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Abstract

This report documents three improvements made to the implementation of a historically significant

material model used in W13 for simulations involving components made of PBX9501. ViscoSCRAM

combines linear viscoelasticity with isotropic damage evolution based on fracture mechanics concepts. The

original implementation was focused on short duration transient events, thus an explicit update scheme

was used. For longer duration simulations which employ relatively larger time step sizes the explicit update

scheme is inadequate. This work presents a new semi-implicit update scheme suitable for simulations using

relatively large time steps. The algorithm solves a nonlinear system of equations to ensure that the stress,

damaged state, and internal (Maxwell) stresses are in agreement with implicit update equations at the

end of each increment. The crack growth is advanced in time using a subincremental explicit scheme,

thus the entire implementation is semi-implicit. Additionally, modifications to the crack growth kinetics

are proposed and implemented obviating the need for an empirical tensile damage growth rate (TDGR)

multiplier used in previous implementations. Finally, an automatic time stepping algorithm is implemented

to adjust the time step size based on error estimates for the generalized Maxwell model update scheme.

Model parameters are fit to existing data and example problems are simulated using both new and legacy

implementations to assess comparative advantages and disadvantages.
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1 Introduction

This report documents a new implementation of an historically significant constitutive model frequently used

to represent the plastic bonded explosive PBX-9501 in finite element simulations of thermomechanical re-

sponse. PBX-9501 is a particulate composite nominally consisting of 95% HMX crystals bonded together by

2.5% elastomer binder (estane) and 2.5% nitroplasticizer. Mechanical deformation of this material is primar-

ily accommodated by straining of the polymer binder and rearrangement of relatively rigid HMX crystals.

Consequently, early work to describe the constitutive behavior of the composite focused on phenomenological

linear viscoelastic models known to reasonably characterize many polymers. However, the material stress

strain behavior departs from a purely viscoelastic response and this difference was largely attributed to brittle

damage of the material realized by the nucleation and growth of microscopic cracks.

ViscoSCRAM is a phenomenological constitutive model developed to represent the combined viscoelastic

and brittle damage response of PBX-9501. While this constitutive model has some utility in representing the

rate and temperature dependent nature over time scales covering short duration impact events to long term

creep behavior, there are several limitations both in the theoretical aspects of the model as well as its early

implementation. Never-the-less, viscoSCRAM has been used extensively in many engineering assessments and

will continue to be used until the next generation of constitutive models is developed to overcome limitations

of the theory. In the meantime, it is prudent to address limitations associated with the implementation of the

theory so that the model is usable over the range of intended applications. In a colloquial sense, the work

detailed in this report is intended to ”shore up” previous existing versions of viscoSCRAM. The work does

not propose a new theory to overcome model limitations, but does offer a few small enhancements over the

original theory.

Originally, viscoSCRAM was developed to model stress strain response over strain rates ranging from

approximately 100 to 10,000 s−1 for short duration events resulting in mechanical impact. Numerical codes

used to solve this class of problems are typically Lagrange finite element codes (e.g. Abaqus Explicit, EPIC)

employing explicit time integration of the equations of motion. Stability requirements associated with explicit
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time integration of the global equations of motion dictate the use of relatively small time steps. While

the damage evolution equations within viscoSCRAM are nonlinear and tightly coupled with the viscoelastic

response, the small time steps required for global stability ensure reasonable accuracy of the constitutive update

employing explicit (forward Euler) integration of these coupled differential equations. However, viscoSCRAM

has also been adapted for modeling the coupled long term creep and damage evolution of PBX-9501, for

example under storage conditions prior to a transient mechanical insult. Such simulations typically employ

implicit integration over long simulated time periods (e.g. 20 years) prior to handing off to an explicit code for

assessing the transient impact event. Simulating such long duration events necessitates relatively large time

steps, thus explicit integration within the constitutive update introduces unacceptable error. A fully implicit

constitutive update would require solving the strongly nonlinear system of equations and, while possible, would

present an unnecessary computational burden. Here, a semi-implicit constitutive update scheme is presented

as an alternative strategy which treats the strain decomposition and viscoelastic update in a fully implicit

manner over the full time step, but integrates the damage evolution using a higher ordered explicit method

over several subincrements of the full step.

The report is organized as follows. Section 2 gives a brief history of viscoSCRAM theory and lays out

the constitutive equations. A new modification of the internal frictional dependence of the crack growth

kinetics is discussed in Section 3. Section 4 discusses one common constitutive update algorithm and its

limitations. A new semi-implicit constitutive update scheme developed in this work is presented in Section 5.

Results from example simulations used to compare performance of the new implementation with the previous

implementation are presented in Section 7.

For clarity, indicial notation is frequently used in this report. In some cases, the presentation is made

cleaner by using direct notation. For example, when dealing with multiple solution iterations for discrete

time increments using separate Maxwell elements, it is more clear to represent a second order tensor in direct

notation and reserve sub- and superscripts to distinguish the increment, iterate, and element of concern. In

direct notation a tensor is represented in bold, e.g., A, while in indicial notation the coefficients comprising

the tensor are indicated, e.g., Aij . The tensor order is made clear upon first introduction when using direct
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notation, while tensoral order is clear from the number of indices in indicial notation. Standard summation

convention applies, i.e., summation over three Cartesian indices is implied by repeated indices. For example,

Trace [A] = Akk = A11 +A22 +A33. The 4th order identity tensor is represented in direct notation by I and

indicial notation as 1
2 (δikδjl + δilδjk). The second order identity tensor is represented in direct notation as

i and in indicial notation by coefficients of the Dirac delta, δij = 1 for i = j and 0 otherwise. The scalar

product between two second order tensors is denoted by the operator :, i.e., A : B = AijBij .

2 ViscoSCRAM: Brief history and theory

A brief history of this model is discussed here in order to draw attention to the original intentions for the

theory, as well as, features that have been omitted and could be reintroduced to overcome some of the

limitations of viscoSCRAM. The original model formulation is based on the concept that rate dependence

of PBX-9501 is attributable to viscoelasticity of the binder and the rate process of microcracking damage

manifest as degradation of stress carrying ability of the composite. Viscoelasticity of the binder is represented

by a generalized Maxwell model and the breakage of bonds both within the binder and between binder

and particulates is modeled using a statistical representation of cracks evolving according to brittle fracture

mechanics. The model for statistical crack mechanics (SCRAM) used within viscoSCRAM was originally

developed by Dienes (1985) for application to dynamic problems involving brittle crack growth and coalescence,

in particular blasting of oil shale and the sensitivity of propellants to impact. The kinematic basis was a

decomposition of the relevant strain rates to reflect deformation attributable to separate mechanisms such

as, for example, elasticity, deformation due to opening of existing cracks, shearing of closed cracks, and

subsequent growth of cracks. Their work assumed nine possible crack orientations in a two-dimensional plane

and an exponential distribution of crack radius associated with each orientation separately. Thus the original

model provided for a large degree of initial and evolving anisotropy. It should be noted that the theory is based

on an assumption of non-interacting cracks, an assumption that the original author thought to be a limitation

in applications to compressive failure. For a more recent review of the evolution of SCRAM, its application
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to high-explosive materials, and extensions to address such limitations of the early theory cf. Dienes et al.

(2006).

Addessio and Johnson (1990) simplified the original SCRAM theory into an isotropic theory (ISO-SCRAM)

for application to high-velocity impact of ceramic armor where the transition from initial state to fully com-

minuted material is rapid enough that the details of evolved anisotropy do not influence the process. This

argument is essentially one of proportional monotonic loading. Their work averages the contribution of a

system of cracks whose orientation distribution is isotropic and size distribution is exponential. Thus the

microscopic damage state can be defined by a single parameter, c̄, the average crack radius. Addessio and

Johnson (1990) also make use of a damage threshold hypersurface in the space of stress and average crack

radius. This surface is analogous to a yield surface and the crack growth rate is a nonlinear function of the

distance the current material state lies beyond the damage surface and the limiting crack velocity defined by

the materials Raleigh wave speed.

Based on elements of the original SCRAM theory and ISO-SCRAM, Bennett et al. (1998) and Hackett and

Bennett (2000) developed viscoSCRAM by treating the “nominally undamaged” bulk material as viscoelastic

rather than linearly elastic. Like ISO-SCRAM, viscoSCRAM is fully isotropic; however, viscoSCRAM uses

crack growth kinetics more similar to SCRAM (Dienes et al., 2006) than the damage surface based kinetics

of Addessio and Johnson (1990). It should be noted that viscoSCRAM does not include mechanisms for

shear dilatancy. Shear dilatancy can result from opening of cracks with certain orientations under shear, or

from joint opening caused by particle interaction. Joint or crack opening as a source of dilatancy has been

incorporated into more recent versions of SCRAM (Dienes et al., 2006).

Kinematics

Small strains, εij are assumed and the total strain tensor is decomposed into volumetric and deviatoric parts

according to

εij = eij +
1

3
εkkδij (1)
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where eij is the deviatoric strain tensor and the trace of total strain tensor, εkk, is the volumetric strain. The

deviatoric strain is additively decomposed into viscoelastic, eveij , and damage eDij parts according to

eij = eveij + eDij (2)

where eve is the viscoelastic component of the deviatoric strain and eD is the portion of the deviatoric strain due

to additional compliance introduced through damage. Thus, viscoSCRAM represents a deviatoric/volumetric

decoupling whose deviatoric response reflects the contributions of viscoelasticity and isotropic damage.

Stress strain relations

The Cauchy stress tensor, σij , is decomposed into deviatoric and hydrostatic parts, i.e.,

σij = Sij + δijσ
m (3)

where Sij is the deviatoric stress tensor, and σm = σkk/3 is the mean stress. The mean stress is related to

the volumetric strain in accordance with a linear Hookean bulk response, i.e.,

σm = Kεkk (4)

although (1) some implementations favor using a separate viscoelastic model for the bulk response, and (2)

it is conceivable one may replace this relationship with a more general pressure, specific volume, temperature

equation of state. The deviatoric stress directly depends solely upon the viscoelastic part (of the deviatoric

part) of strain in accordance with a generalized Maxwell model according to

Ṡij = 2G∞ ˙eveij +

N∑
κ=1

(
2G(κ) ˙eveij −

S
(κ)
ij

τ (κ)

)
(5)

where G∞ is the stead-state shear modulus, G(κ), τ (κ), S
(κ)
ij are the shear modulus, relaxation time, and

deviatoric stresses associated with the κth (of N) Maxwell element and Equation 5 is derived in Appendix C.

The damage strain is related to the deviatoric stress through the damage compliance relationship

eDij =
1

2G0

( c
a

)3

Sij (6)
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where the instantaneous shear modulus G0 = G∞+
∑N
κ=1G

(κ), c is a damage parameter representing the mean

microstructural crack size (in units of length) in a phenomenological sense, and a is a normalizing parameter

(Addessio and Johnson, 1990).

Kinetics of damage growth

Crack growth is based on the phenomenology of brittle fracture mechanics. There are two distinct regions of

crack growth rate, i.e., stable and unstable growth (cf. Dienes et al., 2006). Accordingly, the crack growth

rate depends upon an effective stress intensity (Hackett and Bennett, 2000; Bennett et al., 1998; Dienes et al.,

2006; Dienes, 1998),

KI = σ̄
√
πc (7)

where the effective stress, σ̄, is computed as

σ̄ =


(

3

2
SijSij

) 1
2

, for σm < 0 (8a)(
3

2
σijσij

) 1
2

, otherwise (8b)

The crack growth rate is

ċ =


vres

(
KI

K1

)m
, for KI < K ′ (9a)

vres

[
1−

(
K0µ

KI

)2
]
, otherwise (9b)

where vres = vmaxf( ˙̄e, σm) is an effective maximum crack velocity depending upon the theoretical terminal

crack speed, vmax, (in principle the Raleigh wave speed) and an empirical “knock-down” function of effective

strain rate and mean stress, f( ˙̄e, σm), and m is a model parameter. The two distinct regimes of crack growth

correspond to stable crack growth (Equation 9a) and unstable growth (Equation 9b), respectively. The stress

intensity at which the behavior transitions from Equation 9a to Equation 9b is defined as

K ′ = K0µ

(
1 +

2

m

)1/2

(10)
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Figure 1: Relationship between normalized crack velocity ċ/vres and normalized stress intensity KI/K
′ illus-

trating transition between stable and unstable crack growth.

where K0µ is the frictional threshold stress intensity which increases as a function of mean stress σm to reflect

a frictional resistance to crack growth. The frictional threshold stress intensity is computed by

K0µ = K0

[
1− πµ′σm

√
c

K0

(
1− µ′σm

√
c

K0

)] 1
2

(11)

where µ′ is a friction coefficient and K0 is a model parameter representing the non-frictional threshold stress

intensity of the material. The normalizing stress intensity in the denominator of Equation 9a is defined as

K1 = K ′
(

1 +
m

2

)1/m

(12)

Figure 1 illustrates the transition from stable to unstable crack growth kinetics based on Equations 9a and 9b.

Dependence of the transition threshold stress intensity, K ′ on the current mean crack size and mean stress

present numerical difficulties for implementing a fully implicit update scheme. As discussed in Section 5, these

difficulties motivate the semi-implicit scheme presented in this report.

Note that, according to Hackett and Bennett (2000), the effective frictional coefficient, µ′, is related to the
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internal static coefficient of friction, µs, by

µ′ =

[
45

2 (3− 2µ2
s)

] 1
2

µs (13)

however, given the level of empiricism involved with determining µs, it is justifiable to instead specify µ′

directly.

As stated above, the purpose of Equation 11 is to retard crack growth under compression; however, as

discussed in detail in Section 3, this frictional dependence also retards crack growth rate under tension. To

overcome this, previous implementations used a tensile damage growth rate scaling factor CTDGR � 1 to

increase vres for tensile mean stress σm. This issue is addressed by the proposed modifications to the crack

growth kinetics presented in Section 3.

Finally, we note a few typographical errors appearing in (Hackett and Bennett, 2000) with the intention

of clarifying differences.

• K ′ erroneously appears in place of K1 in Equation 9a

• K1 erroneously appears in place of KI in Equation 9b

• The power 1
2 was erroneously left off in Equation 13
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Table 1: Summary of model parameters

Variable Description Units

K Elastic bulk modulus FL−2

G∞ Long term elastic shear modulus FL−2

Gκ Viscoelastic shear moduli FL−2

τκ Relaxation time constants FL−2

c0 Initial value for mean crack size, c L

a Crack normalizing parameter L

K0 Threshold stress intensity FL−3/2

µ′ Material frictional parameter -

m Crack growth kinetics shape parameter -

vmax Maximum crack speed Lt−1

3 Update to crack growth kinetics

In this section, a new modification of the damage evolution law from the original viscoSCRAM theory is

presented. As discussed in Section 2 , the effective threshold stress intensity (K0µ) depends on mean stress as

a way of retarding the damage evolution rate under compressive loading (cf. Equation 11). Such behavior is

physically consistent with the concept of an internal frictional resistance to damage evolution under compres-

sion (Bennett et al., 1998; Hackett and Bennett, 2000) and is consistent with experimental data. However,

the frictional dependence is symmetric about zero mean stress as shown in Figure 2a. Frictional interaction

under tensile loading is inconsistent with the phenomenology leading to Equation 11.

A simple modification to overcome this issue is proposed, i.e., by replacing σm with − < p > where the

thermodynamic pressure p = −σm and < • > are Macaulay brackets that return the argument for values
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Figure 2: K0µ without and with the modifications

greater than zero, otherwise zero. Thus,

K0µ = K0

[
1 +

πµ′ < p >
√
c

K0

(
1 +

µ′ < p >
√
c

K0

)] 1
2

(14)

The modified K0µ increases under increasing compressive mean stress and remains equal to K0 for tensile

mean stress. This change in formulation for K0µ manifests as a more physical damage growth behavior in

simulations. To demonstrate this, we simulated uniaxial compression and tension for a simple test problem.

States of uniaxial stress are simulated such that the equivalent stress is the absolute value of the applied

uniaxial stress, and the mean stress is 1/3 the applied stress. Figure 3 compares the simulated damage growth

rate as a function of equivalent stress and crack size under compression using (a) Equation 11 to that using

(b) Equation 14. These results show that the proposed change to K0µ has no impact on the damage growth

rate when the mean stress is negative.
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Figure 3: Comparison of simulated damage growth rate ċ for uniaxial compression using old (a) versus new

(b) kinetics. The results are identical for compressive mean stress.
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Figure 4: Comparison of simulated damage growth rate ċ for uniaxial tension using old (a) versus new (b)

kinetics. Case (b) reflects more physical behavior.

On the other hand, Figure 4 shows the damage growth rate as a function of equivalent stress and crack size

under tension. There clearly is a difference in the damage growth rate under tensile mean stress. Using the old
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formulation the damage growth rate gets smaller with increasing damage and increasing equivalent stress. This

aphysical behavior is caused by the increase in K0µ for increasing tensile mean stress. Clearly, such behavior

is inconsistent with the phenomenology of internal frictional resistance to damage presented by Bennett et al.

(1998); Hackett and Bennett (2000). The new formulation is consistent with such phenomenology in that

damage grows faster for larger crack sizes and larger equivalent stress. The sensitivity to these variables may

be too large in this simulation as indicated by the early saturation of the crack velocity in Figure 4b, which

probably indicates an inappropriate selection of model parameters such as the damage growth rate exponent

m.

This change in the damage evolution law provides a more physical behavior under uniaxial loading than the

previous implementation which relied on a tension/compression switch which abruptly scaled the “knock down”

behavior of f( ˙̄e) by a constant factor CTDGR � 1 to provide a higher growth rate under tension. Note that

the damage parameter is isotropic and grows isotropically, so while this modification is clearly an improvement

for pure uniaxial loading, it is not so clear that the formulation is ideal in other more complicated load cases

where the mean stress may be positive but there could be one or two small negative principal stresses. This

modification requires a new method for parameter estimation. In the past, the damage evolution parameters

were fit to compressive data and then CTDGR was determined to best fit the tensile data. We now suggest that

the damage parameters be fit to tensile data which is insensitive to µ′. Then, µ′ can be fit using compressive

data.

4 Historical Implementation

Prior to discussing a few modifications made to the theory of Bennett et al. (1998); Hackett and Bennett

(2000) and the new semi-implicit intregration scheme, this section outlines the update scheme typically used.

In particular, we address the implementation as discussed in Hackett and Bennett (2000). Differentiating 6

with respect to time results in

ėD =
1

2G0

( c
a

)3

Ṡ +
3

2G0a

( c
a

)2

ċS (15)
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Substituting the time derivative of Equation 2 along with Equation 15 into Equation 5 gives

Ṡ = 2G0ė− 3
( c
a

)2 ċ

a
S −

( c
a

)3

Ṡ −
N∑
κ=1

(
S(κ)

τ (κ)

)
(16)

which is rearranged as

Ṡ = ψ(c)ė− θ(c, ċ)
[
S − λij

(
c,S(κ)

)]
(17)

where the state-dependent scalar-valued functions ψ(c) and θ(c, ċ) have been introduced and are defined as

ψ(c) =
2G0

1 +
(
c
a

)3 (18)

and

θ(c, ċ) =
3
(
c
a

)2 ċ
a

1 +
(
c
a

)3 (19)

respectively. Additionally, the state-dependent tensor-valued function, λij , is defined as

λij

(
c,S(κ)

)
=

∑N
κ=1

(
S(κ)

τ(κ)

)
3
(
c
a

)2 ċ
a

(20)

We emphasize that the state-dependence of the functions appearing in Equation 17 cause it to be a nonlinear

first-order differential equation because the non-constant coefficients depend upon the solution. Hackett and

Bennett (2000) propose a central differencing scheme to integrate the differential equation; however, the state-

dependence of the coefficient functions in Equation 17 are not handled in a fully consistent manner.

Let tn be the time at the end of the previous (nth) increment and tn+1 = tn + ∆t be the time at the end

of the current increment, thus defining the time step size, ∆t. Likewise, a value of some state variable, A, is

labeled with subscript “n” or “n + 1” if it corresponds to the solution at the end of the previous or current

increment respectively. Thus, a second-order approximation to Ȧ at the middle of the current time increment

is given by the centered finite divided difference

Ȧ
n+

1
2

=
An+1 −An

∆t
(21)

Making use of Equation 21 enables us to write a discrete form of Equation 17 evaluated at the middle of the

current increment, i.e.,

θ
n+

1
2
S
n+

1
2

+
Sn+1 − Sn

∆t
= ψ

n+
1
2

en+1 − en
∆t

− θ
n+

1
2
λ
n+

1
2

(22)
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Hackett and Bennett (2000) make the reasonable approximation,

S
n+

1
2
≈ 1

2 (Sn+1 + Sn) (23)

Using this approximation and denoting the value of variables at the middle of the current increment by

A
n+

1
2

= A? allows Equation 22 to be solved for the updated stresses, i.e.,

Sn+1 = Sn +
ψ?(

1 + ∆t
2 θ?

)∆e− θ? ∆t(
1 + ∆t

2 θ?
) (λ? + Sn) (24)

where ∆e = en+1 − en. Equation 24 represents a second-order accurate central difference update scheme for

the stresses. As written, this is an implicit update scheme which requires solution of a nonlinear system of

equations because θ?,ψ?, and λ? depend upon the state variables, c, ċ, and S(κ) evaluated at t = tn + 1
2∆t

and whose evolution depends upon Sn+1. Hackett and Bennett (2000) do not implement the implicit solution

of Equation 24; instead, their implementation makes the approximations

λ? = λn ψ? = ψn θ? = θn (25)

so that Equation 24 becomes the purely explicit update

Sn+1 = Sn +
ψn(

1 + ∆t
2 θn

)∆e− θn ∆t(
1 + ∆t

2 θn
) (λn + Sn) (26)

Updates to the mean crack size are provided by explicit time integration of Equation 9a (or Equation 9b), i.e.,

cn+1 = cn + ċn ∆t (27)

The time rate of change of stress in each maxwell element is given by combining the time derivative of

Equation 2 with Equation 15, and the argument of the summation in Equation 5 resulting in

Ṡ
(κ)

= 2G(κ)ė− S
(κ)

τ (κ)
− G(κ)

G0

[
3

a

( c
a

)2

ċS +
( c
a

)3

Ṡ

]
(28)

Hackett and Bennett (2000) mention that they integrated Equation 28 in a variety of methods, although the

legacy implementation uses

∆S(κ) = 2G(κ)∆e− S
(κ)
n

τ (κ)
− G(κ)

G0

[
3

a

(cn+1

a

)2

∆c Sn+1 +
(cn+1

a

)3

(Sn+1 − Sn)

]
(29)
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5 Implementation of a semi-implicit integration scheme

Updating the state from the end of a previous time increment to the end of the current time increment is the

central objective of any material model implementation. Because one independent variable of material state

evolution is usually time, the process is often referred to as time integration of the constitutive behavior. Am-

biguity in context associated with the words implicit and explicit often lead to and perpetuate misconceptions

about the role and significance of various schemes in finite element codes. It is the role of the finite element

solver to solve the global equations of motion. That task essentially consists of integrating a set of differential

equations over the independent variable, time. The manner in which the global equations of motion are inte-

grated forward in time has such impact on certain characteristics of the solution that general finite element

solvers are classified according to whether these equations are solved using implicit or explicit integration

in time, e.g. Abaqus/Standard or Abaqus/Explicit, respectively. Within the overall finite-element method,

constitutive models are responsible for determining the stress at particular locations within the continuum

associated with the deformation history of that location (and possibly others). We restrict attention here to

local material descriptions, thus the constitutive update can be described in a general form as

(F(τ) ∀τ ∈ [0, t]) −→ Constitutive Update −→ σ(t) (30)

where F is the deformation gradient, τ is a time variable spanning the entire history of the continuum location.

Constitutive models are not typically formulated in such a general manner; instead, one common approach

is to represent the essential aspects of the material’s deformation history using a set of state variables, ξ(j),

to augment the description of material state. Accordingly, the material model then has the task of both

computing the stresses and updating the material state from one increment to another. This process is

outlined conceptually here, i.e.,

(
F(tn+1),F(tn), ξ(j)(tn)

)
−→ Constitutive Update −→

(
σ(tn+1), ξ(j)(tn+1)

)
(31)

although this is not the most general thermodynamically consistent form as one could include rates of state

variables and thermodynamically conjugate forces in the arguments of the update scheme. Often the evolution
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kinetics for state variables, ξ(j), are prescribed via a set of differential equations. Thus, integration in time

of the constitutive differential equations required in Equation 31 is distinct from that of the global equations

of motion, the latter providing the classification of the FE code as Implicit or Explicit. The point is that

one may implement an explicit, fully-implicit, or, as presented here, a semi-implicit scheme for updating the

constitutive behavior, regardless of the manner in which the global equations of motion are solved.

There are, however, advantages and disadvantages associated with different constitutive integration tech-

niques and these trade-offs are influenced by the size of the time step demanded by the global equation solver

and class of problem. Generally, an explicit constitutive update is much faster, but demands smaller time steps

to maintain fidelity to the actual constitutive description. Thus, explicit update routines are typically favored

for explicit finite element codes, e.g. Abaqus/Explicit. In some cases, a dynamic problem may be solved

with an implicit finite element code and the requisite time step size is relatively small in order to capture the

transient nature of the problem. In such cases, an explicit constitutive update may provide adequate accuracy

and, consequently, would be favored. On the other hand, in problems where the finite element code can make

use of a large time step size, it is advantageous to use an implicit update of the constitutive equations to

minimize the error propagated through time.

This section details one of the largest contributions of the work in this report, namely, the implementation

of a new constitutive update scheme. The new constitutive update scheme treats the decomposition of strain

(Equation 2), viscoelastic stress update (Equation 5), and the final damaged state in a implicit manner

(Equation 6) . The resulting system of equations is solved using a newton iteration algorithm. The crack

growth kinetics proved numerically difficult to solve in a reliable and robust manner within a fully-implicit

scheme, thus the update of the crack length is treated explicitly, although we use a higher order scheme to

integrate the crack growth kinetics over several subincrements. Accordingly, the total update scheme is semi-

implicit, i.e. implicit in the strain decomposition, stress, and damaged state, but explicit in crack growth

rate.
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Semi-implicit scheme for viscoSCRAM constitutive update

The main constitutive equations consist of the decomposition of strain, Equation 2, the relationship between

stress and viscoelastic strain, Equation 5, the relationship between stress, average crack length, and damage

strain, Equation 6, and the kinetics governing crack size evolution, Equations 9a and 9b. We first focus

attention on the discrete form of Equations 2, 5, and 6. In this section we use the latin subscript n (or n+ 1)

to denote the value of a variable from the converged solution at the end of the previous (or current) time

increment. Thus, An is the value of A for the converged solution at time t = tn and, likewise, An+1 is the

value of A for the converged solution at the end of the current time increment, i.e., t = tn+1. Again, the time

step size is ∆t = tn+1− tn. Because the solution scheme is iterative, we represent the estimate of the solution

variable An+1 for the kth iteration as Ak,n+1 or, more simply, Ak. Thus, An+1 ← Ak after the final iteration

is complete and the solution has converged for time t = tn+1.

First, an algorithm for the implicit update of a generalized Maxwell model (i.e., Equation 5) is summarized

in Algorithm 1 (as derived in Abaqus 2010 and Appendix C) which is exact under the condition that the

viscoelastic strain rate is constant over the step, i.e., ˙eveij = ∆eveij /∆t ∀ t ∈ [tn, tn+1].

Algorithm 1 Maxwell

Input: VARS : ∆eve, ∆t, even , α
(κ)
n PARAMS : G0, G

(κ), τ (κ) ∀ κ ∈ [1, N ]

Output: Sn+1 , α
(κ)
n+1

1: ∆α(κ) =
(
1− exp

[−∆t
τκ

]) (
even −α

(κ)
n

)
+ τ(κ)

∆t

(
∆t
τ(κ) + exp

[−∆t
τ(κ)

]
− 1
)

∆eve

2: α
(κ)
n+1 = α

(κ)
n + ∆α(κ)

3: Sn+1 = G0

(
en+1 −

∑N
κ=1

G(κ)

G0
α

(κ)
n+1

)

Next we write Equations 2, 5, and 6 in a discrete sense at time t = tn+1, i.e.,

eDn+1 =
1

2G0

(cn+1

a

)3

Sn+1 (32)

Sn+1 = Maxwell
(
even+1,Sn

)
(33)

even+1 = en+1 − eDn+1 (34)
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Substitution of Equations 32 and 34 into Equation 33 produces an expression for the implicit update of stress,

i.e.,

Sn+1 = Maxwell

([
en+1 −

1

2G0

(cn+1

a

)3

Sn+1

]
,Sn
)

(35)

While it is the algorithmic objective to solve this nonlinear system of equations, Equation 35 is not in a form

useful for developing the algorithm. Instead, we substitute an iterative approximation for the damage strain

and stress at time t = tn+1 into Equation 32, accordingly

eDk ≈
1

2G0

(ck
a

)3

Sk (36)

which enables the definition of a residual error term, i.e.,

Rk =
1

2G0

(ck
a

)3

Sk − eDk (37)

Algorithm 2 solves for the roots Rn+1

(
even+1

)
= 0 using a Newton iterative solver as explained in detail here.

Algorithm 2 requires as input arguments (1) the time step size and increment in total strain, ∆t, and ∆e,

respectively, (2) the state of the material at the beginning of the increment, Sn =
(
σn, e

ve
n , e

D
n ,α

(κ)
n , cn

)
,

and (3) the material model parameters listed in Table 1. The output arguments returned from the algorithm

comprise (1) the deviatoric stresses at the end of the current time increment, Sn+1 and (2) the state of the

material at the end of the increment, Sn+1 =
(
even+1, e

D
n+1,α

(κ)
n+1, cn+1

)
. Algorithm 2 begins by (Step 1)

initializing the iterate of the solution variable, i.e., ∆eD = 0 and setting the iteration counter k = 0. Steps

2-9 reflect a loop which is repeated until convergence criteria are met or the maximum number of iterations

has been exceed in which case the current global FE solution iteration is aborted and repeated with a smaller

time step size. Within this loop, Step 3 updates the viscoelastic and damage strains. Using the current

approximation of the viscoelastic strain, Step 4 employs Algorithm 1 to compute the corresponding stresses

and Maxwell state variables. The resulting stresses are used in an algorithm (UpdateCrack, whose details are

addressed below) to update the average crack size consistent with Equations 9a and 9b. The residual error

for the current iteration is computed in Step 6 and used in Newton fashion to compute the next iterate of the

solution variable in Step 8. The system Jacobian used for a full Newton method to solve Equation 37 is

J =
∂R

∂eD
, (38)
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which is derived in Appendix E. The iteration is deemed to have converged when the error norm (Step 9)

is less than some predefined allowable error tolerance. Algorithms 1 and 2 are relatively straightforward and

complete with the exception of the crack size update calculation (i.e., CrackUpdate) to be discussed in the

next section.

Algorithm 2 Semi-Implicit Update Scheme

Input: VARS : ∆e, ∆t, σn, even , eDn , α
(κ)
n , cn PARAMS : see Table 1

Output: Sn+1, eDn+1, even+1, α
(κ)
n+1, cn+1

1: initialize: k ← 0, ∆eD = 0

2: repeat

3: ∆eve = ∆e−∆eD, eDk = eDn + ∆eD

4: call Maxwell −→ Sk , α
(κ)
k

5: call RK3 −→ ck

6: Rk = 1
2G0

(
ck
a

)3
Sk − eDk

7: Jk = 1
2G0

(
ck
a

)3
C′k +

9∆t
√
πck

4G0aσ̄

(
ck
a

)2 ∂ċ
∂KI

Sk ⊗ Sk ·C′k + I

8: ∆eD ← ∆eD − J−1
k : Rk

9: until Rk : Rk < TOL (k ← k + 1)

10: update: Sn+1 = Sk, eDn+1 = eDk , even+1 = even + ∆eve, α
(κ)
n+1 = α

(κ)
k , cn+1 = ck

Explicit subincrement integration of crack growth kinetics

The integration of crack growth rate Equations 9a and 9b is performed using the subincrement explicit inte-

gration scheme described in Algorithm 3. If Algorithm 3 used an implicit scheme, then Algorithm 2 would

be fully-implicit; however, the stiff and piecewise nonlinear system of equations presented by Equations 9a

and 9b are prohibitive to an efficient, reliable, and robust solution strategy. Even though the integration

scheme presented in Algorithm 3 is explicit, collectively Algorithms 1-3 ensure all solution variables are in

agreement with their corresponding constitutive equations to within a finite allowable error at the end of the

time increment, t = tn+1. This is not true for a purely explicit non-iterative update scheme.
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Algorithm 3 is an automatic time stepping implementation of a 3rd order embedded Runge-Kutta algorithm

described Algorithm 4. The arguments provided as input to Algorithm 3 are (1) the stresses at the end of the

current (previous) time increment, σn+1 (σn), (2) the mean crack size at the end of the previous increment

cn, (3) the time step size ∆t, and (4) the crack rate model parameters. The algorithm returns the crack size

at the end of the current increment, i.e., cn+1 as well as the algorithmically consistent tangents ∂c
∂σ̄ , ∂c

∂P , and

∂c
∂Vres

.

In Step, the average stress rates over the incriment are calculated. In Step 2, the algorithm tries to

complete the integration in one time step by setting the subincrement ∆t∗ = ∆t, and the total time increment

completed ∆ttotal = 0 and the subincrement initial stress σk, and initial crack size ck are set to their associated

values at the beginning of the total increment. The tangents are also set to zero. Steps 3-16 reflect a loop

which is performed until total of the subincrements ∆ttotal is equal to the total increment ∆t. Assuming

the recommended subincrement size is bigger than the current subincrement size then the next subincriment

size is increased by a fraction of the difference between the recommended subincriment size and the current

subincrement size in Step 10. If the recomended subincrement size is smaller than the current subincriment

then none of the calculations are stored and a new subincriment is tried in Step 12. Steps 14-16 assures that

the sum of the subincrements does not exceed the total increment.

One additional step which might be prudent is to set a maximum number of cutbacks allowed in Algorithm

3. If the max is exceeded then maybe a global cutback would be recommended and could be incorporated in

the automatic timesteping algorithm of the next section.

22



Algorithm 3 RK MULTISTEP, 3rd order subincrimentation embedded Runge-Kutta crack update

Input: Vars : σk+1, σk, ck, ∆t, Params : K0, µ
′,m, vres, b[:], b

∗[:], d[:], a[:, :]

Output: ck+1, ∂c
∂σ̄ , ∂c

∂p , ∂c
∂Vres

1: ˙̄σ = σ̄k+1−σ̄k
∆t , Ṗ = Pk+1−Pk

∆t

2: initialize: ∆t∗ = ∆t, ∆tcomplete = 0, ∂c
∂σ̄ = 0 , ∂c

∂P = 0, ∂c
∂Vres

= 0

cj = ck, σ̄j = σ̄k, Pj = Pk

3: repeat

4: σ̄j+1 = σ̄j + ˙̄σ∆t∗, Pj+1 = Pj + Ṗ∆t∗

5: call RK3 −→ cj+1,
∂cj+1

∂σ̄ ,
∂cj+1

∂P ,
∂cj+1

∂Vres
,∆trec

6: if ∆t∗ ≤ ∆trec then

7: ∆tcomplete = ∆tcomplete + ∆t∗

8: ∂c
∂σ̄ = ∂c

∂σ̄ +
∂cj+1

∂σ̄ ∆t∗, ∂c
∂P = ∂c

∂P +
∂cj+1

∂P ∆t∗, ∂c
∂Vres

= ∂c
∂Vres

+
∂cj+1

∂Vres
∆t∗

9: cj = cj+1 σ̄j = σ̄j+1, Pj = Pj+1

10: ∆t∗ = ∆t∗ + 0.9 (∆trec −∆t∗)

11: else

12: ∆t∗ = 0.9∆trec

13: end if

14: if ∆t∗ < ∆t−∆tcomplete then

15: ∆t∗ = ∆t−∆tcomplete

16: end if

17: until ∆tcomplete = ∆t

18: ck+1 = cj+1, ∂c
∂σ̄ = 1

∆t
∂c
∂σ̄ , ∂c

∂p = 1
∆t

∂c
∂P , ∂c

∂Vres
= 1

∆t
∂c

∂Vres
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Automatic time stepping algorithm

An automatic time stepping algorithm was implemented to inform the “parent code” to determine the ap-

propriate time step and allow it to grow as the loading and solution approach steady state. We use parent

code here to refer to the finite element code responsible for solving the global equations of motion and calling

the constitutive update routine, e.g. Abaqus/Standard. The integration algorithm for the viscoelastic stresses

developed in Appendix C is exact if the strain rate is constant over the integral in Equation 66. A constant

strain rate assumption is convenient because the parent code typically only passes the strain and time incre-

ments, thus a constant strain rate is often inferred from those quantities. Note, of course, that integration of

the global equations of motion includes an inertial term reflecting acceleration of continuum material points,

thus the velocities are not constant over an increment and, consequently, neither is strain rate in a strict

algorithmic sense. Moreover, the strain rate in the viscous sub-elements of the generalized Maxwell model

are not generally constant. The automatic time stepping algorithm presented here ensures that the change in

sub-elemental strain rate over an increment is small.

The viscous strain rate in each element is given by Equation 46 but is reproduced here in deviatoric form

for convenience.

α̇(κ) =
S(κ)

η(κ)
(39)

where α̇(κ) is the viscous strain rate, S(κ) is the deviatoric stress, and η(κ) is the viscous coefficient for the

κth Maxwell element. Alternatively, the deviatoric stress in the Maxwell element can be expressed in terms

of the elastic (recoverable) strain in the element, i.e.,

S(κ) = G(κ)
(
eve −α(κ)

)
(40)

where G(j) is the shear modulus corresponding to the κth Maxwell element. Note that α(κ) are stored by the

subroutine as state variables for the viscoelastic calculations. Combining Equations 39 and 40 with τ = η/G

results in

α̇(κ) =
1

τ (κ)

(
eve −α(κ)

)
(41)
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The change in internal strain rate over a time increment is

∆α̇(κ) = α̇
(κ)
n+1 − α̇

(κ)
n =

∆eve −∆α(κ)

τ (κ)
(42)

where t(k+1) and t(k) are the times at the end and beginning of the increment respectively. A weighted effective

change in strain rate over an increment is defined as

∆α̇ =

N∑
κ=1

G(κ)

G0
∆α̇(κ) (43)

and a heuristic dimensionless metric that reflects the effective change in internal strain over an increment due

to a non-constant strain rate, which is computed as the scalar product of ∆α̇ with itself multiplied by ∆t for

convenience, i.e.,

∆αeq = ∆t

√
2

3
∆α̇ : ∆α̇ (44)

A limit on the maximum acceptable value of ∆αeq is set a priori, which can be conceptually related to

a maximum acceptable error in strain. If the calculated value for ∆αeq exceeds the limit, then the user

subroutine terminates the current global solution increment and requests a reduced time step size be used for

the next attempted increment. This implementation enables the user to allow the global finite element code

to attempt larger time steps and automatically reduce the time step size if necessary.

6 Comparison with historical implementation

In this section a historical explicitly integrated implementation is compared with the proposed implementation.

We simply apply the material parameters provided with the original implementation to compare numerical

performance of the two algorithms. The parameters are listed in Appendix I

Because in the new implementation damage growth is not retarded by tensile mean pressure the two imple-

mentations are not expected to give consistent results so the comparisons are only carried out in compression.

First, a 3D multi-element simulation of a compression experiment at a constant strain rate of 1e-4 s−1 is

performed for both implementations. The maximum allowed time step is varied from 0.05s to 5s. The results

of these simulations are shown in Figure 5. The old formulation exhibits great dependance on time step in
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the behavior once damage starts to accumulate, though the dependance appears convergent. The dependance

on time step in the behavior of the new formulation is insignificant.
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Figure 5: Compression simulations at ε̇ = 1e− 4s−1

While accuracy is the major motivation for the new implementation excessive computation time is also

undesirable. The computation time for the compression simulations is listed in Table 2. There are several

interesting observations that can be made. First, the time required to perform the simulations with a maximum

time step of 5 seconds and 0.05 seconds is longer for the new formulation than the old formulation but with

a maximum time step of 0.5 seconds the new formulation seems to perform better. The slower performance

of the new formulation with a 5 second time step is attributed to the auto time stepping algorithm which

didn’t allow the simulation to run at 5 second intervals. As the time step gets small the explicit algorithm

of the old formulation should perform better and it does, but we should consider that the new formulation

achieved convergence at a set time step of 5 seconds It may be better to compare the 36 second completion of

the converged new formulation to the 717 seconds required to complete the nearly converged simulation using

the old formulation.

The old formulation should perform better at relatively high rate so we studied the efficiency of the two

26



Table 2: Simulation Time

ε̇ = 1e-4s−1 ε̇ = 0.1s−1

∆tmax (s−1) Old Form (s) New Form (s) ∆tmax (s−1) Old Form (s) New Form (s)

5.0 31.0 36.3 5e-3 23.5 22.6

0.5 166 128 5e-4 153 121

0.05 717 832 5e-5 677 811

formulation at a strain rate of 0.1 s−1. The results are shown in Figure 6 and the computation times are shown

in the right half of Table 2. Here the new formulation does appear to be slower than the old formulation at

a given maximum time step but again the new formulation seems to exhibit convergence at the largest time

step size of 5e-3 seconds. Conversely, the old formulation may have converged at a time step size of 5e-5 so

we are comparing 22.6 seconds for the new formulation to 677 seconds for the old formulation.
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Figure 6: Compression simulations at ε̇ = 0.1s−1

Next, a series of stress controlled compression simulations were performed. The stress and time were output

from the constant strain rate simulations and applied to the sample. Then stress was scaled by 0.95 to keep
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the response from hitting the instability at the peak. The results of these simulations are shown in Figure 9.

The response of the old formulation exhibits great dependance on time step size while the new formulation

exhibits very little dependance on time step size. The old formula simulations unload in a different way than

the new formulation. This is likely because the model exhibits such large dependance on time step size. A

smaller scale factor may be required to assure that the old formula simulations do not pass the snap-through

point in the stress-strain behavior.
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Figure 7: Stress controled compression simulations

A final series of compression simulations was performed using the new implementation to show good

performance with respect to mesh size variation. Three meshes resolutions were chosen. The coarse mesh

corresponds with the mesh used in the previous simulations. The medium and fine meshes are the result of

consecutive mesh doubling. The mesh size dependance exhibited is insignificant which is expected of a well

performing model because the stress in a uniaxial simulation should exhibit no spatial dependance.

To demonstrate the new formulation in a simulation where a spatially varying stress is present a cantilever

beam with a tip load was modeled. Figure 9a and 9b show the change in load-deflection behavior with time

step and mesh size respectively. There is no dependance on time step size though there is a dependance mesh

size once damage starts to accumulate. This is expected as the model does not yet try to assure consistent
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Figure 8: Mesh convergence of new formulation

specific energy dissipation during failure.
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Figure 9: Temporal and spatial convergence in cantilever beam bending simulations
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7 Comparrison to experimental data

A preliminary fitting method involving brute force adjustment of parameters was used to fit uniaxial com-

pression and tension data collected by Darla Thompson. This section documents how well the model can fit

the experimental data. First we compared a series of simulations to demonstrate the model and estimated

parameters performance with respect to uniaxial tension experiments performed by Darla Thompson in 2009

at room temperature (23◦C). The tests were performed at nominally constant strain rates varying from about

2e-6 s−1 to 2e-2s−2 This data was heavily weighted during the brute force calibrations so these comparisons

are expected to be very good. Simulation results along with their corresponding experimental data is shown

in Figure 10. The simulations are plotted with a dotted line and their corresponding experimental data is

plotted with a solid line of the same color. As expected the data fits the loading phase very well but doesn’t fit

the failure very well. The failure is brittle in nature and this model is unlikely to capture the failure behavior

very well and as demonstrated previously would be completely unable to consistently predict this behavior

over different meshes so this region was ignored during the fitting process.
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Figure 10: Comparison of uniaxial tension simulations to experimental data
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Comparisons of compression simulations to experiments are shown in Figure 11. Again simulations are

shown dotted and experiments are shown using solid lines. The rates vary from 1e-6 s−1 to 1e-2s−2. The

compression comparisons are less than perfect. The only good fits are at about 1e-4s−1 and 1e-3s−1.
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Figure 11: Comparison of uniaxial compression simulations to experimental data

Finally, we compared the model performance in creep simulations. Uniaxial compression creep tests were

modeled at 30◦C for three load levels including 0.5 MPa 1.0 MPa, and 1.5 MPa. They are plotted in Figure

12. The 1.0 MPa simulations is a very good approximation of the experiment but the 0.5 MPa simulation

over predicts the creep of the experiment and the 1.5 MPa simulation under predicts the creep. The simulated

behavior is consistent with linear viscoelasticity. It is hypothesized that the material has a plastic behavior

which the model is unable to capture and thus fitting more than one of these curves is currently not possible.
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Figure 12: Comparison of creep simulations to experimental data

8 Summary and concluding remarks

The goal of this work was to improve implementation of an existing set of constitutive equations. The promi-

nent inadequacy of the previous implementation is the behavior with large time steps. This was demonstrated

in Section 6. The explicit crack update algorithm used in the previous formulation is at fault for the poor

behavior with large time steps. The old formulation also did not include any facility for determining the time

step size, which required the user to determine the appropriate size. This is not practical in large multi-

component simulations. The combination of the semi-implicit crack update and the automatic time step

selection algorithm greatly improved the performance and usability of the material model. Comparisons of

simulation results using both models were shown in Section 6, and even in relatively high rate situations the

new formulation outperforms the old when comparing simulations of similar accuracy.

A brute force fitting process was performed and is discussed in Section 7. Uniaxial tensile data was

weighted heavily in the fitting process, so the comparison to tensile experimental data is quite good. It should

32



be noted that the parameters selected in the fitting process resulted in a saturation of the stress intensity

contribution to the crack growth equations in tension. This is to say that in the tensile simulations strain rate

is the only important factor in the response. We do not state that this is correct, just that it fits the data

very well. Conversely, the only parameter left to change after fitting the tensile data is the friction coefficient

µ′. This provided a decent fit to strain rates in the range 1e-4 s−1 to 1e-3s−2, but relatively bad fits outside

this range. Other techniques for fitting are currently being explored which take advantage of deconvolving

the viscoelastic response from the viscodamage response. These techniques could potentially improve the fits

data, but ultimately this set of constitutive equations might not be appropriate for this model.

Our two concerns are the lack of nonlinearity in the volumetric response, and the lack of a permanent

deformation mechanism. The mean stress is attributed to a linear elastic bulk modulus and there is not

volumetric strain associated with the damage. Uniaxial data can be fit with the interesting mechanics isolated

to the deviatoric response, but the fits are not unique so appropriate behavior under other stress states in

unlikely. Experimental evidence also suggests that permanent deformation mechanisms are important Buechler

(2012). This model must attribute all the nonviscoelastic response to damage. Because some of the response

is attributable to plasticity the damage likely evolves too fast in order to fit the monotonic experimental data.

The next generation of constitutive models are currently being developed. The developers may take

advantage of lessons learned during development of this new implementation.
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Figure 13: Rheological representation of a single Maxwell element consisting of a damper with viscosity η and

a spring of stiffness G in series.

Appendices

A Development of stress equation for a single Maxwell element

Derivations of the relationship between viscoelastic strain and stress for a single Maxwell element, shown in

Figure 13, are presented here. These derivations essentially follow those presented in, for example, Malvern

(1969) and Abaqus (2010). A single Maxwell element consists of a spring and viscous damper in series as

shown in Figure 13. The strain in the damper is α and the total viscoelastic strain across the Maxwell element

is eve. Thus the strain across the elastic spring is (eve − α). Through Hooke’s law, the stress acting on the

spring is

σ = G (eve − α) (45)

where σ is the stress and G is the shear modulus (spring stiffness). Equilibrium dictates that the same stress,

i.e. σ, is applied (transmitted through the spring) to the damper resulting in the viscous strain rate

α̇ =
σ

η
(46)

where η reflects the viscosity of the damper. Substitution of Equation 46 into the time derivative of Equation

45 enables one to solve for the stress rate, i.e.,

σ̇ = Gėev − σ

τ
(47)
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where a relaxation time constant has been introduced and is defined as τ = η/G. If we apply a Laplace

transform to both sides of Equation 47 we get

sσ(s) = sGeve(s)− σ(s)

τ
(48)

or

σ(s) =
sG

s+ 1
τ

eve(s) (49)

which transformed back using the the inverse Laplace transform results in the convolution integral

σ(t) =

∫ t

0

Ge
−(t−ζ)

τ ėevdζ (50)

B Development of stress equation for a generalized Maxwell ele-

ment

The single Maxwell element can be generalized to include N Maxwell elements in parallel with an elastic

spring as shown in Figure 14. These derivations essentially follow those presented in, for example, Malvern

(1969) and Abaqus (2010). Compatibility of the deformation of each Maxwell element requires that the total

Figure 14: Rheological representation of a generalized Maxwell element comprising N Maxwell elements in

parallel with an elastic spring.

strain of the general Maxwell model be equal to the viscoelastic strain for all individual elements. Equilibrium

requires that the total stress acting on the general Maxwell model, σ, is the sum of the internal stresses acting
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on each of the individual elements σ(j). Accordingly, summing Equation 49 over the N elements and including

a contribution from the elastic spring gives

σ(s) =

(
G∞ +

N∑
κ=1

sG(κ)

s+ 1
τ(κ)

)
ε(s) (51)

which can be transformed back to the time domain using an inverse Laplace transform resulting in

σ(t) =

∫ t

0

G∞ +

N∑
κ=1

(
G(κ) exp

[
−(t− ζ)

τ (κ)

])
ε̇evdζ (52)

Typically, Equation 52 is written as

σ(t) =

∫ t

0

G(t− ζ)ε̇evdζ (53)

where the relaxation modulus, G(t) is expressed as a Prony-series, i.e.,

G(t) = G∞ +

N∑
κ=1

G(κ) exp

[
−t
τ (κ)

]
(54)

Thus far, the developed rheological models are expressed in terms of scalar variables representing stress, strain,

and internal dissipative strain. It is striaghtforward to generalize the relationships to tensoral form; here, we

accomplish this by decoupling the deviatoric and volumetric responses, each being modeled with a seperate

generalized Maxwell description, i.e.,

σij(t) =

∫ t

0

2G(t− ζ)ėevij dζ +

∫ t

0

δij K(t− ζ)ε̇kkdζ (55)

where ėev is the deviatoric strain rate, ε̇kk is the volumetric strain rate and the bulk relaxation modulus K(t)

is expressed by the Prony series

K(t) = K∞ +

N∑
κ=1

K(κ) exp

[
−t
τ (κ)

]
(56)

The challenge is determining the coefficients G∞, K∞, G(κ), K(κ), and τ (κ) from experiments. Also, note

that the time constants need not be the same for both the shear modulus and the bulk modulus, though for

convenience they commonly are.
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C Integration of viscoelastic stress equations

Two methods for integrating the viscoelastic stress equations in time are presented in this Section. The first

method is introduced to provide some intuitive sense of the objective of the viscoelastic update algorithm

and because it is relevant to legacy implementations of viscSCRAM. The second method is that implemented

within the commercial finite element code, Abaqus, for its own viscoelastic material model (Abaqus, 2010).

Derivations for this second method essentially follow that presented in Abaqus (2010).

The first method discussed is to sum Equation 47 over all the elements in the general Maxwell model and

then to integrate the stress rate.

σ̇ = G∞ε̇ve +

N∑
κ=1

(
G(κ)ε̇ve − σ(κ)

τ (κ)

)
(57)

where σ(κ) is the stress carried by each individual Maxwell element. In similar fashion to the previous section,

Equation 57 is generalized to a tensoral form in separate terms of deviatoric and volumetric response, i.e.,

σ̇ij = Ṡij + δij σ̇
m (58)

where

Ṡij = 2G∞ėveij +

N∑
κ=1

(
2G(κ)ėveij −

S
(κ)
ij

τ (κ)

)
(59)

σ̇m = K∞ε̇vekk +

N∑
κ=1

(
K(κ)ε̇vekk −

σ
(κ)
kk

3τ (κ)

)
(60)

and S
(κ)
ij (σ

(κ)
kk /3) is the portion of the deviatoric (mean) stress carried by each Maxwell element (respective).

A viscoelastic update algorithm can be built by applying an integration scheme (e.g. forward or backward

Euler) to integrate Equations 59, and 60. However, note that the individual Maxwell stresses must also be

integrated forward in time in a manner consistent with that for Equations 59 and 60. Consequently, the

internal stresses would take on the role of state variable to reflect the history of the material.

An alternative method, exploited in Algorithm 1, for integrating the viscoelastic equations achieves an

analytically exact (under certain conditions) update equation. The method can be applied to mean and

deviatoric stresses can be integrated separately. Thus, only the deviatoric part is addressed here. The same
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approach can be applied to update the mean stress if using a generalized Maxwell bulk viscoelastic model.

First, we generalize Equation 50 to relate the deviatoric stress in the κth Maxwell element, i.e.,

S
(κ)
ij = 2G(κ)

(
eveij − α

(κ)
ij

)
(61)

Likewise, a simple generalization of the single Maxwell element stress computed in Equation 50 gives the

deviatoric stress in the κth Maxwell element, S
(κ)
ij , is

S
(κ)
ij (t) =

∫ t

0

2G(κ) exp

[
−(t− ζ)

τ (κ)

]
ėveij dζ (62)

Each of the previous two equations provides the deviatoric stress acting within a single Maxwell element. The

former, Equation 61, is based on the elasticity of the element in terms of the total and internal strains, while

the latter, Equation 62, is the convolution integral for stress dependent solely on the total viscoelastic strain

history. Substitution of Equation 62 into Equation 61 yields an expression for the internal (dissipative) strain

associated with the κth Maxwell element, i.e.,

α
(κ)
ij (t) =

∫ t

0

(
1− exp

[
−(t− ζ)

τ (κ)

])
ėveij dζ (63)

The internal strain of Equation 63 is evaluated at time t = tn+1 and separated into two terms, i.e.,

α
(κ)
ij (tn+1) =

∫ tn

0

(
1− exp

[
−(tn+1 − ζ)

τ (κ)

])
ėveij dζ +

∫ tn+1

tn

(
1− exp

[
−(tn+1 − ζ)

τ (κ)

])
ėveij dζ (64)

Substituting the identity

1− exp

[
−∆t

τ (κ)

]
+ exp

[
−∆t

τ (κ)

](
1− exp

[
ζ − tn
τ (κ)

])
= 1− exp

[
ζ − tn
τ (κ)

]
(65)

into Equation 64 and evaluating the integral for the first term of the latter produces

α
(κ)
ij (tn+1) =

(
1− exp

[
−∆t

τ (κ)

])
eveij,n + exp

[
−∆t

τ (κ)

]
α

(κ)
ij (tn) +

∫ tn+1

tn

(
1− exp

[
ζ − tn+1)

τ (κ)

])
ėveij dζ (66)

Approximating the strain rate as constant over a time increment, i.e., ėveij ≈ ∆eveij /∆t allows the integral in

Equation 66 to be evaluated resulting in

α
(κ)
ij (tn+1) =

(
1− exp

[
−∆t

τ (κ)

])
eveij,n + exp

[
−∆t

τ (κ)

]
α

(κ)
ij (tn) +

∆eveij
∆t

(
∆t+ τ (κ)

(
exp

[
− ∆t

tau(κ)

]
− 1

))
(67)
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Finally, subtracting the value of internal strain at the end of the previous increment from both sides of the

previous equation gives

∆α
(κ)
ij =

(
1− exp

[
−∆t

τ (κ)

])(
eveij,n − α

(κ)
ij,n

)
+
τ (κ)

∆t

(
∆t

τ (κ)
+ exp

[
−∆t

τ (κ)

]
− 1

)
∆eveij (68)

Equation 68 provides an analytical update equation for the internal (dissipative) strains for each Maxwell

element, which is exact under the conditions that ėveij = ∆eveij /∆t ∀ t ∈ [tn, tn+1]. Such conditions are

unlikely in a strict sense; however, in may cases this is a reasonable approximation and the departure from

this assumption provides the basis for the error metric used in the automatic time stepping algorithm developed

in Section ??. Using Equation 68 to update the internal strains at each increment, it is straightforward to

compute the total deviatoric stress by summing Equation 61 over each Maxwell element and including the

contribution from the elastic spring as

Sij = 2G0e
ve
ij −

N∑
κ=1

2G(κ)α
(κ)
ij (69)

where the instantaneous shear modulus, G0, has been introduced and is defined as

G0 = G∞ +

N∑
κ=1

G(κ) (70)

The same procedure can be repeated for the volumetric/hydrostatic terms; these details are omitted here.

D Maxwell Constitutive Tangent

The deviatoric tangent stiffness associated with the generalized Maxwell viscoelastic model is derived in this

appendix using the relationships from Appendix C. The tensoral form of the viscoelastic deviatoric constitutive

tangent is

C′ =
∂∆S

∂∆eve
(71)

Using Equation 69 allows us to write a linearized form,

∆S = 2G0∆eve −
N∑
κ=1

2G(κ)∆α(κ) (72)
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substituting Equation 68 into Equation 72 gives

∆S = 2G0∆eve −
N∑
κ=1

2G(κ)

((
1− exp

[
−∆t

τ (κ)

])(
even −α(κ)

n

)
+
τ (κ)

∆t

(
∆t

τ (κ)
+ exp

[
−∆t

τ (κ)

]
− 1

)
∆eve

)
(73)

The deviatoric part of the viscoelastic constitutive tangent is obtained by differentiating Equation 73 with

respect to ∆eve, i.e.,

C′ = I

[
2G0 −

N∑
κ=1

2G(κ) τ
(κ)

∆t

(
∆t

τ (κ)
+ exp

[
−∆t

τ (κ)

]
− 1

)]
(74)

If we define the scalar

Gt = G0 −
N∑
κ=1

G(κ) τ
(κ)

∆t

(
∆t

τ (κ)
+ exp

[
−∆t

τ (κ)

]
− 1

)
, (75)

then the deviatoric viscoelastic tangent stiffness becomes

∂S

∂eve
= 2GtI

sym (76)

E Damage Strain Error Jacobian

The update scheme of Algorithm 2 requires a jacobian for the residual term of Equation 37 which is repeated

here for convinience.

Rk =
1

2G0

(ck
a

)3

Sk − eDk (77)

The error function implemented in the new viscoSCRAM subroutine is in terms of the viscoelastic strain

instead of the damage strain, so we get

Rk =
1

2G0

(ck
a

)3

Sk − ek + evek (78)

The incremental form of which is

∆Rk =
1

2G0

(ck
a

)3

∆Sk +
3

2G0a

(ck
a

)2

Sk∆ck −∆ek + ∆evek (79)

The increment in deviatoric stress is a function of the deviatoric viscoelastic tangent stiffness and the vis-

coelastic strain increment as shown in Equation 80

∆Sk =
∂S

∂eve
: ∆evek (80)
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The damage increment is

∆ck =
∂ck
∂S

:
∂S

∂eve
: ∆evek (81)

where ∂ck
∂S should be calculated consistently with the damage growth algorithm. Combining Equations 79, 80,

and 81 results in

∆Rk =
1

2G0

(ck
a

)3 ∂S

∂eve
: ∆evek +

3

2G0a

(ck
a

)2

Sk
∂c

∂S
:
∂S

∂eve
: ∆evek −∆ek + ∆evek (82)

Finally the residual jacobian can be estimated as

∆Rk

∆evek
=

1

2G0

(ck
a

)3 ∂S

∂eve
+

3

2G0a

(ck
a

)2

Sk ⊗
∂c

∂S
:
∂S

∂eve
+ I (83)

Substituting Equation 76 into Equation 83 results in

∆Rk

∆evek
=

(
1 +

Gt
G0

(ck
a

)3
)
I +

9Gt
2G0aσ̄

(ck
a

)2 ∂c

∂σ̄
Sk ⊗ Sk (84)

F Embedded Runge-Kutta Method

We have incorporated an embedded Runge-Kutta method for integrating the damage kinetics equation. The

particular scheme chosen is known as the Bogacki-Shampine method and was introduced in P. BOGACKI

(1989). This method provides a 3rd order accuracy requiring 4 evaluations of the kinetics equations. This

method also provides an estimate of the numerical error as well as a recommendation of the appropriate

time increment necessary to achieve an acceptable numerical error. Higher order methods such as Dormand-

Prince were considered but they contained negative weighting terms of the Butcher Table (shown for Bogacki-

Shampine in Table 3) which posed some numerical difficulties associated with negative damage growth.

The updated crack size is

ck+1 = ck + b∗1A1 + b∗2A2 + b∗3A3 + b∗4A4 (85)

where bi are found in the Table 3. Ai are

Ai = ∆tċ

σ̄k + di∆σ̄, Pk + di∆P, ck +

i−1∑
j=1

aijAj

 (86)
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Table 3: Bogacki-Shampine Parameters for Embedded Runge-Kutta Method

i di aij bi b∗i

1 0 2
9

7
24

2 1
2

1
2

1
3

1
4

3 3
4 0 3

4
4
9

1
3

4 1 2
9

1
3

4
9 0 0 1

8

j = 1 2 3 4

where di and aij are also found in Table 3

A2 = ∆tċ (σ̄k + d2∆σ̄, Pk + d2∆P, ck + a21A1) (87)

The numerical error estimate (Eet) is

Eest =

4∑
i=1

(bi − b∗i )Ai (88)

and you want the magnitude of the error to be less than a specified tolerance. If it is not then a new timestep

size is chosen as

∆t = ∆t

∣∣∣∣ tolEest

∣∣∣∣ 13 (89)

We also need the quantity ∂c
∂σ̄ calculated in a way consistent with this algorithm.

∂c

∂σ̄
=
∂(δc)

∂(δσ̄)
(90)

where δc is the virtual change in c due to a virtual change in σ̄ given as δσ̄. If we consider equation 85 then

δc = δck + b1δA1 + b2δA2 + b3δA3 + b4δA4 + b5δA5 + b6δA6 (91)

ck is fixed at the beginning of the increment and A1 is evaluated based on information that is fixed at the
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beginning of the increment so they can have no virtual change. This leaves

δc = b2δA2 + b3δA3 + b4δA4 + b5δA5 + b6δA6 (92)

then

δA2 = ∆t

(
∂ċ

∂σ̄

∣∣∣∣
∗

)
δσ̄ + ∆t

(
∂ċ

∂c

∂c

∂A1

)∣∣∣∣
∗
δA1 (93)

where ∗ means that it is evaluated under the same conditions as A2 was. In the context of evaluating δA2 we

should find that ∂c
∂A1

is a21. However we already determined that δA1 is zero so we are left with.

δA2

δσ̄
= ∆t

∂ċ

∂σ̄

∣∣∣∣
∗

(94)

Evaluating the virtual change in A4

δA3 = ∆t

(
∂ċ

∂σ̄

∣∣∣∣
∗

)
δσ̄ + ∆t

(
∂ċ

∂c

∣∣∣∣
∗

)
a31δA1 + ∆t

(
∂ċ

∂c

∣∣∣∣
∗

)
a32δA2 (95)

Again, δA1 is zero and if we replace δA2 with δA2

δσ̄ δσ̄ then we get

δA3 = ∆t

[
∂ċ

∂σ̄

∣∣∣∣
∗

+

(
∂ċ

∂c

∣∣∣∣
∗

)
a32

δA2

δσ̄

]
δσ̄ (96)

if we continue this development we get

δAi
δσ̄

= ∆t

 ∂ċ
∂σ̄

∣∣∣∣
∗

+

i−1∑
j=1

(
aij

∂ċ

∂c

∣∣∣∣
∗

δAj
δσ̄

) (97)

which leads to

∂c

∂σ̄
=

4∑
i=1

b∗i
δAi
δσ̄

(98)
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Algorithm 4 RK3, 3rd order embedded Runge-Kutta crack update

Input: Vars : σk+1, σk, ck, ∆t∗, Params : K0, µ
′,m, vres, b[:], b

∗[:], d[:], a[:, :]

Output: ck+1, ∂c
∂σ̄ , ∆trec

1: initialize: A[:] = 0, δA
δσ̄ [:] = 0

2: ∆σ̄ = σ̄k+1 − σ̄k, ∆P = Pk+1 − Pk

3: for i = 1 to 6 do

4: σ̄∗ = σ̄k + d[i]∆σ̄, P ∗ = Pk + d[i]∆P , c∗ = ck +
∑

(a[i, :]A[:])

5: call get dot −→ ċ, ∂ċ
∂σ̄ , ∂ċ

∂c

6: A[i] = ∆tċ

7: δA
δσ̄ [i] = ∆t

[
∂ċ
∂σ̄ + ∂ċ

∂c

∑(
a[i, :] δAδσ̄ [:]

)]
8: end for

9: ck+1 = ck +
∑

(b[:]A[:])

10: ∂c
∂σ̄ =

∑(
b[:] δAδσ̄ [:]

)
11: Eest =

∑
(b[:]A[:]− b∗[:]A[:])

12: ∆trec = ∆t
∣∣∣ tolEest

∣∣∣ 15

G Continuum Tangent Stiffness

We need a tangent stiffness of the form ∆σ
∆ε and from appendix D we have ∂S

∂eve , and ∂p
∂εvol

= −K. The stress

can be decomposed into deviatoric and spherical components as

σ = S− pi (99)

If we also decompose the strain into deviatoric eij and spherical εvol components then the tangent stiffness

becomes

∂σ

∂ε
=

[
∂S

∂e
− ∂p

∂e
⊗ i

]
:
∂e

∂ε
+

[
∂S

∂εvol
− ∂p

∂εvol
i

]
⊗ ∂εvol

∂ε
(100)
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given that

e = ε− εvol
3

i (101)

εvol = TR (ε) (102)

we have

∂e

∂ε
= I− 1

3
i⊗ i (103)

and

∂εvol

∂ε
= i (104)

In viscoscram the deviatoric strain is further decomposed into viscoelastic and damage components.

e = eve + eD (105)

but the deviatoric stress is only a function of the viscoelastic part so we can write an increment in stress as

∆S =
∂S

∂eve
: ∆eve (106)

Where ∂S
∂eve was defined in Appendix D

∆S =
∂S

∂eve
:
(
∆e−∆eD

)
(107)

∆eD =
1

2G0

( c
a

)3

∆S +
3

2G0a

( c
a

)2

S∆c (108)

∆S =
∂S

∂eve
: ∆e− 1

2G0

( c
a

)3 ∂S

∂eve
: ∆S− 3

2G0a

( c
a

)2 ∂S

∂eve
: S∆c (109)

[
I +

1

2G0

( c
a

)3 ∂S

∂eve

]
: ∆S =

∂S

∂eve
: ∆e− 3

2G0a

( c
a

)2 ∂S

∂eve
: S∆c (110)

∆c =
∂c

∂σ̄

∂σ̄

∂S
: ∆S +

∂c

∂p
∆p+

∂c

∂Vres

∂Vres
∂ ˙̄e

∂ ˙̄e

∂ė
:
∂ė

∂∆e
: ∆e (111)
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∂c

∂Vres

∂Vres
∂ ˙̄e

∂ ˙̄e

∂ė
:
∂ė

∂∆e
=

2VresA

3∆t ˙̄e2

∂c

∂Vres
ė (112)

[
I +

1

2G0

( c
a

)3 ∂S

∂eve

]
: ∆S =

∂S

∂eve
: ∆e− 3

2G0a

( c
a

)2 ∂S

∂eve
: S

(
∂c

∂σ̄

∂σ̄

∂S
: ∆S +

∂c

∂p
∆p+

2VresA

3∆t ˙̄e2

∂c

∂Vres
ė : ∆e

)
(113)

∂σ̄

∂S
=

3S

2σ̄
(114)

[
I +

1

2G0

( c
a

)3 ∂S

∂eve
+

9

4G0aσ̄

( c
a

)2 ∂c

∂σ̄

∂S

∂eve
: S⊗ S

]
: ∆S = (115)[

∂S

∂eve
− VresA

G0a∆t ˙̄e2

( c
a

)2 ∂c

∂Vres

∂S

∂eve
: S⊗ ė

]
: ∆e− 3

2G0a

( c
a

)2 ∂S

∂eve
: S

(
∂c

∂p

∂p

∂εvol
∆εvol

)
(116)

If this is all right then we are left with

∆S

∆e
=

[
I +

1

2G0

( c
a

)3 ∂S

∂eve
+

9

4G0aσ̄

( c
a

)2 ∂c

∂σ̄

∂S

∂eve
: S⊗ S

]−1

:

[
∂S

∂eve
− VresA

G0a∆t ˙̄e2

( c
a

)2 ∂c

∂Vres

∂S

∂eve
: S⊗ ė

]
(117)

From before we can write

∂S

∂eve
= 2GtI (118)

Then

∆S

∆e
=

[(
1 +

Gt
G0

( c
a

)3
)
I +

9Gt
2G0aσ̄

( c
a

)2 ∂c

∂σ̄
S⊗ S

]−1

:

[
2GtI−

2GtVresA

G0a∆t ˙̄e2

( c
a

)2 ∂c

∂Vres
S⊗ ė

]
(119)

Additionally, we will need

∆S

∆εvol
=

∆S

∆p

∆p

∆εvol
(120)

47



which in this case the bulk behavior is linear elastic so

∆S

∆εvol
= −K∆S

∆p
(121)

From above we see that (the direct notation probably needs some work)

∆S

∆εvol
=

[(
1 +

Gt
G0

( c
a

)3
)
I +

9Gt
2G0aσ̄

( c
a

)2 ∂c

∂σ̄
S⊗ S

]−1

:

(
3KGt
G0a

( c
a

)2 ∂c

∂p
S

)
(122)

Finally, in viscoscram the pressure has no direct dependance on the deviatoric strain so ∂p
∂ekl

= 0

Apply the 4th order corollary to the Sherman-Morrison formula (Cite Brannon or others)

A1 = 1 +
Gt
G0

( c
a

)3

(123)

A2 =
9Gt

2G0aσ̄

( c
a

)2 ∂c

∂σ̄
(124)

[A1I +A2S⊗ S]
−1

=
1

A1
I− A2S⊗ S

A2
1 +A1A2S : S

(125)

A3 =
2GtVresA

G0a∆t ˙̄e2

( c
a

)2 ∂c

∂Vres
(126)

A4 =
3KGt
G0a

( c
a

)2 ∂c

∂p
(127)

∆S

∆e
=

[
1

A1
I− A2S⊗ S

A2
1 +A1A2S : S

]
: [2GtI−A3S⊗ ė] (128)

∆S

∆e
=

2Gt
A1

I +

[
A2A3S : S

A2
1 +A1A2S : S

− A3

A1

]
S⊗ ė− 2GtA2

A2
1 +A1A2S : S

S⊗ S (129)

∆S

∆εvol
=

[
A4

A1
− A2A4S : S

A2
1 +A1A2S : S

]
S (130)

∆σ

∆ε
=

2Gt
A1

Pdev+

[
A2A3S : S

A2
1 +A1A2S : S

− A3

A1

]
S⊗ė− 2GtA2

A2
1 +A1A2S : S

S⊗S+

[
A4

A1
− A2A4S : S

A2
1 +A1A2S : S

]
S⊗i+Ki⊗i

(131)
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H Parameters used in comparison of new and old formulation

The parameters are as follows

K = 3460.0 MPa G1 = 109.0 MPa τ1 = 1.0E + 3 s

G∞ = 404.0 MPa G2 = 108.0 MPa τ2 = 1.0E + 2 s

K0 = 0.03 MPa
√
mm G3 = 139.0 MPa τ3 = 1.0E + 1 s

µ′ = 1.159 G4 = 170.0 MPa τ4 = 1.0E + 0 s

m = 10.0 G5 = 213.0 MPa τ5 = 1.0E − 1 s

a = 1.0 mm G6 = 267.0 MPa τ6 = 1.0E − 2 s

Vmax = 3.0E+5 mm
s G7 = 341.0 MPa τ7 = 1.0E − 3 s

Va = 0.89164 G8 = 434.0 MPa τ8 = 1.0E − 4 s

Vb = 2.28 G9 = 581.0 MPa τ9 = 1.0E − 5 s

c1 = 15.679 G10 = 726.0 MPa τ10 = 1.0E − 6 s

c2 = 199.375 kelvin

Tref = 303.13 kelvin

I Parameters used in comparison to experimental data

The parameters are as follows
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K = 5997 MPa G1 = 4000 MPa τ1 = 1.0E − 3 s

G∞ = 50.0 MPa G2 = 1000 MPa τ2 = 1.0E − 2 s

K0 = 8.25E − 5 MPa
√
mm G3 = 500 MPa τ3 = 0.2152 s

µ′ = 2.55 G4 = 400 MPa τ4 = 1.1 s

m = 10.0 G5 = 300 MPa τ5 = 6.3 s

a = 3.68E − 4 mm G6 = 225 MPa τ6 = 41.1 s

Vmax = 3.0E+5 mm
s G7 = 150 MPa τ7 = 272.3 s

Va = .934 G8 = 150 MPa τ8 = 1602 s

Vb = −1.1 G9 = 50 MPa τ9 = 8627 s

c1 = 15.679 G10 = 50 MPa τ10 = 4.83E + 4 s

c2 = 199.375 kelvin G11 = 50 MPa τ10 = 4.026E + 5 s

Tref = 303.13 kelvin
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