(t− s)

1 + 1
POI

[expα(t− s)− 1]
, s ≤ t. (47)

Here we have introduced the divergence probability or probability of initiation (POI) defined
for static reactivity as [8]:

POI =
2α

χ′2
. (48)

The source survival probability follows upon inserting Eq.(45) for the single neutron survival
probability into Eq.(41), but an explicit result can only be obtained for constant reactiv-
ity. Further assuming that the source emits only one neutron and substituting Eq.(47) into
Eq.(41), the integral in the exponent can be evaluated as follows:

∫ t

t0

S P (t|t′)dt′ = S
∫ t−t0

0

eαu

1 + 1
POI

(eαu − 1)
du,

= S POI
α

∫ t−t0

0

α
POI

eαu

1 + 1
POI

(eαu − 1)
du,

= S POI
α

ln

[
1 +

1

POI

(
eα(t−t0) − 1

)]
= ln

[
1 +

1

POI

(
eα(t−t0) − 1

)]η
, (49)

where η is Bell’s source parameter [7, 8] defined by:

η =
2S
χ′2

= S POI
α

. (50)

Finally, inserting Eq.(49) into Eq.(41) gives for the source survival probability:
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PS(t|t0) = 1−
[
1 +

1

POI

(
eα(t−t0) − 1

)]−η
. (51)

Next, we demonstrate that Eqs.(45) & (51) for the survival probabilities are identical to those
obtained using the forward Master equation.

6.1 Equivalence to Forward Master Equation Solution

In Ref. [8] the forward Master equation was exactly solved in the quadratic approximation to
obtain the neutron number distribution function given one initial neutron, and the survival
probability, obtained as the complement of the extinction probability, was shown to be:

P (t|s) = 1− a(t)

1 + b(t)
, (52)

where:

a(t) = exp

[∫ t

s

α(s′)ds′
]
, (53)

b(t) =
1

2

∫ t

s

ds′ χ′2(s
′) exp

[∫ t

s′
α(s′′)ds′′

]
. (54)

Inserting a(t) and b(t) into Eq.(52) and comparing with Eq.(45) immediately establishes the
equivalence to the survival probability obtained using the backward Master equation.

When the medium contains a random source, the forward Master equation gives an ex-
plicit solution for the survival probability only for static reactivity [8] and is given by:

PS(t|t0) = 1− [1 + b(t)]−η , (55)

where b(t) follows from Eq.(54) for constant χ′2 and α:

b(t) =
χ′2
2α

[expα (t− t0)− 1] ,

=
1

POI
[expα (t− t0)− 1] . (56)

Inserting Eq.(56) into Eq.(55) and comparing with Eq.(51) demonstrates the equivalence of
the survival probabilities in the backward and forward formulations also in the case of a
medium containing a random source.
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7 Numerical Considerations

For convenience, we recall the equations that are pertinent for the numerical computation of
the probabilities of interest, namely, Eqs.(27a) – (27b) for the single chain case:

−∂P (t|s)
∂s

= α(s)P (t|s)− pf (s)

τ

νmax∑
k=2

(−1)k
χk
k!
P k(t|s), (57a)

lim
s→t

P (t|s) = 1, (57b)

and Eqs.(37a) – (37b) for the extinction probability when a random intrinsic source is present:

−∂Θ0(t|s)
∂s

= S

[
νmax∑
k=1

(−1)k

k!
χskP

k(t|s)

]
Θ0(t|s), (58a)

lim
s→t

Θ0(t|s) = 1. (58b)

We stress that the source multiplicities (or factorial moments) are not necessarily the same
as those for induced fission appearing in Eq.(57a). If the source is due to spontaneous fission
the two multiplicities may in fact be identical, but in general this is not the case. Eq.(57a) is
a stand-alone first-order nonlinear ordinary differential equation of degree νmax for the single
chain survival probability and can be readily solved using standard ode solvers. Those based
on backward-difference formulae of various orders of accuracy and degrees of stiffness are
perhaps optimal and a convenient selection of such solvers are available in MATLAB. Our
derivation above has yielded a backward-in-time formulation, so that the solution must be
obtained by integrating from a final time t backwards to an arbitrary earlier time. However,
it may be expedient to first convert Eqs.(57a) – (57b) to initial value form using the change
of variable t′ = t − s ≥ 0, with t′ now measuring the time since the insertion of the initial
neutron and with the origin at t′ = 0. Note that when the fission probability and hence alpha
vary with time, the solution will depend additionally but parametrically on the final time t.
This is not the case in the time independent case.

The generalized Bartlett formula given by Eq.(38) directly yields the extinction probability
when a source is present, by a numerical integration over the single chain survival probabil-
ity and the source (if the source strength is time varying). However, this requires applying
a quadrature rule to a time-discretized survival probability, which may limit the accuracy
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of the computed extinction probability. A more accurate and efficient approach is to nu-
merically solve the linear differential equation describing the source extinction probability
given by Eqs.(58a) – (58b) in conjunction with that for the single-chain survival probability.
This is readily done within the same code and certainly very conveniently so in MATLAB.
Such numerical implementation is presently ongoing and we hope to soon report on results
under different reactivity and source conditions as well as a detailed assessment of the af-
fect of uncertainty in the neutron multiplicities and lifetime on the survival and extinction
probabilities.
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