
PNNL-21831 

Prepared for the U.S. Department of Energy 
under Contract DE-AC05-76RL01830 

Climate Science for a Sustainable 
Energy Future Atmospheric 
Radiation Measurement Best 
Estimate (CSSEFARMBE) 
 
 
 
 
 
LD Riihimaki SA McFarlane 
K Gaustad 
 
 
 
 
 
September 2012 



 

 

 

 



PNNL-21831 

 

 
 
 
 
 
 
 
 
 

Climate Science for a Sustainable 
Energy Future Atmospheric 
Radiation Measurement Best 
Estimate (CSSEFARMBE) 
 
 
 
 
 
 
LD Riihimaki SA McFarlane 
K Gaustad 
 
 
 
 
 
September 2012 
 
 
 
 
 
Prepared for 
the U.S. Department of Energy 
under Contract DE-AC05-76RL01830 
 
 
 
 
 
 
 
Pacific Northwest National Laboratory 
Richland, Washington 99352 





 

iii 

Acknowledgments 

CSSEFARMBE was created under the Department of Energy (DOE) Climate Science for a 
Sustainable Energy Future (CSSEF) project, which is supported by DOE’s Climate and Earth System 
Modeling (CESM) Program. The development of CSSEFARMBE benefited from discussions with others 
in the CSSEF project, particularly scientists in the atmospheric data and uncertainty quantification groups. 
Observational data is from the DOE Atmospheric Radiation Measurement (ARM) program. We are 
grateful for the help and expertise of Shaocheng Xie and Renata McCoy who developed the ARM Best 
Estimate (ARMBE) Value Added Product (VAP) upon which the CSSEFARMBE data set is based, 
shared their code, expertise, and time in discussing the data. Many thanks also to Mike Ritsche and Jenni 
Prell for their work maintaining the ARM surface meteorological data set and sharing their expertise 
about instrument uncertainty. Claude Duchon graciously shared data from a field rain gauge comparison 
that we used to estimate the magnitude of the uncertainty caused by wind effects. 
 





 

v 

Contents 

Acknowledgments .................................................................................................................................  iii	
  
1.0	
   Overview .......................................................................................................................................  1	
  
2.0	
   Contacts .........................................................................................................................................  3	
  
3.0	
   Uncertainty Assignment ................................................................................................................  5	
  

3.1	
   Addition of Error Fields ........................................................................................................  5	
  
3.2	
   Rain Gauge Uncertainty Calculations ...................................................................................  6	
  
3.3	
   Filling Missing Data .............................................................................................................  7	
  

4.0	
   Differences Between CSSEFARMBE and ARMBE ....................................................................  11	
  
4.1	
   Statistical Comparison Between CSSEFARMBE and ARMBE Data ..................................  12	
  

5.0	
   Details of Assigned Uncertainties .................................................................................................  13	
  
5.1	
   Surface Temperature .............................................................................................................  13	
  
5.2	
   Relative Humidity .................................................................................................................  14	
  
5.3	
   Atmospheric Pressure ...........................................................................................................  14	
  
5.4	
   Wind Speed ...........................................................................................................................  15	
  
5.5	
   Wind Direction .....................................................................................................................  15	
  
5.6	
   U and V Wind components ...................................................................................................  16	
  
5.7	
   Surface Precipitation .............................................................................................................  17	
  

6.0	
   References .....................................................................................................................................  19	
  
 

 

  



 

vi 

Figures 

Figure 1.  Example diagnostic plots using CSSEFARMBE observations and uncertainties. ...............  5	
  
Figure 2.  Scatter plot of total precipitation measured by an unshielded rain gauge and a rain 

gauge in a pit as reference. ............................................................................................................  7	
  
Figure 3.  Annual average (black) and standard deviation (blue) of the difference between 

observed temperature and temperature filled in by linear interpolation for a given minute of 
the day. Each panel shows the results for the center time period when an interval of 20, 60, 
or 120 consecutive minutes (as labeled) were filled using linear interpolation. ...........................  8	
  

Figure 4.  The average standard deviation of the difference between observed and filled data for a 
given number of consecutive missing minutes (black o’s). Red lines show regression fits to 
these values, as described by the equations in Table 2. .................................................................  9	
  

Figure 5.  Difference between precipitation values from ARMBE and CSSEFARMBE data sets 
(blue) are caused by a different choice of precipitation variables. Precipitation rates from 
ARMBE data (red) are also plotted for reference. ........................................................................  11	
  

 

Tables 

Table 1.  Random errors assigned to each filled data point for a given number of consecutive 
missing minutes (N). ......................................................................................................................  10	
  

Table 2.  Statistics of differences between ARMBE and CSSEFARMBE hourly average 
variables. ........................................................................................................................................  12	
  

Table 3. SGP Central Facility (E13), Temperature Uncertainty ...........................................................  13	
  
Table 4.  SGP Extended Facilities, Temperature Uncertainty ...............................................................  13	
  
Table 5: SGP Facilities, RH Uncertainty. ..............................................................................................  14	
  
Table 6.  SGP Facilities, Atmospheric Pressure Uncertainty ................................................................  14	
  
Table 7.  SGP Facilities, Wind Speed Uncertainty ................................................................................  15	
  
Table 8.  Wind Direction Alignment Correction ...................................................................................  16	
  
Table 9.  SGP Facilities, Wind Direction Uncertainty ..........................................................................  16	
  
Table 10.  SGP Facilities, Rain Gauge Uncertainties ............................................................................  17	
  

 
 



 

1 

1.0 Overview 

The Climate Science for a Sustainable Energy Future (CSSEF) project is working to improve the 
representation of the hydrological cycle in global climate models, critical information necessary for 
decision-makers to respond appropriately to predictions of future climate. In order to accomplish this 
objective, CSSEF is building testbeds to implement uncertainty quantification (UQ) techniques to 
objectively calibrate and diagnose climate model parameterizations and predictions with respect to local, 
process-scale observations. In order to quantify the agreement between models and observations 
accurately, uncertainty estimates on these observations are needed. 

The DOE Atmospheric Radiation Measurement (ARM) program takes atmospheric and climate 
related measurements at three permanent locations worldwide. The ARM VAP called the ARM Best 
Estimate (ARMBE) [Xie et al., 2010] collects a subset of ARM observations, performs quality control 
checks, averages them to one hour temporal resolution, and puts them in a standard format for ease of use 
by climate modelers. ARMBE has been widely used by the climate modeling community as a summary 
product of many of the ARM observations. However, the ARMBE product does not include uncertainty 
estimates on the data values. Thus, to meet the objectives of the CSSEF project and enable better use of 
this data with UQ techniques, we created the CSSEFARMBE data set. 

For the current implementation of CSSEFARMBE, only a subset of the variables contained in 
ARMBE is included in CSSEFARMBE. CSSEFARMBE currently consists of only surface 
meteorological observations, though this may be expanded to include other variables in the future. The 
CSSEFARMBE VAP is focused on the ARM Southern Great Plains (SGP) site, and is produced for all 
extended facilities at SGP that contain surface meteorological equipment. This extension of the ARMBE 
data set to multiple facilities at SGP allows for better comparison between model grid boxes and the 
ARM point observations. In the future, CSSEFARMBE may also be created for other ARM sites. As each 
site has slightly different instrumentation, this will require additional development to understand the 
uncertainty characterization associated with instrumentation at those sites. 

The uncertainty assignment process is implemented into the ARM program’s new Integrated 
Software Development Environment (ISDE) so that many of the key steps can be used in the future to 
screen data based on ARM Data Quality Reports (DQRs), propagate uncertainties when transforming data 
from one time scale into another, and convert names and units into NetCDF Climate and Forecast (CF) 
standards. These processes are described in more detail in the following sections. 
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3.0 Uncertainty Assignment 

3.1 Addition of Error Fields 

The primary purpose of creating the CSSEFARMBE data set is to add uncertainty estimates to the 
already widely used ARMBE data. To accomplish this, errors are assigned to the one-minute resolution 
data based on instrument specifications and field conditions, then propagated to hourly averages. Three 
new fields are added to the output file for each variable of interest to characterize the error estimates on 
that variable: random error, positive systematic error, and negative systematic error. 

 

 
Figure 1.  Example diagnostic plots using CSSEFARMBE observations and uncertainties. 

Systematic and random errors are propagated using standard procedures. Systematic errors assigned 
to one-minute data are averaged to give hourly average systematic error estimates. Random errors are 

added in quadrature using the following standard formula: !!! =    !!"#! !. By keeping track of 

systematic and random errors separately, errors can be propagated accurately to other averages of interest, 
for example, the composite diurnal cycle plots shown in Figure 1. To create the gray, 95 percent 
confidence interval envelopes around each observational data set, propagated systematic and random 
errors are added in quadrature and multiplied by two (errors are reported as one standard deviation or 
equivalent) using the following standard formulas: 
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!!""#$ =   !!"# + 2 ∙ !!"#$! +   !!"#  !"!  !""!  

!!"#$% =   !!"# − 2 ∙ !!"#$! +   !!"#  !"!  !""!  

Where Xobs represents a particular measurement like temperature and σrand, σpos sys err, σneg sys err are its 
respective uncertainties. The details of the error assigned to each variable are described in section 5.0. 
Bias errors are either corrected or recorded as systematic errors. 

3.2 Rain Gauge Uncertainty Calculations 

Because precipitation is of particular interest to the CSSEF project, special attention was paid to the 
rain gauge uncertainty assignments. Accurate rain gauge measurements are more difficult to make than 
other surface meteorological data. Our method of uncertainty assignment accounts for several known 
biases in rain gauge observations. First, we use the corrected value of precipitation from the ARM met 
data set (the current ARM standard data set for meteorological observations), which corrects for biases 
that correspond to the rain rate. Individual tipping-bucket rain gauges are calibrated using a dynamic 
calibration method [Humphrey et al., 1997] to correct for nonlinear instrument response to rain rate. 

One of the largest biases in rain gauge measurements is the under catch of precipitation due to 
nonlinear wind effects. This bias is particularly large with solid precipitation like snow that drifts 
considerably. Accurate corrections for solid precipitation errors would be a significant undertaking and 
would require more information than is available. Because the CSSEF program is focusing on 
precipitation in the warm season at SGP, we chose to simply assign a 50 percent bias uncertainty to any 
precipitation measurements when the temperature was below zero as an indicator that these measurements 
are highly uncertain. To assess wind bias errors in rain precipitation events we used data from an 
experiment comparing unshielded rain gauges to reference rain gauges placed in a pit to avoid loss due to 
wind [Duchon and Essenberg, 2001]. Claude Duchon provided us with total rain amount from both 
gauges for 103 precipitation events over a period of two and a half years at a location in Oklahoma near 
the ARM SGP site. Figure 2 shows a scatter plot of those 103 data points from the two gauges. A linear 
regression fit to these data, constrained to include the origin, shows an average 4.4 percent negative bias 
due to wind effects. This should be a conservative estimate of the bias at the SGP site since the 
precipitation gauges are shielded at these facilities. In addition to the 4.4 percent bias, we included the 
standard error of the slope coefficient (0.6 percent) as a random error in the uncertainty to account for the 
spread of the values around the linear regression fit. 
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Figure 2.  Scatter plot of total precipitation measured by an unshielded rain gauge and a rain gauge in a 

pit as reference. 

In addition to the bias corrections, we included a random error to account for local variability effects. 
This is not strictly an instrument uncertainty, but rather an uncertainty for how representative the 
observation is for the surrounding area. It has been found that even rain gauges in close proximity (on the 
order of meters) measure different amounts of rainfall due to high local variability in rain rate. We used 
equation 5 from the study by Ciach [2003] and read the coefficients from the plots in Figure 6 to calculate 
this uncertainty. This is a random error and will be less important when averaging over long time scales. 

3.3 Filling Missing Data 

When fewer than 120 consecutive minutes were missing in some variables, these data were filled 
using linear interpolation between the last good measurements on either side of the time gap. An error 
was then associated with each filled datum based on the number of consecutive minutes missing using the 
equations given in Table 1. This was done for most (temperature, RH, atmospheric pressure, u and v 
components of wind, arithmetic mean wind speed), but not all, surface meteorological variables. Missing 
precipitation data was not filled due to the rapidly varying and on/off nature of precipitation data. 
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Figure 3.  Annual average (black) and standard deviation (blue) of the difference between observed 
temperature and temperature filled in by linear interpolation for a given minute of the day. 
Each panel shows the results for the center time period when an interval of 20, 60, or 
120 consecutive minutes (as labeled) were filled using linear interpolation. 

To assign an uncertainty to each filled minute, observations were artificially removed from complete 
data sets and then comparisons were done between original data and filled data. An example is shown for 
temperature in Figure 3. A given interval of observational data centered on each minute during all days in 
2011 was removed and filled by linear interpolation, and the difference between the original and the filled 
data point was calculated. The year 2011 was chosen because it is a year of interest to the project and 
because the observations are relatively complete during that year. It is assumed that calculating the 
uncertainty of filled data from one year is representative of the full time period of data since inter-annual 
variability is not likely to cause greater differences than the seasonal or diurnal cycle. The standard 
deviation of that difference over all days in the year for a given time is shown in each point in Figure 3 
(blue). Each panel shows this calculation for a different interval of consecutive missing days, with the 
error getting larger with an increase in the number of missing days. For the sake of simplicity, we assume 
that the error caused by filling missing data is the same for all times and is normally distributed around 
the true value. Though this assumption is not perfect, it is reasonable based on the relatively small 
deviation of the black points from the y=0 line in Figure 3 and similar magnitudes of the blue error bars 
surrounding them. Missing periods greater than 120 minutes were not filled because this assumption is no 
longer a good approximation. 

0 200 400 600 800 1000 1200
1

0

1
20 consecutive filled minutes

0 200 400 600 800 1000 1200
1

0

1

D
iff

er
en

ce
 b

et
w

ee
n 

m
ea

su
re

d/
in

te
rp

ol
at

ed
 T

em
pe

ra
tu

re
s 

(K
)

60 consecutive filled minutes

0 200 400 600 800 1000 1200
1

0

1

Minutes since 0:00 UTC

120 consecutive filled minutes



 

9 

 
Figure 4.   The average standard deviation of the difference between observed and filled data for a 

given number of consecutive missing minutes (black o’s). Red lines show regression fits to 
these values, as described by the equations in Table 2. 

Thus, for each given interval of number of missing days, the average of all standard deviations for 
each minute is calculated. That is, the mean of all blue points in each panel in Figure 3 becomes the 
estimate of the error of a one-minute data point filled by linear interpolation for a given interval of 
missing minutes. These errors are plotted in black circles in Figure 4 for a range of intervals of missing 
minutes between 0 and 120. The resulting least-squares regression fits (Figure 4, red lines) to these 
deviations are the basis of the random errors assigned to data when filled by interpolation, and are listed 
as formulas in Table 1. 
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Table 1.   Random errors assigned to each filled data point for a given number of consecutive missing 
minutes (N). 

Temperature !!"#$ = 5.84   ∙ 10!! ∙ !! + 0.0298 ∙ ! + 0.0639 
Relative Humidity !!"#$ = 0.00016 ∙ !! + 0.151 ∙ ! + 0.325 
Atmospheric Pressure !!"#$ = 2.12   ∙ 10!! ∙ !! + 0.0151 ∙ ! + 0.0249 
U Wind Component !!"#$ = 3.11 ∙ 10!! ∙ !! − 0.000737 ∙ !! + 0.114 ∙ ! + 0.345 
V Wind Component !!"#$ = 3.09 ∙ 10!! ∙ !! − 0.000701 ∙ !! + 0.116 ∙ ! + 0.37 
Wind Speed (arith mean) !!"#$ = 3.41 ∙ 10!! ∙ !! − 0.000784 ∙ !! + 0.110 ∙ ! + 0.409 
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4.0 Differences Between CSSEFARMBE and ARMBE 

The error assignment was done in ARM’s new ISDE to take advantage of the system’s features such 
as automated addition of DQR flags, transformations of data, ease of metadata creation, and standard 
name assignment. This feature required rewriting the quality assessment and processing of ARMBE from 
Interactive Data Language (IDL) into the C programming language as ISDE only supported development 
in C at the time of data set creation. 

In addition to the use of ISDE, the CSSEFARMBE processing differs from ARMBE in several other 
ways. First, the CSSEFARMBE creates hourly averages from 1-minute surface meteorological data from 
the ARM MET or Surface Meteorological Observation System (SMOS) data streams rather than from the 
30-minute SMOS data products used in ARMBE prior to September 2009. Creating averages from the 
higher resolution data allows more accurate assignment of uncertainties that depend on the instantaneous 
values of the observations. Second, within the CSSEF project, a new automated feature was developed for 
ISDE to read in ARM DQRs and assign quality flags accordingly. We used this information to eliminate 
data that was flagged as bad in DQRs. ARMBE data is manually checked for errors, which we did not 
repeat, replacing this instead with the automated DQR process. Third, we used the corrected surface 
precipitation variable “tbrg_total_precip_corr” from the ARM MET data sets, as opposed to the original 
precipitation variable used by the ARMBE VAP. The corrected precipitation can have substantially 
different values than the original precipitation variable as shown in Figure 5 (blue line), these differences 
are about 25 percent of the total precipitation values at the SGP central facility in 2008. Finally, we chose 
to fill missing data by interpolation when less than 120 consecutive minutes were missing, as described in 
section 3.3. 

To characterize the impact of these choices on the CSSEFARMBE surface meteorological data, we 
compare it to the ARMBE data and give a summary of the results in the remainder of this section. 

 
Figure 5.   Difference between precipitation values from ARMBE and CSSEFARMBE data sets (blue) 

are caused by a different choice of precipitation variables. Precipitation rates from ARMBE 
data (red) are also plotted for reference. 
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4.1 Statistical Comparison Between CSSEFARMBE and ARMBE Data 

To examine the impact of the processing changes, we calculated statistics for the difference between 
variables in the CSSEFARMBE and ARMBE data sets. To do this comparison we used version 1.3a of 
the ARMBE data set, downloaded from the ARM archive in August 2012. There appears to be a 
difference in the time interval used in the hour averages between the two data sets after September 2009 
when the ARM SMOS data set is no longer available and ARMBE uses the one-minute met data instead. 
We are in discussion with the developers of the ARMBE data set about how to best resolve this 
discrepancy, but for the purposes of this comparison we restrict our statistical analysis to data from 
1994  to August 2009. The precipitation comparisons are only available from March 2008-August 2009 
because the met data does not yet have corrected precipitation earlier than 2008. 

Table 2 shows that there is good agreement between ARMBE and CSSEFARMBE data sets for most 
variables, with the exception of precipitation and wind direction. The higher percentage of precipitation 
data points with greater than 1 or 10 percent differences is caused by the different choice of precipitation 
variables described earlier in this section. There are two causes of the discrepancy in wind direction 
values between the two data sets: a correction for a bias and a difference in the way wind direction is 
averaged. As described in section 5.5, wind direction is corrected for biases due to misalignment from 
true North. At E13, that difference is 3 degrees, causing all ARMBE values to be greater than 1 percent 
higher than CSSEFARMBE data. In addition, however, we believe there may be a bug in the averaging 
process of the ARMBE data set that does not correctly calculate the “modal” average, a value that wraps 
around from 360 to 0 degrees. We are in communication with the developers of the ARMBE data set to 
confirm this and anticipate that this discrepancy will be fixed in future versions of the ARMBE data set. 

Table 2.  Statistics of differences between ARMBE and CSSEFARMBE hourly average variables. 

 

 

Variable Mean 
difference 

RMS 
difference 

Percentage of data points with differences: 
> 10% >1% 

Temperature 0.0001 K 0.03 K 0% 0.003% 
Relative Humidity -0.001% 0.07% 0.01% 0.1% 
Surface Pressure -0.002 hPa 0.03 hPa 0% 0% 
Wind Direction 0.1° 38° 11% 87% 
Wind Speed (arith) 0.002 m/s 0.1 m/s 0.08% 0.2% 
Precipitation -0.03 mm/hr 0.3 mm/hr 56% 100% 
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5.0 Details of Assigned Uncertainties 

5.1 Surface Temperature 

Instrument: Campbell Scientific HMP35C 
Units: °C 
References: [Ritsche, 2008] 
Algorithm notes: All known uncertainties were assigned as systematic errors based on the assumption that 
this basic uncertainty comes from calibration/accuracy limitations and does not decrease with averaging. 

Table 3. SGP Central Facility (E13), Temperature Uncertainty 

 Description Neg. Sys. Error Pos. Sys. Error Random Error 
Baseline uncertainty Includes sensor 

interchangeability, bridge 
resistor precision, polynomial 
curve fitting errors 

0.2°C 0.2°C 0°C 

Conditional uncertainty Uncertainty due to radiation: 
For an aspirated radiation 
shield (used only at central 
facility) uncertainty is 
constant 

0.1°C 0.1°C 0°C 

Sensor Drift Not known, not thought to be 
large between calibrations 

0°C 0°C 0°C 

Total:  0.29 °C 0.29 °C 0°C 

Table 4.  SGP Extended Facilities, Temperature Uncertainty 

 Description Neg. Sys. 
Error 

Pos. Sys. 
Error 

Random Error 

Baseline 
uncertainty 

Includes sensor interchangeability, 
bridge resistor precision, polynomial 
curve fitting errors 

0.2°C 0.2°C 0°C 

Conditional 
uncertainty 

Uncertainty due to radiation depends on 
wind speed for naturally aspirated 
radiation shield: 

   

 WS >= 6 m/s 0.1°C 0.1°C 0°C 
 3 m/s <= WS < 6 m/s 0.4°C 0.4°C 0°C 
 2 m/s <= WS < 3 m/s 0.7°C 0.7°C 0°C 
 WS < 2 m/s 1.5°C 1.5°C 0°C 
Sensor Drift Not known, not thought to be large 

between calibrations 
0°C 0°C 0°C 

Total: WS >= 6 m/s 0.23°C 0.23°C 0°C 
 3 m/s <= WS < 6 m/s 0.45°C 0.45°C 0°C 
 2 m/s <= WS < 3 m/s 0.73°C 0.73°C 0°C 
 WS < 2 m/s 1.54°C 1.54°C 0°C 
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5.2 Relative Humidity 

Instrument: Campbell Scientific HMP35C 
Units: % 
References: [Ritsche, 2008] 
Algorithm notes: All known uncertainties were assigned as systematic errors based on the assumption that 
this basic uncertainty comes from calibration/accuracy limitations and does not decrease with averaging. 

Table 5: SGP Facilities, RH Uncertainty. 

 Description Neg. Sys. 
Error 

Pos. Sys. Error Random Error 

Manufacturer Specs Includes calibration 
uncertainty, repeatability, 
hysteresis, temperature 
dependence, and long-term 
stability over a period of one 
year  

   

 RH < 90% 1.03% 1.03% 0% 
 RH >=90% 1.52% 1.52% 0% 
Total: RH < 90% 1.03% 1.03% 0% 
 RH >=90% 1.52% 1.52% 0% 

5.3 Atmospheric Pressure 

Instrument: Digital barometer, Vaisala Model PTB201A 
Units: hPa 
References: [Ritsche, 2008] 
Algorithm notes: All known uncertainties were assigned as systematic errors based on the assumption that 
this basic uncertainty comes from calibration/accuracy limitations and does not decrease with averaging. 

Table 6.  SGP Facilities, Atmospheric Pressure Uncertainty 

 Description Neg. Sys. 
Error 

Pos. Sys. 
Error 

Random 
Error 

Manufacturer’s specs Includes linearity, 
hysteresis, calibration 
uncertainty, repeatability, 
temperature dependence, 
long-term stability over a 
year 

0.18 hPa 0.18 hPa 0 hPa 

Total:  0.18 hPa 0.18 hPa 0 hPa 
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5.4 Wind Speed 

Instrument: R. M. Young Model 05103 Wind Monitor 
Units: m/s 
References: [Ritsche, 2008] 
Algorithm notes: These uncertainties are assigned to both arithmetic mean and vector mean wind speeds 
at one-minute resolution. Wind speeds must be above 1.0 m/s to be detected by the instrument. The 
possible bias error due to wind speeds below detection threshold is not corrected for, but is included in the 
systematic errors given in Table 5. The negative values for “positive systematic errors” in Table 5 
represent situations where the range of possible biases is negative. 

Table 7.  SGP Facilities, Wind Speed Uncertainty 

 Description Neg. Sys. Error Pos. Sys. Error Random Error 
Baseline uncertainty NIST calibration uncertainty 0 m/s 0 m/s WS*0.01 

Conditional uncertainty Uncertainty due to possible 
wind speeds below detection 
threshold of 1.0 m/s 

   

 WS < 1.0 0.51 m/s -0.49 m/s  
 1.0 <= WS < 1.5 0.31 m/s -0.20 m/s  
 1.5 <= WS < 2.0 0.22 m/s 0 m/s  
 2.0 <= WS < 2.5 0.12 m/s 0.02 m/s  
 WS >= 2.5 0 m/s 0 m/s  
Total: WS < 1.0 0.51 m/s -0.49 m/s WS*0.01 
 1.0 <= WS < 1.5 .31 m/s -0.20 m/s WS*0.01 
 1.5 <= WS < 2.0 0.22 m/s 0 m/s WS*0.01 
 2.0 <= WS < 2.5 0.12 m/s 0.02 m/s WS*0.01 
 WS >= 2.5 0 m/s 0 m/s WS*0.01 

5.5 Wind Direction 

Instrument: R. M. Young Model 05103 Wind Monitor 
Units: ° 
References: [Ritsche, 2008] 
Algorithm notes: Biases in wind direction from tower misalignment are corrected in the CSSEFARMBE 
dataset. The corrections in Table 6 are added to the wind direction data at a given site. The values are 
based on the deviations from true North given in Table 7 of the SMOS Handbook. 
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Table 8.  Wind Direction Alignment Correction 

Site Bias Correction 
E1 – 1° 
E3 – 2° 
E5 +2° 
E6 – 4° 
E7 –1° 
E9 +2° 
E11 +2° 
E13 +3° 
E15 +1° 
E20 –1° 
E24 +3° 
E27 – 6°  

Table 9.  SGP Facilities, Wind Direction Uncertainty 

 Description Neg. Sys. Error Pos. Sys. Error Random Error 
Manufacturer specs Includes sensor accuracy, A/D 

conversion accuracy,  
0° 0° 2.5° 

Total:  0° 0° 2.5° 

5.6 U and V Wind components 
Instrument: R. M. Young Model 05103 Wind Monitor 
Units: m/s 
References: [Ritsche, 2008] 
Algorithm notes: U and V Wind components are calculated from vector averaged wind speed and wind 
direction measurements. The errors of the u and v wind speeds are similarly calculated from the errors of 
wind speed and wind direction as given in the equations below: 

Random errors: 

!"#$!!"#$  !"" =    !"#! !"#$ ∙ !"#!!"#$  !"" + !"#$!!"#! !"#$ !"#$!"#$  !""!    

 

!"#$!!"#$  !"" =    !"#! !"#$ ∙ !"#!!"#$  !"" + !"!"!!"#! !"#$ !"#$!"#$  !""!    

 

Systematic errors: 
!"#$!!"#  !"!  !"" =   !"#!!"#  !"!  !"" !"#! !"#$  

 
!"#$!!"#  !"!  !"" =   !"#!!"#  !"!  !"" !"#! !"#$  

 
!"#$!!"#  !"!  !"" =   !"#!!"#  !"!  !"" !"#! !"#$  

 
!"#$!!"#  !"!  !"" =   !"#!!"#  !"!  !"" !"#! !"#$  
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5.7 Surface Precipitation 

Instrument: Electrically heated, tipping-bucket precipitation gauge, Novalynx Model 260-2500E-12 
Rain/Snow Gauge 
Units: mm/hr 
References: [Ciach, 2003; Duchon and Essenberg, 2001; Goodison et al., 1998; Humphrey et al., 1997; 
Ritsche, 2008] 
Algorithm notes: Bias error due to undercatch of precipitation from wind as described below in section 
4.7.1. An additional random error is included based on the study by Ciach (2003) that found variation in 
measurements between multiple rain gauges in close proximity. 

Table 10.  SGP Facilities, Rain Gauge Uncertainties 

 Description Neg. Sys. Error Pos. Sys. 
Error 

Random Error 

Uncertainty due to 
wind (based on data 
from Duchon and 
Essenberg 2001) 

Error due to undercatch of 
precipitation from wind 

   

 Temperature <= 0 0.5*precip 0 mm/hr 0 mm/hr 
 Temperature > 0 0.044*precip 0 mm/hr precip*.006 
Local variability 
(from Ciach 2003) 

 0 mm/hr 0 mm/hr e0 = 0.07; 
R0 = 6 mm/hr; 
e0 + R0/precip 

Total:  Temperature <= 0 0.5*precip 0 mm/hr e0 + R0/precip 

 Temperature > 0 0.044*precip 0 mm/hr Sqrt( (e0 + 
R0/precip)2 + 
(precip*.006)2 ) 
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